EP0473814A1 - Interrupteur à électrodes creuses - Google Patents
Interrupteur à électrodes creuses Download PDFInfo
- Publication number
- EP0473814A1 EP0473814A1 EP90116902A EP90116902A EP0473814A1 EP 0473814 A1 EP0473814 A1 EP 0473814A1 EP 90116902 A EP90116902 A EP 90116902A EP 90116902 A EP90116902 A EP 90116902A EP 0473814 A1 EP0473814 A1 EP 0473814A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- discharge
- switch according
- hollow
- hollow electrode
- electrode switch
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000007423 decrease Effects 0.000 claims description 2
- 230000003247 decreasing effect Effects 0.000 claims 1
- 239000013642 negative control Substances 0.000 claims 1
- 239000007789 gas Substances 0.000 description 31
- 239000002800 charge carrier Substances 0.000 description 6
- 239000012212 insulator Substances 0.000 description 5
- 230000015556 catabolic process Effects 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 230000003628 erosive effect Effects 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- YZCKVEUIGOORGS-OUBTZVSYSA-N Deuterium Chemical compound [2H] YZCKVEUIGOORGS-OUBTZVSYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- -1 argon or helium Chemical compound 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 229910052805 deuterium Inorganic materials 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000007142 ring opening reaction Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01T—SPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
- H01T2/00—Spark gaps comprising auxiliary triggering means
- H01T2/02—Spark gaps comprising auxiliary triggering means comprising a trigger electrode or an auxiliary spark gap
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J17/00—Gas-filled discharge tubes with solid cathode
- H01J17/38—Cold-cathode tubes
- H01J17/40—Cold-cathode tubes with one cathode and one anode, e.g. glow tubes, tuning-indicator glow tubes, voltage-stabiliser tubes, voltage-indicator tubes
- H01J17/44—Cold-cathode tubes with one cathode and one anode, e.g. glow tubes, tuning-indicator glow tubes, voltage-stabiliser tubes, voltage-indicator tubes having one or more control electrodes
Definitions
- the invention relates to a hollow electrode switch with an anode and a cathode, which face each other at a distance a and form a discharge gap.
- a trigger device that contains a hollow electrode is assigned to the discharge path.
- the discharge path is arranged in an ionizable gas filling; the pressure p of the gas and the electrode spacing d on the discharge path are selected so that the ignition voltage of the gas discharge decreases with increasing pressure pxd.
- the ignition voltage for a given gas discharge path and its usual graphical representation as a function of the product of gas pressure p and electrode spacing d in the ignition characteristic curve are known to be an important aid for identifying electrical discharge devices, taking into account the probability of ignition.
- the infinitely large plate capacitor and its ignition characteristic are generally used for comparison.
- the practical embodiment of such discharge paths has electrodes with finite dimensions. While it is used to determine the right branch of the ignition characteristic (Paschen curve), i.e.
- the ignition characteristic curve can be determined, for example, for various noble and molecular gases (Proc. Vllth Int. Conf. Phenom. in lonited Gases, Beograd, Vol. I (1965), pages 316 to 326).
- Gas discharge switches are also known which are controlled by a pulsed low pressure gas discharge. For example, they switch currents of 10 kA at a voltage of 20 kV.
- the discharge switch contains an anode and a cathode, which are provided with coaxial openings and are separated from one another at the edge by an annular insulator.
- a control device is provided for the gas discharge, which contains a hollow electrode designed as a cage, which is connected to the cathode in an electrically conductive manner and is therefore at the cathode potential. It surrounds the cathode rear space and separates it from the area of pre-ionization.
- the gas discharge between the cathode and the anode is ignited by injection of charge carriers.
- the discharge path is ignited in two stages.
- an auxiliary electrode generates a pre-ionization by means of a glow discharge outside the hollow electrode.
- a trigger electrode then receives a negative ignition pulse and the entry of charge carriers into the hollow electrode is made possible in that the potential of a blocking electrode is set to zero. The discharge is initiated when the charge carriers enter the hollow electrode.
- This gas discharge switch is relatively complicated (J. Phys. E: Sci. Instr. 19 (1986), The Inst. Of Physics, Great Britain, pages 466 to 470).
