EP0473814B1 - Interrupteur à électrodes creuses - Google Patents

Interrupteur à électrodes creuses Download PDF

Info

Publication number
EP0473814B1
EP0473814B1 EP90116902A EP90116902A EP0473814B1 EP 0473814 B1 EP0473814 B1 EP 0473814B1 EP 90116902 A EP90116902 A EP 90116902A EP 90116902 A EP90116902 A EP 90116902A EP 0473814 B1 EP0473814 B1 EP 0473814B1
Authority
EP
European Patent Office
Prior art keywords
hollow
electrode
switch according
electrode switch
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90116902A
Other languages
German (de)
English (en)
Other versions
EP0473814A1 (fr
Inventor
Klaus-D. Rohde
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to DE59009153T priority Critical patent/DE59009153D1/de
Priority to EP90116902A priority patent/EP0473814B1/fr
Priority to JP3244597A priority patent/JPH076851A/ja
Priority to US07/752,843 priority patent/US5146141A/en
Publication of EP0473814A1 publication Critical patent/EP0473814A1/fr
Application granted granted Critical
Publication of EP0473814B1 publication Critical patent/EP0473814B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T2/00Spark gaps comprising auxiliary triggering means
    • H01T2/02Spark gaps comprising auxiliary triggering means comprising a trigger electrode or an auxiliary spark gap
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J17/00Gas-filled discharge tubes with solid cathode
    • H01J17/38Cold-cathode tubes
    • H01J17/40Cold-cathode tubes with one cathode and one anode, e.g. glow tubes, tuning-indicator glow tubes, voltage-stabiliser tubes, voltage-indicator tubes
    • H01J17/44Cold-cathode tubes with one cathode and one anode, e.g. glow tubes, tuning-indicator glow tubes, voltage-stabiliser tubes, voltage-indicator tubes having one or more control electrodes

