EP0473814B1 - Hohlelektrodenschalter - Google Patents

Hohlelektrodenschalter Download PDF

Info

Publication number
EP0473814B1
EP0473814B1 EP90116902A EP90116902A EP0473814B1 EP 0473814 B1 EP0473814 B1 EP 0473814B1 EP 90116902 A EP90116902 A EP 90116902A EP 90116902 A EP90116902 A EP 90116902A EP 0473814 B1 EP0473814 B1 EP 0473814B1
Authority
EP
European Patent Office
Prior art keywords
hollow
electrode
switch according
electrode switch
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90116902A
Other languages
English (en)
French (fr)
Other versions
EP0473814A1 (de
Inventor
Klaus-D. Rohde
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to DE59009153T priority Critical patent/DE59009153D1/de
Priority to EP90116902A priority patent/EP0473814B1/de
Priority to JP3244597A priority patent/JPH076851A/ja
Priority to US07/752,843 priority patent/US5146141A/en
Publication of EP0473814A1 publication Critical patent/EP0473814A1/de
Application granted granted Critical
Publication of EP0473814B1 publication Critical patent/EP0473814B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T2/00Spark gaps comprising auxiliary triggering means
    • H01T2/02Spark gaps comprising auxiliary triggering means comprising a trigger electrode or an auxiliary spark gap
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J17/00Gas-filled discharge tubes with solid cathode
    • H01J17/38Cold-cathode tubes
    • H01J17/40Cold-cathode tubes with one cathode and one anode, e.g. glow tubes, tuning-indicator glow tubes, voltage-stabiliser tubes, voltage-indicator tubes
    • H01J17/44Cold-cathode tubes with one cathode and one anode, e.g. glow tubes, tuning-indicator glow tubes, voltage-stabiliser tubes, voltage-indicator tubes having one or more control electrodes