- FIG. 3 Another known embodiment of a hollow electrode switch, in which the hollow electrode is electrically conductively connected to the cathode, contains a cathode and an anode, each of which is provided with a central bore. A discharge gap is formed between these holes. The distance between the electrodes, which are arranged parallel to one another in the discharge area, is greater than in the channel formed between the electrodes in the radial direction outside the discharge area (DE-OS 37 21 529, FIG. 3).
- the gas discharge switch can also contain a plurality of discharge channels which are provided with a common trigger device.
- This trigger device contains a common hollow electrode which is electrically conductively connected to the common cathode.
- the synchronous ignition of the discharge channels is initiated by charge carriers which enter the cathode rear space from a pre-ionization region through holes in the bottom of the cage.
- the anode and the cathode are each provided with a recess on the individual discharge paths, so that the mutually facing surfaces of the anode and the cathode do not run parallel in the discharge region.
- the discharge route is also formed in this arrangement between the central bores (DE-OS 38 38 723, Figure 13).
- the dielectric strength of the switch is at constant gas pressure essentially by the distance between the electrodes, the diameter of the opening tions in the electrodes and the material thickness of the electrodes and thus influenced by the depth of the holes.
- the opening diameter proves to be particularly critical, since on the one hand a high dielectric strength requires a small diameter, while on the other hand reliable triggering requires a predetermined minimum diameter.
- the electrode material in the edge area of the openings is removed with an increasing number of switching operations. This erosion increases the opening diameter, for example at a switching number of 10 7, by about 50% and thus reduces the dielectric strength and increases the penetration into the cathode rear space, which can lead to increasing disturbances in the trigger system due to overvoltages.
- the invention is based on the object of simplifying and improving the known embodiment of a hollow electrode switch, in particular the ignition device for the hollow electrode switch is to be simplified, the product pxd is substantially increased and the voltage dependency of the switching delay (delay) and the scatter (jitter) are reduced.
- the discharge path is surrounded by a discharge chamber which is formed between the electrodes and this discharge chamber is connected to the cavity of the hollow electrode through openings which are preferably symmetrical to the axis of rotation of the Hollow electrode switch are arranged. These openings are arranged outside the discharge area with the maximum electrode distance d in which the discharge takes place and they are practically only used to inject the charge carriers from the cavity of the control electrode to the discharge path within the discharge chamber.
- the discharge always burns between closed surface areas of the cathode and anode.
- the reference electrode has a double function; it forms a cathode for the gas discharge on its side facing the discharge gap and a cathode for the glow discharge on its side facing the hollow electrode.
- This hollow electrode switch you get a low voltage dependency at the same pressure.
- These openings can preferably be inclined with respect to the axis of rotation of the hollow electrode switch.
- the angle of inclination can preferably be at least 15, in particular at least 30 °.
- a particularly high switching voltage and a very low switching delay are obtained with a ratio of the maximum electrode distance d within the switching chamber to the distance a of the electrodes of at least 3: 1, preferably at least 5: 1, in particular at least 10: 1.
- the ratio can under certain circumstances also be only 2: 1.
- the hollow electrode is provided as a control electrode which is electrically insulated from the electrodes of the discharge gap
- at least one space charge preferably a glow discharge
- the control electrode combines the function of the pre-ionization and at the same time the trigger electrode and a special blocking electrode is no longer required. This gives a cold cathode low-pressure gas discharge switch with a high switching voltage and short switching delay as well as low scatter.
- a hot cathode can be provided, which is arranged between the reference electrode and the bottom of the control electrode.
- the space charge can also be generated, for example, by microwave excitation or by an optical ignition device, in particular a laser beam.
- a particularly advantageous embodiment of the hollow electrode switch consists in that the space charge required to ignite the discharge gap is provided in the cavity of the control electrode by a glow discharge.
- the control electrode can easily be connected directly to a trigger voltage source for a negative trigger voltage with sufficient energy.
- the control electrode forms the anode and the reference electrode arranged opposite the opening of the control electrode forms the cathode for the glow discharge.
- the hollow electrode can also be connected to an additional voltage source with a positive potential for pre-ionization.
- This pre-ionization generates a low-current glow discharge within the control electrode, which does not yet lead to the ignition of the discharge gap.
- This glow discharge increases the dielectric strength at the discharge gap and thus the stability of the switch.
- the ignition of the discharge gap is then only generated by the superimposed negative trigger pulse with a steep rising edge and a short duration by the trigger electrode.
- FIG. 1 schematically illustrates an exemplary embodiment of a hollow electrode switch according to the invention.
