EP0318724B1 - Verfahren zum chemischen Ablösen einer hochchromhaltigen Oberflächenschutzschicht vom Grundkörper eines aus einer Nickel- oder Kobaltbasis-Superlegierung bestehenden Bauteils - Google Patents

Verfahren zum chemischen Ablösen einer hochchromhaltigen Oberflächenschutzschicht vom Grundkörper eines aus einer Nickel- oder Kobaltbasis-Superlegierung bestehenden Bauteils Download PDF

Info

Publication number
EP0318724B1
EP0318724B1 EP88118502A EP88118502A EP0318724B1 EP 0318724 B1 EP0318724 B1 EP 0318724B1 EP 88118502 A EP88118502 A EP 88118502A EP 88118502 A EP88118502 A EP 88118502A EP 0318724 B1 EP0318724 B1 EP 0318724B1
Authority
EP
European Patent Office
Prior art keywords
solution
fecl3
cucl2
following composition
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88118502A
Other languages
English (en)
French (fr)
Other versions
EP0318724A1 (de
Inventor
Vladimir Sova
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BBC Brown Boveri AG Switzerland
Original Assignee
BBC Brown Boveri AG Switzerland
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BBC Brown Boveri AG Switzerland filed Critical BBC Brown Boveri AG Switzerland
Publication of EP0318724A1 publication Critical patent/EP0318724A1/de
Application granted granted Critical
Publication of EP0318724B1 publication Critical patent/EP0318724B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/44Compositions for etching metallic material from a metallic material substrate of different composition

