WO2015042608A1 - Procédé et appareil pour isoler et commuter desimpulsions basse tension en impulsions haute tension dans des forets d'électro-broyage et électrohydrauliques - Google Patents
Procédé et appareil pour isoler et commuter desimpulsions basse tension en impulsions haute tension dans des forets d'électro-broyage et électrohydrauliques Download PDFInfo
- Publication number
- WO2015042608A1 WO2015042608A1 PCT/US2014/057060 US2014057060W WO2015042608A1 WO 2015042608 A1 WO2015042608 A1 WO 2015042608A1 US 2014057060 W US2014057060 W US 2014057060W WO 2015042608 A1 WO2015042608 A1 WO 2015042608A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- transformer
- high voltage
- current
- lower voltage
- electrocrushing
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 25
- 238000009738 saturating Methods 0.000 claims abstract description 18
- 230000035699 permeability Effects 0.000 claims abstract description 15
- 230000000977 initiatory effect Effects 0.000 claims abstract description 10
- 238000005553 drilling Methods 0.000 claims abstract description 6
- 239000003990 capacitor Substances 0.000 claims description 24
- 239000000696 magnetic material Substances 0.000 claims description 19
- 230000015572 biosynthetic process Effects 0.000 claims description 10
- 239000000758 substrate Substances 0.000 claims description 6
- 229910000859 α-Fe Inorganic materials 0.000 claims description 5
- 239000011435 rock Substances 0.000 description 11
- 238000002955 isolation Methods 0.000 description 7
- 238000004804 winding Methods 0.000 description 7
- 230000008569 process Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 229910000697 metglas Inorganic materials 0.000 description 3
- -1 Supermendur Inorganic materials 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B7/00—Special methods or apparatus for drilling
- E21B7/14—Drilling by use of heat, e.g. flame drilling
- E21B7/15—Drilling by use of heat, e.g. flame drilling of electrically generated heat
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B4/00—Drives for drilling, used in the borehole
- E21B4/04—Electric drives
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F38/00—Adaptations of transformers or inductances for specific applications or functions
- H01F38/08—High-leakage transformers or inductances
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H7/00—Multiple-port networks comprising only passive electrical elements as network components
- H03H7/38—Impedance-matching networks
Definitions
- the field of the present invention is the supply of high voltage pulses to a drill bit in an electrocrushing or electrohydraulic drill.
- the present invention is a method of providing a high voltage pulse to an electrocrushing or electrohydraulic drill bit, the method comprising providing a transformer comprising a core comprising a saturating high relative permeability magnetic material, the transformer delivering a high voltage pulse to an electrocrushing or electrohydraulic drill bit to initiate arc formation in a substrate being drilled, isolating lower voltage electrical components from the high voltage pulse, saturating the transformer core, thereby lowering its relative permeability, and the lower voltage components delivering a lower voltage current through the transformer and to the electrocrushing or electrohydraulic drill bit for maintaining the arc in the substrate.
- the method preferably further comprises substantially matching an impedance of the arc both during and after arc formation.
- a pulse width of the high voltage pulse is preferably shorter than a saturation time of the transformer core.
- the method preferably further comprises actively resetting the transformer by bringing the magnetic material out of saturation.
- the magnetic material preferably comprises Metglas, Supermendur, or a ferrite.
- the lower voltage components preferably comprise at least one switch and at least one capacitor and preferably comprise sufficient capacitance to absorb current that leaks through the transformer while the high voltage pulse is being delivered.
- the method oprionaliy further comprises flowing a second current to a capacitor while the transformer delivers the high voltage pulse, integrating the second current over a desired time until a threshold charge level is reached, thereby initiating the saturating step, inverting the polarity of the capacitor, and initiating delivery of the lower voltage current.
- a saturation time of the transformer core is preferably the time delay between initiation of delivering the high voltage pulse and initiation of delivering the lower voltage current.
- the capacitor is preferably electrically connected in parallel to the transformer.
- the present invention is also an apparatus for switching power for use in electrocrushing or electrohydraulic drilling, the apparatus comprising a transformer comprising a core, the core comprising a saturating high relative permeability magnetic material, a first circuit electrically connected to the transformer, the first circuit for delivering high voltage pulses to an electrocrushing or electrohydraulic drill bit, and a second circuit electrically connected to the transformer, the second circuit for delivering a lower voltage current to the drill bit.
- the apparatus preferably further comprises a reset circuit for resetting the transform by bringing the magnetic materia! out of saturation.
- the magnetic material preferably comprises Metglas, Supermendur, or ferrites.
- the second circuit preferably comprises at least one switch and and least one capacitor and preferably comprises sufficient capacitance to absorb current that leaks through the transformer while the high voltage pulse is being delivered.
- the apparatus preferably further comprises a capacitor for triggering the second circuit.
- the capacitor is preferably electrically connected in parallel to the transformer.
- FIG. 1 is a diagram of solenoid-configuration tinear inductor in accordance with an embodiment of the present invention.
- FIG. 2A is a diagram of a linear magnetic switch in accordance with an embodiment of the present invention.
- FIG. 2B is a diagram of a toroidal magnetic switch in accordance with an embodiment of the present invention.
- FIG. 3 is an example e!ectrocrushing saturating transformer circuit diagram in accordance with an embodiment of the present invention.
- FIG. 4 is a picture of a high voltage pulse transformer in accordance with an embodiment of the present invention.
- FIG. 5 is an embodiment of a schematic of a magnetic switch trigger for an electro-crushing drill switch.
