EP0251010B1 - Gasentladungsüberspannungsableiter - Google Patents

Gasentladungsüberspannungsableiter Download PDF

Info

Publication number
EP0251010B1
EP0251010B1 EP87108588A EP87108588A EP0251010B1 EP 0251010 B1 EP0251010 B1 EP 0251010B1 EP 87108588 A EP87108588 A EP 87108588A EP 87108588 A EP87108588 A EP 87108588A EP 0251010 B1 EP0251010 B1 EP 0251010B1
Authority
EP
European Patent Office
Prior art keywords
electrode
gap
cylindrical
depressions
ignition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP87108588A
Other languages
English (en)
French (fr)
Other versions
EP0251010A1 (de
Inventor
Jürgen Dipl.-Ing. Boy
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0251010A1 publication Critical patent/EP0251010A1/de
Application granted granted Critical
Publication of EP0251010B1 publication Critical patent/EP0251010B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T1/00Details of spark gaps
    • H01T1/20Means for starting arc or facilitating ignition of spark gap
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T4/00Overvoltage arresters using spark gaps
    • H01T4/10Overvoltage arresters using spark gaps having a single gap or a plurality of gaps in parallel
    • H01T4/12Overvoltage arresters using spark gaps having a single gap or a plurality of gaps in parallel hermetically sealed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T1/00Details of spark gaps
    • H01T1/20Means for starting arc or facilitating ignition of spark gap
    • H01T1/22Means for starting arc or facilitating ignition of spark gap by the shape or the composition of the electrodes