- Figure 2 shows an embodiment of the hollow electrode switch with a specially designed channel between the electrodes of the discharge gap.
- FIGS. 3 to 7 each show an embodiment of the discharge chamber.
- FIG. 8 shows an embodiment of the hollow electrode switch for particularly high switching voltage with a large number of electrodes
- FIG. 9 shows an embodiment for high currents with a large number of discharge paths.
- Particular embodiments of the control electrode are illustrated in FIGS. 10 and 11.
- a hollow electrode switch according to FIG. 1 contains two electrodes, one of which is connected as a cathode 2 and the other as an anode 3.
- the cathode 2 is provided with at least one opening, two of which are shown in the figure and designated 4 and 5. Through these two openings 4 and 5, a discharge path 9 is ignited in a discharge chamber 8, which is formed in the central discharge region between the cathode 2 and the anode 3 by at least one recess in the electrodes.
- the surface of the cathode 2 facing the anode 3 is shaped such that a discharge chamber 8 is formed in the form of a double cone with base surfaces facing one another.
- the surface area of the cathode 2 and the anode 3, which generally each form a body of revolution, are arranged outside the switching chamber 8 at a distance a from one another, which can be, for example, approximately 2 to 5 mm.
- a distance a from one another, which can be, for example, approximately 2 to 5 mm.
- the discharge path 9 is ignited. The discharge thus burns between closed surface areas of the cathode 2 and the anode 3, so that erosion of the openings 4 and 5, which lie outside this central area, is practically impossible.
- This maximum electrode distance d within the switching chamber 8 is at least 3 mm, preferably at least 6 mm and in particular significantly more than 10 mm.
- the cathode 2 and the anode 3 are made of electrically conductive material, preferably stainless steel, and in the area of the discharge chamber 8 can generally be provided with special inserts 6 and 7 made of a high-melting metal, for example an alloy containing tungsten W or molybdenum Mo. or consist entirely of this high-melting metal.
- a high-melting metal for example an alloy containing tungsten W or molybdenum Mo. or consist entirely of this high-melting metal.
- the trigger device for the discharge gap 9 includes a control electrode 10 in the form of a hollow electrode, the bottom 11 and side wall 12 of which surround a cavity 13 and the opening of which faces the discharge gap 9 and which is electrically insulated from the cathode 2.
- This control electrode 10 consists of an electrically conductive material, for example stainless steel, and has at least the shape of a shell, preferably the shape of a pot, the depth T of which is substantially greater than its diameter D.
- the shape of the pot of the control electrode 10 is preferably chosen so that that the ratio of the depth T to the diameter D is about 1 to 5, in particular about 2.
- the cavity 13 and the discharge chamber 8 contain a gas filling from an ionizable working gas, preferably hydrogen or deuterium or a mixture of these gases.
- an ionizable working gas preferably hydrogen or deuterium or a mixture of these gases.
- nitrogen or an inert gas such as argon or helium, are also suitable.
- a gas storage 24 for the working gas which is only indicated schematically in the figure, is provided with a heating device, not shown in the figure, the electrical connections of which are led through the wall of the switch and are designated by 25 and 26.
- the space surrounding the gas reservoir 24 is connected to the cavity 13 by pressure compensation openings 15 and 16 in the electrical connection for the control electrode 10.
- the gas reservoir of the gas reservoir 24 can preferably also serve as a pressure control system for the hollow electrode switch.
- the control electrode 10 is assigned a trigger voltage source 17, which can be connected to the control electrode 10, for example, via a limiting resistor 18 and a decoupling capacitance 19.
- the trigger voltage source 17 supplies a trigger pulse with a steep rising edge and a negative voltage of, for example, approximately 0.5 to 10 kV, preferably approximately 1 to 5 kV compared to the reference potential of the cathode 2, which can be ground potential, for example, and from which the control electrode 10 is electrically insulated .
- the length of the trigger pulse is at least as long as the switching delay of the discharge path 9 and can be, for example, about 0.1 to 2 us, preferably about 0.5 to 1 us.
- the control electrode 10 can have an additional one Voltage source 21 for a pre-ionization may be assigned, the positive voltage of which may be, for example, approximately 0.1 to 5 kV compared to the reference potential of the cathode 2 and which may be connected to the control electrode 10 via a high series resistor 22 of preferably a few MOhms.