- Electro crushing is defined herein as the process of passing a pulsed electrical current through a mineral substrate so that the substrate is “crushed” or “broken".
- One of the characteristics of the electro- crushing drilling process is very large disparity between the impedance of the bit before the arc is formed compared to the bit impedance after arc formation.
- the impedance of the arc during formation can be between approximately 150 and 500 ohms or even greater.
- the impedance of the arc after arc formation can be less than 10 ohms, and even lower with an electro-hydraulic system. If a single pulsed power system is used for the electro-crushing or electro-hydraulic system, then it will be significantly mismatched either during the arc formation stage or during the arc power loading stage.
- a spiker sustainer circuit (as disclosed in, for example, commonly owned U.S. Patent No. 8,186,454, entitled “Apparatus and Method for Electrocrushing Rock") was adapted to the electro-crushing technology as a very important invention to resolve this issue.
- the spiker sustainer technology two separate circuits are used to manage power flow into the arc.
- the spiker circuit provides the high impedance high voltage pulse necessary to initiate arc formation inside the rock.
- the term "high voltage” means greater than approximately 30 kV.
- the sustainer circuit then provides a tow impedance high current pulse necessary to break the rock.
- dl/dt the rate of change of current through the magnetic switch with time.
- n number of turns per meter
- A cross section area of the coil in square meters.
- the magnetic material goes from a high relative permeability (defined as approximately 2000-10,000) to nearly approximately 1.0 (i.e. saturation), thus significantly reducing the inductance of the magnetic switch and facilitating separation of the high voltage input lead from the output lead.
- the time for the magnetic switch to saturate is preferably longer than the pulse width of the high voltage pulse, thus isolating the lower voltage components from the high voltage pulse.
- the current required to saturate the switch preferably does not flow until the arc connection through the rock has been made, except for some small current flow from stray capacitance plus leakage current from when L is high.
- the saturating magnetic switch is incorporated into the transformer that provides the high voltage pulse.
- the transformer preferably comprises a saturating magnetic material such that after the transformer has delivered the high voltage pulse, the transformer core saturates, enabling lower voltage components to feed current into the arc.
- the high permeability of the core prior to saturation provides the inductive isolation of the high voltage pulse from the lower voltage components.
- An alternate embodiment is the toroidal configuration as shown in FIG. 2B, comprising a wire wrapped around a toroid comprising a high permeability saturable magnetic material.
- FIG. 3 shows an example circuit comprising transformer windings around the core K1 to provide the high voltage pulse and output windings to provide inductive isolation for the lower voltage
- FIG. 4 shows an embodiment of a typical high voltage pulse transformer, showing the black primary (lower voltage) windings and the secondary (high voltage) windings tapered for high voltage insulation and isolation.
- the core preferably comprises magnetic materials that have the desired saturation properties.
- a saturating transformer in accordance with the present invention enables the use of a high impedance high voltage spiker circuit to initially create conduction in the rock in conjunction with a lower voltage high current sustainer source to provide power into the arc to break the rock.
- the saturating transformer preferably provides both functions.
- the core of magnetic material preferably comprises the capability of moving from high permeability to low permeability with the correct application of the voltage-time product in order for the transformer to possess the desired saturation properties.
- Magnetic materials suitable for the saturating transformer switch include ferrites, Metglas, Supermendur, and other similar magnetic materials with magnetic characteristics that facilitate saturation with the application of the correct voltage-time product.
- Embodiments of the transformer magnetic switch of the present invention combine the functions of a pulse transformer and a high-voltage high current switch or diode that isolates the lower voltage components from the high voltage pulse.
- the transformer magnetic switch replaces the high voltage solid state diode or switch or gas switches that would be used to isolate the lower voltage components from the high voltage pulse and control the flow of current from the sustainer capacitor bank into the arc after arc formation.
- the switches require isolation from the high voltage pulse, said Isolation is provided by the inductance of the secondary windings of the magnetic transformer switch. This is advantageous in the e!ectro-crushing drill pulsed power circuit because such a switch is highly immune to damage from a fault in the circuit.
- rock is very non-uniform, and the pulses delivered by the pulsed power system vary greatly from shot to shot during the drilling process. Occasionally a shot will produce very unusual current or voltage waveforms. If solid-state diodes were used for voltage isolation, they might be damaged by the unusual shot.
- a magnetic switch which functions as a diode is very immune to damage from unusual events, in addition, the magnetic "diode" can be quite compact compared to high voltage solid-state diodes and their protection circuits.
- One of the difficulties with the spiker-sustainer circuit is electrical noise generated in the circuit from the spiker pulse. This electrical noise is often sufficient to trigger the sustainer switch, thus preventing proper control of the sustainer switch timing by the control system. In addition, the electrical noise is sometimes sufficient to damage the solid state trigger switches often used. Thus it is desirable to provide a noise immune trigger for turning on the sustainer switch in such a spiker-sustainer circuit without upsetting timing from electrical noise and without damage from electrical noise.
- An embodiment of such a trigger of the present invention is preferably configured for use with a saturating inductor, also known as a magnetic switch, as the switching element to trigger the sustainer switch.
- the saturating inductor (magnetic switch) is connected to the spiker output and conducts a small amount of current from the spiker output pulse through the magnetic switch to a ballast capacitor during the spiker pulse. This current flow, integrated over the desired time delay for sustainer ignition, will cause the magnetic switch to saturate creating a trigger pulse to turn on the sustainer switch.
- the time for the magnetic switch to saturate is preferably designed to be the correct time delay between onset of the high voltage pulse and turning on the sustainer switch .