Definitions

  • the invention relates to a gas discharge surge arrester according to the preamble of claim 1.
  • the invention is in the field of electrical components and can be used in the structural design of a gas discharge surge arrester, the electrodes of which contain an activation compound in the recesses of their surface.
  • the vacuum-tight housing consists of at least one cylindrical insulating ring and at least one first and one second electrode.
  • the two electrodes are provided with at least one pair of opposing, cylindrical holes, which are partially filled with an activation compound. It is thus achieved that the distance of the activation mass of the one electrode from the surface of the counterelectrode is greater than the width of the ignition gap (US Pat. No. 4,491,839).
  • Surge arresters are also known which have a further electrode concentric with two electrodes lying opposite one another, this further electrode forming the actual discharge path together with one of the two other electrodes (US Pat. No. 3,710,191).
  • the invention has for its object to provide a bipolar operated arrester, which is characterized by a low spread of the electrical values, in particular the response voltage, during the service life and which has a high level of operational reliability.
  • the first electrode is arranged concentrically to the second electrode, that the recesses receiving the activation mass consist of one or more grooves or grooves or of a pyramid-shaped waffle and that the recesses at least the second electrode outside the Ignition gap are arranged.
  • the activation mass can deform when heated and, for example, elevations or spheres can be formed without influencing the ignition voltage or even endangering the insulation of the surge arrester. With such an arrester, it is sufficient to ignite the discharge in the ignition gap. As soon as the electrode provided with the activating mass works as a cathode, the base of the discharge moves at higher currents to the transition between the activating mass and the uncovered electrode material, even if this is arranged outside the ignition gap and the discharge path is considerably lengthened. Because of the greater distance of the activating mass from the respective counter electrode, deformation of the activating mass therefore has no influence on the ignition voltage.
  • An advantageous embodiment of the new surge arrester consists in providing the first electrode with a bore into which the second electrode projects, an annular ignition gap between the two electrodes and an insulation gap between the string surface of the second electrode and the bottom of the bore of the first electrode remains free and the ignition gap is narrower than the insulation gap, and on the annular end face of both the first and the second electrode to provide recesses for receiving the activation mass, these recesses not reaching to the inner edge of the end faces.
  • An embodiment is also advantageous in which the bore in the first electrode is delimited by a frustoconical wall which merges into a cylinder wall with a smaller diameter and in which the second electrode has a frustoconical part has, whose conical surface with the frustoconical part of the bore forms a gap of constant width and in which the end face of the frustoconical part is provided with an activation layer which does not reach the edge of the end face.
  • This embodiment is easy to manufacture, enables a relatively small tolerance of the gap dimension in the axial direction because of the frustoconical gap boundaries and ensures the distance requirements for the activation layer on the end face of the second electrode.
  • the invention has a particularly advantageous effect if the activation mass is heated to such an extent by higher current loads that the risk of balls or drops forming is particularly great.
  • Such cases of operation often occur in so-called three-electrode arresters, that is, in surge arresters in which a second and a third electrode are arranged coaxially with one another and each have a cylindrical part, the end faces of the cylindrical parts lying opposite one another and forming a secondary discharge gap, and in which a first one Electrode contains a cylinder bore, the boundary of which is arranged concentrically around the cylindrical parts of the second and third electrodes and also enclosing the secondary discharge gap;
  • each end face of the first electrode is provided with at least one ring-shaped recess for receiving the activation compound.
  • the end faces of the second and third electrodes also have depressions for receiving activation mass.
  • the activation mass advantageously consists essentially of sodium silicate and is accommodated and melted in grooves, waffle pyramids, bores, etc.
  • Sodium silicate gives favorable characteristics of the surge arrester and adheres well to the substrate when melted, but also tends to form balls or drops relatively strongly.
  • Surge arresters can be used particularly advantageously.
  • An embodiment of a three-electrode arrester is particularly suitable for securing lines, in which a second and a third electrode are arranged coaxially with one another and each have a cylindrical part, the end faces of the cylindrical parts lying opposite one another and forming a secondary discharge gap in which a first electrode contains a cylinder bore which is arranged concentrically to the cylindrical parts of the second and third electrodes and encloses the ignition gap, in which the bore in the first electrode is provided with a depression in the form of a trapezoidal thread and the threads are partially filled with activation compound, that the activation mass does not reach the wall of the cylinder bore, and in which the end faces of the second and third electrodes have depressions filled with activation mass.
  • a main discharge gap is defined here by the edge of the activation mass lying in the trapezoidal thread. It is wider than the ignition gap, which is determined by the parts of the cylinder wall remaining between the threads of the trapezoidal thread. This results in a small variation in the ignition voltage values of this special embodiment.
  • the helical design of the recess also ensures that a metallic surface on the first electrode is reached in the shortest possible way on a part of the circumference of the activating compound on the second or third electrode when the electrodes act as cathodes.
  • the cathode base of the first electrode lies in the trapezoidal thread when the cathode is functioning; deformation of the electrode or the activation mass does not change the ignition gap and therefore does not affect the ignition behavior of the arrester.
  • the three-electrode surge arresters described are mainly used to protect two wires which, in a first approximation, are at the same potential and are connected to the first and third electrodes against earth, which is connected to the second electrode. Accordingly, only relatively small voltage differences occur between the second and third electrodes, the secondary discharge path lying between these electrodes does not have to meet high requirements.
  • the present invention is therefore used only in relation to the main discharge path between the second or third electrode on the one hand and the first electrode on the other. As soon as a discharge takes place between the second or third and the first electrode, the main discharge gap between the not yet ignited second or third electrode and the first electrode is also ionized, so that their voltage is also reduced. In this way a significant discharge between the second and third electrodes is avoided, the secondary discharge path between the end faces of these two electrodes cannot assume high current values.
  • the first electrode 1 is composed of a first electrode 1, a second electrode 2 and an insulating ring 3, which is preferably made of ceramic, and soldered in a vacuum-tight manner.
  • the first electrode 1 has a bore 4 into which a cylindrical part 5 of the second electrode 2 extends.
  • an ignition gap 7 is formed in the electrode 2, in the area of which no activation layer is applied to the electrodes.
  • an insulation gap 6 which is significantly wider than the ignition gap 7.
  • the end face 14 of the hollow cylindrical part 12 of the first electrode 1 and the end face 13 of the cylindrical part 5 of the electrode 2 are each provided with annular grooves 10 and 9, which are filled with an activation compound.
  • two rings 10 and 9 are attached in the end faces 14 and 13, respectively.
  • the base point being at the boundary between the activation layer and the metal of the electrode and a relatively large one on the anode side Area for current entry into the counter electrode is available.
  • the grooves instead of the grooves, other depressions, e.g. small waffle pyramids are embossed in the end faces 14 and 13, which are filled with activation mass.
  • the discharge can also take place across the insulation gap 6; a deformation of the activation compound in the grooves 9 does not change the ignition voltage.
  • This embodiment is therefore particularly suitable for high current values.
  • FIG. 2 shows an exemplary embodiment in which tolerances in the axial direction have little influence on the gap width and thus ignition voltages.
  • the ignition gap 7 is arranged between a frustoconical part 15 of a second electrode 20 and a frustoconical bore 18 of a first electrode 19.
  • the cylindrical part 16 of the first electrode 19 has also a bore 17 coaxial to the bore, which merges into the frustoconical bore 18 at its smaller boundary plane.
  • the bore 17 even with very small gap widths of the ignition gap 7 of 0.5 mm or less, there is sufficient space for a deformation of the activation compound in the annular groove 9.
  • the electrodes of Figure 1 and the cylindrical parts of the electrodes of Figure 2 are advantageously made of copper.
  • the embodiment in FIG. 2 enables such an alloy to be used for the cup-shaped fastening parts 21 of the electrodes 19 and 20, the temperature coefficient of which is adapted in a manner known per se to the temperature coefficient of the insulating ring, which is preferably made of ceramic.
  • FIG. 3 shows a three-electrode surge arrester, which is particularly suitable for protecting two lines loaded with pulses against the ground potential applied to the second, concentrically arranged electrode.
  • Cylindrical parts 25 and 26 of the electrodes 22 and 23 extend into a bore in the first electrode 24.
  • the end faces of the second electrode 22 and the third electrode 23 form a secondary discharge path 27.
  • the main discharge path 28 (ignition gap) runs in the annular gap between the cylindrical parts 25 and 26 and the cylindrical inner wall 29 of the second electrode 24.
  • the end faces of the cylindrical parts 25 and 26 each contain a groove 9 filled with activation compound.
  • the inner wall 29 of the second electrode 24 is provided with a trapezoidal thread 30 which is filled with activation compound.
  • the ignition gap is defined by the parts of the inner wall 29 remaining between the trapezoidal thread and extends to the corresponding cylindrical part 25 or 26.
  • This construction ensures that a discharge with a cathode base in one of the grooves 9 of the second or third electrode 22 or 23, regardless of tolerances of the dimensions in the axial direction, in the shortest way in the radial direction strikes a metallic surface of the inner wall of the second electrode 24.
  • the discharges with a cathode base on the second electrode 24 there is plenty of activating mass so that this discharge direction can take place quickly and with a particularly low arc voltage.
  • the advantages of the invention for high-energy discharges are advantageously combined with the advantages of conventional technology, namely very low arcing voltage.
  • other depressions for example waffle pyramids, can also be used.
  • FIG. 4 shows a three-electrode arrester in which the first electrode 24 also has an annular groove 31 on its end faces.
  • the activation mass for all electrodes (22, 23, 24) is arranged consistently outside the actual discharge gap (28).