- This positive voltage of the voltage source 21 is selected so that it generates a low-current glow discharge in the current range from, for example, a few ⁇ A to a few mA within the control electrode 10, which does not yet lead to breakdown at the discharge path 9. This breakdown is only initiated with the trigger pulse of the trigger voltage source 17.
- a hollow cylindrical insulator 30 is used, which can be made of glass or ceramic, for example, and whose inner wall is separated from the cathode 2 and the anode 3 by a hollow cylindrical slot 31 , whose width S is smaller than the distance a between the cathode 2 and the anode 3 in the channel 14 outside the discharge chamber 8.
- This slot width S can preferably be at most half the distance a.
- the reference electrode referred to as cathode 2 forms the reference potential for the trigger voltage source 17 and the voltage source 21.
- openings 4 and 5 in the cathode 2 are shown as bores. However, openings can also be provided which are designed as slots or elongated holes in a straight or annular shape.
- a discharge chamber 8 is shown in the form of a double cone.
- this discharge chamber 8 can also be formed by at least one recess with a different shape, for example through a shell shape, spherical shape or cylindrical shape, or from a combination of these shapes.
- a cathode 2 and an anode 3 are designed such that their mutually facing surfaces in a surface area B 1 outside the discharge chamber 8 each form part of a hollow cone with the same opening angle ⁇ .
- an annular channel is formed by surface-shaped surface parts of the electrodes.
- the discharge chamber 8 is connected to the cavity 13 of the control electrode 10 through openings 4 and 5, which can preferably be inclined with respect to the axis of rotation of the hollow electrode switch. Due to the inclination of the openings 4 and 5, the inclination angle a of which can preferably be at least 15 °, the cavity 13 of the control electrode 10 is decoupled from the discharge path 9 in the discharge chamber 8.
- the discharge chamber 8 is delimited by the hollow-conical cutout of the cathode 2 and a likewise hollow-conical recess in the anode 3.
- the product pxd can be more than 600 Pa mm.
- a ring-shaped gas storage device 24 is provided, in the ring opening of which the electrical connection for the control electrode 10, which is not specified in any more detail, is indicated and the connection to the control voltage sources 17 and 21 is established.
- a hollow-cone-shaped discharge chamber 8 is provided, which is formed by a corresponding recess in the cathode 2.
- the discharge chamber 8 is connected to the cavity 13 of the control electrode 10 through conical openings 4 and 5.
- This shape of the openings 4 and 5 improves the injection of charge carriers to the discharge path in the switching chamber 8.
- the mutually facing surfaces of the cathode 2 and the anode 3 outside the discharge chamber 8 each form the jacket of a truncated cone with the same opening angle and are arranged at a distance a from one another in this surface area.
- the distance d between the electrodes gives a discharge distance between the base of the hollow cone of the switching chamber 10 on the surface of the anode 3 and the preferably rounded tip of the cone on the cathode 2.
- a hollow-conical switching chamber 8 can also be formed by a corresponding recess in the anode 3.
- an approximately disk-shaped cathode 2 with correspondingly short openings 4 and 5 between the switching chamber 8 and the cavity 13 of the control electrode 10 is obtained in the region of the discharge chamber 8.
- both the cathode 2 and the anode 3 are each provided with a recess in the area of the switching chamber 8.
- the anode 3 contains a recess in the form of a spherical cap and the recess in the cathode 2 initially runs in a hollow cylindrical manner and then ends with an arched shape which can correspond, for example, to a spherical cap.
- the discharge path 9 is connected to the cavity 13 of the control electrode 10, which is not shown, through conical openings 4 and 5.
- a cathode 2 is provided in the form of a profile body with an approximately constant thickness, which forms the jacket of a hollow-conical discharge chamber 8, the conical tip of which projects into the cavity 13 of the control electrode 10.
- a corresponding recess of the anode 3 in the region of the discharge chamber 8 runs essentially flat and forms the base of the hollow-conical discharge chamber 8.
- the inclination of the openings 4 and 5 relative to the central axis of the hollow electrode switch which is not specified in any more detail, can be selected at approximately 90 ° and one receives a correspondingly good decoupling of the discharge path 9 from the cavity 13 of the control electrode 10.
- a correspondingly annular discharge chamber 8 is formed between the cathode 2 and the anode 3 by annular recesses with the profile of a cone.
- the cathode 2 contains a profile body with a substantially uniform thickness and a recess in its surface part facing the cavity 13 of the control electrode 10. Through this recess, the cavity 13 is practically enlarged, so that in this embodiment a control electrode 10 is sufficient, the depth T of which is not substantially greater than its diameter D.