- a reset circuit is often used to bring the magnetic switch out of saturation and prepare it for the next pulse.
- a magnetic switch in accordance with the present invention provides a trigger pulse to turn on the sustainer switch without susceptibility to electrical noise, either in timing upset or damage to components.
- the timing of the sustainer trigger pulse is preferably determined by passive components, and is not subject to upset from electrical noise. Once the timing of the sustainer trigger pulse has been set by the design of the magnetic switch, it will always be the same for a given spiker output voltage pulse profile.
- FIG. 4 is a schematic of an embodiment of a magnetic switch trigger for an electro-crushing drill switch.
- Negative voltage signal 2 preferably the spiker output voltage of the pulse sent to the rock during the drilling process, is preferably reduced in magnitude through resistor array 6 and charges capacitor 3 through diode 4 in parallel with magnetic switch 1.
- magnetic switch 1 When magnetic switch 1 saturates, it inverts the polarity of capacitor 3 to provide the required positive polarity to trigger ⁇ i.e. turn on) switch 5 through diode 7.
- Capacitor 8 is preferably used to manage the pulse shape going to switch 5.
Landscapes
- Engineering & Computer Science (AREA)
- Geology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Mining & Mineral Resources (AREA)
- Power Engineering (AREA)
- Fluid Mechanics (AREA)
- Environmental & Geological Engineering (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Magnetic Treatment Devices (AREA)
- Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
- Generation Of Surge Voltage And Current (AREA)
Abstract
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA2962002A CA2962002C (fr) | 2013-09-23 | 2014-09-23 | Procede et appareil pour isoler et commuter desimpulsions-basse tension en impulsions haute tension dans des forets d'electro-broyage et electrohydrauliques |
BR112016006434-8A BR112016006434B1 (pt) | 2013-09-23 | 2014-09-23 | Método para fornecer um pulso de alta tensão a uma broca de perfuração eletrotrituradora ou eletrohidráulica, e, equipamento para chavear potência para uso em perfuração eletrotrituradora ou eletro-hidráulica |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201361881127P | 2013-09-23 | 2013-09-23 | |
US61/881,127 | 2013-09-23 | ||
US201361900695P | 2013-11-06 | 2013-11-06 | |
US61/900,695 | 2013-11-06 | ||
US201361904268P | 2013-11-14 | 2013-11-14 | |
US61/904,268 | 2013-11-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015042608A1 true WO2015042608A1 (fr) | 2015-03-26 |
Family
ID=52689555
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2014/057060 WO2015042608A1 (fr) | 2013-09-23 | 2014-09-23 | Procédé et appareil pour isoler et commuter desimpulsions basse tension en impulsions haute tension dans des forets d'électro-broyage et électrohydrauliques |
Country Status (4)
Country | Link |
---|---|
US (1) | US10113364B2 (fr) |
BR (1) | BR112016006434B1 (fr) |
CA (1) | CA2962002C (fr) |
WO (1) | WO2015042608A1 (fr) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9700893B2 (en) | 2004-08-20 | 2017-07-11 | Sdg, Llc | Virtual electrode mineral particle disintegrator |
US10060195B2 (en) | 2006-06-29 | 2018-08-28 | Sdg Llc | Repetitive pulsed electric discharge apparatuses and methods of use |
US10113364B2 (en) | 2013-09-23 | 2018-10-30 | Sdg Llc | Method and apparatus for isolating and switching lower voltage pulses from high voltage pulses in electrocrushing and electrohydraulic drills |
US10407995B2 (en) | 2012-07-05 | 2019-09-10 | Sdg Llc | Repetitive pulsed electric discharge drills including downhole formation evaluation |
US11624239B1 (en) | 2021-11-04 | 2023-04-11 | Halliburton Energy Services, Inc. | Pulse power drilling assembly transformer with a core having insulative and electrically conductive materials |
US11873715B2 (en) | 2021-11-04 | 2024-01-16 | Halliburton Energy Services, Inc. | Pulse power drilling assembly transformer with a core having a non-conductive material |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BR112018013699B1 (pt) * | 2016-02-22 | 2023-03-07 | Chevron U.S.A. Inc. | Sistema de perfuração de fundo de poço e método |
WO2018071020A1 (fr) * | 2016-10-13 | 2018-04-19 | Halliburton Energy Services, Inc. | Transformateur résonant destiné à un forage par électro-écrasement de fond de trou |
BR112019017876B1 (pt) * | 2017-04-03 | 2023-03-28 | Halliburton Energy Services, Inc. | Sistema de perfuração de fundo de poço e método |
EP3914939A4 (fr) * | 2019-01-23 | 2022-10-05 | Services Pétroliers Schlumberger | Caractérisation d'écho d'impulsion ultrasonore et de formation d'étrier |