Definitions

  • the invention relates to a hollow electrode switch with an anode and a cathode, which face each other at a distance a and form a discharge gap.
  • a trigger device that contains a hollow electrode is assigned to the discharge path.
  • the discharge path is arranged in an ionizable gas filling; the pressure p of the gas and the electrode spacing d on the discharge path are chosen so that the ignition voltage of the gas discharge decreases with increasing pressure pxd.
  • the ignition voltage for a given gas discharge path and its usual graphical representation as a function of the product of gas pressure p and electrode spacing d in the ignition characteristic curve are known to be an important aid for identifying electrical discharge devices, with due regard to the ignition probability.
  • the infinitely large plate capacitor and its ignition characteristic are generally used for comparison.
  • the practical embodiment of such discharge paths has electrodes with finite dimensions. While it is sufficient to determine the right branch of the ignition characteristic (Paschen curve), i.e.
  • the ignition characteristic curve can also be determined, for example, for various noble and molecular gases in the near-breakdown area, ie to the left of the minimum of the Paschen curve (Proc. VII th Int. Conf. Phenom. In Ionited Gases, Beograd, Vol. I (1965), pages 316 to 326).
  • Gas discharge switches are also known which are controlled by a pulsed low pressure gas discharge. For example, they switch currents of 10 kA at a voltage of 20 kV.
  • the discharge switch contains an anode and a cathode, which are provided with coaxial openings and are separated from one another by an annular insulator.
  • a control device is provided for the gas discharge, which contains a hollow electrode designed as a cage, which is connected to the cathode in an electrically conductive manner and is therefore at the cathode potential. It encloses the cathode rear space and separates it from the area of preionization.
  • the gas discharge between the cathode and the anode is ignited by injection of charge carriers.
  • the discharge path is ignited in two stages.
  • an auxiliary electrode generates a pre-ionization by means of a glow discharge outside the hollow electrode.
  • a trigger electrode then receives a negative ignition pulse and the entry of charge carriers into the hollow electrode is made possible in that the potential of a blocking electrode is set to zero. The discharge is initiated when the charge carriers enter the hollow electrode.
  • This gas discharge switch is relatively complicated (J. Phys. E: Sci. Instr. 19 (1986), The Inst. of Physics, Great Britain, pages 466 to 470).
  • FIG. 3 Another known embodiment of a hollow electrode switch, in which the hollow electrode is electrically conductively connected to the cathode, contains a cathode and an anode, each of which is provided with a central bore. A discharge gap is formed between these holes. The distance between the electrodes, which are arranged parallel to one another in the discharge region, is greater than in the channel formed in the radial direction outside the discharge region between the electrodes (DE-A-37 21 529, FIG. 3).
  • the gas discharge switch can also contain a plurality of discharge channels which are provided with a common trigger device.
  • This trigger device contains a common hollow electrode which is electrically conductively connected to the common cathode.
  • the synchronous ignition of the discharge channels is initiated by charge carriers which enter the cathode rear space from a pre-ionization region through holes in the bottom of the cage.
  • the anode and the cathode are each provided with a recess on the individual discharge paths, so that the mutually facing surfaces of the anode and the cathode do not run parallel in the discharge region.
  • the discharge gap is also formed between the central bores (WO-A-89/10646, FIG. 13).
  • the dielectric strength of the switch is at constant gas pressure essentially by the distance between the electrodes, the diameter of the openings in the electrodes and the material thickness of the electrodes and thus by the depth of the holes influenced.
  • the opening diameter proves to be particularly critical here, since on the one hand a high dielectric strength requires a small diameter, while on the other hand reliable triggering requires a predetermined minimum diameter.
  • the electrode material in the edge area of the openings is removed with an increasing number of switching operations. This erosion increases the opening diameter, for example at a switching number of 107, by about 50% and thus reduces the dielectric strength and increases the penetration into the cathode rear space, which can lead to increasing disturbances in the trigger system due to overvoltages.
  • the invention is based on the object of simplifying and improving the known embodiment of a hollow electrode switch:
  • the ignition device for the hollow electrode switch is to be simplified, the product pxd is significantly increased and the voltage dependence of the switching delay (so-called delay) and the scatter (so-called. jitter) can be reduced.
  • the object is achieved in a hollow electrode switch according to the preamble of claim 1 by the further characterizing features.
  • the discharge chamber which is formed between the electrodes, this discharge chamber being connected to the cavity of the hollow electrode through openings which are preferably arranged symmetrically to the axis of rotation of the hollow electrode switch.
  • the latter openings are outside the central area of the discharge chamber with the maximum Electrode distance d arranged in which the essential part of the discharge takes place.
  • the openings essentially serve to inject the charge carriers from the cavity of the control electrode.
  • the discharge burns largely between closed surface areas of the cathode and anode.
  • the reference electrode has a double one Function; it forms a cathode for the gas discharge on its side facing the discharge path and a cathode for the glow discharge on its side facing the hollow electrode.
  • This hollow electrode switch you get a low voltage dependency at the same pressure.
  • These openings can preferably be inclined with respect to the axis of rotation of the hollow electrode switch.
  • the angle of inclination can preferably be at least 15, in particular at least 30 °.
  • a particularly high switching voltage and a very low switching delay are obtained with a ratio of the maximum electrode distance d within the switching chamber to the distance a of the electrodes of at least 3: 1, preferably at least 5: 1, in particular at least 10: 1.
  • the ratio can under certain circumstances be only 2: 1.
  • the hollow electrode is provided as a control electrode which is electrically insulated from the electrodes of the discharge gap
  • at least one space charge preferably a glow discharge
  • the control electrode combines the function of the pre-ionization and at the same time the trigger electrode and a special blocking electrode is no longer required. This gives you a cold cathode low-pressure gas discharge switch with a high switching voltage and short switching delay as well as low scatter.
  • a hot cathode for example, can be provided to generate the space charge required to ignite the discharge gap be arranged between the reference electrode and the bottom of the control electrode.
  • the space charge can also be generated, for example, by microwave excitation or by an optical ignition device, in particular a laser beam.
  • a particularly advantageous embodiment of the hollow electrode switch consists in that the space charge required to ignite the discharge path is provided in the cavity of the control electrode by a glow discharge.
  • the control electrode can easily be connected directly to a trigger voltage source for a negative trigger voltage with sufficient energy.
  • the control electrode forms the anode and the reference electrode arranged opposite the opening of the control electrode forms the cathode for the glow discharge.
  • the hollow electrode can also be connected to an additional voltage source with a positive potential for pre-ionization.
  • This pre-ionization generates a low-current glow discharge within the control electrode, which does not yet lead to the ignition of the discharge gap.
  • This glow discharge increases the dielectric strength at the discharge gap and thus the stability of the switch.
  • the ignition of the discharge gap is then only generated by the superimposed negative trigger pulse with a steep rising edge and a short duration from the trigger electrode.
  • FIG. 1 schematically illustrates an exemplary embodiment of a hollow electrode switch according to the invention is.
  • Figure 2 shows an embodiment of the hollow electrode switch with a specially designed channel between the electrodes of the discharge gap.
  • FIGS. 3 to 7 each show an embodiment of the discharge chamber.
  • FIG. 8 shows an embodiment of the hollow electrode switch for particularly high switching voltage with a large number of electrodes
  • FIG. 9 shows an embodiment for high currents with a large number of discharge paths.
  • Particular embodiments of the control electrode are illustrated in FIGS. 10 and 11.
  • a hollow electrode switch according to FIG. 1 contains two electrodes, one of which is connected as a cathode 2 and the other as an anode 3.
  • the cathode 2 is provided with at least one opening, two of which are shown in the figure and are designated by 4 and 5. Through these two openings 4 and 5, a discharge path 9 is ignited in a discharge chamber 8, which is formed in the central discharge region between the cathode 2 and the anode 3 by at least one recess in the electrodes.
  • the surface of the cathode 2 facing the anode 3 is shaped such that a discharge chamber 8 is formed in the form of a double cone with base surfaces facing one another.
  • the cathode 2 and the anode 3, which generally each form a rotating body, are arranged in their surface area outside the switching chamber 8 at a distance a from one another, which can be, for example, about 2 to 5 mm.
  • a distance a from one another, which can be, for example, about 2 to 5 mm.