- the openings 4 and 5 are arranged in the region with a constant thickness of the cathode 2.
- a hollow electrode switch which contains only a single cathode 2 and an anode 3.
- a multi-electrode arrangement with intermediate electrodes 34 can also be provided, each of which is provided with a central opening, as is indicated schematically in FIG. 8.
- a reduced field strength is obtained between the electrodes and, accordingly, a hollow electrode switch for particularly high switching voltage.
- the hollow electrode switch can also contain a multiplicity of discharge chambers 8, each with a single discharge path 9, which are electrically connected in parallel with one another and are provided with a common control electrode which is electrically insulated from their reference electrode 2.
- This common control electrode 10 is provided with means, not shown in the figure, for producing a space charge, in particular a glow discharge. This results in an increase in the current rise rate and a reduction in the switch inductance and the switch resistance and thus a high current carrying capacity and a long service life.
- the individual discharge chambers 8 can be arranged linearly next to one another or also rotationally symmetrically to a central axis of the hollow electrode switch.
- the bottom 11 of the control electrode 10 is provided with an extension 32, the free end of which faces the discharge path 8.
- the extension 32 has the shape of a cylinder, in which the edge of the end is rounded. This extension 32 serves to influence the glow discharge, in particular the distribution of the space charge density, within the control electrode 10.
- this extension 33 has the shape of a cone, the rounded tip of which faces the discharge path 9.
Landscapes
- Lasers (AREA)
- Gas-Filled Discharge Tubes (AREA)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE59009153T DE59009153D1 (de) | 1990-09-03 | 1990-09-03 | Hohlelektrodenschalter. |
EP90116902A EP0473814B1 (fr) | 1990-09-03 | 1990-09-03 | Interrupteur à électrodes creuses |
JP3244597A JPH076851A (ja) | 1990-09-03 | 1991-08-28 | 中空電極スイッチ |
US07/752,843 US5146141A (en) | 1990-09-03 | 1991-08-30 | Hollow-electrode switch |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP90116902A EP0473814B1 (fr) | 1990-09-03 | 1990-09-03 | Interrupteur à électrodes creuses |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0473814A1 true EP0473814A1 (fr) | 1992-03-11 |
EP0473814B1 EP0473814B1 (fr) | 1995-05-24 |
Family
ID=8204424
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP90116902A Expired - Lifetime EP0473814B1 (fr) | 1990-09-03 | 1990-09-03 | Interrupteur à électrodes creuses |
Country Status (4)
Country | Link |
---|---|
US (1) | US5146141A (fr) |
EP (1) | EP0473814B1 (fr) |
JP (1) | JPH076851A (fr) |
DE (1) | DE59009153D1 (fr) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4214359A1 (de) * | 1992-04-30 | 1993-11-04 | Siemens Ag | Gasentladungsschalter |
DE4214331A1 (de) * | 1992-04-30 | 1993-11-04 | Siemens Ag | Gasentladungsschalter und verfahren zu dessen fertigung |
WO1994003949A1 (fr) * | 1992-08-06 | 1994-02-17 | Siemens Aktiengesellschaft | Configuration d'electrodes pour commutateurs a decharge gazeuse et materiau a utiliser dans ledit agencement d'electrodes |
EP0594087A1 (fr) * | 1992-10-20 | 1994-04-27 | Hughes Aircraft Company | Interrupteur compact à plasma à fort courant à champs croisés |
DE10118210A1 (de) * | 2001-04-11 | 2002-11-07 | Dehn & Soehne | Gekapselter Überspannungsableiter mit einer Funkenstreckenanordnung |
DE102014015610A1 (de) * | 2014-10-23 | 2016-04-28 | Phoenix Contact Gmbh & Co. Kg | Überspannungsableiter |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6104022A (en) * | 1996-07-09 | 2000-08-15 | Tetra Corporation | Linear aperture pseudospark switch |
US8789772B2 (en) | 2004-08-20 | 2014-07-29 | Sdg, Llc | Virtual electrode mineral particle disintegrator |