US11459883B2 (en) | 2020-08-28 | 2022-10-04 | Halliburton Energy Services, Inc. | Plasma chemistry derived formation rock evaluation for pulse power drilling |
US11619129B2 (en) | 2020-08-28 | 2023-04-04 | Halliburton Energy Services, Inc. | Estimating formation isotopic concentration with pulsed power drilling |
US11585743B2 (en) | 2020-08-28 | 2023-02-21 | Halliburton Energy Services, Inc. | Determining formation porosity and permeability |
US11536136B2 (en) | 2020-08-28 | 2022-12-27 | Halliburton Energy Services, Inc. | Plasma chemistry based analysis and operations for pulse power drilling |
US11499421B2 (en) | 2020-08-28 | 2022-11-15 | Halliburton Energy Services, Inc. | Plasma chemistry based analysis and operations for pulse power drilling |
US11346217B2 (en) * | 2020-08-31 | 2022-05-31 | Halliburton Energy Services, Inc. | Plasma optimization with formational and fluid information |
US11536090B2 (en) * | 2020-12-16 | 2022-12-27 | Halliburton Energy Services, Inc. | Voltage line communications during pulse power drilling |
US11555353B2 (en) * | 2020-12-17 | 2023-01-17 | Halliburton Energy Services, Inc. | Pulse power drilling control |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4899834A (en) * | 1986-01-24 | 1990-02-13 | Parker Kinetic Designs, Inc. | Electromagnetic drilling apparatus |
US5646561A (en) * | 1995-12-20 | 1997-07-08 | Western Atlas International, Inc. | High performance current switch for borehole logging tools |
US20050150688A1 (en) * | 2002-02-12 | 2005-07-14 | Macgregor Scott J. | Plasma channel drilling process |
US20100000790A1 (en) * | 2004-08-20 | 2010-01-07 | Tetra Corporation | Apparatus and Method for Electrocrushing Rock |
US20120168177A1 (en) * | 2004-08-20 | 2012-07-05 | Sdg, Llc | Apparatus and Method for Supplying Electrical Power to an Electrocrushing Drill |
Family Cites Families (135)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2623921A (en) | 1945-11-01 | 1952-12-30 | Smits Wytze Beye | Apparatus for the ignition of explosive material in liquids |
US2821637A (en) | 1953-11-30 | 1958-01-28 | Westinghouse Electric Corp | Light image reproduction devices |
US2822148A (en) | 1954-02-23 | 1958-02-04 | Robert W Murray | Electric boring apparatus |
US2818020A (en) | 1955-11-17 | 1957-12-31 | Glenn A Burklund | Safeguarded electric firing initiating devices |
US2953353A (en) | 1957-06-13 | 1960-09-20 | Benjamin G Bowden | Apparatus for drilling holes in earth |
BE588325A (fr) | 1959-03-24 | |||
US3076513A (en) | 1960-06-21 | 1963-02-05 | William G Heaphy | Power conveying drive means |
US3179187A (en) | 1961-07-06 | 1965-04-20 | Electrofrac Corp | Electro-drilling method and apparatus |
US3158207A (en) | 1961-08-14 | 1964-11-24 | Jersey Producttion Res Company | Combination roller cone and spark discharge drill bit |
US3183390A (en) | 1963-06-05 | 1965-05-11 | Roderick J Grader | Photomultiplier |
US3468387A (en) | 1967-04-17 | 1969-09-23 | New Process Ind Inc | Thermal coring method and device |
US3539406A (en) | 1967-05-10 | 1970-11-10 | Petrolite Corp | Essentially nonaqueous emulsions |
US3506076A (en) | 1967-12-12 | 1970-04-14 | Mobil Oil Corp | Wellbore drilling with shock waves |
US3510676A (en) * | 1968-05-22 | 1970-05-05 | Air Reduction | Pulsed power supply |
US3500942A (en) | 1968-07-30 | 1970-03-17 | Shell Oil Co | Shaped spark drill |
US3680431A (en) | 1968-11-01 | 1972-08-01 | Environetics Inc | Method and means for generating explosive forces |
US3621916A (en) | 1969-10-08 | 1971-11-23 | Shell Oil Co | Spark-type casing perforator |
US3679007A (en) | 1970-05-25 | 1972-07-25 | Louis Richard O Hare | Shock plasma earth drill |
US3796463A (en) | 1970-10-20 | 1974-03-12 | Environment One Corp | Process and apparatus for mining by hydroelectric pulsed liquid jets |
US3700169A (en) | 1970-10-20 | 1972-10-24 | Environment One Corp | Process and appratus for the production of hydroelectric pulsed liquids jets |
US3715082A (en) | 1970-12-07 | 1973-02-06 | Atomic Energy Authority Uk | Electro-hydraulic crushing apparatus |
US3708022A (en) | 1971-06-07 | 1973-01-02 | Trw Inc | Low voltage spark drill |
US3829816A (en) | 1972-08-21 | 1974-08-13 | Exxon Production Research Co | Coupling assembly |
US3840078A (en) | 1973-10-01 | 1974-10-08 | Us Navy | Stress wave drill |
US3881559A (en) | 1973-10-01 | 1975-05-06 | Us Navy | Method for stress wave drilling |
US3974116A (en) | 1974-03-20 | 1976-08-10 | Petrolite Corporation | Emulsion suspensions and process for adding same to system |
US4169503A (en) | 1974-09-03 | 1979-10-02 | Oil Recovery Corporation | Apparatus for generating a shock wave in a well hole |
US3957118A (en) | 1974-09-18 | 1976-05-18 | Exxon Production Research Company | Cable system for use in a pipe string and method for installing and using the same |