Description

  • Die Erfindung betrifft einen Gasentladungs Überspannungsableiter nach dem Oberbegriff des Anspruchs 1.
  • Die Erfindung liegt auf dem Gebiet der elektrischen Bauelemente und ist bei der konstruktiven Ausgestaltung eines Gasentladungs-­Überspannungsableiters anzuwenden, dessen Elektroden in vertie­fungen ihrer Oberfläche eine Aktivierungsmasse enthalten.
  • Bei einem bekannten Gasentladungs-Überspannungsableiter dieser Art besteht das vakuumdichte Gehäuse aus mindestens einem zy­lindrischen Isolierstoffring und mindestens einer ersten und einer zweiten Elektrode. Die beiden Elektroden sind mit we­nigstens einem Paar sich gegenüberliegender, zylindrischer Löcher versehen, die teilweise mit einer Aktivierungsmasse ge­füllt sind. Damit ist erreicht, daß der Abstand der Aktivierungs­masse der einen Elektrode von der Oberfläche der Gegenelektrode größer ist als die Breite des Zündspaltes (US-A-4 491 839). Es sind weiterhin Überspannungsableiter bekannt, die konzentrisch zu zwei sich gegenüberliegenden Elektroden eine weitere Elektro­de aufweisen, wobei diese weitere Elektrode mit jeweils einer der beiden anderen Elektroden die eigentliche Entladungsstrecke bildet (US-A-3 710 191).
  • Zur Ausgestaltung eines unipolar betriebenen Gasentladungs-Über­spannungsableiters, der als Vorfunkenstrecke einer zündkerze dient, ist bereits vorgeschlagen worden, eine vollzylindrische Elektrode und eine hohlzylindrische Elektrode konzentrisch zu­einander anzuordnen, wodurch sich ein ringförmiger zündspalt ergibt. Die Aktivierungsmasse soll dabei außerhalb des zünd­spaltes an der Stirnseite der vollzylindrischen Elektrode ange­ordnet sein (EP-A-0 229 303). Diese Druckschrift fällt unter Artikel 54(3) EPÜ.
  • Ausgehend von einem Gasentladungs-Überspannungsableiter mit den Merkmalen des Oberbegriffes des Patentanspruches 1 liegt der Erfindung die Aufgabe zugrunde, einen bipolar betreibbaren Ab­leiter zu schaffen, der sich durch eine geringe Streuung der elektrischen Werte, insbesondere der Ansprechspannung, während der Lebensdauer auszeichnet und der eine hohe Betriebssicher­heit aufweist.
  • Zur Lösung dieser Aufgabe ist gemäß der Erfindung vorgesehen, daß die erste Elektrode konzentrisch zur zweiten Elektrode angeordnet ist, daß die die Aktivierungsmasse aufnehmenden Ver­tiefungen aus einer oder mehreren Rillen oder Nuten oder aus einer pyramidenförmigen Waffelung bestehen und daß die Vertie­fungen wenigstens der zweiten Elektrode außerhalb des Zünd­spaltes angeordnet sind.
  • Bei einem derart ausgebildeten Überspannungsableiter kann sich bei Erhitzung die Aktivierungsmasse verformen und beispielswei­se Erhebungen oder Kugeln bilden, ohne daß die Zündspannung be­einflußt oder gar die Isolation des Überspannungsableiters ge­fährdet wird. Bei einem solchen Ableiter reicht es aus, im Zündspalt die Entladung zu zünden. Sobald die mit Aktivierungs­masse versehene Elektrode als Kathode arbeitet, wandert der Fußpunkt der Entladung bei höheren Strömen zum Übergang zwischen Aktivierungsmasse und unbedecktem Elektrodenmaterial, auch wenn dieser außerhalb des Zündspaltes angeordnet ist und der Entladungsweg sich deutlich verlängert. Wegen der größeren Entfernung der Aktivierungsmasse von jeweiligen Gegenelektrode bleibt daher eine Verformung der Aktivierungsmasse ohne Ein­fluß auf die zündspannung.
  • Eine vorteilhafte Ausführungsform des neuen Überspannungsab­leiters besteht darin, die erste Elektrode mit einer Bohrung zu versehen, in die die zweite Elektrode hineinragt, wobei zwischen den beiden Elektroden ein ringförmiger Zündspalt und zwischen der Strinfläche der zweiten Elektrode und dem Boden der Bohrung der ersten Elektrode ein Isolationsspalt freibleibt und der zündspalt schmaler ist als der Isolationsspalt, und auf der ringförmigen Stirnfläche sowohl der ersten als auch der zweiten Elektrode Vertiefungen zur Aufnahme der Aktivierungsmasse vorzusehen, wobei diese Vertiefungen nicht bis an den inneren Rand der Stirnflächen heranreichen.
  • Vorteilhaft ist auch eine Ausführungsform, bei der die Bohrung in der ersten Elektrode durch eine kegelstumpfförmige Wand, die in eine Zylinderwand mit geringerem Durchmesser übergeht, be­grenzt ist und bei der die zweite Elektrode einen kegelstumpf­förmigen Teil aufweist, dessen Kegelmantelfläche mit dem kegelstumpfförmigen Teil der Bohrung einen Spalt konstanter Breite bildet und bei der die Stirnfläche des kegelstumpfförmigen Teiles mit einer Aktivierungsschicht versehen ist, welche nicht bis an den Rand der Stirnfläche heranreicht. Diese Ausführungsform läßt sich einfach herstellen, ermöglicht wegen der kegelstumpfförmigen Spaltbegrenzungen eine relativ geringe Toleranz der Spaltab­messung in axialer Richtung und gewährleistet die Abstands­forderungen für die Aktivierungsschicht auf der Stirnfläche der zweiten Elektrode.