US7825595B2 (en) * | 2005-06-02 | 2010-11-02 | Viktor Dmitrievich Bochkov | Controllable gas-discharge device |
US8258632B1 (en) * | 2005-10-24 | 2012-09-04 | Lawrence Livermore National Security, Llc | Optically-initiated silicon carbide high voltage switch with contoured-profile electrode interfaces |
US10060195B2 (en) | 2006-06-29 | 2018-08-28 | Sdg Llc | Repetitive pulsed electric discharge apparatuses and methods of use |
US10407995B2 (en) | 2012-07-05 | 2019-09-10 | Sdg Llc | Repetitive pulsed electric discharge drills including downhole formation evaluation |
US9294085B1 (en) * | 2013-01-14 | 2016-03-22 | Sandia Corporation | High-voltage, low-inductance gas switch |
WO2015042608A1 (fr) | 2013-09-23 | 2015-03-26 | Sdg Llc | Procédé et appareil pour isoler et commuter desimpulsions basse tension en impulsions haute tension dans des forets d'électro-broyage et électrohydrauliques |
CN104966712B (zh) * | 2015-06-05 | 2017-12-15 | 上海交通大学 | 一种固态绝缘介质脉冲功率开关及其制备方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2122932A (en) * | 1934-03-23 | 1938-07-05 | Ora S Duffendack | Gaseous discharge tube |
US4280098A (en) * | 1979-05-25 | 1981-07-21 | Veradyne Corp. | Coaxial spark gap switch |
DE3721529A1 (de) * | 1987-06-30 | 1989-01-12 | Christiansen Jens | Triggerung und isolation von pseudofunkenschaltern |
EP0337192A1 (fr) * | 1988-04-11 | 1989-10-18 | Siemens Aktiengesellschaft | Interrupteur à décharge dans un gaz |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ZA753564B (en) * | 1975-06-03 | 1977-01-26 | South African Inventions | A high voltage electric switch |
US4320321A (en) * | 1980-03-25 | 1982-03-16 | Alexandrov Vitaly V | Hollow-cathode gas-discharge tube |
US4481630A (en) * | 1981-12-03 | 1984-11-06 | Photochemical Research Associates Inc. | Spark gap switch |
EP0259045A3 (fr) * | 1986-08-30 | 1989-10-25 | English Electric Valve Company Limited | Dispositifs à décharge dans les gaz |
WO1989010646A1 (fr) * | 1988-04-26 | 1989-11-02 | Siemens Aktiengesellschaft | Circuit d'excitation pour lasers a gaz avec un commutateur a pseudo-etincelle a canaux multiples et procede d'utilisation dudit circuit |
JP2564390B2 (ja) * | 1989-03-10 | 1996-12-18 | 株式会社日立製作所 | 真空スイツチ |
US5055748A (en) * | 1990-05-30 | 1991-10-08 | Integrated Applied Physics Inc. | Trigger for pseudospark thyratron switch |
-
1990
- 1990-09-03 EP EP90116902A patent/EP0473814B1/fr not_active Expired - Lifetime
- 1990-09-03 DE DE59009153T patent/DE59009153D1/de not_active Expired - Fee Related
-
1991
- 1991-08-28 JP JP3244597A patent/JPH076851A/ja not_active Withdrawn
- 1991-08-30 US US07/752,843 patent/US5146141A/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2122932A (en) * | 1934-03-23 | 1938-07-05 | Ora S Duffendack | Gaseous discharge tube |
US4280098A (en) * | 1979-05-25 | 1981-07-21 | Veradyne Corp. | Coaxial spark gap switch |
DE3721529A1 (de) * | 1987-06-30 | 1989-01-12 | Christiansen Jens | Triggerung und isolation von pseudofunkenschaltern |
EP0337192A1 (fr) * | 1988-04-11 | 1989-10-18 | Siemens Aktiengesellschaft | Interrupteur à décharge dans un gaz |
Non-Patent Citations (1)
Title |
---|
JOURNAL OF PHYSICS E. SCIENTIFIC INSTRUMENTS. vol. 19, no. 6, Juni 1986, ISHING, BRISTOL GB Seiten 466 - 470; "High repetition rate, fast current rise, pseudo-spark switch" * |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4214359A1 (de) * | 1992-04-30 | 1993-11-04 | Siemens Ag | Gasentladungsschalter |
DE4214331A1 (de) * | 1992-04-30 | 1993-11-04 | Siemens Ag | Gasentladungsschalter und verfahren zu dessen fertigung |
WO1994003949A1 (fr) * | 1992-08-06 | 1994-02-17 | Siemens Aktiengesellschaft | Configuration d'electrodes pour commutateurs a decharge gazeuse et materiau a utiliser dans ledit agencement d'electrodes |
EP0594087A1 (fr) * | 1992-10-20 | 1994-04-27 | Hughes Aircraft Company | Interrupteur compact à plasma à fort courant à champs croisés |