US4040000A (en) | 1976-08-23 | 1977-08-02 | Teledyne Exploration Company | Solid state high energy electrical switch for under-sea-water electric discharge seismic generator |
US4328458A (en) * | 1977-05-20 | 1982-05-04 | Tdk Electronics Co., Ltd. | Variable leakage transformer and control circuit therefore |
US4122387A (en) | 1977-08-24 | 1978-10-24 | Halliburton Company | Apparatus and method for simultaneously logging an electrical characteristic of a well formation at more than one lateral distance from a borehole |
DE2804393C2 (de) | 1978-02-02 | 1987-01-02 | Jens Prof. Dr. 8520 Buckenhof Christiansen | Verfahren zum Erzeugen und Beschleunigen von Elektronen bzw. Ionen in einem Entladungsgefäß, sowie dazugehöriger Teilchenbeschleuniger und ferner dazugehörige Anwendungen des Verfahrens |
US4412967A (en) | 1980-04-09 | 1983-11-01 | Winterberg Friedwardt M | Multistage high voltage accelerator for intense charged particle beams |
US4479680A (en) | 1980-04-11 | 1984-10-30 | Wesley Richard H | Method and apparatus for electrohydraulic fracturing of rock and the like |
US4345650A (en) | 1980-04-11 | 1982-08-24 | Wesley Richard H | Process and apparatus for electrohydraulic recovery of crude oil |
US4523194A (en) | 1981-10-23 | 1985-06-11 | Trw, Inc. | Remotely operated downhole switching apparatus |
DE3150430C1 (de) | 1981-12-19 | 1983-07-28 | Dornier System Gmbh, 7990 Friedrichshafen | "Schaltung zur Erzeugung einer Unterwasserentladung" |
CA1207376A (fr) | 1982-05-21 | 1986-07-08 | Uri Andres | Methode et installations de broyage de matieres du genre minerai |
US4740319A (en) | 1984-04-04 | 1988-04-26 | Patel Arvind D | Oil base drilling fluid composition |
US4525287A (en) | 1984-06-18 | 1985-06-25 | Carstensen Kenneth J | Thread and bearing lubricant |
FR2574559B1 (fr) | 1984-12-06 | 1987-07-10 | Inst Francais Du Petrole | Etinceleur pour engendrer des ondes acoustiques dans l'eau |
US4741405A (en) | 1987-01-06 | 1988-05-03 | Tetra Corporation | Focused shock spark discharge drill using multiple electrodes |
DE3721529A1 (de) | 1987-06-30 | 1989-01-12 | Christiansen Jens | Triggerung und isolation von pseudofunkenschaltern |
DE3891315T1 (de) | 1988-05-20 | 1990-04-05 | Pk Byuro Elektrogidravliki An | Verfahren zur erregung eines bohrlochs waehrend der erdoelfoerderung und einrichtung zur durchfuehrung des verfahrens |
US4975917A (en) | 1988-09-14 | 1990-12-04 | Harris Blake Corporation | Source of coherent short wavelength radiation |
US5019119A (en) | 1989-04-18 | 1991-05-28 | Hare Sr Nicholas S | Electro-rheological fuel injector |
US4937832A (en) | 1989-06-30 | 1990-06-26 | Rocca Jorge J | Methods and apparatus for producing soft x-ray laser in a capillary discharge plasma |
IT1232663B (it) | 1989-09-15 | 1992-03-02 | Consiglio Nazionale Ricerche | Metodo per l'esplorazione sottomarina ad alta risoluzione e dispositivo accordato di trasduttori elettroacustici paraboloidali per la realizzazione di tale metodo |
US5027264A (en) * | 1989-09-29 | 1991-06-25 | Wisconsin Alumni Research Foundation | Power conversion apparatus for DC/DC conversion using dual active bridges |
DE3942307A1 (de) | 1989-12-21 | 1991-07-04 | Fraunhofer Ges Forschung | Vorrichtung zum schalten hoher elektrischer stroeme bei hohen spannungen |
ZA91612B (en) | 1990-04-20 | 1991-10-30 | Noranda Inc | Plasma blasting method |
CA2015102C (fr) | 1990-04-20 | 1995-09-19 | Frank Kitzinger | Methode de sautage au plasma |
US5088568A (en) | 1990-06-18 | 1992-02-18 | Leonid Simuni | Hydro-mechanical device for underground drilling |
US5432756A (en) | 1990-07-31 | 1995-07-11 | 1008786 Ontario Limited | Zebra mussel (Dreissena polymorpha) and other aquatic organism control |
DE59009153D1 (de) | 1990-09-03 | 1995-06-29 | Siemens Ag | Hohlelektrodenschalter. |
CA2052317C (fr) | 1990-09-28 | 1995-09-26 | Norio Takami | Batterie secondaire a electrolyte non aqueux |
IT1241558B (it) | 1990-12-21 | 1994-01-17 | Consiglio Nazionale Ricerche | Dispositivo per la trasmissione e la ricezione di sgnali acustici ad alta risoluzione, particolarmente er applicazioni sottomarine, con trasduttore paraboloidale di ricezione circondato da trasduttori parabolidali di trasmissione a eccitazione differenziata. |
JP3311484B2 (ja) | 1994-04-25 | 2002-08-05 | 三菱電機株式会社 | 信号伝送装置及び信号伝送方法 |
US5126638A (en) | 1991-05-13 | 1992-06-30 | Maxwell Laboratories, Inc. | Coaxial pseudospark discharge switch |
US5228011A (en) | 1991-05-13 | 1993-07-13 | Southwest Research Institute | Variable multi-stage arc discharge acoustic pulse source transducer |
US5336647A (en) | 1991-11-14 | 1994-08-09 | Rheox, Inc. | Organoclay compositions prepared with a mixture of two organic cations and their use in non-aqueous systems |