Definitions

  • the blade is a critical component, with protective layers against erosion, wear, corrosion and oxidation gaining in importance at high temperatures.
  • the protective layer usually has a shorter lifespan than the core material of the blade, which is why the renewability of the former is becoming increasingly important.
  • the invention relates to the further development of methods for repairing, repairing and renewing components of thermal machines which have been rendered unusable by erosion, wear, corrosion, oxidation or mechanical damage and are provided with protective layers.
  • the old existing protective layer must first be removed, which can basically be done mechanically or chemically.
  • the chemical method generally occupies a leading position in the field of surface change by erosion.
  • it relates to a method for chemically detaching a high-chromium surface protection layer from the base body of a component consisting of a nickel or cobalt-based superalloy.
  • a method of the type mentioned in the preamble of claim 1 is known from FR-A-2 349 663.
  • a coating containing aluminum, chromium and cobalt is removed from a substrate based on a nickel-based alloy by immersion in a solution kept at a temperature between 15 and 75 ° C.
  • This solution contains ferric sulfate and hydrochloric acid.
  • the proportion of iron (III) sulfate should preferably be 8 to 10 percent by weight and the proportion of hydrochloric acid should preferably be 7 to 9 percent by weight. With such high hydrochloric acid concentrations, the risk of the substrate being adversely affected, in particular due to corrosion pitting, cannot be ruled out with certainty.
  • US Pat. No. 4,339,282 describes a process for detaching nickel aluminide coatings from a substrate based on a nickel-based superalloy, in which an aqueous, predominantly nitric acid and to a lesser extent hydrochloric acid, and smaller proportions of iron III Solution containing chloride and copper (II) sulfate is used to remove the coating.
  • this solution does not attack the substrate, which also contains chromium, among other things, it is, however, not suitable for dissolving a surface layer containing high chromium.
  • Such a protective layer has a positive potential in relation to the substrate in a strongly oxidizing solution caused by the nitric acid can then not be removed by chemical or electrolytic means without significantly affecting the substrate.
  • solutions which contain nitrobenzenesulfonic acid and Na compounds for the chemical leaching of so-called "aluminum diffusion layers" on blade materials (cf. EP-A-0 161 387).
  • solutions containing iron sulfate and hydrochloric acid are recommended for removing chromium and aluminum-containing protective coatings based on cobalt, the iron sulfate having an oxidizing effect directly or via hydrolysis as sulfuric acid (cf. DE-B-27 17 435).
  • solutions with HNO3 and HF have been used to remove chromium- and aluminum-containing or aluminum-containing protective layers of nickel or cobalt-based alloys with a chromium content of more than 18% (cf. US-A-3 458 353).
  • the known processes using oxidizing solutions are based on the fact that they only weakly attack the core material of the base body, in the present case a nickel or cobalt-based superalloy, if it contains at least 7% by weight Cr.
  • the transition to ever higher Cr contents of the protective layers reverses the ratio of the electrochemical potentials of the core material to that of the protective layer: the protective layer becomes positive with respect to the base body in oxidizing solution.
  • the protective layer cannot be removed electrolytically or electrolessly.
  • the base body is always attacked preferentially, while the protective layer to be removed withstands longer. Therefore, the known methods mentioned above are not applicable to the modern material combinations of high-chromium protective layer / moderately chromium-containing superalloy.
  • the invention is based on the object of specifying a method for detaching a surface protection layer based on a Ni or Co alloy with a high Cr content from the base body of a component which consists of a chromium-containing Ni and / or Co-based alloy.
  • the surface layer should be completely removed without the material of the base body being attacked, removed or damaged or its chemical-physical properties and its behavior with regard to compatibility being impaired or changed, particularly when a surface protective layer is subsequently reapplied (renewed).
  • 1 shows a schematic cross section through the active part of the contents of a vessel for carrying out the method.
  • 1 is the chloride solution for chemical attack
  • 2 the base body (substrate) made of a nickel or cobalt-based superalloy (core material).
  • 3 represents the high-chromium surface protection layer. It can in principle be constructed on a nickel or cobalt basis.
  • 4 are pores in the surface protective layer 3, which have been formed by the chemical attack of the chloride solution 1.
  • 5 is an intermediate diffusion layer between the base body 2 and the surface protective layer 3, which is formed by a heat treatment during manufacture or in operation.
  • the surface protective layer 3 When immersed in the solution 1, the surface protective layer 3 shows a negative potential (indicated by the sign - and +) compared to the base body 2, which is the basis for the currentless selective removal of the former.
  • the mainly present ions H tripod; Fe3+; Cu2+; Cl ⁇
  • the mechanism of the resolution is shown schematically by symbols and arrows.
  • the less noble chrome is preferred in solution (Cr3+), while part of the iron and copper sink to the bottom as sludge (Fe o ; Cr o ), the rest remains in solution in the form of low valences (Fe2+; Cu+).
  • FIG. 2 shows a schematic metallographic section through the grain structure of the surface protection layer.
  • 6 are grains of the high-chromium surface protection layer 3 based on nickel or cobalt, which generally contain Al and Si in addition to Cr. At least part of the surface of the grains 6 is coated with a Cr2O3 cover layer, which has a passivating effect.
  • the mainly effective reaction mechanisms are indicated by arrows and symbols.
  • the invention is based on the selective dissolution of metals, characterized by different electrochemical potentials, which are immersed in an aggressive chemical solution. As a rule, the less noble elemental metal displaces the more noble from the solution and thereby goes into solution itself.
  • the general reaction scheme is as follows: Me + Fe3+ ⁇ Me+ + Fe2+ Me+ + Fe3+ ⁇ Me2+ + Fe2+ Me + Cu2+ ⁇ Me+ + Cu+ Me+ + Cu2+ ⁇ Me2+ + Cu+
  • the used scoop was cleaned by first immersing it in a 20% solution of NaOH at 100 ° C. for 24 h. The paddle was then removed from the solution, rinsed and immersed in concentrated HCl at 40 ° C for 24 hours. Finally, the shovel was rinsed and brushed with a steel brush.
  • the shovel was left in this bath for 15 hours, then removed, rinsed and brushed. No damage to the core material due to chemical attack was found.
  • a gas turbine blade provided with a surface protection layer and irregularly worn along the entire length of the airfoil was treated according to the currentless method according to Example 1.
  • the airfoil had the same dimensions and the core material (MA 6000) the same composition as in Example 1.
  • the surface layer of 120 ⁇ m thick had been applied to the core material by plasma spraying and had the same composition as in Example 1.
  • the used blade was cleaned according to Example 1 by immersion in NaOH and HCl solution and treatment with a steel brush.
  • the bath had a temperature of 50 ° C. After a reaction time of 14 hours, the scoop was removed from the bath, rinsed, brushed and dried. The surface layer had been completely dissolved without attacking the substrate.
  • the partially corroded blade was cleaned according to Example 1 and then placed in a solution of the following composition: 200 g / l FeCl3 ⁇ 6H2O 1 g / l CuCl2 ⁇ 2H2O 10 ml / l glycerin 30 ml / l concentrated HCl rest H2O
  • the bath had a temperature of 70 ° C.
  • the treated gas turbine blade was removed from the bath after a reaction time of 144 hours, rinsed, brushed and dried. After the surface protective layer had completely dissolved, no attack on the core material could be determined.
  • a gas turbine blade provided with a surface protection layer and irregularly corroded along the entire length of the airfoil was treated in a manner similar to Example 1 using the currentless method.
  • the airfoil had the same dimensions and the core material (IN 738) the same composition as in Example 3.
  • the surface protective layer was on average 150 ⁇ m thick and was previously applied to the core material by plasma spraying. It had the same composition as that of Example 3.
  • the used scoop was cleaned according to Example 1 and then immersed in a solution of the following composition: 300 g / l FeCl3 ⁇ 6H2O 2 g / l CuCl2 ⁇ 2H2O 20 ml / l concentrated HCl rest H2O
  • the bath had a temperature of 60 ° C. After a reaction time of 120 hours, the blade was removed from the solution, rinsed, brushed and dried. When the surface protective layer was completely dissolved, no attack on the core material could be determined.
  • the bath temperature was 60 ° C, the total reaction time 1 h.
  • the core material remained unaffected after the treatment.
  • a corroded gas turbine blade provided with a surface protection view and irregular over the entire length of the airfoil was treated in the same way as in Example 1 by the currentless method.
  • the airfoil had the same dimensions and the core material (IN 738) the same composition as in Example 3.
  • the surface protection view was on average 120 ⁇ m thick and was previously applied to the core material by plasma spraying. It had the same composition as that of Example 3.
  • the used scoop was cleaned according to example 1 and then immersed in a solution of the following composition: 250 g / l FeCl3 ⁇ 6H2O 1 g / l CuCl2 ⁇ 2H2O 100 g / l NaCl 200 g / l citric acid rest H2O
  • the bath had a temperature of 65 ° C. After a reaction time of 100 h, the scoop was removed from the solution, rinsed, brushed and dried. When the surface protection view was completely dissolved, no attack on the core material could be determined.
  • the bath temperature was 60 ° C, the total reaction time 1 h.
  • the core material remained unaffected after the treatment.
  • the invention is not limited to the exemplary embodiments.
  • the electroless chemical detachment of a high-chromium surface protection view from a nickel or cobalt-based superalloy is achieved by immersing the component in question in an aqueous chloride solution containing non-oxygen, containing iron III and copper II, which also contains other additives however no constituents forming chromium oxide contains, valued for a period of 1 h to 150 h at a temperature of 50 to 70 ° C.
  • the chloride solution advantageously has the composition: 200 - 400 g / l FeCl3 ⁇ 6H2O 0.5 - 5 g / l CuCl2 ⁇ 2H2O 10 - 20 ml / l glycerin 120-200 ml / l concentrated HCl rest H2O

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • ing And Chemical Polishing (AREA)
  • Chemically Coating (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)