Definitions

  • the invention relates to a hollow electrode switch with an anode and a cathode, which face each other at a distance a and form a discharge gap.
  • a trigger device that contains a hollow electrode is assigned to the discharge path.
  • the discharge path is arranged in an ionizable gas filling; the pressure p of the gas and the electrode spacing d on the discharge path are chosen so that the ignition voltage of the gas discharge decreases with increasing pressure pxd.
  • the ignition voltage for a given gas discharge path and its usual graphical representation as a function of the product of gas pressure p and electrode spacing d in the ignition characteristic curve are known to be an important aid for identifying electrical discharge devices, with due regard to the ignition probability.
  • the infinitely large plate capacitor and its ignition characteristic are generally used for comparison.
  • the practical embodiment of such discharge paths has electrodes with finite dimensions. While it is sufficient to determine the right branch of the ignition characteristic (Paschen curve), i.e.
  • the ignition characteristic curve can also be determined, for example, for various noble and molecular gases in the near-breakdown area, ie to the left of the minimum of the Paschen curve (Proc. VII th Int. Conf. Phenom. In Ionited Gases, Beograd, Vol. I (1965), pages 316 to 326).
  • Gas discharge switches are also known which are controlled by a pulsed low pressure gas discharge. For example, they switch currents of 10 kA at a voltage of 20 kV.
  • the discharge switch contains an anode and a cathode, which are provided with coaxial openings and are separated from one another by an annular insulator.
  • a control device is provided for the gas discharge, which contains a hollow electrode designed as a cage, which is connected to the cathode in an electrically conductive manner and is therefore at the cathode potential. It encloses the cathode rear space and separates it from the area of preionization.
  • the gas discharge between the cathode and the anode is ignited by injection of charge carriers.
  • the discharge path is ignited in two stages.
  • an auxiliary electrode generates a pre-ionization by means of a glow discharge outside the hollow electrode.
  • a trigger electrode then receives a negative ignition pulse and the entry of charge carriers into the hollow electrode is made possible in that the potential of a blocking electrode is set to zero. The discharge is initiated when the charge carriers enter the hollow electrode.
  • This gas discharge switch is relatively complicated (J. Phys. E: Sci. Instr. 19 (1986), The Inst. of Physics, Great Britain, pages 466 to 470).
  • FIG. 3 Another known embodiment of a hollow electrode switch, in which the hollow electrode is electrically conductively connected to the cathode, contains a cathode and an anode, each of which is provided with a central bore. A discharge gap is formed between these holes. The distance between the electrodes, which are arranged parallel to one another in the discharge region, is greater than in the channel formed in the radial direction outside the discharge region between the electrodes (DE-A-37 21 529, FIG. 3).
  • the gas discharge switch can also contain a plurality of discharge channels which are provided with a common trigger device.
  • This trigger device contains a common hollow electrode which is electrically conductively connected to the common cathode.
  • the synchronous ignition of the discharge channels is initiated by charge carriers which enter the cathode rear space from a pre-ionization region through holes in the bottom of the cage.
  • the anode and the cathode are each provided with a recess on the individual discharge paths, so that the mutually facing surfaces of the anode and the cathode do not run parallel in the discharge region.
  • the discharge gap is also formed between the central bores (WO-A-89/10646, FIG. 13).
  • the dielectric strength of the switch is at constant gas pressure essentially by the distance between the electrodes, the diameter of the openings in the electrodes and the material thickness of the electrodes and thus by the depth of the holes influenced.
  • the opening diameter proves to be particularly critical here, since on the one hand a high dielectric strength requires a small diameter, while on the other hand reliable triggering requires a predetermined minimum diameter.
  • the electrode material in the edge area of the openings is removed with an increasing number of switching operations. This erosion increases the opening diameter, for example at a switching number of 107, by about 50% and thus reduces the dielectric strength and increases the penetration into the cathode rear space, which can lead to increasing disturbances in the trigger system due to overvoltages.
  • the invention is based on the object of simplifying and improving the known embodiment of a hollow electrode switch:
  • the ignition device for the hollow electrode switch is to be simplified, the product pxd is significantly increased and the voltage dependence of the switching delay (so-called delay) and the scatter (so-called. jitter) can be reduced.