  • the discharge path 9 is ignited. The discharge thus burns between closed surface areas of the cathode 2 and the anode 3, so that erosion of the openings 4 and 5 which lie outside this central area is practically impossible.
  • This maximum electrode distance d within the switching chamber 8 is at least 3 mm, preferably at least 6 mm and in particular significantly more than 10 mm.
  • the cathode 2 and the anode 3 are made of electrically conductive material, preferably stainless steel, and in the area of the discharge chamber 8 can generally be provided with special inserts 6 or 7 made of a high-melting metal, for example an alloy containing tungsten W or molybdenum Mo, or even entirely consist of this melting metal.
  • the trigger device for the discharge gap 9 includes a control electrode 10 in the form of a hollow electrode, the bottom 11 and side wall 12 of which surround a cavity 13 and the opening of which faces the discharge gap 9 and which is electrically insulated from the cathode 2.
  • This control electrode 10 consists of an electrically conductive material, for example stainless steel, and has at least the shape of a shell, preferably the shape of a pot, the depth T of which is substantially greater than its diameter D.
  • the shape of the pot of the control electrode 10 is preferably chosen so that that the ratio of the depth T to the diameter D is about 1 to 5, in particular about 2.
  • the cavity 13 and the discharge chamber 8 contain a gas filling from an ionizable working gas, preferably hydrogen or deuterium or a mixture of these gases.
  • an ionizable working gas preferably hydrogen or deuterium or a mixture of these gases.
  • nitrogen or an inert gas such as argon or helium, are also suitable.
  • a gas storage 24 for the working gas which is only indicated schematically in the figure, is provided with a heating device, not shown in the figure, the electrical connections of which are led through the wall of the switch and are designated by 25 and 26.
  • the space surrounding the gas reservoir 24 is connected to the cavity 13 by pressure compensation openings 15 and 16 in the electrical connection for the control electrode 10.
  • the gas reservoir of the gas reservoir 24 can preferably be operated simultaneously serve as a pressure control system for the hollow electrode switch.
  • the control electrode 10 is assigned a trigger voltage source 17, which can be connected to the control electrode 10, for example, via a limiting resistor 18 and a decoupling capacitance 19.
  • the trigger voltage source 17 supplies a trigger pulse with a steep rising edge and a negative voltage of, for example, approximately 0.5 to 10 kV, preferably approximately 1 to 5 kV compared to the reference potential of the cathode 2, which can be, for example, ground potential and against which the control electrode 10 is electrically insulated .
  • the length of the trigger pulse is at least as long as the switching delay of the discharge path 9 and can be, for example, approximately 0.1 to 2 »s, preferably approximately 0.5 to 1» s.
  • the control electrode 10 can also be assigned an additional voltage source 21 for pre-ionization, the positive voltage of which, for example, can be approximately 0.1 to 5 kV compared to the reference potential of the cathode 2 and which has a high series resistor 22 of preferably a few MOhm can be connected to the control electrode 10.
  • This positive voltage of the voltage source 21 is selected such that it generates a low-current glow discharge in the current range from, for example, a few »A to a few mA within the control electrode 10, which does not yet lead to breakdown at the discharge path 9. This breakdown is only initiated with the trigger pulse of the trigger voltage source 17.
  • a hollow cylindrical insulator 30 is used, which can be made of glass or ceramic, for example, and whose inner wall is separated from the cathode 2 and the anode 3 by a hollow cylindrical slot 31 whose width S is smaller than the distance a between the cathode 2 and the anode 3 in the channel 14 outside the discharge chamber 8.
  • This slot width S can preferably be at most half the distance a.
  • the reference electrode referred to as cathode 2 forms the reference potential for the trigger voltage source 17 and the voltage source 21.
  • openings 4 and 5 in the cathode 2 are shown as bores. However, openings can also be provided which are designed as slots or elongated holes in a straight or annular shape.
  • this discharge chamber 8 can also be formed by at least one recess with a different shape, for example a shell shape, a spherical shape or a cylindrical shape, or a combination of these shapes.
  • a cathode 2 and an anode 3 are designed such that their mutually facing surfaces in a surface area B1 outside the discharge chamber 8 each form part of a hollow cone with the same opening angle ⁇ .
  • an annular channel is formed by annular disk-shaped surface parts of the electrodes.
  • the discharge chamber 8 is through openings 4 and 5, which can preferably be inclined with respect to the axis of rotation of the hollow electrode switch, connected to the cavity 13 of the control electrode 10. Due to the inclination of the openings 4 and 5, the inclination angle ⁇ of which can preferably be at least 15 °, the cavity 13 of the control electrode 10 is decoupled from the discharge path 9 in the discharge chamber 8.
  • the discharge chamber 8 is delimited by the hollow-conical cutout of the cathode 2 and a likewise hollow-conical recess in the anode 3.
  • the product pxd can be more than 600 Pa mm.
  • annular gas storage device 24 is provided, in the ring opening of which the electrical connection for the control electrode 10, which is not specified in any more detail, is indicated and the connection to the control voltage sources 17 and 21 is established.
  • a hollow-conical discharge chamber 8 is provided, which is formed by a corresponding recess in the cathode 2.
  • the discharge chamber 8 is connected to the cavity 13 of the control electrode 10 through conical openings 4 and 5.
  • This shape of the openings 4 and 5 improves the injection of charge carriers to the discharge path in the switching chamber 8.
  • the mutually facing surfaces of the cathode 2 and the anode 3 outside the discharge chamber 8 each form the jacket of a truncated cone with the same opening angle and are arranged at a distance a from one another in this surface area.
  • the distance d between the electrodes gives a discharge distance between the base of the hollow cone of the switching chamber 10 on the surface of the anode 3 and the preferably rounded tip of the cone on the cathode 2.
  • a hollow-conical switching chamber 8 can also be formed by a corresponding recess in the anode 3.
  • an approximately disk-shaped cathode 2 with correspondingly short openings 4 and 5 between the switching chamber 8 and the cavity 13 of the control electrode 10 is obtained in the region of the discharge chamber 8.
  • both the cathode 2 and the anode 3 are each provided with a recess in the area of the switching chamber 8.
  • the anode 3 contains a recess in the form of a spherical cap and the recess in the cathode 2 initially runs in a hollow cylindrical manner and then ends with an arched shape which can correspond, for example, to a spherical cap.
  • the discharge path 9 is connected to the cavity 13 of the control electrode 10, not shown, through conical openings 4 and 5.
  • a cathode 2 is provided in the form of a profile body with an approximately constant thickness, which forms the jacket of a hollow-conical discharge chamber 8, the conical tip of which projects into the cavity 13 of the control electrode 10.
  • a corresponding recess in the anode 3 in the region of the discharge chamber 8 runs essentially flat and forms the base of the hollow-conical discharge chamber 8.
  • the inclination of the openings 4 and 5 relative to the central axis of the hollow electrode switch which is not specified in any more detail, can be chosen to be approximately 90 ° and one receives a correspondingly good decoupling of the discharge path 9 from the cavity 13 of the control electrode 10.
  • a corresponding one is formed between the cathode 2 and the anode 3 by annular recesses with the profile of a cone annular discharge chamber 8 is formed.
  • the cathode 2 contains a profile body with a substantially uniform thickness and a depression in its surface part facing the cavity 13 of the control electrode 10. Through this recess, the cavity 13 is practically enlarged, so that in this embodiment a control electrode 10 is sufficient, the depth T of which is not substantially greater than its diameter D.
  • the openings 4 and 5 are arranged in the region with the same thickness of the cathode 2.
  • a hollow electrode switch which contains only a single cathode 2 and an anode 3.
  • a multi-electrode arrangement with intermediate electrodes 34 can also be provided, each of which is provided with a central opening, as is schematically indicated in FIG. 8.
  • a reduced field strength is obtained between the electrodes and, accordingly, a hollow electrode switch for particularly high switching voltage.
  • the hollow electrode switch can also contain a plurality of discharge chambers 8, each with a single discharge path 9, which are electrically connected in parallel with one another and are provided with a common control electrode which is electrically insulated from their reference electrode 2.
  • This common control electrode 10 is provided with means, not shown in the figure, for producing a space charge, in particular a glow discharge. This results in an increase in the current rise rate and a reduction in the switch inductance and the switch resistance and thus a high current carrying capacity and a long service life.
  • the individual discharge chambers 8 can be arranged linearly next to one another or also rotationally symmetrically to a central axis of the hollow electrode switch.
  • the bottom 11 of the control electrode 10 is provided with an extension 32, the free end of which faces the discharge path 8.
  • the extension 32 has the shape of a cylinder, in which the edge of the end is rounded. This extension 32 serves to influence the glow discharge, in particular the distribution of the space charge density, within the control electrode 10.
  • this extension 33 has the shape of a cone, the rounded tip of which faces the discharge gap 9.