  • Die Erfindung wirkt sich besonders vorteilhaft aus, wenn durch höhere Strombelastungen die Aktivierungsmasse so stark erhitzt wird, daß die Gefahr der Bildung von Kugeln oder Tropfen beson­ders groß ist. Derartige Betriebsfälle treten häufig bei soge­nannten Dreielektrodenableitern auf, d.h. bei Überspannungsableitern, bei denen eine zweite und eind dritte Elektrode zueinander koaxial angeordnet sind und je einen zylinderförmigen Teil aufweisen, wobei die Stirnflächen der zylinderförmigen Teile einander gegenüberliegen und einen Nebenentladungsspalt bilden, und bei denen eine erste Elektrode eine Zylinder­bohrung enthält, deren Begrenzung konzentrisch zu den sylinderförmigen Teilen der zweiten und der dritten electrode sowie den Nebenentladungsspalt umschließend angeordnet ist; in Ausge­staltun der Erfindung ist bei einem solchen Dreielektroden­ableiter jede Stirnfläche der ersten Elektrode mit zumindest einer ringförmigen Vertiefung zur Aufnahme der Aktivierungs­masse versehen. Gleichzeitig weisen dabei auch die Stirnflächen der zweiten und der dritten Elektrode Vertiefungen zur Aufnahme von Aktivierungsmasse auf. Die Aktivierungsmasse besteht dabei vorteilhaft im wesentlichen aus Natriumsilikat und ist in Nuten, Waffelpyramiden, Bohrungen usw. untergebracht und aufgeschmolzen. Natriumsilikat ergibt günstige Kennwerte des Überspannungsableiters und haftet in aufgeschmolzenem zustand gut am Untergrund, neigt aber auch relativ stark zur Bildung von Kugeln oder Tropfen. In einem erfindungsgemäßen Überberspannungsableiter kann sie besonders vorteilhaft eingesetzt werden.
  • Zur Absicherung von Leitungen ist eine Ausführungsform eines Dreielektrodenableiters besonders geeignet, bei der eine zweite und eine dritte Elektrode zueinander koaxial angeordnet sind und je einen zylinderförmigen Teil aufweisen, wobei die Stirn­flächen der zylinderförmigen Teile einander gegenüber liegen und einen Nebenentladungsspalt bilden, bei der eine erste Elektrode eine Zylinderbohrung enthält welche konzentrisch zu den zylinderförmigen Teilen der zweiten und der dritten Elektrode angeordnet ist und den Zündspalt umschließt, bei der die Bohrung in der ersten Elektrode mit einer Vertiefung in Form eines Trapez-Gewindes versehen und die Gewindegänge mit Aktivierungsmasse derart teilweise gefüllt sind, daß die Aktivierungsmasse nicht bis an die Wand der Zylinderbohrung reicht, und bei der die Stirnflächen der zweiten und der dritten Elektrode mit Aktivierungsmasse gefüllte Vertiefungen aufweisen. Ein Hauptentladungsspalt ist hier durch den im Trapezgewinde liegenden Rand der Aktivierungsmasse definiert. Er ist breiter als der zündspalt, der durch die zwischen den Gewindegängen des Trapezgewindes verbliebenen Teile der zylinderwand bestimmt ist. Dadurch ergibt sich eine geringe Streuung der zündspannungs­werte dieser speziellen Ausführungsform. Bei der wendelförmigen Ausbildung der Vertiefung ist außerdem sichergestellt, daß auf einem Teil des Umfanges von der Aktivierungsmasse auf der zweiten bzw. dritten Elektrode ausgehend auf em kürzesten Wege eine metallische Oberfläche auf der ersten Elektrode erreicht wird, wenn die Elektroden als Kathoden wirken. Da die Aktivierungsmasse in Trapezgewinde nicht bis an den rand des Gewindeprofils reicht, liegt bei einer Kathodenfunktion der ersten Elektrode der kathodenfußpunkt im Trapezgewinde, eine Verformung der Elektrode bzw. der Aktivierungsmasse ergibt keine Veränderung des Zündspaltes und damit keine Beeinflußung des Zündverhaltens des Ableiters.
  • Die beschriebenen Dreielektrodenüberspannungsableiter dienen hauptsächlich zur Absicherung von zwei Adern, die in erster Näherung auf gleichem Potential liegen und an die erste und die dritte Elektrode geschaltet sind, gegenüber Erde, die an die zweite Elektrode gelegt ist. Demgemäß treten zwischen der zweiten und dritte Elektrode nur relativ kleine Spannungsun­terschiede auf, die zwischen diesen Elektroden liegende Neben­entladungsstrecke braucht keinen hohen Anforderungen zu genü­gen. Die vorliegende Erfindung wird daher nur im Bezug auf die Hauptentladungsstrecke zwischen der zweiten bzw. dritten Elektrode einerseits und der ersten Elektrode andererseits eingesetzt. Sobald zwischen der zweiten oder dritten und der ersten Elektrode eine Entladung stattfindet, wird auch der Hauptent­ladungsspalt zwischen der noch nicht gezündeten zweiten bzw. dritten Elektrode und der ersten elektrode ionisiert, so daß auch deren Spannung herabgesetzt wird. So wird eine nennenswerte Entladung zwischen der zweiten und dritten Elektrode vermieden, die Nebenentladungsstrecke zwischen den Stirnflächen dieser beiden Elektroden kann keine hohen Stromwerte annehmen.
  • Vier Ausführungsbeispiele der Erfindung sind in den Figuren 1 bis 4 darestellt. Dabei zeigen die
    • Fig. 1 und 2 zwei Beispiele von Zweielektroden-Ablei­tern und die
    • Fig. 3 und 4 zwei Beispiele von Dreielektroden-Ablei­tern,