  • the object is achieved in a hollow electrode switch according to the preamble of claim 1 by the further characterizing features.
  • the discharge chamber which is formed between the electrodes, this discharge chamber being connected to the cavity of the hollow electrode through openings which are preferably arranged symmetrically to the axis of rotation of the hollow electrode switch.
  • the latter openings are outside the central area of the discharge chamber with the maximum Electrode distance d arranged in which the essential part of the discharge takes place.
  • the openings essentially serve to inject the charge carriers from the cavity of the control electrode.
  • the discharge burns largely between closed surface areas of the cathode and anode.
  • the reference electrode has a double one Function; it forms a cathode for the gas discharge on its side facing the discharge path and a cathode for the glow discharge on its side facing the hollow electrode.
  • This hollow electrode switch you get a low voltage dependency at the same pressure.
  • These openings can preferably be inclined with respect to the axis of rotation of the hollow electrode switch.
  • the angle of inclination can preferably be at least 15, in particular at least 30 °.
  • a particularly high switching voltage and a very low switching delay are obtained with a ratio of the maximum electrode distance d within the switching chamber to the distance a of the electrodes of at least 3: 1, preferably at least 5: 1, in particular at least 10: 1.
  • the ratio can under certain circumstances be only 2: 1.
  • the hollow electrode is provided as a control electrode which is electrically insulated from the electrodes of the discharge gap
  • at least one space charge preferably a glow discharge
  • the control electrode combines the function of the pre-ionization and at the same time the trigger electrode and a special blocking electrode is no longer required. This gives you a cold cathode low-pressure gas discharge switch with a high switching voltage and short switching delay as well as low scatter.
  • a hot cathode for example, can be provided to generate the space charge required to ignite the discharge gap be arranged between the reference electrode and the bottom of the control electrode.
  • the space charge can also be generated, for example, by microwave excitation or by an optical ignition device, in particular a laser beam.
  • a particularly advantageous embodiment of the hollow electrode switch consists in that the space charge required to ignite the discharge path is provided in the cavity of the control electrode by a glow discharge.
  • the control electrode can easily be connected directly to a trigger voltage source for a negative trigger voltage with sufficient energy.
  • the control electrode forms the anode and the reference electrode arranged opposite the opening of the control electrode forms the cathode for the glow discharge.
  • the hollow electrode can also be connected to an additional voltage source with a positive potential for pre-ionization.
  • This pre-ionization generates a low-current glow discharge within the control electrode, which does not yet lead to the ignition of the discharge gap.
  • This glow discharge increases the dielectric strength at the discharge gap and thus the stability of the switch.
  • the ignition of the discharge gap is then only generated by the superimposed negative trigger pulse with a steep rising edge and a short duration from the trigger electrode.
  • FIG. 1 schematically illustrates an exemplary embodiment of a hollow electrode switch according to the invention is.
  • Figure 2 shows an embodiment of the hollow electrode switch with a specially designed channel between the electrodes of the discharge gap.
  • FIGS. 3 to 7 each show an embodiment of the discharge chamber.
  • FIG. 8 shows an embodiment of the hollow electrode switch for particularly high switching voltage with a large number of electrodes
  • FIG. 9 shows an embodiment for high currents with a large number of discharge paths.
  • Particular embodiments of the control electrode are illustrated in FIGS. 10 and 11.
  • a hollow electrode switch according to FIG. 1 contains two electrodes, one of which is connected as a cathode 2 and the other as an anode 3.
  • the cathode 2 is provided with at least one opening, two of which are shown in the figure and are designated by 4 and 5. Through these two openings 4 and 5, a discharge path 9 is ignited in a discharge chamber 8, which is formed in the central discharge region between the cathode 2 and the anode 3 by at least one recess in the electrodes.
  • the surface of the cathode 2 facing the anode 3 is shaped such that a discharge chamber 8 is formed in the form of a double cone with base surfaces facing one another.
  • the cathode 2 and the anode 3, which generally each form a rotating body, are arranged in their surface area outside the switching chamber 8 at a distance a from one another, which can be, for example, about 2 to 5 mm.
  • a distance a from one another, which can be, for example, about 2 to 5 mm.