Landscapes

  • Gas-Filled Discharge Tubes (AREA)
  • Lasers (AREA)

Description

  • Die Erfindung bezieht sich auf einen Hohlelektrodenschalter mit einer Anode und einer Kathode, die in einem Abstand a einander gegenüberstehen und eine Entladungsstrecke bilden. Der Entladungsstrecke ist eine Triggereinrichtung zugeordnet, die eine Hohlelektrode enthält. Die Entladungsstrecke ist in einer ionisierbaren Gasfüllung angeordnet; der Druck p des Gases und der Elektrodenabstand d an der Entladungsstrecke sind so gewählt, daß die Zündspannung der Gasentladung mit steigendem Druck pxd abnimmt.
  • Die Zündspannung für eine vorgegebene Gasentladungsstrecke und ihre übliche graphische Darstellung in Abhängigkeit vom Produkt aus Gasdruck p und Elektrodenabstand d in der Zündkennlinie bildet bekanntlich unter entsprechender Berücksichtigung der Zündwahrscheinlichkeit ein wichtiges Hilfsmittel zur Kennzeichnung von elektrischen Entladungsgeräten. Bei der Ermittlung der elektrischen Spannungsfestigkeit einer vorgegebenen Gasentladungsstrecke wird im allgemeinen der unendlich große Plattenkondensator und seine Zündkennlinie zum Vergleich herangezogen. Die praktische Ausführungsform solcher Entladungsstrecken hat jedoch Elektroden mit endlichen Abmessungen. Während es zur Ermittlung des rechten Astes der Zündkennlinie (Paschenkurve), d.h. also zur Untersuchung des sogenannten Weitdurchschlagsgebietes einschließlich des Spannungs-Minimums, genügt, lediglich zwei ebene, gegebenenfalls an den Rändern mit einem sogenannten Rogowski-Profil versehene abgerundete Platten parallel zueinander anzuordnen, ist eine derartige konstruktive Anordnung zur Untersuchung von Zündkennlinien im linken Teil der Paschenkurve, d.h. im sogenannten Nahdurchschlagsgebiet, unbrauchbar, weil dann Umwegentladungen auftreten können. Solche Umwegentladungen kann man durch eine Elektrodenkonstruktion mit ebenen Plattenelektroden vermeiden, die koaxial zueinander angeordnet und an ihren Rändern mit einem relativ zum Elektrodenabstand kleinen Krümmungsradius voneinander abgebogen und entlang der inneren zylindrischen Isolatoroberfläche geführt sind. Es wird somit zwischen dem abgebogenen, zylinderförmigen Randgebiet der Elektroden und der Innenwand des hohlzylindrischen Isolators stets ein Spalt gebildet. Mit dieser Ausführungsform einer Niederdruck-Gasentladungsstrecke kann auch im Nahdurchschlagsgebiet, d.h. links vom Minimum der Paschenkurve, die Zündkennlinie beispielsweise für verschiedene Edel- und Molekülgase ermittelt werden (Proc. VIIth Int. Conf. Phenom. in Ionited Gases, Beograd, Bd. I (1965), Seiten 316 bis 326).
  • Es sind auch Gasentladungsschalter bekannt, die durch eine gepulste Niederdruck-Gasentladung gesteuert werden. Sie schalten beispielsweise Ströme von 10 kA bei einer Spannung von 20 kV. Der Entladungsschalter enthält eine Anode und eine Kathode, die mit koaxialen Öffnungen versehen sind und am Rande durch einen ringförmigen Isolator voneinander getrennt sind. Für die Gasentladung ist eine Steuereinrichtung vorgesehen, die eine als Käfig gestaltete Hohlelektrode enthält, die mit der Kathode elektrisch leitend verbunden ist und somit auf dem Kathodenpotential liegt. Sie umschließt den Kathodenrückraum und trennt diesen vom Bereich einer Vorionisierung. Die Gasentladung zwischen der Kathode und der Anode wird durch Injektion von Ladungsträgern gezündet. Die Zündung der Entladungsstrecke erfolgt in zwei Stufen. Zunächst wird von einer Hilfselektrode eine Vorionisierung durch eine Glimmentladung außerhalb der Hohlelektrode erzeugt. Anschließend erhält eine Triggerelektrode einen negativen Zündimpuls und der Eintritt von Ladungsträgern in die Hohlelektrode wird dadurch ermöglicht, daß das Potential einer Blockierelektrode auf Null gesetzt wird. Mit dem Eintritt der Ladungsträger in die Hohlelektrode wird die Entladung eingeleitet. Dieser Gasentladungsschalter ist verhältnismäßig kompliziert (J. Phys. E: Sci. Instr. 19 (1986), The Inst. of Physics, Great Britain, Seiten 466 bis 470).
  • Eine weitere bekannte Ausführungsform eines Hohlelektrodenschalters, bei dem die Hohlelektrode mit der Kathode elektrisch leitend verbunden ist, enthält eine Kathode und eine Anode, die jeweils einer zentralen Bohrung versehen sind. Zwischen diesen Bohrungen wird eine Entladungsstrecke gebildet. Der Abstand der Elektroden, die im Entladungsbereich parallel zueinander angeordnet sind, ist größer als in dem in radialer Richtung außerhalb des Entladungsbereiches zwischen den Elektroden gebildeten Kanal (DE-A-37 21 529, Figur 3).
  • Der Gasentladungsschalter kann auch mehrere Entladungskanäle enthalten, die mit einer gemeinsamen Triggereinrichtung versehen sind. Diese Triggereinrichtung enthält eine gemeinsame Hohlelektrode, die mit der gemeinsamen Kathode elektrisch leitend verbunden ist. Die synchrone Zündung der Entladungskanäle wird eingeleitet durch Ladungsträger, die aus einem Vorionisierungsbereich durch Löcher im Boden des Käfigs in den Kathodenrückraum eintreten.
  • In dieser bekannten Ausführungsform sind die Anode und die Kathode an den einzelnen Entladungsstrecken jeweils mit einer Ausnehmung versehen, so daß die einander zugewandten Oberflächen der Anode und der Kathode im Entladungsbereich nicht parallel verlaufen. Die Entladungsstrecke wird auch in dieser Anordnung zwischen den zentralen Bohrungen gebildet (WO-A-89/10646, Figur 13).
  • Die Spannungsfestigkeit des Schalters wird bei konstantem Gasdruck im wesentlichen durch den Abstand der Elektroden, den Durchmesser der Öffnungen in den Elektroden und die Materialstärke der Elektroden und damit durch die Tiefe der Löcher beeinflußt. Als besonders kritisch erweist sich hierbei der Öffnungsdurchmesser, da einerseits eine hohe Spannungsfestigkeit einen geringen Durchmesser erfordert, während andererseits eine zuverlässige Triggerung einen vorbestimmten Mindestdurchmesser erfordert. Beim Schalten von hohen Strömen wird das Elektrodenmaterial im Randbereich der Öffnungen mit zunehmender Schaltzahl abgetragen. Diese Erosion vergrößert den Öffnungsdurchmesser beispielsweise bei einer Schaltzahl von 10⁷ um etwa 50 % und vermindert damit die Spannungsfestigkeit und erhöht den Durchgriff in den Kathodenrückraum, was zu wachsenden Störungen des Triggersystems durch Überspannungen führen kann.
  • Der Erfindung liegt nun die Aufgabe zugrunde, die bekannte Ausführungsform eines Hohlelektrodenschalters zu vereinfachen und zu verbessern: Insbesondere soll dabei die Zündeinrichtung für den Hohlelektrodenschalter vereinfacht, das Produkt pxd wesentlich erhöht und die Spannungsabhängigkeit der Schaltverzögerung (sog. delay) und der Streuung (sog. jitter) vermindert werden.
  • Die Aufgabe ist erfindungsgemäß bei einem Hohlelektrodenschalter gemäß dem Oberbegriff des Patentanspruches 1 durch die weiteren kennzeichnenden Merkmale gelöst.
  • Bei der Erfindung ist eine Entladungskammer vorhanden, die zwischen den Elektroden gebildet wird, wobei diese Entladungskammer mit dem Hohlraum der Hohlelektrode durch Öffnungen verbunden ist, die vorzugsweise symmetrisch zu der Rotationsachse des Hohlelektrodenschalters angeordnet sind. Letztere Öffnungen sind dabei außerhalb des zentralen Bereiches der Entladungskammer mit dem maximalen Elektrodenabstand d angeordnet, in dem der wesentliche Teil der Entladung stattfindet. Die Öffnungen dienen im wesentlichen zur Injektion der Ladungsträger vom Hohlraum der Steuerelektrode. Die Entladung brennt somit weitgehend zwischen geschlossenen Oberflächenbereichen der Kathode und Anode.
  • Die Bezugselektrode erhält in dieser Ausführungsform eine doppelte Funktion; sie bildet an ihrer der Entladungsstrecke zugewandten Seite eine Kathode für die Gasentladung und an ihrer der Hohlelektrode zugewandten Seite eine Kathode für die Glimmentladung. Mit diesem Hohlelektrodenschalter erhält man eine geringe Spannungsabhängigkeit bei gleichem Druck. Diese Öffnungen können vorzugsweise gegenüber der Rotationsachse des Hohlelektrodenschalters geneigt sein. Der Neigungswinkel kann vorzugsweise wenigstens 15, insbesondere wenigstens 30°, betragen.
  • Eine besonders hohe Schaltspannung und eine sehr geringe Schaltverzögerung erhält man mit einem Verhältnis des maximalen Elektrodenabstands d innerhalb der Schaltkammer zum Abstand a der Elektroden von wenigstens 3:1, vorzugsweise wenigstens 5:1, insbesondere wenigstens 10:1. In Verbindung mit gegenüber der Rotationsachse des Hohlelektrodenschalters geneigten Öffnungen in der Kathode kann das Verhältnis unter Umständen auch nur 2:1 betragen.