Description

    Technisches Gebiet
  • Gasturbinen für höchste Ansprüche. Kritisches Bauteil ist die Schaufel, wobei Schutzschichten gegen Erosion, Verschleiss, Korrosion und Oxydation bei hohen Temperaturen an Bedeutung gewinnen. Die Schutzschicht hat meist eine geringere Lebensdauer als der Kernwerkstoff der Schaufel, weshalb die Erneuerbarkeit der ersteren mehr und mehr in den Vordergrund rückt.
  • Die Erfindung bezieht sich auf die Weiterentwicklung von Verfahren zur Reparatur, Instandstellung und Erneuerung von durch Erosion, Verschleiss, Korrosion, Oxydation oder mechanische Beschädigung unbrauchbar gewordenen, mit Schutzschichten versehenen Bauteilen thermischer Maschinen. Dabei muss zunächst die alte bestehende Schutzschicht entfernt werden, was grundsätzlich mechanisch oder chemisch erfolgen kann. Die chemische Methode nimmt ganz allgemein auf dem Gebiet der Oberflächenveränderung durch Abtrag eine führende Stellung ein.
  • Insbesondere betrifft sie ein Verfahren zum chemischen Ablösen einer hochchromhaltigen Oberflächenschutzschicht vom Grundkörper eines aus einer Nickel- oder Kobaltbasis-Superlegierung bestehenden Bauteils.
  • Stand der Technik
  • Ein Verfahren der im Oberbegriff von Patentanspruch 1 genannten Art ist aus FR-A- 2 349 663 bekannt. Beim bekannten Verfahren wird ein Aluminium, Chrom und Kobalt enthaltender Überzug von einem Substrat auf der Grundlage einer Nickelbasislegierung durch Eintauchen in eine auf einer Temperatur zwischen 15 und 75°C gehaltenen Lösung entfernt. Diese Lösung enthält Eisen-III-Sulfat und Salzsäure. Um hierbei ein vergleichsweises rasches Auflösen des Überzugs zu ermöglichen und dabei zugleich ein zu starkes Angreifen des Substrates zu vermeiden, sollte der Anteil an Eisen-III-Sulfat vorzugsweise 8 bis 10 Gewichtsprozent und der Anteil an Salzsäure vorzugsweise 7 bis 9 Gewichtsprozent betragen. Bei derart hohen Salzsäurekonzentrationen ist die Gefahr einer Beeinträchtigung des Substrates, insbesondere durch Korrosionslochfrass, nicht mit Sicherheit auszuschliessen.
  • In US-A- 4 339 282 ist ein Verfahren zum Ablösen von Nickelaluminid-Überzügen von einem Substrat auf der Grundlage einer Nickelbasis-Superlegierung beschrieben, bei dem eine wässrige, vorwiegend Salpetersäure und in geringerem Masse Salzsäure, sowie kleinere Anteile an Eisen-III-Chlorid und Kupfer-II-Sulfat enthaltende Lösung zum Entfernen des Überzuges verwendet wird. Diese Lösung greift zwar nicht das unter anderem auch Chrom enthaltende Substrat an, ist jedoch nicht geeignet, eine hochchromhaltige Oberflächenschicht aufzulösen. Eine solche Schutzschicht weist nämlich in einer durch die Salpetersäure hervorgerufenen, stark oxidierenden Lösung gegenüber dem Substrat ein positives Potential auf und kann dann auf chemischem oder elektrolytischem Wege ohne erhebliche Beeinträchtigung des Substrates nicht entfernt werden.
  • Aus US-A- 3 562 040 ist ein Verfahren bekannt, mit dem eine Nickel und Chrom enthaltende Schicht mittels einer wässrigen Lösung sehr rasch geätzt werden kann. Diese Lösung enthält neben dem Wasser Phosphorsäure, Eisen-III-Chlorid und ein Benetzungsmittel. Das bekannte Verfahren wird lediglich bei der Herstellung von integrierten Schaltkreisen, nicht aber beim Entfernen einer Oberflächenschutzschicht vom Grundkörper eines aus einer Nickel- oder Kobaltbasis-Superlegierung bestehenden Bauteils verwendet.
  • Die Entfernung von Schutzschichten auf Grundkörpern (Substrat) aus Superlegierungen wird in herkömmlicher Weise unter anderem nach dem stromlosen chemischen Auflösungsverfahren durch Einwirkung von Lösungen vorgenommen, welche oxydierende Säuren als wesentlichen Bestandteil enthalten. So wird allgemein die Verwendung von HNO₃-haltigen Lösungen zur Auflösung von Nickelaluminide enthaltenden Schutzschichten empfohlen (Vergl. US-A-4 425 185; AU-B-10761/76; US-A-4 339 282; US-A-3607 398; US-A-3 622 391; US-A-3 833 414). Andere oxydierende Lösungen enthalten zum Beispiel H₂O₂ und werden zur Ablösung von Nickel eingesetzt (Vergl. US-A-4 554 049). Es ist ferner bekannt, Lösungen, welche Nitrobenzolsulfonsäure und Na-Verbindungen enthalten, zum chemischen Ablaugen von sogenannten "Aluminium-Diffusionsschichten" auf Schaufelwerkstoffen einzusetzen (Vergl. EP-A- 0 161 387). Des weiteren werden Eisensulfat und Salzsäure enthaltende Lösungen zum Entfernen von Chrom und Aluminium enthaltenden Schutzüberzügen auf Kobaltbasis empfohlen, wobei das Eisensulfat direkt oder über Hydrolyse als Schwefelsäure oxydierend einwirkt (Vergl. DE-B-27 17 435). Ausserdem wurden schon Lösungen mit HNO₃ und HF zur Ablösung chrom- und aluminiumhaltiger oder aluminiumhaltiger Schutzschichten von Nickel-oder Kobaltbasislegierungen mit einem Chromgehalt von mehr als 18 % (Vergl. US-A-3 458 353) verwendet.