    jeweils in geschnittener Ansicht.
  • Der Überspannungsableiter gemäß Fig. 1 ist aus einer ersten Elektrode 1, einer zweiten Elektrode 2 und einem Isolierstoff­ring 3, der vorzugsweise aus Keramik besteht, zusammengesetzt und vakuumdicht verlötet. Die erste Elektrode 1 weist eine Bohrung 4 auf, in die ein zylinderförmiger Teil 5 der zweiten Elektrode 2 hineinreicht. Zwischen der Innenwand 11 des durch die Bohrung 4 gebildeten hohlzylinderförmigen Teiles 12 der Elektrode 1 und der Mantelfläche des zylinderförmigen Teiles 5 der Elektrode 2 ist ein Zündspalt 7 gebildet, in dessen Bereich auf die Elektroden keine Aktivierungsschicht aufgebracht ist. Zwischen der Bodenfläche 8 der Bohrung 4 und der Stirnfläche 13 der Elektrode 2 und zwischen der Stirnfläche 14 der ersten Elektrode 1 und den benachbarten Teilen der zweiten Elektrode 2 liegt je ein Isolationsspalt 6, der deutlich breiter ist als der Zündspalt 7.
  • Die Stirnfläche 14 des hohlzylinderförmigen Teiles 12 der er­sten Elektrode 1 und die Stirnfläche 13 des zylinderförmigen Teiles 5 der Elektrode 2 sind jeweils mit ringförmigen Rillen 10 bzw. 9 versehen, welche mit einer Aktivierungsmasse ausge­füllt sind. Im gezeigten Beispiel sind je zwei Ringe 10 bzw. 9 in den Stirnflächen 14 bzw. 13 angebracht. Bei dieser Ausfüh­rungsform ergibt sich nach der Zündung im Spalt 7 eine Gasent­ladung von den achsnahen Rändern der Vertiefungen 10 bzw. 9 über den Zündspalt 7 hinweg, wobei jeweils der Fußpunkt an der Grenze zwischen Aktivierungsschicht und Metall der Elektrode ansetzt und auf der Anodenseite ein relativ großer Bereich für den Stromeintritt in die Gegenelektrode zur Verfügung steht. Anstelle der Rillen können auch andere Vertiefungen, z.B. klei­ne Waffelpyramiden in die Stirnflächen 14 und 13 eingeprägt werden, die mit Aktivierungsmasse gefüllt werden.
  • Nach dem Zündvorgang kann die Entladung auch über den Isola­tionsspalt 6 hinweg erfolgen, eine Verformung der Aktivierungs­masse in den Rillen 9 gibt keine Änderung der Zündspannung. Da­durch ist diese Ausführungsform für hohe Stromwerte besonders geeignet.
  • Figur 2 zeigt ein Ausführungsbeispiel, bei dem Toleranzen in Achsrichtun auf die Spaltbreite und damit Zündspannungen wenig Einfluß haben. Dort ist der Zündspalt 7 zwischen einem kegel­stumpfförmigen Teil 15 einer zweiten Elektrode 20 und einer ke­gelstumpförmigen Bohrung 18 einer ersten Elektrode 19 angeord­net. Der zylinderförmige Teil 16 der ersten Elektrode 19 weist außerdem eine zur Bohrung 18 koaxiale Bohrung 17 auf, die in die kegelstumpfförmige Bohrung 18 an deren kleinerer Begren­zungsebene übergeht. In der Bohrung 17 ist auch bei sehr klei­nen Spaltbreiten des Zündspaltes 7 von 0,5mm oder weniger aus­reichend Platz für eine Verformung der Aktivierungsmasse in der ringförmigen Rille 9. Gleiches gilt für eine Verformung der Ak­tivierungsmasse in der Rille 10 der Elektrode 19 in den Hin­terraum von Elektrode 20 hinein.
  • Die Elektroden der Figur 1 und die zylinderförmigen Teile der Elektroden von Figur 2 bestehen vorteilhaft aus Kupfer. Die Aus­führungsform der Figur 2 ermöglicht den Einsatz einer solchen Legierung für die tassenförmigen Befestigungsteile 21 der Elek­troden 19 bzw. 20, deren Temperaturkoeffizient in an sich be­kannter Weise an den Temperaturkoeffizienten des Isolierstoff­ringes, der vorzugsweise aus Keramik besteht, angepaßt ist.
  • Figur 3 zeigt einen Dreielektrodenüberspannungsableiter, der insbesondere zur Absicherung von zwei mit Impulsen belasteten Leitungen gegenüber dem an die zweite, konzentrisch angeordnete Elektrode gelegten Massepotential geeignet ist. Zylinderförmige Teile 25 und 26 der Elektroden 22 und 23 reichen in eine Bohrung der ersten Elektrode 24 hinein. Die Stirnflächen der zweiten Elektrode 22 und der dritten Elektrode 23 bilden eine Nebenentladungsstrecke 27. Die Hauptentladungsstrecke 28 (Zündspalt) verläuft im Ringspalt zwischen den zylinderförmigen Teilen 25 und 26 und der zylindrischen Innenwand 29 der zweiten Elektrode 24. Die Stirnflächen der zylinderförmigen Teile 25 und 26 enthalten je eine mit Aktivierungsmasse gefüllte Rille 9. Die Innenwand 29 der zweiten Elektrode 24 ist mit einem Trapezgewinde 30 versehen, welches mit Aktivierungsmasse gefüllt ist. Der zündspalt ist durch die zwischen dem Trapezgewinde verbliebenen Teile der Innenwand 29 definiert und erstreckt sich zum entsprechenden zylinderförmigen Teil 25 bzw. 26. Durch diese Konstruktion ist gewährleistet, daß eine Entladung mit einem Kathodenfußpunkt in einer der Rillen 9 der zweiten oder dritten Elektrode 22 oder 23 unabhängig von Toleranzen der Abmessungen in axialer Richtung auf dem kürzesten Wege in radialer Richtung auf eine metallische Oberfläche der Innenwand der zweiten Elektrode 24 trifft. Andererseits ist für, die Entladungen mit einem Kathodenfußpunkt auf der zweiten Elektrode 24 reichlich Aktivierungsmasse vorhanden, so daß diese Entladungsrichtung schnell und mit besonders gerin­er Bogenbrennspannung erfolgen kann. In dieser Ausführungsform sind die Vorteile der Erfindung für eneriereiche Entladungen mit den Vorteilen konventioneller Technik, nämlich sehr geringe Lichtbogenbrennspannung vorteilhaft kombiniert. Anstelle der Rille 9 in den Stirnflächen der Elektroden 22, 23 können auch andere Vertiefungen, z.B. Waffelpyramiden verwendet werden.
  • Figur 4 zeigt einen Dreielektrodenableiter bei dem auch die erste Elektrode 24 je eine ringförmige Rille 31 auf ihren Stirnseiten besitzt. Bei dieser Ausführungsform ist die Akti­vierungsmasse für alle Elektroden (22, 23, 24) konsequent außerhalb des eigentlichen Entladungsspaltes (28) angeordnet.
  • In den Figuren 3 und 4 ist im Nebenentladungsspalt 27 keine energiereiche Entladung zu.erwarten, da Überspannungen bestim­mungsgemäß bei derartigen Ableitern gegen Massepotential abge­führt werden sollen und daher schon bei relativ geringen Span­nungsunterschieden eine Entladung im Hauptentladungsspalt 28 bzw. entlang den Hauptentladungsstrecken 32 oder 33 auftritt.
  • Bezugszeichenliste
    • 1 = Erste Elektrode
    • 2 = zweite Elektrode
    • 3 = Isolierstoffring
    • 4 = Bohrung
    • 5 = zylinderförmiger Teil
    • 6 = Isolationsspalt
    • 7 = Zündspalt
    • 8 = Bodenfläche
    • 9, 10 = ringförmige Rillen
    • 11 = Innenwand
    • 12 = hohlzylinderförmiger Teil
    • 13, 14 = Stirnfläche
    • 15 = kegelstumpfförmiger Teil
    • 16 = zylinderförmiger Teil
    • 17, 18 = Bohrung
    • 19, 20 = Elektrode
    • 21 = Befestigungsteil
    • 22 = zweite Elektrode
    • 23 = dritte Elektrode
    • 24 = erste Elektrode
    • 25, 26 = zylinderförmiger Teil
    • 27 = Nebenentladungsspalt
    • 28 = Hauptentladungsstrecke (Zündspalt)
    • 29 = Innenwand
    • 30 = Trapezgewinde
    • 31 = ringförmige Rille
    • 32, 33 = Hauptentladungsstrecke
    • 34 = Aktivierungsmasse
    • 35 = Aufweitung
    • 36 = Stirnfläche