  • In einer besonders vorteilhaften weiteren Ausführungsform des Gasentladungsschalters, bei dem die Hohlelektrode als Steuerelektrode vorgesehen ist, die von den Elektroden der Entladungsstrecke elektrisch isoliert ist, wird im Hohlraum dieser Steuerelektrode wenigstens eine Raumladung, vorzugsweise eine Glimmentladung, erzeugt. In dieser Ausführungsform eines Gasentladungsschalters mit einer Kaltkathoden-Niederdruckgasentladung vereinigt die Steuerelektrode die Funktion der Vorionisierungs- und zugleich der Triggerelektrode und eine besondere Blockierelektrode ist nicht mehr erforderlich. Damit erhält man einen Kaltkathoden-Niederdruckgasentladungsschalter mit hoher Schaltspannung und kurzer Schaltverzögerung sowie geringer Streuung.
  • Zum Erzeugen der zur Zündung der Entladungsstrecke erforderlichen Raumladung kann beispielsweise eine Glühkathode vorgesehen sein, die zwischen der Bezugselektrode und dem Boden der Steuerelektrode angeordnet ist. Ferner kann die Raumladung beispielsweise auch durch Mikrowellenanregung oder durch eine optische Zündeinrichtung, insbesondere einen Laserstrahl, erzeugt werden.
  • Eine besonders vorteilhafte Ausführungsform des Hohlelektrodenschalters besteht darin, daß die zum Zünden der Entladungsstrecke erforderliche Raumladung im Hohlraum der Steuerelektrode durch eine Glimmentladung bereitgestellt wird. Zu diesem Zweck kann die Steuerelektrode in einfacher Weise direkt an eine Triggerspannungsquelle für eine negative Triggerspannung mit ausreichender Energie angeschlossen sein. Die Steuerelektrode bildet die Anode und die gegenüber der Öffnung der Steuerelektrode angeordnete Bezugselektrode bildet die Kathode für die Glimmentladung.
  • In einer weiteren Ausführungsform kann die Hohlelektrode noch an eine zusätzliche Spannungsquelle mit einem positiven Potential für eine Vorionisierung angeschlossen sein. Diese Vorionisierung erzeugt innerhalb der Steuerelektrode eine stromschwache Glimmentladung, die noch nicht zum Zünden der Entladungsstrecke führt. Durch diese Glimmentladung wird die Spannungsfestigkeit an der Entladungsstrecke und damit die Stabilität des Schalters erhöht. Die Zündung der Entladungsstrecke wird dann erst durch einen überlagerten negativen Triggerimpuls mit steiler Anstiegsflanke und kurzer Dauer von der Triggerelektrode erzeugt.
  • Weitere besonders vorteilhafte Ausführungsformen des Hohlelektrodenschalters ergeben sich aus den Unteransprüchen.
  • Zur weiteren Erläuterung der Erfindung wird auf die Zeichnung Bezug genommen, in deren Figur 1 ein Ausführungsbeispiel eines Hohlelektrodenschalters gemäß der Erfindung schematisch veranschaulicht ist. Figur 2 zeigt eine Ausführungsform des Hohlelektrodenschalters mit einem in besonderer Weise gestalteten Kanal zwischen den Elektroden der Entladungsstrecke. In den Figuren 3 bis 7 ist jeweils eine Ausführungsform der Entladungskammer dargestellt. Figur 8 zeigt eine Ausführungsform des Hohlelektrodenschalters für besonders hohe Schaltspannung mit einer Vielzahl von Elektroden und in Figur 9 ist eine Ausführungsform für hohe Ströme mit einer Vielzahl von Entladungsstrecken dargestellt. Besondere Ausführungsformen der Steuerelektrode sind in den Figuren 10 und 11 veranschaulicht.
  • Ein Hohlelektrodenschalter gemäß Figur 1 enthält zwei Elektroden, von denen eine als Kathode 2 und die andere als Anode 3 geschaltet sind. Die Kathode 2 ist mit mindestens einer Öffnung versehen, von denen in der Figur zwei dargestellt und mit 4 und 5 bezeichnet sind. Durch diese beiden Öffnungen 4 und 5 wird eine Entladungsstrecke 9 in einer Entladungskammer 8 gezündet, die im zentralen Entladungsbereich zwischen der Kathode 2 und der Anode 3 durch wenigstens eine Ausnehmung der Elektroden gebildet wird. Die der Anode 3 zugewandte Oberfläche der Kathode 2 ist so geformt, daß eine Entladungskammer 8 in der Form eines Doppelkegels mit einander zugewandten Grundflächen entsteht. Die Kathode 2 und die Anode 3, die im allgemeinen jeweils einen Rotationskörper bilden, sind in ihrem Oberflächenbereich außerhalb der Schaltkammer 8 in einem Abstand a zueinander angeordnet, der beispielsweise etwa 2 bis 5 mm betragen kann. Im Bereich der maximalen Höhe d der Kathode 2 und der Anode 3 innerhalb der Entladungskammer 8 wird die Entladungsstrecke 9 gezündet. Die Entladung brennt somit zwischen geschlossenen Oberflächenbereichen der Kathode 2 und der Anode 3, so daß eine Erosion der Öffnungen 4 und 5, die außerhalb dieses zentralen Raumbereiches liegen, praktisch ausgeschlossen ist. Dieser maximale Elektrodenabstand d innerhalb der Schaltkammer 8 beträgt wenigstens 3 mm, vorzugsweise mindestens 6 mm und insbesondere wesentlich mehr als 10 mm. Die Kathode 2 und die Anode 3 bestehen aus elektrisch leitendem Material, vorzugsweise Edelstahl, und können im Bereich der Entladungskammer 8 im allgemeinen noch mit besonderen Einsätzen 6 bzw. 7 aus einem hochschmelzenden Metall, beispielsweise eine Wolfram W oder Molybdän Mo enthaltende Legierung, versehen sein oder auch ganz aus diesem hochschmelzenden Metall bestehen.
  • In einer besonders vorteilhaften Ausführungsform gehört zur Triggereinrichtung für die Entladungsstrecke 9 eine Steuerelektrode 10 in der Form einer Hohlelektrode, deren Boden 11 und Seitenwand 12 einen Hohlraum 13 umgeben und deren Öffnung der Entladungsstrecke 9 zugewandt ist und die von der Kathode 2 elektrisch isoliert ist. Diese Steuerelektrode 10 besteht aus einem elektrisch leitenden Material, beispielsweise Edelstahl, und hat wenigstens die Form einer Schale, vorzugsweise die Form eines Topfes, dessen Tiefe T wesentlich größer ist als ihr Durchmesser D. Die Form des Topfes der Steuerelektrode 10 wird vorzugsweise so gewählt, daß das Verhältnis der Tiefe T zum Durchmesser D etwa 1 bis 5, insbesondere etwa 2, beträgt.
  • Der Hohlraum 13 und die Entladungskammer 8 enthalten eine Gasfüllung aus einem ionisierbaren Arbeitsgas, vorzugsweise Wasserstoff oder Deuterium oder auch eine Mischung dieser Gase. Ferner geeignet ist bekanntlich Stickstoff oder ein Edelgas, wie beispielsweise Argon oder Helium. Ein in der Figur lediglich schematisch angedeuteter Gasspeicher 24 für das Arbeitsgas ist mit einer in der Figur nicht näher dargestellten Heizeinrichtung versehen, deren elektrische Anschlüsse durch die Wand des Schalters hindurchgeführt und mit 25 und 26 bezeichnet sind. Der den Gasspeicher 24 umgebende Raum ist durch Druckausgleichsöffnungen 15 und 16 in dem elektrischen Anschluß für die Steuerelektrode 10 mit dem Hohlraum 13 verbunden.
  • In einer besonderen Ausführungsform des Hohlelektrodenschalters kann das Gasreservoir des Gasspeichers 24 vorzugsweise zugleich als Druckregelungssystem für den Hohlelektrodenschalter dienen.
  • Der Steuerelektrode 10 ist eine Triggerspannungsquelle 17 zugeordnet, die beispielsweise über einen Begrenzungswiderstand 18 und eine Entkopplungskapazität 19 an die Steuerelektrode 10 angeschlossen sein kann. Die Triggerspannungsquelle 17 liefert einen Triggerimpuls mit steiler Anstiegsflanke und einer negativen Spannung von beispielsweise etwa 0,5 bis 10 kV, vorzugsweise etwa 1 bis 5 kV gegenüber dem Bezugspotential der Kathode 2, das beispielsweise Erdpotential sein kann und gegen das die Steuerelektrode 10 elektrisch isoliert ist. Die Länge des Triggerimpulses ist wenigstens so groß wie die Schaltverzögerung der Entladungsstrecke 9 und kann beispielsweise etwa 0,1 bis 2 »s, vorzugsweise etwa 0,5 bis 1 »s, betragen.
  • In einer besonderen Ausführungsform des Hohlelektrodenschalters gemäß der Erfindung kann der Steuerelektrode 10 noch eine zusätzliche Spannungsquelle 21 für eine Vorionisierung zugeordnet sein, deren positive Spannung gegenüber dem Bezugspotential der Kathode 2 beispielsweise etwa 0,1 bis 5 kV betragen kann und die über einen hohen Vorwiderstand 22 von vorzugsweise einigen MOhm an die Steuerelektrode 10 angeschlossen sein kann. Diese positive Spannung der Spannungsquelle 21 wird so gewählt, daß sie innerhalb der Steuerelektrode 10 eine stromschwache Glimmentladung im Strombereich von beispielsweise einigen »A bis zu wenigen mA erzeugt, die noch nicht zum Durchschlag an der Entladungsstrecke 9 führt. Dieser Durchschlag wird erst mit dem Triggerimpuls der Triggerspannungsquelle 17 eingeleitet. Zur elektrischen Isolation zwischen der Kathode 2 und der Anode 3 sowie als Seitenwand des Schaltergehäuses dient ein hohlzylindrischer Isolator 30, der beispielsweise aus Glas oder auch aus Keramik bestehen kann und dessen Innenwand von der Kathode 2 und der Anode 3 durch einen hohlzylinderförmigen Schlitz 31 getrennt ist, dessen Breite S kleiner ist als der Abstand a zwischen der Kathode 2 und der Anode 3 im Kanal 14 außerhalb der Entladungskammer 8. Diese Schlitzbreite S kann vorzugsweise höchstens die Hälfte des Abstands a betragen. In dieser Ausführungsform des Hohlelektrodenschalters mit einer Schaltspannung von beispielsweise U₀ = 30 kV und einem Elektrodenabstand a = 3,5 im Kanal 14 sowie einem maximalen Elektrodenabstand d = 10,5 mm an der Entladungsstrecke 9 innerhalb der Schaltkammer 8 und mit Wasserstoff als Arbeitsgas, dessen Druck beispielsweise p = 28,5 Pa betragen soll, erhält man ein Produkt pxd = 300 Pa mm.