EP0569478B1 (fr) | 1991-12-02 | 1997-04-23 | Caterpillar Inc. | Defonceuse a haute tension |
US5179541A (en) | 1992-04-28 | 1993-01-12 | Western Atlas International, Inc. | Acoustic borehole televiewer |
WO1994003949A1 (fr) | 1992-08-06 | 1994-02-17 | Siemens Aktiengesellschaft | Configuration d'electrodes pour commutateurs a decharge gazeuse et materiau a utiliser dans ledit agencement d'electrodes |
US5556832A (en) | 1992-09-21 | 1996-09-17 | Union Oil Company Of California | Solids-free, essentially all-oil wellbore fluid |
US5399941A (en) | 1993-05-03 | 1995-03-21 | The United States Of America As Represented By The Secretary Of The Navy | Optical pseudospark switch |
US5573307A (en) | 1994-01-21 | 1996-11-12 | Maxwell Laboratories, Inc. | Method and apparatus for blasting hard rock |
US5425570A (en) | 1994-01-21 | 1995-06-20 | Maxwell Laboratories, Inc. | Method and apparatus for plasma blasting |
US5394411A (en) | 1994-02-16 | 1995-02-28 | University Of Maryland, College Park | Method for producing high intensity optical through x-ray waveguide and applications |
US5502356A (en) | 1994-05-02 | 1996-03-26 | Plex Corporation | Stabilized radial pseudospark switch |
US5586608A (en) | 1995-06-07 | 1996-12-24 | Baker Hughes Incorporated | Method of making an anti-bit balling well fluid using a polyol having a cloud point, and method of drilling |
US5658860A (en) | 1995-06-07 | 1997-08-19 | Baker Hughes Incorporated | Environmentally safe lubricated well fluid method of making a well fluid and method of drilling |
KR100299005B1 (ko) | 1995-07-24 | 2001-11-22 | 미나미 이조 | 방전파괴장치 및 그 파괴장치의 제조방법 |
JPH09145740A (ja) | 1995-09-22 | 1997-06-06 | Denso Corp | 加速度センサ |
US5896938A (en) | 1995-12-01 | 1999-04-27 | Tetra Corporation | Portable electrohydraulic mining drill |
US6280659B1 (en) | 1996-03-01 | 2001-08-28 | David W. Sundin | Vegetable seed oil insulating fluid |
US6104022A (en) | 1996-07-09 | 2000-08-15 | Tetra Corporation | Linear aperture pseudospark switch |
US6026099A (en) | 1996-07-31 | 2000-02-15 | Tetra Corporation | Pulse forming x-ray laser |
EP1013142A4 (fr) | 1996-08-05 | 2002-06-05 | Tetra Corp | Projecteurs d'ondes de pression electrohydraulique |
WO1998007960A1 (fr) | 1996-08-22 | 1998-02-26 | Komatsu Ltd. | Machine souterraine a tariere pour concassage electrique, excavatrice et procede d'excavation |
US5685377A (en) | 1996-09-05 | 1997-11-11 | Caterpillar Inc. | Auto-return function for a bulldozer ripper |
US6116357A (en) | 1996-09-09 | 2000-09-12 | Smith International, Inc. | Rock drill bit with back-reaming protection |
RU2123596C1 (ru) | 1996-10-14 | 1998-12-20 | Научно-исследовательский институт высоких напряжений при Томском политехническом университете | Электроимпульсный способ бурения скважин и буровая установка |
US5967816A (en) | 1997-02-19 | 1999-10-19 | Schlumberger Technology Corporation | Female wet connector |
AU4458797A (en) | 1997-09-15 | 1999-04-05 | Sofitech N.V. | Electrically conductive non-aqueous wellbore fluids |
FR2769665B1 (fr) | 1997-10-13 | 2000-03-10 | Inst Francais Du Petrole | Methode et systeme de mesure dans un conduit horizontal |
US6280519B1 (en) | 1998-05-05 | 2001-08-28 | Exxon Chemical Patents Inc. | Environmentally preferred fluids and fluid blends |
US6123561A (en) | 1998-07-14 | 2000-09-26 | Aps Technology, Inc. | Electrical coupling for a multisection conduit such as a drill pipe |
RU2150326C1 (ru) | 1998-09-29 | 2000-06-10 | Институт электрофизики Уральского отделения РАН | Способ и установка для селективного раскрытия тонких включений из твердого материала |
US20020005346A1 (en) | 1999-01-08 | 2002-01-17 | Babington Peter D. | Method and apparatus for extracting hydrocarbons from tar sands using electro plasma |
GB2345706B (en) | 1999-01-16 | 2003-05-21 | Sofitech Nv | Electrically conductive invert emulsion wellbore fluid |
KR100308081B1 (ko) | 1999-03-02 | 2001-09-24 | 정기형 | 플라즈마파암용 전력충격쎌 |
SE515294C2 (sv) | 1999-11-25 | 2001-07-09 | Sandvik Ab | Bergborrkrona och stift för slående borrning samt metod att tillverka en bergborrkrona för slående borrning |
AU7633201A (en) | 2000-04-07 | 2001-10-30 | Sofitech N.V. | Wellbore fluids and their application |
US7615893B2 (en) | 2000-05-11 | 2009-11-10 | Cameron International Corporation | Electric control and supply system |
FR2809743B1 (fr) | 2000-06-06 | 2006-08-18 | Inst Francais Du Petrole | Fluide de puits a base d'huile comprenant un systeme emulsifiant stable en temperature et non polluant |
US6620769B1 (en) | 2000-11-21 | 2003-09-16 | Hercules Incorporated | Environmentally acceptable fluid polymer suspension for oil field services |
US6510899B1 (en) | 2001-02-21 | 2003-01-28 | Schlumberger Technology Corporation | Time-delayed connector latch |