Claims (5)

1. Gasentladungs-Überspannungsableiter mit einem vakuumdichten Gehäuse, das aus mindestens einem zylindrischen Isolierstoffring (3) und mindestens einer ersten Elektrode (1, 24) und einer zweiten Elektrode (2, 22) besteht, wobei zwischen den beiden Elektroden ein Zündspalt gelegen ist und jede Elektrode in Vertiefungen ihrer Oberfläche eine Aktivierungsmasse aufweist, deren Abstand von der jeweiligen Gegenelektrode größer ist als die Breite des zündspaltes (7, 28)
dadurch gekennzeichnet,
daß die erste Elektrode (1, 24) konzentrisch zur zweiten Elektrode (2, 22) angeordnet ist,
daß die die Aktivierungsmasse aufnehmenden Vertiefungen (9, 10, 30) aus einer oder mehreren Rillen oder Nuten oder aus einer pyramidenförmigen Waffelung bestehen
und daß die Vertiefungen (9) wenigstens der zweiten Elektrode (2) außerhalb des Zündspaltes (7, 28) angeordnet sind.
2. Gasentladungs-Überspannungsableiter nach Anspruch 1, dadurch gekennzeichnet, daß die Vertie­fungen der ersten Elektrode (1) ebenfalls außerhalb des Zünd­spaltes (7) angeordnet sind.
3. Gasentladungs-Überspannungsableiter nach Anspruch 2, dadurch gekennzeichnet, daß die erste Elektrode (1) eine Bohrung (11) aufweist, in die die zweite Elektrode (2) hineinragt,
daß zwischen den Elektroden (1,2) ein ringförmiger Zündspalt (7) und zwischen der Stirnfläche (13) der zweiten Elektrode (2) und der Bodenfläche (8) der Bohrung (4) in der ersten Elektrode (1) sowie zwischen der Stirnfläche (14) der ersten Elektrode (1) und den benachbarten Teilen der zweiten Elektrode (2) Isolationsspalte (6) freigelassen sind, wobei der Zündspalt (7) schmaler als die Isolationsspalte (6) ist, und daß die Vertiefungen (10) zur Aufnahme der Aktivierungs­ masse auf der ringförmigen Stirnfläche (14) der ersten Elektro­de (1) und auf der Stirnfläche (13) der zweiten Elektrode ange­ordnet sind und nicht bis an den inneren Rand der Stirnflächen heranreichen.
4. Gasentladungs-Überspannungsableiter nach Anspruch 2, dadurch gekennzeichnet, daß die zweite Elektrode (22) und eine dritte Elektrode (23, Figur 4) zueinan­der koaxial angeordnet sind und je einen zylinderförmigen Teil aufweisen, wobei die Stirnflächen der zylinderförmigen Teile einander gegenüberliegen und einen Nebenentladungsspalt (27) bilden,
daß die erste Elektrode (24) eine zylindrische Bohrung ent­hält, welche konzentrisch zu den zylinderförmigen Teilen der zweiten und der dritten Elektrode (22,23) angeordnet ist und den Nebenentladungsspalt (27) umschließt, daß jede Stirnfläche der ersten Elektrode (24) mit zumindest einer ringförmigen Vertiefung (31) zur Aufnahme der Aktivie­rungsmasse versehen ist
und daß die Stirnflächen der zweiten und der dritten Elektrode (22,23) mit Vertiefungen (9) zur Aufnahme von Aktivierungsmasse versehen sind.
5. Gasentladungs-Überspannungsableiter nach Anspruch 1, dadurch gekennzeichnet, daß die zweite Elektrode (22) und eine dritte Elektrode (23, Figur 3) zueinan­der koaxial angeordnet sind und je einen zylinderförmigen Teil aufweisen, wobei die Stirnflächen der zylinderförmigen Teile in axialer Richtung einander gegenüberliegen und einen Nebenentla­dungsspalt (27) bilden,
daß die erste Elektrode (24) eine zylindrische Bohrung (29) ent­hält, welche konzentrisch zu den zylinderförmigen Teilen der zweiten und dritten Elektrode (22,23) angeordnet ist und den Nebenentladungsspalt umschließt,
daß zwischen den zylinderförmigen Teilen und der Bohrung (29) der ersten Elektrode (24) der zündspalt (28) liegt, der schmaler ist als der Nebenentladungsspalt,
daß die Bohrung (29) in der ersten Elektrode (24) mit einem Trapezgewinde versehen ist, dessen Gewindegänge (30) die Akti­vierungsmasse enthalten
und daß die Stirnflächen der zweiten und der dritten Elektrode (22,23) mit Aktivierungsmasse gefüllte Vertiefungen (9) auf­weisen.
EP87108588A 1986-06-25 1987-06-15 Gasentladungsüberspannungsableiter Expired - Lifetime EP0251010B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19863621254 DE3621254A1 (de) 1986-06-25 1986-06-25 Gasentladungsueberspannungsableiter
DE3621254 1986-06-25