US5336975A (en) * | 1992-10-20 | 1994-08-09 | Hughes Aircraft Company | Crossed-field plasma switch with high current density axially corrogated cathode |
DE10118210A1 (de) * | 2001-04-11 | 2002-11-07 | Dehn & Soehne | Gekapselter Überspannungsableiter mit einer Funkenstreckenanordnung |
DE10118210B4 (de) * | 2001-04-11 | 2012-02-23 | Dehn + Söhne Gmbh + Co. Kg | Gekapselter Überspannungsableiter mit einer Funkenstreckenanordnung |
DE102014015610A1 (de) * | 2014-10-23 | 2016-04-28 | Phoenix Contact Gmbh & Co. Kg | Überspannungsableiter |
CN105552719A (zh) * | 2014-10-23 | 2016-05-04 | 菲尼克斯电气公司 | 过压放电器 |
DE102014015610B4 (de) * | 2014-10-23 | 2017-02-23 | Phoenix Contact Gmbh & Co. Kg | Überspannungsableiter |
Also Published As
Publication number | Publication date |
---|---|
US5146141A (en) | 1992-09-08 |
EP0473814B1 (fr) | 1995-05-24 |
JPH076851A (ja) | 1995-01-10 |
DE59009153D1 (de) | 1995-06-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0473814B1 (fr) | Interrupteur à électrodes creuses | |
EP0337192B1 (fr) | Interrupteur à décharge dans un gaz | |
DE2716578A1 (de) | Plasma-elektronen/ionen-quelle | |
EP0251010B1 (fr) | Dérivateur de surtension à gaz | |
WO1989000354A1 (fr) | Commutateur a gaz electronique (commutateur a pseudo-etincelle) | |
EP0048407A1 (fr) | Laser TEA à haute énergie avec barres d'ionisation parallèles à l'axe du laser | |
EP0944914B1 (fr) | Commutateur a decharge gazeuse basse pression | |
DE2824820A1 (de) | Elektronenstrahlsystem mit verteilter elektrostatischer linse | |
DE69609358T2 (de) | Ionenquelle zur erzeugung von ionen aus gas oder dampf | |
EP0433480B1 (fr) | Commutateur à électrode creuse | |
DE1489604B1 (de) | Gasgefuellte Entladungslampe | |
DE1764910B1 (de) | Kathode fuer einen optischen sender oder verstaerker fuer kohaerente strahlung | |
EP0473813A1 (fr) | Interrupteur à électrodes creuses | |
EP0510232B1 (fr) | Interrupteur à décharge dans un gaz | |
EP0513403A1 (fr) | Interrupteur à décharge dans un gaz | |
DE4100565C2 (fr) | ||
DE2905166C2 (de) | Vakuum-Funkengenerator | |
DE1589414B1 (de) | Spektrale Strahlungsquelle | |
DE2843498A1 (de) | Elektronenrohr bzw. strahlerzeuger | |
DE4306036C2 (de) | Gasentladungsschalter | |
EP0317722A2 (fr) | Laser de gaz avec tube de décharge | |
WO1990009673A1 (fr) | Commutateur a decharge lumineuse | |
DE2824775A1 (de) | Verfahren zur unterbrechung von gleichstrom und anordnung zur durchfuehrung des verfahrens | |
DE1489604C (de) | Gasgefullte Entladungslampe | |
DE4214362A1 (de) | Gasentladungsschalter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19901205 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): CH DE FR GB IT LI |
|
17Q | First examination report despatched |
Effective date: 19940905 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): CH DE FR GB IT LI |
|
REF | Corresponds to: |
Ref document number: 59009153 Country of ref document: DE Date of ref document: 19950629 |
|
ITF | It: translation for a ep patent filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19950821 Year of fee payment: 6 |
|
ET | Fr: translation filed | ||
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19950812 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19950919 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19951116 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 19951215 Year of fee payment: 6 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Effective date: 19960903 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Effective date: 19960930 Ref country code: FR Effective date: 19960930 Ref country code: CH Effective date: 19960930 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 19960903 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Effective date: 19970603 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050903 |