  • Unabhängig von der Polarität der Schaltspannung U₀ bildet die als Kathode 2 bezeichnete Bezugselektrode das Bezugspotential für die Triggerspannungsquelle 17 und die Spannungsquelle 21.
  • Die Öffnungen 4 und 5 in der Kathode 2 sind als Bohrungen dargestellt. Es können jedoch auch Öffnungen vorgesehen sein, die als Schlitze oder Langlöcher in gerader oder ringförmiger Form ausgebildet sind.
  • In Figur 1 ist eine Entladungskammer 8 in der Form eines Doppelkegels dargestellt. Diese Entladungskammer 8 kann jedoch auch durch wenigstens eine Ausnehmung mit anderer Form, beispielsweise durch eine Schalenform, Kugelform oder Zylinderform oder aus einer Kombination dieser Formen gebildet werden.
  • In der Ausführungsform eines Hohlelektrodenschalters gemäß Figur 2 sind eine Kathode 2 und eine Anode 3 derart gestaltet, daß ihre einander zugewandten Oberflächen in einem Oberflächenbereich B₁ außerhalb der Entladungskammer 8 jeweils einen Teil eines Hohlkegels mit dem gleichen Öffnungswinkel β bilden. In einem äußeren Oberflächenbereich B₂ in der Nähe des Schlitzes 31 wird durch ringscheibenförmige Oberflächenteile der Elektroden ein ringförmiger Kanal gebildet. Die Entladungskammer 8 ist durch Öffnungen 4 und 5, die gegenüber der Rotationsachse des Hohlelektrodenschalters vorzugsweise geneigt sein können, mit dem Hohlraum 13 der Steuerelektrode 10 verbunden. Durch die Neigung der Öffnungen 4 und 5, deren Neigungswinkel α vorzugsweise wenigstens 15° betragen kann, wird der Hohlraum 13 der Steuerelektrode 10 von der Entladungsstrecke 9 in der Entladungskammer 8 entkoppelt. Die Entladungskammer 8 wird begrenzt durch den hohlkegeligen Ausschnitt der Kathode 2 und eine ebenfalls hohlkegelige Ausnehmung der Anode 3. In Verbindung mit einem maximalen Abstand d innerhalb der Entladungskammer 8 von wenigstens 20 mm kann das Produkt pxd mehr als 600 Pa mm betragen.
  • In der Ausführungsform gemäß Figur 2 ist ein ringförmiger Gasspeicher 24 vorgesehen, in dessen Ringöffnung der nicht näher bezeichnete elektrische Anschluß für die Steuerelektrode 10 angedeutet ist und die Verbindung mit den Steuerspannungsquellen 17 und 21 hergestellt ist.
  • In Figur 3 sind lediglich die Kathode 2 mit ihren Öffnungen 4 und 5 und die Anode 3 sowie ein Teil der Steuerelektrode 10 und der Isolator 30 schematisch angedeutet. In dieser Ausführungsform ist eine hohlkegelförmige Entladungskammer 8 vorgesehen, die durch eine entsprechende Ausnehmung in der Kathode 2 gebildet wird. Die Entladungskammer 8 ist durch konische Öffnungen 4 und 5 mit dem Hohlraum 13 der Steuerelektrode 10 verbunden. Durch diese Form der Öffnungen 4 und 5 wird die Injektion von Ladungsträgern zur Entladungsstrecke in der Schaltkammer 8 verbessert. Die einander zugewandten Oberflächen der Kathode 2 und der Anode 3 außerhalb der Entladungskammer 8 bilden jeweils den Mantel eines Kegelstumpfs mit dem gleichen Öffnungswinkel und sind in diesem Oberflächenbereich im Abstand a voneinander angeordnet. In dieser Ausführungsform der kegelförmigen Entladungskammer 8 erhält man mit dem Elektrodenabstand d eine Entladungsstrecke zwischen der Grundfläche des Hohlkegels der Schaltkammer 10 an der Oberfläche der Anode 3 und der vorzugsweise abgerundeten Spitze des Kegels an der Kathode 2.
  • Es kann gemäß Figur 4 jedoch auch eine hohlkegelförmige Schaltkammer 8 durch eine entsprechende Ausnehmung in der Anode 3 gebildet werden. In dieser Ausführungsform erhält man im Bereich der Entladungskammer 8 eine etwa scheibenförmige Kathode 2 mit entsprechend kurzen Öffnungen 4 und 5 zwischen der Schaltkammer 8 und dem Hohlraum 13 der Steuerelektrode 10.
  • In der Ausführungsform der Schaltkammer 8 gemäß Figur 5 sind sowohl die Kathode 2 als auch die Anode 3 im Bereich der Schaltkammer 8 jeweils mit einer Ausnehmung versehen. Die Anode 3 enthält eine Ausnehmung in der Form einer Kugelkalotte und die Ausnehmung in der Kathode 2 verläuft zunächst hohlzylindrisch und endet dann mit einer gewölbten Form, die beispielsweise einer Kugelkalotte entsprechen kann. in dieser Ausführungsform der Entladungskammer 8 ist die Entladungsstrecke 9 durch konische Öffnungen 4 und 5 mit dem nicht dargestellten Hohlraum 13 der Steuerelektrode 10 verbunden.
  • In der Ausführungsform des Hohlelektrodenschalters gemäß Figur 6 ist eine Kathode 2 in der Form eines Profilkörpers mit etwa gleichbleibender Dicke vorgesehen, welcher den Mantel einer hohlkegelförmigen Entladungskammer 8 bildet, deren Kegelspitze in den Hohlraum 13 der Steuerelektrode 10 hineinragt. Eine entsprechende Ausnehmung der Anode 3 im Bereich der Entladungskammer 8 verläuft im wesentlichen flach und bildet die Grundfläche der hohlkegelförmigen Entladungskammer 8. In dieser Ausführungsform kann die Neigung der Öffnungen 4 und 5 gegenüber der nicht näher bezeichneten Mittelachse des Hohlelektrodenschalters etwa 90° gewählt werden und man erhält eine entsprechend gute Entkopplung der Entladungsstrecke 9 vom Hohlraum 13 der Steuerelektrode 10.
  • In der Ausführungsform eines Hohlelektrodenschalters gemäß Figur 7 wird zwischen der Kathode 2 und der Anode 3 durch ringförmige Ausnehmungen mit dem Profil eines Kegels eine entsprechend ringförmige Entladungskammer 8 gebildet. Die Kathode 2 enthält im Bereich der Entladungskammer 8 einen Profilkörper mit im wesentlichen gleichmäßiger Dicke und einer Vertiefung in ihrem dem Hohlraum 13 der Steuerelektrode 10 zugewandten Oberflächenteil. Durch diese Vertiefung wird der Hohlraum 13 praktisch vergrößert, so daß in dieser Ausführungsform eine Steuerelektrode 10 ausreichend ist, deren Tiefe T nicht wesentlich größer ist als ihr Durchmesser D. Die Öffnungen 4 und 5 sind in dem Bereich mit gleichbleibender Dicke der Kathode 2 angeordnet.
  • Im Ausführungsbeispiel gemäß den Figuren 1 und 2 ist ein Hohlelektrodenschalter dargestellt, der nur eine einzige Kathode 2 und eine Anode 3 enthält. Es kann jedoch auch eine Vielelektrodenanordnung mit Zwischenelektroden 34 vorgesehen sein, die jeweils mit einer zentralen Öffnung versehen sind, wie es in Figur 8 schematisch angedeutet ist. Mit dieser Ausführungsform erhält man eine verminderte Feldstärke zwischen den Elektroden und dementsprechend einen Hohlelektrodenschalter für besonders hohe Schaltspannung.
  • In einer weiteren Ausführungsform gemäß Figur 9 kann der Hohlelektrodenschalter auch eine Vielzahl von Entladungskammern 8 mit jeweils einer Einzelentladungsstrecke 9 enthalten, die elektrisch einander parallelgeschaltet sind und mit einer gemeinsamen Steuerelektrode versehen sind, die von ihrer Bezugselektrode 2 elektrisch isoliert ist. Diese gemeinsame Steuerelektrode 10 ist mit in der Figur nicht dargestellten Mitteln zur Herstellung einer Raumladung, insbesondere einer Glimmentladung, versehen. Damit erhält man eine Erhöhung der Stromanstiegsrate und eine Verminderung der Schalterinduktivität und des Schalterwiderstandes und somit eine hohe Strombelastbarkeit sowie eine hohe Lebensdauer. Die einzelnen Entladungskammern 8 können linear nebeneinander oder auch rotationssymmetrisch zu einer Mittelachse des Hohlelektrodenschalters angeordnet sein.
  • In der Ausführungsform einer Steuerelektrode 10 gemäß Figur 10 ist der Boden 11 der Steuerelektrode 10 mit einem Fortsatz 32 versehen, dessen freies Ende der Entladungsstrecke 8 zugewandt ist. Der Fortsatz 32 hat die Form eines Zylinders, bei dem die Kante des Endes abgerundet ist. Dieser Fortsatz 32 dient zur Beeinflussung der Glimmentladung, insbesondere der Verteilung der Raumladungsdichte, innerhalb der Steuerelektrode 10.
  • Gemäß Figur 11 hat dieser Fortsatz 33 die Form eines Kegels, dessen abgerundete Spitze der Entladungsstrecke 9 zugewandt ist.