  • Die bekannten, mit oxydierenden Lösungen arbeitenden Verfahren, stützen sich auf die Erfahrungstatsache, dass sie den Kernwerkstoff des Grundkörpers, im vorliegenden Fall eine Nickel-oder Kobaltbasis-Superlegierung nur schwach angreifen, wenn er wenigsten 7 Gew.-% Cr enthält. Ein Verfahren, bei dem ausser der der Schutzschicht auch noch der Grundkörper abgetragen wird, ist selbstverständlich in den meisten Fällen für die Praxis unbrauchbar.
    Durch den Uebergang zu immer höheren Cr-Gehalten der Schutzschichten werden jedoch die Verhältnisse der elektrochemischen Potentiale des Kernwerkstoffs zu demjenigen der Schutzschicht gerade umgekehrt: Die Schutzschicht wird in oxydierender Lösung gegenüber dem Grundkörper positiv. Das hat zur Folge, dass die Schutzschicht weder elektrolytisch noch Stromlos-chemisch entfernt werden kann. Es wird immer der Grundkörper bevorzugt angegriffen, während die zu entfernende Schutzschicht länger standhält. Deshalb sind die oben genannten bekannten Verfahren auf die neuzeitlichen Materialkombinationen hochchromhaltige Schutzschicht / mässig chromhaltige Superlegierung nicht anwendbar.
  • Darstellung der Erfindung
  • Der Erfindung, wie sie in Patentanspruch 1 angegeben ist, liegt die Aufgabe zugrunde, ein Verfahren zum Ablösen einer auf einer Ni- oder Co-Legierung mit hohem Cr-Gehalt basierenden Oberflächenschutzschicht vom Grundkörper eines Bauteils anzugeben, der aus einer chromhaltigen Ni- und/oder Co-Basislegierung besteht. Dabei soll die Oberflächenschicht vollständig entfernt werden, ohne dass der Werkstoff des Grundkörpers angegriffen, abgetragen oder beschädigt oder in seinen chemisch-physikalischen Eigenschaften und in seinem Verhalten bezüglich Verträglichkeit insbesondere beim nachträglichen Wideraufbringen (Erneuern) einer Oberflächenschutzschicht beeinträchtigt oder verändert wird.
  • Weg zur Ausführung der Erfindung
  • Die Erfindung wird anhand der nachfolgenden, durch Figuren näher erläuterten Ausführungsbeispiele beschrieben.
    Dabei zeigt:
  • Fig. 1
    einen schematischen Querschnitt durch den aktiven Teil des Inhalts eines Gefässes zur Durchführung des Verfahrens,
    Fig. 2
    einen schematischen metallographischen Schnitt durch die Kornstruktur der Oberflächenschutzschicht.
  • In Fig. 1 ist ein schematischer Querschnitt durch den aktiven Teil des Inhalts eines Gefässes zur Durchführung des Verfahrens dargestellt. Die unwesentlichen Teile, welche nicht massgebend am prinzipiellen Verfahrensablauf beteiligt sind, wie das Gefäss selbst, Rühreinrichtungen etc. sind der Uebersichtlichkeit halber weggelassen worden. 1 ist die Chlorid-Lösung für den chemischen Angriff, 2 der Grundkörper (Substrat) aus einer Nickel- oder Kobaltbasis-Superlegierung (Kernwerkstoff). 3 stellt die hochchromhaltige Oberflächenschutzschicht dar. Sie kann grundsätzlich auf einer Nickel-oder Kobaltbasis aufgebaut sein. 4 sind Poren in der Oberflächenschutzschicht 3, welche sich durch den chemischen Angriff der Chlorid-Lösung 1 gebildet haben. 5 ist eine Diffusions-Zwischenschicht zwischen dem Grundkörper 2 und der Oberflächenschutzschicht 3, welche sich durch eine Wärmebehandlung während der Fabrikation oder im Betrieb bildet. Die Oberflächenschutzschicht 3 zeigt beim Eintauchen in die Lösung 1 gegenüber dem Grundkörper 2 ein negatives Potential (durch Vorzeichen - und + angedeutet), worauf das Verfahren des stromlosen selektiven Abtragens der ersteren beruht. In der Chlorid-Lösung 1 sind die hauptsächlich vorhandenen Ionen (H⁺; Fe³⁺; Cu²⁺; Cl⁻) angedeutet. Der Mechanismus der Auflösung ist schematisch durch Symbole und Pfeile dargestellt. Dabei geht vor allem das unedlere Chrom bevorzugt in Lösung (Cr³⁺), während ein Teil des Eisens und des Kupfers als Schlamm zu Boden sinken (Feº; Crº), der übrige in Form niedriger Valenzen (Fe²⁺; Cu⁺) in Lösung bleibt.
  • Fig. 2 stellt einen schematischen metallographischen Schnitt durch die Kornstruktur der Oberflächenschutzschicht dar. 6 sind Körner der hochchromhaltigen Oberflächenschutzschicht 3 auf Nickelbasis oder Kobaltbasis, welche ausser Cr in der Regel noch Al und Si enthalten. Wenigstens ein Teil der Oberfläche der Körner 6 ist mit einer Cr₂O₃-Deckschicht überzogen, die passivierend wirkt. Die hauptsächlich wirksamen Reaktionsmechanismen sind durch Pfeile und Symbole angedeutet.
  • Die Erfindung beruht auf der durch verschieden hohe elektrochemische Potentiale charakterisierten selektiven Auflösung von Metallen, die in eine aggressive chemische Lösung getaucht werden. Dabei verdrängt in der Regel das unedlere elementare Metall das edlere aus der Lösung und geht dabei selbst in Lösung. Das allgemeine Reaktionsschema stellt sich dabei wie folgt:



            Me + Fe³⁺ → Me⁺ + Fe²⁺




            Me⁺ + Fe³⁺ → Me²⁺ + Fe²⁺




            Me + Cu²⁺ → Me⁺ + Cu⁺




            Me⁺ + Cu²⁺ → Me²⁺ + Cu⁺

  • Ausführungsbeispiel 1:
  • Eine mit einer Oberflächenschutzschicht versehene, an ihrem Schaufelblatt korrodierte und teilweise mechanisch beschädigte Gasturbinenschaufel hatte folgende Abmessungen (Schaufelblatt):
    Länge = 185 mm
    Grösste Breite = 93 mm
    Grösste Dicke = 24 mm
    Profilhöhe = 30 mm
  • Der Kernwerkstoff der Gasturbinenschaufel bestand aus einer oxyddispersionsgehärteten Nickelbasis-Superlegierung mit dem Handelsnamen MA 6000 von INCO von folgender Zusammensetzung:
    Cr = 15 Gew.-%
    W =  4,0 Gew.-%
    Mo =  2,0 Gew.-%
    Al =  4,5 Gew.-%
    Ti =  2,5 Gew.-%
    Ta =  2,0 Gew.-%
    C =  0,05 Gew.-%
    B =  0,01 Gew.-%
    Zr =  0,15 Gew.-%
    Y₂O₃ =  1,1 Gew.-%
    Ni =  Rest
  • Die Oberflächenschutzschicht von 100 µm Dicke war durch Plasmaspritzen auf den Kernwerkstoff aufgetragen worden und hatte folgende Zusammensetzung:
    Cr = 20,5 Gew.-%
    Al = 11,5 Gew.-%
    Si =  2,5 Gew.-%
    Ta =  1 Gew.-%
    Co = 12 Gew.-%
    Ni =  Rest
  • Die gebrauchte Schaufel wurde gereinigt, indem sie zunächst während 24 h bei 100 °C in eine 20%ige Lösung von NaOH getaucht. Dann wurde die Schaufel aus der Lösung herausgenommen, gespült und während 24 h bei 40 °C in konzentrierte HCl getaucht. Zum Schluss wurde die Schaufel gespült und mit einer Stahlbürste gebürstet.
  • Nach der Reinigung wurde die Schaufel in eine 70 °C warme Lösung der nachfolgenden Zusammensetzung getaucht:
    300 g/l FeCl₃ · 6H₂O
    2,5 g/l CnCl₂ · 2H₂O
    15 ml/l Glyzerin
    150 ml/l konzentrierte HCl
    Rest H₂O
  • Die Schaufel wurde während 15 h in diesem Bad belassen, nachher herausgenommen, gespült und gebürstet. Dabei konnte keine Beeinträchtigung des Kernwerkstoffs durch chemischen Angriff festgestellt werden.
  • Ausführungsbeispiel 2:
  • Eine mit einer Oberflächenschutzschicht versehene, auf der ganzen Länge des Schaufelblattes unregelmässig abgenutzte Gasturbinenschaufel wurde nach dem stromlosen Verfahren gemäss Beispiel 1 behandelt. Das Schaufelblatt hatte die gleichen Abmessungen und der Kernwerkstoff (MA 6000) die gleiche Zusammensetzung wie in Beispiel 1.
    Die Oberflächenschicht von 120 µm Dicke war durch Plasmaspritzen auf den Kernwerkstoff aufgetragen worden und hatte die gleiche Zusammensetzung wie in Beispiel 1. Die gebrauchte Schaufel wurde gemäss Beispiel 1 durch Eintauchen in NaOH-und HCl-Lösung und Behandlung mit einer Stahlbürste gereinigt.
  • Nach der Reinigung wurde die Schaufel in ein Bad der nachfolgenden Zusammensetzung getaucht:
    500 g/l FeCl₃ · 6H₂O
    5 g/l CuCl₂ · 2H₂O
    20 ml/l Glyzerin
    Rest H₂O
  • Das Bad hatte eine Temperatur von 50 °C. Nach einer Reaktionszeit von 14 h wurde die Schaufel aus dem Bad herausgenommen, gespült, gebürstet und getrocknet. Die Oberflächenschicht war vollständig aufgelöst worden, ohne dass das Substrat angegriffen worden war.
  • Ausführungsbeispiel 3:
  • Eine mit einer Oberflächenschutzschicht versehene, an ihrem Schaufelblatt teilweise korrodierte Gasturbinenschaufel hatte folgende Abmessungen (Schaufelblatt):
    Länge = 170 mm
    Grösste Breite = 86 mm
    Grösste Dicke = 22 mm
    Profilhöhe = 27 mm
  • Der Kernwerkstoff der Gasturbinenschaufel bestand aus einer Nickelbasis-Guss-Superlegierung mit dem Handelsnamen IN 738 von INCO mit folgender Zusammensetzung:
    Cr = 16,0 Gew.-%
    Co =  8,5 Gew.-%
    Mo =  1,75 Gew.-%
    W =  2,6 Gew.-%
    Ta =  1,75 Gew.-%
    Nb =  0,9 Gew.-%
    Al =  3,4 Gew.-%
    Ti =  3,4 Gew.-%
    Zr =  0,1 Gew.-%
    B =  0,01 Gew.-%
    C =  0,11 Gew.-%
    Ni =  Rest
  • Die Oberflächenschutzschicht von 120 µm Dicke war durch Plasmaspritzen auf den Kernwerkstoff aufgetragen worden und hatte die nachfolgende Zusammensetzung:
    Cr = 25 Gew.-%
    Al =  7 Gew.-%
    Y =  0,7 Gew.-%
    C <  0,002 Gew.-%
    Co =  Rest
  • Die teilweise korrodierte Schaufel wurde gemäss Beispiel 1 gereinigt und dann in eine Lösung der folgenden Zusammensetzung gestellt:
    200 g/l FeCl₃ · 6H₂O
    1 g/l CuCl₂ · 2H₂O
    10 ml/l Glyzerin
    30 ml/l konzentrierte HCl
    Rest H₂O
  • Das Bad hatte eine Temperatur von 70 °C. Die behandelte Gasturbinenschaufel wurde nach 144 h Reaktionszeit aus dem Bad herausgenommen, gespült, gebürstet und getrocknet. Nach vollständiger Auflösung der Oberflächenschutzschicht konnte kein Angriff des Kernwerkstoffs festgestellt werden.
  • Ausführungsbeispiel 4:
  • Eine mit einer Oberflächenschutzschicht versehene, auf der ganzen Länge des Schaufelblattes unregelmässig korrodierte Gasturbinenschaufel wurde nach dem stromlosen Verfahren ähnlich Beispiel 1 behandelt. Das Schaufelblatt hatte die gleichen Abmessungen und der Kernwerkstoff (IN 738) die gleiche Zusammensetzung wie in Beispiel 3.
    Die Oberflächenschutzschicht war durchschnittliche 150 µm dick und war ehemals durch Plasmaspritzen auf den Kernwerkstoff aufgetragen worden. Sie hatte die gleiche Zusammensetzung wie diejenige von Beispiel 3.
    Die gebrauchte Schaufel wurde gemäss Beispiel 1 gereinigt und daraufhin in eine Lösung der folgenden Zusammensetzung eingetaucht:
    300 g/l FeCl₃ · 6H₂O
    2 g/l CuCl₂ · 2H₂O
    20 ml/l konzentrierte HCl
    Rest H₂O
  • Das Bad hatte eine Temperatur von 60 °C. Die Schaufel wurde nach 120 h Reaktionszeit aus der Lösung herausgenommen, gespült, gebürstet und getrocknet. Bei vollständiger Auflösung der Oberflächenschutzschicht konnte keinerlei Angriff des Kernwerkstoffs festgestellt werden.
  • Ausführungsbeispiel 5:
  • Der Versuch gemäss Beispiel 4 wurde wiederholt, wobei jedoch die Lösung zur Entfernung der Oberflächenschutzschicht die nachfolgende Zusammensetzung hatte:
    300 g/l FeCl₃ · 6H₂O
    1 g/l CuCl₂ · 2H₂O
    30 g/l NH₄HF₂
    Rest H₂O
  • Die Badtemperatur betrug 60 °C, die totale Reaktionszeit 1 h. Nach der Behandlung war der Kernwerkstoff unangegriffen geblieben.
  • Ausführungsbeispiel 6:
  • Eine mit einer Oberflächenschutzsicht versehene, auf der ganzen Länge des Schaufelblattes unregelmässige korrodierte Gasturbineneschaufel wurde nach dem stromlosen Verfahren änlich Beispiel 1 behandelt. Das Schaufelblatt hatte die gleichen Abmessungen und der Kernwerkstoff (IN 738) die gleiche Zusammensetzung wie in Beispiel 3.
    Die Oberflächenschutzsicht war durchschnittliche 120 µm dick und war ehemals durch Plasmaspritzen auf den Kernwerkstoff aufgetragen worden. Sie hatte die gleiche Zusammensetzung wie diejenige von Beispiel 3.
    Die gebrauchte Schaufel wurde gemäss Beispiel 1 gereinigt und daraufhin in eine Lösung der folgenden Zusammensetzung eingetaucht:
    250 g/l FeCl₃ · 6H₂O
    1 g/l CuCl₂ · 2H₂O
    100 g/l NaCl
    200 g/l Zitronensäure
    Rest H₂O
  • Das Bad hatte eine Temperatur von 65°C. Die Schaufel wurde nach 100 h Reaktionszeit aus der Lösung herausgenommen, gespült, gebürstet und getrocknet. Bei vollständiger Auflösung der Oberflächenschutzsicht konnte keinerlei Angriff des Kernwerkstoffs festgestellt werden.
  • Ausführungsbeispiel 7:
  • Der Versuch gemäss Beispiel 6 wurde wiederholt, wobei jedoch die Lösung zur Entfernung der Oberflächenschutzschicht die nachfolgende Zusammensetzung hatte:
    300 g/l FeCl₃ · 6H₂O
    0,5 g/l CuCl₂ · 2H₂O
    50 g/l NaCl
    100 g/l Oxalsäure
    Rest H₂O
  • Die Badtemperatur betrug 60 °C, die totale Reaktionszeit 1 h. Nach der Behandlung war der Kernwerkstoff unangegriffen geblieben.
  • Die Erfindung ist nicht auf die Ausführungsbeisiele beschränkt Das stromlose chemische Ablösen einer hochchromhaltigen Oberflächenchutzsicht von einer Nickel- oder Kobaltbasis-Superlegierung wird durch Eintauchen des betreffenden Bauteils in eine nicht Sauerstoff aggebende, Eisen III und Kupfer II enthaltende wässrige Chlorid-Lösung, welche noch weitere Zusätze jedoch keinerlei Chromoxyd bildende Bestandteile enthält, während einer Zeit von 1 h bis 150 h bei einer Temperatur von 50 bis 70 °C bewerktelligt. Vorteilhafterweise hat die Chlorid-Lösung die Zusammensetzung:
    200 - 400 g/l FeCl₃ · 6H₂O
    0,5 - 5 g/l CuCl₂ · 2H₂O
    10 - 20 ml/l Glyzerin
    120 - 200 ml/l konzentrierte HCl
    Rest H₂O