  • the discharge path 9 is ignited. The discharge thus burns between closed surface areas of the cathode 2 and the anode 3, so that erosion of the openings 4 and 5 which lie outside this central area is practically impossible.
  • This maximum electrode distance d within the switching chamber 8 is at least 3 mm, preferably at least 6 mm and in particular significantly more than 10 mm.
  • the cathode 2 and the anode 3 are made of electrically conductive material, preferably stainless steel, and in the area of the discharge chamber 8 can generally be provided with special inserts 6 or 7 made of a high-melting metal, for example an alloy containing tungsten W or molybdenum Mo, or even entirely consist of this melting metal.
  • the trigger device for the discharge gap 9 includes a control electrode 10 in the form of a hollow electrode, the bottom 11 and side wall 12 of which surround a cavity 13 and the opening of which faces the discharge gap 9 and which is electrically insulated from the cathode 2.
  • This control electrode 10 consists of an electrically conductive material, for example stainless steel, and has at least the shape of a shell, preferably the shape of a pot, the depth T of which is substantially greater than its diameter D.
  • the shape of the pot of the control electrode 10 is preferably chosen so that that the ratio of the depth T to the diameter D is about 1 to 5, in particular about 2.
  • the cavity 13 and the discharge chamber 8 contain a gas filling from an ionizable working gas, preferably hydrogen or deuterium or a mixture of these gases.
  • an ionizable working gas preferably hydrogen or deuterium or a mixture of these gases.
  • nitrogen or an inert gas such as argon or helium, are also suitable.
  • a gas storage 24 for the working gas which is only indicated schematically in the figure, is provided with a heating device, not shown in the figure, the electrical connections of which are led through the wall of the switch and are designated by 25 and 26.
  • the space surrounding the gas reservoir 24 is connected to the cavity 13 by pressure compensation openings 15 and 16 in the electrical connection for the control electrode 10.
  • the gas reservoir of the gas reservoir 24 can preferably be operated simultaneously serve as a pressure control system for the hollow electrode switch.
  • the control electrode 10 is assigned a trigger voltage source 17, which can be connected to the control electrode 10, for example, via a limiting resistor 18 and a decoupling capacitance 19.
  • the trigger voltage source 17 supplies a trigger pulse with a steep rising edge and a negative voltage of, for example, approximately 0.5 to 10 kV, preferably approximately 1 to 5 kV compared to the reference potential of the cathode 2, which can be, for example, ground potential and against which the control electrode 10 is electrically insulated .
  • the length of the trigger pulse is at least as long as the switching delay of the discharge path 9 and can be, for example, approximately 0.1 to 2 »s, preferably approximately 0.5 to 1» s.
  • the control electrode 10 can also be assigned an additional voltage source 21 for pre-ionization, the positive voltage of which, for example, can be approximately 0.1 to 5 kV compared to the reference potential of the cathode 2 and which has a high series resistor 22 of preferably a few MOhm can be connected to the control electrode 10.
  • This positive voltage of the voltage source 21 is selected such that it generates a low-current glow discharge in the current range from, for example, a few »A to a few mA within the control electrode 10, which does not yet lead to breakdown at the discharge path 9. This breakdown is only initiated with the trigger pulse of the trigger voltage source 17.
  • a hollow cylindrical insulator 30 is used, which can be made of glass or ceramic, for example, and whose inner wall is separated from the cathode 2 and the anode 3 by a hollow cylindrical slot 31 whose width S is smaller than the distance a between the cathode 2 and the anode 3 in the channel 14 outside the discharge chamber 8.
  • This slot width S can preferably be at most half the distance a.
  • the reference electrode referred to as cathode 2 forms the reference potential for the trigger voltage source 17 and the voltage source 21.
  • openings 4 and 5 in the cathode 2 are shown as bores. However, openings can also be provided which are designed as slots or elongated holes in a straight or annular shape.
  • this discharge chamber 8 can also be formed by at least one recess with a different shape, for example a shell shape, a spherical shape or a cylindrical shape, or a combination of these shapes.
  • a cathode 2 and an anode 3 are designed such that their mutually facing surfaces in a surface area B1 outside the discharge chamber 8 each form part of a hollow cone with the same opening angle ⁇ .
  • an annular channel is formed by annular disk-shaped surface parts of the electrodes.
  • the discharge chamber 8 is through openings 4 and 5, which can preferably be inclined with respect to the axis of rotation of the hollow electrode switch, connected to the cavity 13 of the control electrode 10. Due to the inclination of the openings 4 and 5, the inclination angle ⁇ of which can preferably be at least 15 °, the cavity 13 of the control electrode 10 is decoupled from the discharge path 9 in the discharge chamber 8.