Claims (33)

  1. Hohlelektrodenschalter mit folgenden Merkmalen:
    a) Es sind wenigstens zwei Elektroden mit einer Anode (3) und einer Kathode (2) vorgesehen, die an Hochspannung angeschlossen sind und die außerhalb eines Entladungsbereiches im Abstand a einander gegenüberstehen und eine Entladungsstrecke mit der Länge d für eine Niederdruckgasentladung bilden,
    b) der Entladungsstrecke ist eine Triggereinrichtung zugeordnet, die eine Hohlelektrode (10) enthält,
    c) die Entladungsstrecke befindet sich in einer ionisierbaren Gasfüllung, deren Druck p so gewählt ist, daß die Zündspannung der Gasentladung mit steigendem Produkt pxd abnimmt,
    gekennzeichnet durch folgende Merkmale:
    d) die Entladungsstrecke (9) befindet sich im wesentlichen im zentralen Bereich einer Entladungskammer (8) zwischen der Kathode (2) und der Anode (3),
    e) diese Entladungskammer (8) hat im zentralen Bereich mit abgeschlossener innerer Oberfläche ihre maximale innere Höhe, welche die Länge d der maximalen Entladungsstrecke (9) bestimmt und in radialer Richtung abnimmt,
    f) außerhalb des zentralen Bereiches der Entladungskammer (8) ist die Kathode (2) mit wenigstens einer Öffnung (4, 5) versehen.
  2. Hohlelektrodenschalter nach Anspruch 1, dadurch gekennzeichnet, daß der Druck p und der Abstand d so gewählt sind, daß das Produkt pxd mindestens 150 Pa mm beträgt.
  3. Hohlelektrodenschalter nach Anspruch 2, dadurch gekennzeichnet, daß das Produkt mindestens 300 Pa·mm beträgt.
  4. Hohlelektrodenschalter nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Öffnungen (4, 5) in der Kathode (2) gegenüber der Rotationsachse des Hohlelektrodenschalters in einem Winkel α geneigt sind.
  5. Hohlelektrodenschalter nach Anspruch 4, dadurch gekennzeichnet, daß der Winkel wenigstens 15°, insbesondere wenigstens 30°, beträgt.
  6. Hohlelektrodenschalter nach Anspruch 4 oder Anspruch 5, dadurch gekennzeichnet, daß in Verbindung mit geneigten Öffnungen (4, 5) das Verhältnis der maximalen inneren Höhe d der Entladungskammer (8) zum Abstand a der Kathode (2) und der Anode (3) außerhalb der Entladungskammer (8) mindestens 2 beträgt.
  7. Hohlelektrodenschalter nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß das Verhältnis der maximalen Höhe d der Entladungskammer (8) zum Abstand a der Kathode (2) und der Anode (3) außerhalb der Entladungskammer mindestens 3, vorzugsweise mindestens 5, insbesondere mindestens 10, beträgt.
  8. Hohlelektrodenschalter nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß die einander zugewandten Oberflächen der Kathode (2) und der Anode (3) außerhalb der Entladungskammer (8) in einem Oberflächenbereich B₁ jeweils die Mantelfläche eines Kegelstumpfs mit dem gleichen Öffnungswinkel β und in einem weiteren Bereich B₂ jeweils eine Ringfläche bilden, die im Abstand a einander gegenüberliegen.
  9. Hohlelektrodenschalter nach einem der Ansprüche 1 bis 8, gekennzeichnet durch eine Form der Entladungskammer (8) mit einem Hohlkegel als Querschnitt.
  10. Hohlelektrodenschalter nach einem der Ansprüche 1 bis 8, gekennzeichnet durch einen doppelten Hohlkegel mit einander zugewandten Grundflächen als Querschnitt.
  11. Hohlelektrodenschalter nach einem der Ansprüche 1 bis 8, gekennzeichnet durch eine Entladungskammer (8) mit der Form einer Kugelkalotte.
  12. Hohlelektrodenschalter nach einem der Ansprüche 1 bis 8, gekennzeichnet durch eine Form der Entladungskammer (8) als doppelte Kugelkalotte mit einander zugewandten Grundflächen.
  13. Hohlelektrodenschalter nach einem der Ansprüche 1 bis 8, gekennzeichnet durch eine Form der Entladungskammer (8) als Hohlzylinder mit gewölbter Grund- und Deckfläche.
  14. Hohlelektrodenschalter nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, daß Öffnungen (4, 5) vorgesehen sind, deren Durchmesser in Richtung zum Hohlraum (13) zunimmt.
  15. Hohlelektrodenschalter nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, daß die Öffnungen als Schlitze oder Langlöcher ausgebildet sind.
  16. Hohlelektrodenschalter nach Anspruch 15, dadurch gekennzeichnet, daß die Schlitze ringförmig um den zentralen Bereich der Entladungskammer (8) ausgebildet sind.
  17. Hohlelektrodenschalter nach einem der Ansprüche 1 bis 16, dadurch gekennzeichnet, daß die Hohlelektrode als Steuerelektrode (10) für die Gasentladung vorgesehen und von den Elektroden der Gasentladungsstrecke (9) elektrisch isoliert ist und daß Mittel vorgesehen sind zum Erzeugen einer Raumladung innerhalb der Steuerelektrode (10).
  18. Hohlelektrodenschalter nach Anspruch 17, dadurch gekennzeichnet, daß die Steuerelektrode (10) als Anode für eine Glimmentladung in ihrem Hohlraum (13) vorgesehen ist.
  19. Hohlelektrodenschalter nach Anspruch 18, dadurch gekennzeichnet, daß die Steuerelektrode (10) mit einer Triggerspannungsquelle (17) für einen negativen Steuerimpuls elektrisch leitend verbunden ist.
  20. Hohlelektrodenschalter nach Anspruch 19, dadurch gekennzeichnet, daß die Steuerelektrode (10) über einen Entkopplungswiderstand (18) und eine Entkopplungskapazität (19) an die Triggerspannungsquelle (17) angeschlossen ist.
  21. Hohlelektrodenschalter nach Anspruch 19, dadurch gekennzeichnet, daß die Steuerelektrode (10) an einen Triggertransformator angeschlossen ist.
  22. Hohlelektrodenschalter nach Anspruch 18, dadurch gekennzeichnet, daß zusätzliche Mittel vorgesehen sind zum Erzeugung einer Vorionisierung innerhalb der Steuerelektrode (10).
  23. Hohlelektrodenschalter nach Anspruch 22, dadurch gekennzeichnet, daß die Steuerelektrode (10) über einen Entkopplungswiderstand (22) an eine Spannungsquelle (21) für eine positive Gleichspannung angeschlossen ist.
  24. Hohlelektrodenschalter nach Anspruch 12, gekennzeichnet durch eine Topfform der Steuerelektrode (10).
  25. Hohlelektrodenschalter nach Anspruch 24, dadurch gekennzeichnet, daß das Verhältnis der Topftiefe T zum Durchmesser D der Steuerelektrode (10) im Bereich 1 bis 5 gewählt ist.
  26. Hohlelektrodenschalter nach Anspruch 25, dadurch gekennzeichnet, daß das Verhältnis der Topftiefe T zum Durchmesser D etwa 2 beträgt.
  27. Hohlelektrodenschalter nach einem der Ansprüche 17 bis 24, gekennzeichnet durch eine Form der Entladungskammer (8) als Hohlkegel oder doppelter Hohlkegel und eine Kathode (2) mit im Bereich der Entladungskammer (8) etwa gleicher Dicke und einer Anordnung derart, daß sie in die Öffnung der Steuerelektrode (10) hineinragt.
  28. Hohlelektrodenschalter nach einem der Ansprüche 17 bis 26, gekennzeichnet durch eine als Hohlring gestaltete Entladungskammer (8) und eine Form der Kathode (2) mit im Bereich der Entladungskammer (8) etwa gleichbleibender Dicke als Abdeckung der Entladungskammer (8) und eine Anordnung der Kathode (2) derart, daß ihre im zentralen Bereich der Abdeckung gebildete Vertiefung die Tiefe T des Hohlraumes (13) der Steuerelektrode (10) vergrößert.
  29. Hohlelektrodenschalter nach einem der Ansprüche 1 bis 28, gekennzeichnet durch eine Vielelektrodenanordnung mit Zwischenelektroden (34) und einem gemeinsamen Entladungskanal, für den die Steuerelektrode (10) vorgesehen ist.
  30. Hohlelektrodenschalter nach einem der Ansprüche 1 bis 28, gekennzeichnet durch eine Vielzahl von Einzelentladungsstrecken, die elektrisch einander parallelgeschaltet sind und mit einer gemeinsamen Steuerelektrode (10) versehen sind, die von ihrer Bezugselektrode elektrisch isoliert ist (Figur 9).
  31. Hohlelektrodenschalter nach Anspruch 17, dadurch gekennzeichnet, daß der Boden (11) der Steuerelektrode (10) mit einem Fortsatz (32) versehen ist.
  32. Hohlelektrodenschalter nach Anspruch 31, gekennzeichnet durch eine Zylinderform des Fortsatzes (32), dessen der Entladungskammer (8) zugewandtes Ende mit einer abgerundeten Kante versehen ist.
  33. Hohlelektrodenschalter nach Anspruch 32, gekennzeichnet durch eine Kegelform des Fortsatzes (33), dessen abgerundete Spitze der Entladungskammer (8) zugewandt ist.
EP90116902A 1990-09-03 1990-09-03 Hohlelektrodenschalter Expired - Lifetime EP0473814B1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE59009153T DE59009153D1 (de) 1990-09-03 1990-09-03 Hohlelektrodenschalter.
EP90116902A EP0473814B1 (de) 1990-09-03 1990-09-03 Hohlelektrodenschalter
JP3244597A JPH076851A (ja) 1990-09-03 1991-08-28 中空電極スイッチ
US07/752,843 US5146141A (en) 1990-09-03 1991-08-30 Hollow-electrode switch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP90116902A EP0473814B1 (de) 1990-09-03 1990-09-03 Hohlelektrodenschalter