Claims (8)

  1. Verfahren zum chemischen Ablösen einer hochchromhaltigen Oberflächenschutzschicht (3) vom Grundkörper (2) eines aus einer Nickel- der Kobaltbasis- Superlegierung bestehenden Bauteils, bei dem das Bauteil während 1 h bis 150 h bei einer Temperatur im Bereich von 50 bis 70°C in eine wässrige, nicht Sauerstoff abgebende Lösung getaucht wird, welche Lösung eine Eisen-III-Verbindung und mindestens einen weiteren keinerlei Chromoxid bildenden Bestandteil enthält, dadurch gekennzeichnet, dass die Lösung Eisen-III-Chlorid und Kupfer-II-Chlorid enthält, und dass der keinerlei Chromoxid bildende Bestandteil vorzugsweise Salzsäure, Glyzerin, NH₄HF₂, Zitronensäure und/oder Oxalsäure aufweist.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Lösung (1) die nachfolgende Zusammensetzung hat: 200 - 400 g/l FeCl₃ · 6H₂O 0,5 - 5 g/l CuCl₂ · 2H₂O 10 - 20 ml/l Glyzerin 120 - 200 ml/l konzentrierte HCl Rest H₂O
  3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Lösung (1) die nachfolgende Zusammensetzung hat: 500 g/l FeCl₃ · 6H₂O 5 g/l CuCl₂ · 2H₂O 20 ml/l Glyzerin Rest H₂O
  4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Lösung (1) die nachfolgende Zusammensetzung hat: 200 g/l FeCl₃ · 6H₂O 1 g/l CuCl₂ · 2H₂O 10 ml/l Glyzerin 30 ml/l konzentrierte HCl Rest H₂O
  5. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Lösung (1) die nachfolgende Zusammensetzung hat: 300 g/l FeCl₃ · 6H₂O 2 g/l CuCl₂ · 2H₂O 20 ml/l konzentrierte HCl Rest H₂O
  6. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Lösung (1) die nachfolgende Zusammensetzung hat: 300 g/l FeCl₃ · 6H₂O 1 g/l CuCl₂ · 2H₂O 30 g/l NH₄HF₂ Rest H₂O
  7. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Lösung (1) die nachfolgende Zusammensetzung hat: 250 g/l FeCl₃ · 6H₂O 1 g/l CuCl₂ · 2H₂O 100 g/l NaCl 200 g/l Zitronensäure Rest H₂O
  8. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Lösung (1) die nachfolgende Zusammensetzung hat: 300 g/l FeCl₃ · 6H₂O 0,5 g/l CuCl₂ · 2H₂O 50 g/l NaCl 100 g/l Oxalsäure Rest H₂O
EP88118502A 1987-12-01 1988-11-07 Verfahren zum chemischen Ablösen einer hochchromhaltigen Oberflächenschutzschicht vom Grundkörper eines aus einer Nickel- oder Kobaltbasis-Superlegierung bestehenden Bauteils Expired - Lifetime EP0318724B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH4675/87A CH674851A5 (de) 1987-12-01 1987-12-01
CH4675/87 1987-12-01

Publications (2)

Publication Number Publication Date
EP0318724A1 EP0318724A1 (de) 1989-06-07
EP0318724B1 true EP0318724B1 (de) 1993-03-24

Family

ID=4280516

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88118502A Expired - Lifetime EP0318724B1 (de) 1987-12-01 1988-11-07 Verfahren zum chemischen Ablösen einer hochchromhaltigen Oberflächenschutzschicht vom Grundkörper eines aus einer Nickel- oder Kobaltbasis-Superlegierung bestehenden Bauteils

Country Status (5)

Country Link
US (1) US4944807A (de)
EP (1) EP0318724B1 (de)
JP (1) JPH01195290A (de)
CH (1) CH674851A5 (de)
DE (1) DE3879634D1 (de)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07122152B2 (ja) * 1990-06-19 1995-12-25 日本パーカライジング株式会社 アルミニウム用酸性洗浄液
US5034093A (en) * 1990-09-25 1991-07-23 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Metal etching composition
DE4120305C1 (de) * 1991-06-20 1992-08-27 Mtu Muenchen Gmbh
FR2695142B1 (fr) * 1992-08-27 1994-11-04 Europ Gas Turbines Sa Revêtement anti-usure au cobalt d'une pièce en alliage de nickel.
US6454870B1 (en) 2001-11-26 2002-09-24 General Electric Co. Chemical removal of a chromium oxide coating from an article
US6699101B2 (en) * 2001-11-29 2004-03-02 General Electric Company Method for removing a damaged substrate region beneath a coating
ITPD20040106A1 (it) * 2004-04-27 2004-07-27 Birame Boye Demetallizzazione ecocompatibile di oggetti plastici cromati ed estensione a substrati metallici passivabili
US6878215B1 (en) 2004-05-27 2005-04-12 General Electric Company Chemical removal of a metal oxide coating from a superalloy article
EP2166125A1 (de) * 2008-09-19 2010-03-24 ALSTOM Technology Ltd Verfahren zur Wiederherstellung eines metallischen Überzuges
US8859479B2 (en) * 2011-08-26 2014-10-14 United Technologies Corporation Chemical stripping composition and method
JP6508823B2 (ja) * 2015-05-08 2019-05-08 三菱重工航空エンジン株式会社 酸化膜除去方法
CN107099799A (zh) * 2017-03-31 2017-08-29 李世华 一种氯化铜蚀刻液及其制备方法
CN111188042A (zh) * 2020-01-14 2020-05-22 东莞市美贝仕铜材处理剂开发有限公司 一种铜材抛光预处理液、其制备方法及使用方法
CN111139487A (zh) * 2020-01-14 2020-05-12 东莞市美贝仕铜材处理剂开发有限公司 一种铜材抛光预处理液、其制备方法及使用方法
CN112881139B (zh) * 2021-01-25 2022-08-23 河北工业大学 一种因瓦合金腐蚀液及其应用