WO2002078441A1 (fr) | 2001-03-28 | 2002-10-10 | Huntsman Petrochemical Corporation | Adjuvants de carbonate d'alkylene |
CA2416034A1 (fr) | 2001-04-06 | 2003-01-13 | Sumitomo Electric Industries, Ltd. | Electrode pour appareil de broyage et appareil de broyage |
US8651177B2 (en) | 2009-08-13 | 2014-02-18 | Smart Drilling And Completion, Inc. | Long-lasting hydraulic seals for smart shuttles, for coiled tubing injectors, and for pipeline pigs |
US20030069110A1 (en) | 2001-10-04 | 2003-04-10 | Chung-Yhi Chang | Exercise bike |
US6761416B2 (en) | 2002-01-03 | 2004-07-13 | Placer Dome Technical Services Limited | Method and apparatus for a plasma-hydraulic continuous excavation system |
EP1331359B1 (fr) | 2002-01-29 | 2005-11-23 | Ingenjörsfirman Geotech Ab | Dispositif de sondage avec transmission de micro-ondes |
US6909667B2 (en) | 2002-02-13 | 2005-06-21 | Halliburton Energy Services, Inc. | Dual channel downhole telemetry |
US6666274B2 (en) | 2002-05-15 | 2003-12-23 | Sunstone Corporation | Tubing containing electrical wiring insert |
CN100472031C (zh) * | 2003-06-13 | 2009-03-25 | 国际壳牌研究有限公司 | 传送电功率到钻孔中的系统和方法 |
NO322323B2 (no) | 2003-12-01 | 2016-09-13 | Unodrill As | Fremgangsmåte og anordning for grunnboring |
JP3693061B1 (ja) * | 2004-03-26 | 2005-09-07 | サンケン電気株式会社 | スイッチング電源装置 |
US20060037516A1 (en) | 2004-08-20 | 2006-02-23 | Tetra Corporation | High permittivity fluid |
WO2006023998A2 (fr) | 2004-08-20 | 2006-03-02 | Tetra Corporation | Procedes et dispositif de forage, de fracturation et de concassage de roches a courant pulse |
US7527108B2 (en) | 2004-08-20 | 2009-05-05 | Tetra Corporation | Portable electrocrushing drill |
US8172006B2 (en) | 2004-08-20 | 2012-05-08 | Sdg, Llc | Pulsed electric rock drilling apparatus with non-rotating bit |
US8789772B2 (en) | 2004-08-20 | 2014-07-29 | Sdg, Llc | Virtual electrode mineral particle disintegrator |
US7559378B2 (en) | 2004-08-20 | 2009-07-14 | Tetra Corporation | Portable and directional electrocrushing drill |
US9190190B1 (en) | 2004-08-20 | 2015-11-17 | Sdg, Llc | Method of providing a high permittivity fluid |
US7959094B2 (en) | 2004-08-20 | 2011-06-14 | Tetra Corporation | Virtual electrode mineral particle disintegrator |
US20070167051A1 (en) | 2004-11-10 | 2007-07-19 | Reynolds Harris A Jr | Data communications embedded in threaded connections |
US7156676B2 (en) | 2004-11-10 | 2007-01-02 | Hydril Company Lp | Electrical contractors embedded in threaded connections |
GB2420358B (en) | 2004-11-17 | 2008-09-03 | Schlumberger Holdings | System and method for drilling a borehole |
US10060195B2 (en) | 2006-06-29 | 2018-08-28 | Sdg Llc | Repetitive pulsed electric discharge apparatuses and methods of use |
NO330103B1 (no) | 2007-02-09 | 2011-02-21 | Statoil Asa | Sammenstilling for boring og logging, fremgangsmate for elektropulsboring og logging |
US8011454B2 (en) | 2007-09-25 | 2011-09-06 | Baker Hughes Incorporated | Apparatus and methods for continuous tomography of cores |
US20090120689A1 (en) | 2007-11-12 | 2009-05-14 | Baker Hughes Incorporated | Apparatus and method for communicating information between a wellbore and surface |
DE102008008503A1 (de) | 2008-02-11 | 2009-08-20 | Siemens Aktiengesellschaft | PV-Teilgenerator-Anschlusskasten, PV-Generator-Anschlusskasten und PV-Wechselrichter für eine PV-Anlage sowie PV-Anlage |
RU2392422C1 (ru) | 2009-04-28 | 2010-06-20 | Общество С Ограниченной Ответственностью "Соновита" | Способ добычи нефти с использованием энергии упругих колебаний и установка для его осуществления |
US8490717B2 (en) | 2009-06-01 | 2013-07-23 | Scientific Drilling International, Inc. | Downhole magnetic measurement while rotating and methods of use |
WO2011090480A1 (fr) | 2010-01-22 | 2011-07-28 | Halliburton Energy Services Inc. | Procédé et appareil de mesure de résistivité |
US9328597B2 (en) | 2011-04-07 | 2016-05-03 | Electro-Petroleum, Inc. | Electrode system and sensor for an electrically enhanced underground process |
CA2873152C (fr) | 2011-06-14 | 2019-12-24 | Sdg Llc | Desintegrateur de particules minerales a electrodes virtuelles |
CN103917736A (zh) | 2011-11-08 | 2014-07-09 | 雪佛龙美国公司 | 用于在地层中钻井眼的装置和方法 |
BR112015000141B1 (pt) | 2012-07-05 | 2022-06-14 | Sdg, Llc | Aparelhos e métodos para fornecer potência para um sistema de potência pulsada de fundo de poço |
EP2935754A4 (fr) | 2012-12-18 | 2016-10-19 | Sdg Llc | Appareils à décharges électriques pulsatoires répétitives et méthodes d'utilisation |
CA2962002C (fr) | 2013-09-23 | 2021-11-09 | Sdg Llc | Procede et appareil pour isoler et commuter desimpulsions-basse tension en impulsions haute tension dans des forets d'electro-broyage et electrohydrauliques |