Publications (2)

Publication Number Publication Date
EP0251010A1 EP0251010A1 (de) 1988-01-07
EP0251010B1 true EP0251010B1 (de) 1991-01-02

Family

ID=6303654

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87108588A Expired - Lifetime EP0251010B1 (de) 1986-06-25 1987-06-15 Gasentladungsüberspannungsableiter

Country Status (5)

Country Link
US (1) US4769736A (de)
EP (1) EP0251010B1 (de)
JP (1) JPS6313290A (de)
KR (1) KR960000922B1 (de)
DE (2) DE3621254A1 (de)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0716319Y2 (ja) * 1989-07-21 1995-04-12 株式会社白山製作所 ガス封止形多極避雷器
JP2847105B2 (ja) * 1990-01-10 1999-01-13 矢崎総業株式会社 放電管
JP2543302Y2 (ja) * 1990-03-27 1997-08-06 日本電気株式会社 放電管
JP2860335B2 (ja) * 1990-09-25 1999-02-24 矢崎総業株式会社 放電管
US5633777A (en) * 1994-10-13 1997-05-27 Siemens Aktiengesellschaft Gas-filled, three-electrode overvoltage surge arrester for large switching capacities
DE4444515B4 (de) * 1994-10-13 2009-10-01 Epcos Ag Gasgefüllter Drei-Elektroden-Überspannungsableiter für hohe Schaltleistungen
JP3749754B2 (ja) * 1995-05-02 2006-03-01 新光電気工業株式会社 放電管
DE19632417C1 (de) * 1996-08-05 1998-05-07 Siemens Ag Gasgefüllter Überspannungsableiter mit Elektroden-Aktivierungsmasse
TW371371B (en) * 1998-04-10 1999-10-01 United Microelectronics Corp Electrostatic discharge protection circuit with tip discharge
DE19817063C2 (de) * 1998-04-17 2001-08-23 Proepster J Gmbh Überspannungsschutzelement mit Lichtbogenwanderung
DE19920043A1 (de) * 1999-04-23 2000-10-26 Epcos Ag Gasgefüllter Überspannungsableiter mit einer aus mehreren Komponenten bestehenden Aktivierungsmasse
DE10159260A1 (de) * 2001-12-03 2003-06-18 Epcos Ag Elektrode und elektrisches Bauelement mit der Elektrode
DE10357945A1 (de) * 2003-12-09 2005-07-14 Phoenix Contact Gmbh & Co. Kg Überspannungsschutzeinrichtung
DE102005016848A1 (de) * 2005-04-12 2006-10-19 Epcos Ag Überspannungsableiter
DE102005036265A1 (de) * 2005-08-02 2007-02-08 Epcos Ag Funkenstrecke
JP2009508320A (ja) 2005-09-14 2009-02-26 リッテルフューズ,インコーポレイティド ガス入りサージアレスタ、活性化化合物、点火ストライプ及びその方法
WO2009081182A1 (en) * 2007-12-21 2009-07-02 Bae Systems Plc High voltage switch
DE102007063316A1 (de) * 2007-12-28 2009-07-02 Epcos Ag Überspannungsableiter mit niedriger Ansprechstoßspannung
CN102738785B (zh) * 2011-04-15 2015-07-22 上海电科电器科技有限公司 过电压保护装置的放电模块
FR3010843B1 (fr) * 2013-09-19 2017-05-05 Ene29 S Ar L Eclateur d'un dispositif de generation d'arc electrique et dispositif de generation d'arc electrique correspondant
FR3010844B1 (fr) 2013-09-19 2015-10-16 Ene29 S Ar L Eclateur d'un dispositif de generation d'arc electrique et dispositif de generation d'arc electrique correspondant