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3458353A (en) * 1966-11-16 1969-07-29 Alloy Surfaces Co Inc Process of removing coatings from nickel and cobalt base refractory alloys
US3562040A (en) * 1967-05-03 1971-02-09 Itt Method of uniformally and rapidly etching nichrome
US3622391A (en) * 1969-04-04 1971-11-23 Alloy Surfaces Co Inc Process of stripping aluminide coating from cobalt and nickel base alloys
US3607398A (en) * 1969-06-18 1971-09-21 Avco Corp Chemical stripping process
US3833414A (en) * 1972-09-05 1974-09-03 Gen Electric Aluminide coating removal method
ES427394A1 (es) * 1973-06-18 1977-02-01 Oxy Metal Industries Corp Mejoras introducidas en un metodo de decapado de depositos de niquel acumulados en los dispositivos de metalizado y si-milares.
GB1521783A (en) * 1976-04-27 1978-08-16 Rolls Royce Method of and mixture for alloy coating removal
US4244833A (en) * 1979-11-15 1981-01-13 Oxy Metal Industries Corporation Composition and process for chemically stripping metallic deposits
US4339282A (en) * 1981-06-03 1982-07-13 United Technologies Corporation Method and composition for removing aluminide coatings from nickel superalloys
SE8206447L (sv) * 1981-11-24 1983-05-25 Occidental Chem Co Avmetalliseringskomposition och -forfarande
US4425185A (en) * 1982-03-18 1984-01-10 United Technologies Corporation Method and composition for removing nickel aluminide coatings from nickel superalloys
US4554049A (en) * 1984-06-07 1985-11-19 Enthone, Incorporated Selective nickel stripping compositions and method of stripping
EP0200776B1 (de) * 1984-10-26 1989-01-18 UHT, Umwelt- und Hygienetechnik GmbH Lösungsverfahren und lösungsmittel für schwerlösliche karbonate

Also Published As

Publication number Publication date
CH674851A5 (de) 1990-07-31
JPH01195290A (ja) 1989-08-07
EP0318724A1 (de) 1989-06-07
US4944807A (en) 1990-07-31
DE3879634D1 (de) 1993-04-29

Similar Documents

Publication Publication Date Title
EP0318724B1 (de) Verfahren zum chemischen Ablösen einer hochchromhaltigen Oberflächenschutzschicht vom Grundkörper eines aus einer Nickel- oder Kobaltbasis-Superlegierung bestehenden Bauteils
DE2734529C2 (de) Gegenstand mit verbesserter Oxydations- und Korrosionsbeständigkeit bei hoher Temperatur
DE60030197T2 (de) Verfahren zum Entfernen von Aluminidüberzügen von Substraten
DE69802725T2 (de) Verfahren zur Entfernung von Oberflächenschichten von metallischen Beschichtungen
DE2853959C2 (de)
DE69218061T2 (de) Instandhaltung von Werkstücken aus korrodierten Superlegierungen oder korrodiertem hitzebeständigem Stahl und so instandgesetzte Teile
EP1725700B1 (de) Entschichtungsverfahren
DE2907875C2 (de) Verfahren zum elektrolytischen Abtragen von Wolframcarbid-Überzügen auf Werkstücken aus Titan oder Titan-Legierungen
DE1961047A1 (de) Verfahren zur Herstellung von Diffusionsschutzschichten auf Gegenstaenden aus Legierungen auf Kobaltbasis
DE69819276T2 (de) Verfahren zur Verbesserung der Oxidations- und Korrosionsbeständigkeit eines Gegenstand aus Superlegierung und Gegenstand aus Superlegierung so hergestellt
EP0318886B1 (de) Verfahren zum elektrolytischen Ablösen einer einen hohen Cr- und Ni- und/oder Co-Gehalt aufweisenden Oberflächenschutzschicht vom Grundkörper eines aus einer Superlegierung bestehenden Bauteils
DE3047636C2 (de)
DE69014789T2 (de) Zusammensetzung und verfahren zur entfernung von zinn oder zinn-bleilegierungen von kupferflächen.
DE69019424T2 (de) Elektrode für elektrolytische Verfahren und Verfahren zur Herstellung der Elektrode.
DE4120305C1 (de)
DE112006002001T5 (de) Verfahren zur Reparatur von durch Sulfidationsangriff zerstörten Turbinenkomponenten
DE2717435C3 (de) Verfahren zum Entfernen eines Aluminium und Chrom zusammen mit Kobalt enthaltenden Überzugs von einem aus einer Nickelbasislegierung bestehenden Substrat
DE69700420T2 (de) Verfahren zur Bearbeitung der aus Kupfer oder Kupferlegierung hergestellten Aussenoberfläche einer Stranggusskokille welches aus einer Nickelplattierungstufe und einer Nickelentfernungstufe besteht
DE3248006A1 (de) Mittel und verfahren zum selektiven chemischen entfernen harter oberflaechenueberzuege von substraten aus superlegierung
DE3248041C2 (de) Wäßrige Lösung zum Abbeizen harter Oberflächenüberzüge von Metallsubstraten und deren Verwendung
EP0596273B1 (de) Mittel zum Beizen der Oberfläche von Chromnickelstählen und Chromstählen sowie Verwendung des Mittels
DE1521570B2 (de) Gegenueber oxidation, korrosion und erosion bestaendiger metallgegenstand und verfahren zu seiner herstellung
DE2649388A1 (de) Korrosionsschutzschicht fuer warmfeste legierungen
EP0859873A1 (de) Verfahren zur entfernung von zinn
DE2322159A1 (de) Verfahren zur herstellung einer carbidschicht aus einem element der gruppe va des periodensystems auf der oberflaeche eines eisen-, eisenlegierungs- oder sintercarbidgegenstandes

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19891116

17Q First examination report despatched

Effective date: 19910524

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 3879634

Country of ref document: DE

Date of ref document: 19930429

ITF It: translation for a ep patent filed
ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19930602

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19941122

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19941123

Year of fee payment: 7

EAL Se: european patent in force in sweden

Ref document number: 88118502.9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19951016

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19951019

Year of fee payment: 8

Ref country code: FR

Payment date: 19951019

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19951026

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19951130

Ref country code: CH

Effective date: 19951130

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19960801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19961107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19961108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19970601

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19961107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19970731

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19970601

EUG Se: european patent has lapsed

Ref document number: 88118502.9

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051107