US20170204668A1 (en) | 2016-01-20 | 2017-07-20 | Baker Hughes Incorporated | Electric pulse drilling apparatus with hole cleaning passages |
-
2014
- 2014-09-23 CA CA2962002A patent/CA2962002C/fr active Active
- 2014-09-23 BR BR112016006434-8A patent/BR112016006434B1/pt active IP Right Grant
- 2014-09-23 WO PCT/US2014/057060 patent/WO2015042608A1/fr active Application Filing
- 2014-09-23 US US14/494,461 patent/US10113364B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4899834A (en) * | 1986-01-24 | 1990-02-13 | Parker Kinetic Designs, Inc. | Electromagnetic drilling apparatus |
US5646561A (en) * | 1995-12-20 | 1997-07-08 | Western Atlas International, Inc. | High performance current switch for borehole logging tools |
US20050150688A1 (en) * | 2002-02-12 | 2005-07-14 | Macgregor Scott J. | Plasma channel drilling process |
US20100000790A1 (en) * | 2004-08-20 | 2010-01-07 | Tetra Corporation | Apparatus and Method for Electrocrushing Rock |
US20120168177A1 (en) * | 2004-08-20 | 2012-07-05 | Sdg, Llc | Apparatus and Method for Supplying Electrical Power to an Electrocrushing Drill |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9700893B2 (en) | 2004-08-20 | 2017-07-11 | Sdg, Llc | Virtual electrode mineral particle disintegrator |
US10060195B2 (en) | 2006-06-29 | 2018-08-28 | Sdg Llc | Repetitive pulsed electric discharge apparatuses and methods of use |
US10407995B2 (en) | 2012-07-05 | 2019-09-10 | Sdg Llc | Repetitive pulsed electric discharge drills including downhole formation evaluation |
US10113364B2 (en) | 2013-09-23 | 2018-10-30 | Sdg Llc | Method and apparatus for isolating and switching lower voltage pulses from high voltage pulses in electrocrushing and electrohydraulic drills |
US11624239B1 (en) | 2021-11-04 | 2023-04-11 | Halliburton Energy Services, Inc. | Pulse power drilling assembly transformer with a core having insulative and electrically conductive materials |
US11873715B2 (en) | 2021-11-04 | 2024-01-16 | Halliburton Energy Services, Inc. | Pulse power drilling assembly transformer with a core having a non-conductive material |
Also Published As
Publication number | Publication date |
---|---|
CA2962002A1 (fr) | 2015-03-26 |
CA2962002C (fr) | 2021-11-09 |
BR112016006434A2 (pt) | 2017-09-12 |
US10113364B2 (en) | 2018-10-30 |
US20150083491A1 (en) | 2015-03-26 |
BR112016006434B1 (pt) | 2022-02-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2962002C (fr) | Procede et appareil pour isoler et commuter desimpulsions-basse tension en impulsions haute tension dans des forets d'electro-broyage et electrohydrauliques | |
Douglass et al. | 100 GW linear transformer driver cavity: Design, simulations, and performance | |
CN107040244A (zh) | 基于frspt和反谐振网络的全固态高电压微秒脉冲发生器 | |
Zhang et al. | A new kind of solid-state Marx generator based on transformer type magnetic switches | |
GB666574A (en) | Improvements in the use of saturable magnetic chokes as discharge devices | |
Qiu et al. | Stray parameters in a novel solid state pulsed power modulator | |
Ashby et al. | CLIA—A compact linear induction accelerator system | |
CN113691239B (zh) | 一种用于电脉冲破岩的磁开关脉冲发生器 | |
US4662343A (en) | Method and apparatus for generating high voltage pulses | |
Teramoto et al. | All-solid-state trigger-less repetitive pulsed power generator utilizing semiconductor opening switch | |
CN104767389B (zh) | 一种磁路并联的Tesla变压器 | |
RU2459395C1 (ru) | Линейный индукционный ускоритель | |
RU2660597C1 (ru) | Высоковольтный импульсный генератор для электроразрядных технологий | |
Sack et al. | Design and test of a modular trigger generator for over-voltage triggering of Marx generators | |
CN104851575A (zh) | 一种脉冲变压器 | |
RU2231937C1 (ru) | Линейный индукционный ускоритель | |
CN104935307A (zh) | 一种超宽谱高功率四脉冲串产生装置 | |
CN107635705B (zh) | 放电加工电源装置 | |
CN107025985A (zh) | 带缓冲层的Tesla变压器磁芯及变压器和该磁芯制备方法 | |
KR101269514B1 (ko) | 대전류용 단펄스 전류 발생기 | |
CN105472854B (zh) | 一种电容谐振充电式高气压气体放电灯的点火装置 | |
Sack et al. | Testing of a modular over-voltage trigger device for marx generators | |
RU2242851C1 (ru) | Линейный индукционный ускоритель для технологических целей | |
RU2303338C1 (ru) | Генератор высоковольтных линейно-спадающих импульсов микросекундной длительности | |
RU2305379C1 (ru) | Генератор высоковольтных линейно нарастающих импульсов микросекундной длительности |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14845313 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112016006434 Country of ref document: BR |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14845313 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2962002 Country of ref document: CA |
|
ENP | Entry into the national phase |
Ref document number: 112016006434 Country of ref document: BR Kind code of ref document: A2 Effective date: 20160323 |