  • the discharge chamber 8 is delimited by the hollow-conical cutout of the cathode 2 and a likewise hollow-conical recess in the anode 3.
  • the product pxd can be more than 600 Pa mm.
  • annular gas storage device 24 is provided, in the ring opening of which the electrical connection for the control electrode 10, which is not specified in any more detail, is indicated and the connection to the control voltage sources 17 and 21 is established.
  • a hollow-conical discharge chamber 8 is provided, which is formed by a corresponding recess in the cathode 2.
  • the discharge chamber 8 is connected to the cavity 13 of the control electrode 10 through conical openings 4 and 5.
  • This shape of the openings 4 and 5 improves the injection of charge carriers to the discharge path in the switching chamber 8.
  • the mutually facing surfaces of the cathode 2 and the anode 3 outside the discharge chamber 8 each form the jacket of a truncated cone with the same opening angle and are arranged at a distance a from one another in this surface area.
  • the distance d between the electrodes gives a discharge distance between the base of the hollow cone of the switching chamber 10 on the surface of the anode 3 and the preferably rounded tip of the cone on the cathode 2.
  • a hollow-conical switching chamber 8 can also be formed by a corresponding recess in the anode 3.
  • an approximately disk-shaped cathode 2 with correspondingly short openings 4 and 5 between the switching chamber 8 and the cavity 13 of the control electrode 10 is obtained in the region of the discharge chamber 8.
  • both the cathode 2 and the anode 3 are each provided with a recess in the area of the switching chamber 8.
  • the anode 3 contains a recess in the form of a spherical cap and the recess in the cathode 2 initially runs in a hollow cylindrical manner and then ends with an arched shape which can correspond, for example, to a spherical cap.
  • the discharge path 9 is connected to the cavity 13 of the control electrode 10, not shown, through conical openings 4 and 5.
  • a cathode 2 is provided in the form of a profile body with an approximately constant thickness, which forms the jacket of a hollow-conical discharge chamber 8, the conical tip of which projects into the cavity 13 of the control electrode 10.
  • a corresponding recess in the anode 3 in the region of the discharge chamber 8 runs essentially flat and forms the base of the hollow-conical discharge chamber 8.
  • the inclination of the openings 4 and 5 relative to the central axis of the hollow electrode switch which is not specified in any more detail, can be chosen to be approximately 90 ° and one receives a correspondingly good decoupling of the discharge path 9 from the cavity 13 of the control electrode 10.
  • a corresponding one is formed between the cathode 2 and the anode 3 by annular recesses with the profile of a cone annular discharge chamber 8 is formed.
  • the cathode 2 contains a profile body with a substantially uniform thickness and a depression in its surface part facing the cavity 13 of the control electrode 10. Through this recess, the cavity 13 is practically enlarged, so that in this embodiment a control electrode 10 is sufficient, the depth T of which is not substantially greater than its diameter D.
  • the openings 4 and 5 are arranged in the region with the same thickness of the cathode 2.
  • a hollow electrode switch which contains only a single cathode 2 and an anode 3.
  • a multi-electrode arrangement with intermediate electrodes 34 can also be provided, each of which is provided with a central opening, as is schematically indicated in FIG. 8.
  • a reduced field strength is obtained between the electrodes and, accordingly, a hollow electrode switch for particularly high switching voltage.
  • the hollow electrode switch can also contain a plurality of discharge chambers 8, each with a single discharge path 9, which are electrically connected in parallel with one another and are provided with a common control electrode which is electrically insulated from their reference electrode 2.
  • This common control electrode 10 is provided with means, not shown in the figure, for producing a space charge, in particular a glow discharge. This results in an increase in the current rise rate and a reduction in the switch inductance and the switch resistance and thus a high current carrying capacity and a long service life.
  • the individual discharge chambers 8 can be arranged linearly next to one another or also rotationally symmetrically to a central axis of the hollow electrode switch.
  • the bottom 11 of the control electrode 10 is provided with an extension 32, the free end of which faces the discharge path 8.
  • the extension 32 has the shape of a cylinder, in which the edge of the end is rounded. This extension 32 serves to influence the glow discharge, in particular the distribution of the space charge density, within the control electrode 10.
  • this extension 33 has the shape of a cone, the rounded tip of which faces the discharge gap 9.