Publications (2)

Publication Number Publication Date
EP0473814A1 EP0473814A1 (de) 1992-03-11
EP0473814B1 true EP0473814B1 (de) 1995-05-24

Family

ID=8204424

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90116902A Expired - Lifetime EP0473814B1 (de) 1990-09-03 1990-09-03 Hohlelektrodenschalter

Country Status (4)

Country Link
US (1) US5146141A (de)
EP (1) EP0473814B1 (de)
JP (1) JPH076851A (de)
DE (1) DE59009153D1 (de)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4214331C2 (de) * 1992-04-30 1995-07-06 Siemens Ag Gasentladungsschalter und Verfahren zu dessen Fertigung
DE4214359A1 (de) * 1992-04-30 1993-11-04 Siemens Ag Gasentladungsschalter
WO1994003949A1 (de) * 1992-08-06 1994-02-17 Siemens Aktiengesellschaft Elektrodenanordnung für gasentladungsschalter und werkstoff zur verwendung bei dieser elektrodenanordnung
US5336975A (en) * 1992-10-20 1994-08-09 Hughes Aircraft Company Crossed-field plasma switch with high current density axially corrogated cathode
US6104022A (en) * 1996-07-09 2000-08-15 Tetra Corporation Linear aperture pseudospark switch
DE10118210B4 (de) * 2001-04-11 2012-02-23 Dehn + Söhne Gmbh + Co. Kg Gekapselter Überspannungsableiter mit einer Funkenstreckenanordnung
US8789772B2 (en) 2004-08-20 2014-07-29 Sdg, Llc Virtual electrode mineral particle disintegrator
US7825595B2 (en) * 2005-06-02 2010-11-02 Viktor Dmitrievich Bochkov Controllable gas-discharge device
US8258632B1 (en) * 2005-10-24 2012-09-04 Lawrence Livermore National Security, Llc Optically-initiated silicon carbide high voltage switch with contoured-profile electrode interfaces
US10060195B2 (en) 2006-06-29 2018-08-28 Sdg Llc Repetitive pulsed electric discharge apparatuses and methods of use
US10407995B2 (en) 2012-07-05 2019-09-10 Sdg Llc Repetitive pulsed electric discharge drills including downhole formation evaluation
US9294085B1 (en) * 2013-01-14 2016-03-22 Sandia Corporation High-voltage, low-inductance gas switch
BR112016006434B1 (pt) 2013-09-23 2022-02-15 Sdg, Llc Método para fornecer um pulso de alta tensão a uma broca de perfuração eletrotrituradora ou eletrohidráulica, e, equipamento para chavear potência para uso em perfuração eletrotrituradora ou eletro-hidráulica
DE102014015610B4 (de) * 2014-10-23 2017-02-23 Phoenix Contact Gmbh & Co. Kg Überspannungsableiter
CN104966712B (zh) * 2015-06-05 2017-12-15 上海交通大学 一种固态绝缘介质脉冲功率开关及其制备方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2122932A (en) * 1934-03-23 1938-07-05 Ora S Duffendack Gaseous discharge tube
ZA753564B (en) * 1975-06-03 1977-01-26 South African Inventions A high voltage electric switch
US4280098A (en) * 1979-05-25 1981-07-21 Veradyne Corp. Coaxial spark gap switch
US4320321A (en) * 1980-03-25 1982-03-16 Alexandrov Vitaly V Hollow-cathode gas-discharge tube
US4481630A (en) * 1981-12-03 1984-11-06 Photochemical Research Associates Inc. Spark gap switch
EP0259045A3 (de) * 1986-08-30 1989-10-25 English Electric Valve Company Limited Gasentladungsvorrichtungen
DE3721529A1 (de) * 1987-06-30 1989-01-12 Christiansen Jens Triggerung und isolation von pseudofunkenschaltern
ATE108946T1 (de) * 1988-04-11 1994-08-15 Siemens Ag Gasentladungschalter.
JPH03504063A (ja) * 1988-04-26 1991-09-05 シーメンス、アクチエンゲゼルシヤフト マルチチヤネル‐擬似火花スイツチを有するガスレーザー用励起回路および励起回路の用途
JP2564390B2 (ja) * 1989-03-10 1996-12-18 株式会社日立製作所 真空スイツチ
US5055748A (en) * 1990-05-30 1991-10-08 Integrated Applied Physics Inc. Trigger for pseudospark thyratron switch

Also Published As

Publication number Publication date
DE59009153D1 (de) 1995-06-29
JPH076851A (ja) 1995-01-10
US5146141A (en) 1992-09-08
EP0473814A1 (de) 1992-03-11

Similar Documents

Publication Publication Date Title
EP0473814B1 (de) Hohlelektrodenschalter
EP0324817B1 (de) Gaselektronischer schalter (pseudofunkenschalter)
EP0337192B1 (de) Gasentladungschalter
EP0251010B1 (de) Gasentladungsüberspannungsableiter
DE2716578A1 (de) Plasma-elektronen/ionen-quelle
EP0810628A2 (de) Quelle zur Erzeugung von grossflächigen, gepulsten Ionen- und Elektronenstrahlen
EP0944914B1 (de) Niederdruck-gasentladungsschalter
DE1441243A1 (de)
EP0433480B1 (de) Hohlelektrodenschalter
DE3942307C2 (de)
EP0473813A1 (de) Hohlelektrodenschalter
DE10140950A1 (de) Gekapselter Überspannungsableiter auf Funkenstreckenbasis
EP0510232B1 (de) Gasentladungsschalter
EP0513403A1 (de) Gasentladungsschalter
DE4100565C2 (de)
DE4306036C2 (de) Gasentladungsschalter
DE2905166C2 (de) Vakuum-Funkengenerator
DE1589414B1 (de) Spektrale Strahlungsquelle
EP0317722A2 (de) Gaslaser-Anordnung mit einer Entladungsröhre
DE4214362A1 (de) Gasentladungsschalter
WO1990009673A1 (de) Gasentladungschalter
DE4200993A1 (de) Gasentladungsschalter
DE4214361C2 (de) Gasentladungsschalter
DE4218479A1 (de) Gasentladungsschalter
DE1441243C (de) Kreiszylindrische Elektronenrohre der Magnetronbauart

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19901205

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT LI

17Q First examination report despatched

Effective date: 19940905

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI

REF Corresponds to:

Ref document number: 59009153

Country of ref document: DE

Date of ref document: 19950629

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19950821

Year of fee payment: 6

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950812

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19950919

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19951116

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19951215

Year of fee payment: 6

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19960903

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19960930

Ref country code: FR

Effective date: 19960930

Ref country code: CH

Effective date: 19960930

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19960903

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19970603

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050903