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4491893A (en) * 1982-05-25 1985-01-01 Reliance Electric Company Gas filled surge arrester
EP0229303A1 (de) * 1985-12-18 1987-07-22 Cerberus Ag Funkenstrecke, insbesondere zur Verwendung als Vorfunkenstrecke einer Zündkerze eines Verbrennungsmotors

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3649874A (en) * 1969-09-02 1972-03-14 Siemens Ag Overvoltage arrester
DE2060388B2 (de) * 1970-12-08 1977-05-26 Siemens AG, 1000 Berlin und 8000 München Ueberspannungsableiter mit mehreren elektroden
GB1389142A (en) * 1973-05-31 1975-04-03 Comtelco Uk Ltd Electrical surge arrestor
DE2445063B2 (de) * 1974-09-20 1977-09-29 Siemens AG, 1000 Berlin und 8000 München Ueberspannungsableiter mit einem gasgefuellten entladungsgefaess
GB1455806A (en) * 1975-01-28 1976-11-17 Siemens Ag Surge voltage arresters
US4015172A (en) * 1975-03-17 1977-03-29 Siemens Aktiengesellschaft Two path voltage arrester
DE2828650C3 (de) * 1978-06-29 1982-03-25 Siemens AG, 1000 Berlin und 8000 München Überspannungsableiter
DE3042847A1 (de) * 1980-11-13 1982-06-09 Siemens AG, 1000 Berlin und 8000 München Gasentladungs-ueberspannungsableiter mit konzentrisch umschliessender fassung
DE3100924A1 (de) * 1981-01-14 1982-08-05 Siemens AG, 1000 Berlin und 8000 München "gasentladungs-ueberspannungsableiter"
US4407849A (en) * 1981-12-23 1983-10-04 Bell Telephone Laboratories, Incorporated Process for improving electrode coatings
JPS607183U (ja) * 1983-06-25 1985-01-18 株式会社サンコ−シャ 過電圧保護素子
JPS6055091U (ja) * 1983-09-22 1985-04-17 株式会社サンコ−シャ 放電形避雷器

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4491893A (en) * 1982-05-25 1985-01-01 Reliance Electric Company Gas filled surge arrester
EP0229303A1 (de) * 1985-12-18 1987-07-22 Cerberus Ag Funkenstrecke, insbesondere zur Verwendung als Vorfunkenstrecke einer Zündkerze eines Verbrennungsmotors

Also Published As

Publication number Publication date
KR960000922B1 (ko) 1996-01-15
JPS6313290A (ja) 1988-01-20
DE3766888D1 (de) 1991-02-07
DE3621254A1 (de) 1988-01-07
US4769736A (en) 1988-09-06
KR880001083A (ko) 1988-03-31
EP0251010A1 (de) 1988-01-07

Similar Documents

Publication Publication Date Title
EP0251010B1 (de) Gasentladungsüberspannungsableiter
EP1033798B1 (de) Überspannungsschutzeinrichtung
DE2346174A1 (de) Ueberspannungsableiter
DE3207663A1 (de) Ueberspannungsableiter mit einem gasgefuellten gehaeuse
EP0473814B1 (de) Hohlelektrodenschalter
DE2359630A1 (de) Vakuum-lichtbogenentladungsvorrichtung
DE2951467C2 (de) Überspannungsableiter mit parallelgeschalteter Luftfunkenstrecke
DE2060388A1 (de) UEberspannungsableiter mit mehreren Elektroden
EP0024583A1 (de) Überspannungsableiter
DE102005024666B4 (de) Zündkerze mit mehreren Masseelektroden
DE3101354C2 (de) Funkenstrecke für die Begrenzung von Überspannungen
DE2824820A1 (de) Elektronenstrahlsystem mit verteilter elektrostatischer linse
EP0378963B1 (de) Funkenstreckenbauelement für geschirmte Anordnung
DE60215876T2 (de) Gasgefüllte elektrische Entladungsschaltröhre
EP0568166B1 (de) Vakuumschaltröhre
EP2837073B1 (de) Überspannungsableiter
DE3042847A1 (de) Gasentladungs-ueberspannungsableiter mit konzentrisch umschliessender fassung
DE2549101A1 (de) Gleitfunkenzuendkerze
DE2032899A1 (de) Vorrichtung mit einer Schutzfunkenstrecke
WO1995000964A1 (de) Vakuumschaltröhre mit ringförmigem isolator
CH621214A5 (de)
EP0215034B1 (de) Röntgenröhre mit einem die anode und die kathode umgebenden zylindrischen metallteil
DE4333441C2 (de) Entladungsröhre
EP1413027B1 (de) Gekapselter überspannungsableiter auf funkenstreckenbasis
EP3411932A1 (de) Ableiter zum schutz vor überspannungen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE GB IT LI

17P Request for examination filed

Effective date: 19880205

17Q First examination report despatched

Effective date: 19881129

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE GB IT LI

REF Corresponds to:

Ref document number: 3766888

Country of ref document: DE

Date of ref document: 19910207

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: E. BLUM & CO. PATENTANWAELTE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: SIEMENS AKTIENGESELLSCHAFT BERLIN UND MUENCHEN -DA

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20020521

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030630

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050615

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20060626

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20060731

Year of fee payment: 20

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20070614