Landscapes

  • Lasers (AREA)
  • Gas-Filled Discharge Tubes (AREA)

Claims (33)

  1. Interrupteur à électrode creuse, présentant les caractéristiques suivantes :
    a) il est prévu au moins deux électrodes comportant au moins une anode (3) et une cathode (2), qui sont placées à une haute tension et sont situées en vis-à-vis l'une de l'autre en étant séparées par la distance a, à l'extérieur d'une zone de décharge et forment une section de décharge de longueur d pour une décharge de gaz basse pression,
    b) un dispositif de déclenchement qui comporte une électrode creuse (10), est tourné vers la section de décharge,
    c) la section de décharge est située dans un remplissage de gaz ionisable, dont la pression p est choisie de manière que la tension d'amorçage de la décharge dans le gaz diminue lorsque le produit p x d augmente,
    caractérisé par les particularités suivantes :
    d) la section de départ (9) est située essentiellement dans la zone centrale d'une chambre de décharge (8) entre la cathode (2) et l'anode (3),
    e) cette chambre de décharge (8) présente, dans sa zone centrale à une surface intérieure fermée, sa hauteur intérieure maximale qui détermine la longueur d de la section maximale de décharge (9) et diminue dans la direction radiale,
    f) à l'extérieur de la zone centrale de la chambre de décharge (8), la cathode (2) comporte au moins une ouverture (4,5).
  2. Interrupteur à électrode creuse selon la revendication 1, caractérisé par le fait que la pression d et la distance b sont choisies de manière que le produit p x d est égal au minimum à 150 Pa.mm.
  3. Interrupteur à électrode creuse suivant la revendication 2, caractérisé par le fait que le produit est égal à au moins 300 Pa.mm.
  4. Interrupteur à électrode creuse suivant l'une des revendications 1 à 3, caractérisé par le fait que les ouvertures (4,5) ménagées dans la cathode (2) sont inclinées d'un angle c par rapport à l'axe de rotation de l'interrupteur à électrode creuse.
  5. Interrupteur à électrode creuse suivant la revendication 4, caractérisé par le fait que l'angle est égal à au moins 15°, et notamment à au moins 30°.
  6. Interrupteur à électrode creuse suivant la revendication 4 ou 5, caractérisé par le fait qu'en liaison avec des ouvertures inclinées (4,5), le rapport de la hauteur intérieure maximale d de la chambre de décharge (8) à la distance a entre la cathode (2) et l'anode (3) est, à l'extérieur de la chambre de décharge (8), égal au moins à 2.
  7. Interrupteur à électrode creuse suivant l'une des revendications 1 à 5, caractérisé par le fait que le rapport de la hauteur maximale d de la chambre de décharge (8) à la distance a entre la cathode (2) et l'anode (3) est, à l'extérieur de la chambre de décharge égal, au moins à 3 et de préférence au moins à 5, notamment au moins à 10.
  8. Interrupteur à électrode creuse suivant l'une des revendications 1 à 7, caractérisé par le fait que les surfaces, qui se font face, de la cathode (2) et de l'anode (3) à l'extérieur de la chambre de décharge (8) forment, dans une zone de surface B₁, respectivement la surface enveloppe d'un tronc de cône possédant le même angle d'ouverture β, et, dans une autre zone B₂, des surfaces annulaires respectives, qui sont situées à une distance a l'une de l'autre.
  9. Interrupteur à électrode creuse suivant l'une des revendications 1 à 8, caractérisé par une forme de la chambre de décharge (8) d'un cône évidé, en coupe transversale.
  10. Interrupteur à électrode creuse suivant l'une des revendications 1 à 8, caractérisé par un cône évidé double possédant, en coupe transversale,des surfaces de base tournées l'une vers l'autre.
  11. Interrupteur à électrode creuse suivant l'une des revendications 1 à 8, caractérisé par une chambre de décharge (8) possédant la forme d'une calotte sphérique.
  12. Interrupteur à électrode creuse suivant l'une des revendications 1 à 8, caractérisé par le fait que la chambre de décharge (8) a la forme d'une calotte sphérique double possédant des surfaces de base tournées l'une vers l'autre.
  13. Interrupteur à électrode creuse suivant l'une des revendications 1 à 8, caractérisé par le fait que la chambre de décharge (8) a la forme d'un cylindre creux comportant une surface de base et une surface de couverture cintrées.
  14. Interrupteur à électrode creuse suivant l'une des revendications 1 à 13, caractérisé par le fait qu'il est prévu des ouvertures (4,5) dont le diamètre augmente dans la direction de la cavité (13).
  15. Interrupteur à électrode creuse suivant l'une des revendications 1 à 14, caractérisé par le fait que les ouvertures sont réalisées sous la forme de fentes ou de trous allongés.
  16. Interrupteur à électrode creuse suivant la revendication 15, caractérisé par le fait que les fentes sont réalisées avec une forme annulaire autour de la partie centrale de la chambre de décharge (8).
  17. Interrupteur à électrode creuse suivant l'une des revendications 1 à 16, caractérisé par le fait que l'électrode creuse est prévue sous la forme d'une électrode de commande (12) pour la décharge dans un gaz et est isolée électriquement des électrodes de la section (9) de décharge dans un gaz et que des moyens sont prévus pour produire une charge d'espace à l'intérieur de l'électrode de commande (10).
  18. Interrupteur à électrode creuse suivant la revendication 17, caractérisé par le fait que l'électrode de commande (10) est prévue en tant qu'anode pour une décharge à effluves dans sa cavité (13).
  19. Interrupteur à électrode creuse suivant la revendication 18, caractérisé par le fait que l'électrode de commande (10) est reliée d'une manière électriquement conductrice à une source de tension de déclenchement (17) pour une impulsion de commande négative.
  20. Interrupteur à électrode creuse suivant la revendication 19, caractérisé par le fait que l'électrode de commande (10) est raccordée, par l'intermédiaire d'une résistance de découplage (18) et d'une capacité de découplage (19) ,à la source de tension de découplage (17).
  21. Interrupteur à électrode creuse suivant la revendication 19, caractérisé par le fait que l'électrode de commande (10) est raccordée à un transformateur de déclenchement.
  22. Interrupteur à électrode creuse suivant la revendication 18, caractérisé par le fait que des moyens sont prévus en supplément pour produire une préionisation à l'intérieur de l'électrode de commande (10).
  23. Interrupteur à électrode creuse suivant la revendication 22, caractérisé par le fait que l'électrode de commande (10) est raccordée, par l'intermédiaire d'une résistance de découplage (22), à une source de tension (21) pour une tension continue positive.
  24. Interrupteur à électrode creuse suivant la revendication 12, caractérisé par le fait que l'électrode de commande (10) possède une forme de pot.
  25. Interrupteur à électrode creuse suivant la revendication 24, caractérisé par le fait que le rapport de la profondeur T du pot au diamètre D de l'électrode de commande (10) est choisi dans la gamme de 1 à 5.
  26. Interrupteur à électrode creuse suivant la revendication 25, caractérisé par le fait que le rapport de la profondeur T du pot au diamètre D est égal approximativement à 2.
  27. Interrupteur à électrode creuse suivant l'une des revendications 17 à 24, caractérisé par une forme de la chambre de décharge (8) sous la forme d'un cône évidé ou d'un cône évidé double et d'une cathode (2) comportant, dans la zone de la chambre de décharge (8), approximativement la même épaisseur et un agencement tel qu'elle pénètre dans l'ouverture de l'électrode de commande (10).
  28. Interrupteur à électrode creuse suivant l'une des revendications 17 à 26, caractérisé par une chambre de décharge (8) agencée sous la forme d'un anneau creux, et une forme de la cathode comportant, au niveau de la chambre de décharge (8), approximativement une épaisseur constante en tant que revêtement de la chambre de décharge (8) et avec une disposition telle de la cathode (2) que son renfoncement, formé dans la partie centrale du revêtement, augmente la profondeur T de la cavité (13) de l'électrode de commande (10).
  29. Interrupteur à électrode creuse suivant l'une des revendications 1 à 28, caractérisé par un dispositif à électrodes multiples comportant des électrodes intermédiaires (34) et un canal de décharge commun, pour lequel est prévue l'électrode de commande (10).
  30. Interrupteur à électrode creuse suivant l'une des revendications 1 à 28, caractérisé par une multiplicité de sections individuelles de décharge, qui sont branchées électriquement en parallèle et sont pourvues d'une électrode de commande commune (10), qui est isolée électriquement de son électrode de référence (figure 9).
  31. Interrupteur à électrode creuse suivant la revendication 17, caractérisé par le fait que le fond (11) de l'électrode de commande (10) est pourvu d'un prolongement (32).
  32. Interrupteur à électrode creuse suivant la revendication 31, caractérisé par une forme cylindrique du prolongement (32), dont l'extrémité, qui est tournée vers la chambre de décharge (8), est pourvue d'un bord arrondi.
  33. Interrupteur à électrode creuse suivant la revendication 32, caractérisé par une forme conique du prolongement (37), dont la pointe arrondie est tournée vers la chambre de décharge (8).
EP90116902A 1990-09-03 1990-09-03 Interrupteur à électrodes creuses Expired - Lifetime EP0473814B1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE59009153T DE59009153D1 (de) 1990-09-03 1990-09-03 Hohlelektrodenschalter.
EP90116902A EP0473814B1 (fr) 1990-09-03 1990-09-03 Interrupteur à électrodes creuses
JP3244597A JPH076851A (ja) 1990-09-03 1991-08-28 中空電極スイッチ
US07/752,843 US5146141A (en) 1990-09-03 1991-08-30 Hollow-electrode switch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP90116902A EP0473814B1 (fr) 1990-09-03 1990-09-03 Interrupteur à électrodes creuses

Publications (2)

Publication Number Publication Date
EP0473814A1 EP0473814A1 (fr) 1992-03-11
EP0473814B1 true EP0473814B1 (fr) 1995-05-24

Family

ID=8204424

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90116902A Expired - Lifetime EP0473814B1 (fr) 1990-09-03 1990-09-03 Interrupteur à électrodes creuses

Country Status (4)

Country Link
US (1) US5146141A (fr)
EP (1) EP0473814B1 (fr)
JP (1) JPH076851A (fr)
DE (1) DE59009153D1 (fr)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4214359A1 (de) * 1992-04-30 1993-11-04 Siemens Ag Gasentladungsschalter
DE4214331C2 (de) * 1992-04-30 1995-07-06 Siemens Ag Gasentladungsschalter und Verfahren zu dessen Fertigung
WO1994003949A1 (fr) * 1992-08-06 1994-02-17 Siemens Aktiengesellschaft Configuration d'electrodes pour commutateurs a decharge gazeuse et materiau a utiliser dans ledit agencement d'electrodes
US5336975A (en) * 1992-10-20 1994-08-09 Hughes Aircraft Company Crossed-field plasma switch with high current density axially corrogated cathode
US6104022A (en) * 1996-07-09 2000-08-15 Tetra Corporation Linear aperture pseudospark switch
DE10118210B4 (de) * 2001-04-11 2012-02-23 Dehn + Söhne Gmbh + Co. Kg Gekapselter Überspannungsableiter mit einer Funkenstreckenanordnung
US8789772B2 (en) 2004-08-20 2014-07-29 Sdg, Llc Virtual electrode mineral particle disintegrator
WO2006130036A1 (fr) * 2005-06-02 2006-12-07 Viktor Dmitrievich Bochkov Instrument commande a decharge gazeuse
US8258632B1 (en) * 2005-10-24 2012-09-04 Lawrence Livermore National Security, Llc Optically-initiated silicon carbide high voltage switch with contoured-profile electrode interfaces
US10060195B2 (en) 2006-06-29 2018-08-28 Sdg Llc Repetitive pulsed electric discharge apparatuses and methods of use
US10407995B2 (en) 2012-07-05 2019-09-10 Sdg Llc Repetitive pulsed electric discharge drills including downhole formation evaluation
US9294085B1 (en) * 2013-01-14 2016-03-22 Sandia Corporation High-voltage, low-inductance gas switch
US10113364B2 (en) 2013-09-23 2018-10-30 Sdg Llc Method and apparatus for isolating and switching lower voltage pulses from high voltage pulses in electrocrushing and electrohydraulic drills
DE102014015610B4 (de) * 2014-10-23 2017-02-23 Phoenix Contact Gmbh & Co. Kg Überspannungsableiter
CN104966712B (zh) * 2015-06-05 2017-12-15 上海交通大学 一种固态绝缘介质脉冲功率开关及其制备方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2122932A (en) * 1934-03-23 1938-07-05 Ora S Duffendack Gaseous discharge tube
ZA753564B (en) * 1975-06-03 1977-01-26 South African Inventions A high voltage electric switch
US4280098A (en) * 1979-05-25 1981-07-21 Veradyne Corp. Coaxial spark gap switch
US4320321A (en) * 1980-03-25 1982-03-16 Alexandrov Vitaly V Hollow-cathode gas-discharge tube
US4481630A (en) * 1981-12-03 1984-11-06 Photochemical Research Associates Inc. Spark gap switch
EP0259045A3 (fr) * 1986-08-30 1989-10-25 English Electric Valve Company Limited Dispositifs à décharge dans les gaz
DE3721529A1 (de) * 1987-06-30 1989-01-12 Christiansen Jens Triggerung und isolation von pseudofunkenschaltern
ATE108946T1 (de) * 1988-04-11 1994-08-15 Siemens Ag Gasentladungschalter.
EP0411001A1 (fr) * 1988-04-26 1991-02-06 Siemens Aktiengesellschaft Laser a gaz du type te avec un circuit d'excitation et avec un commutateur pseudo-etincelle a canaux multiples
JP2564390B2 (ja) * 1989-03-10 1996-12-18 株式会社日立製作所 真空スイツチ
US5055748A (en) * 1990-05-30 1991-10-08 Integrated Applied Physics Inc. Trigger for pseudospark thyratron switch

Also Published As

Publication number Publication date
DE59009153D1 (de) 1995-06-29
JPH076851A (ja) 1995-01-10
US5146141A (en) 1992-09-08
EP0473814A1 (fr) 1992-03-11

Similar Documents

Publication Publication Date Title
EP0473814B1 (fr) Interrupteur à électrodes creuses
EP0324817B1 (fr) Commutateur a gaz electronique (commutateur a pseudo-etincelle)
EP0337192B1 (fr) Interrupteur à décharge dans un gaz
EP0251010B1 (fr) Dérivateur de surtension à gaz
DE2716578A1 (de) Plasma-elektronen/ionen-quelle
EP0944914B1 (fr) Commutateur a decharge gazeuse basse pression
DE1441243A1 (fr)
EP0433480B1 (fr) Commutateur à électrode creuse
DE3942307C2 (fr)
DE1489604B1 (de) Gasgefuellte Entladungslampe
EP0473813A1 (fr) Interrupteur à électrodes creuses
DE10140950A1 (de) Gekapselter Überspannungsableiter auf Funkenstreckenbasis
EP0510232B1 (fr) Interrupteur à décharge dans un gaz
EP0513403A1 (fr) Interrupteur à décharge dans un gaz
DE4100565C2 (fr)
DE4306036C2 (de) Gasentladungsschalter
DE2905166C2 (de) Vakuum-Funkengenerator
DE1589414B1 (de) Spektrale Strahlungsquelle
EP0317722A2 (fr) Laser de gaz avec tube de décharge
DE4214362A1 (de) Gasentladungsschalter
DE1489604C (de) Gasgefullte Entladungslampe
WO1990009673A1 (fr) Commutateur a decharge lumineuse
DE4200993A1 (de) Gasentladungsschalter
DE4214361C2 (de) Gasentladungsschalter
DE4218479A1 (de) Gasentladungsschalter

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19901205

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT LI

17Q First examination report despatched

Effective date: 19940905

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI

REF Corresponds to:

Ref document number: 59009153

Country of ref document: DE

Date of ref document: 19950629

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19950821

Year of fee payment: 6

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950812

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19950919

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19951116

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19951215

Year of fee payment: 6

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19960903

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19960930

Ref country code: FR

Effective date: 19960930

Ref country code: CH

Effective date: 19960930

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19960903

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19970603

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050903