US3607398A - Chemical stripping process - Google Patents
Chemical stripping process Download PDFInfo
- Publication number
- US3607398A US3607398A US834522A US3607398DA US3607398A US 3607398 A US3607398 A US 3607398A US 834522 A US834522 A US 834522A US 3607398D A US3607398D A US 3607398DA US 3607398 A US3607398 A US 3607398A
- Authority
- US
- United States
- Prior art keywords
- stripping
- mixture
- heated
- coating
- acids
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims description 30
- 239000000126 substance Substances 0.000 title abstract description 6
- 238000000576 coating method Methods 0.000 claims abstract description 35
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 claims abstract description 22
- 229910000951 Aluminide Inorganic materials 0.000 claims abstract description 18
- 239000000203 mixture Substances 0.000 claims abstract description 16
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims abstract description 12
- 239000002253 acid Substances 0.000 claims abstract description 10
- 150000007513 acids Chemical class 0.000 claims abstract description 10
- 239000000758 substrate Substances 0.000 claims abstract description 10
- 239000007788 liquid Substances 0.000 claims abstract description 8
- 238000007654 immersion Methods 0.000 claims abstract description 7
- FOCAUTSVDIKZOP-UHFFFAOYSA-N chloroacetic acid Chemical compound OC(=O)CCl FOCAUTSVDIKZOP-UHFFFAOYSA-N 0.000 claims abstract description 6
- 229940106681 chloroacetic acid Drugs 0.000 claims abstract description 6
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims abstract description 4
- 229910017604 nitric acid Inorganic materials 0.000 claims abstract description 4
- 239000011248 coating agent Substances 0.000 claims description 26
- NPXOKRUENSOPAO-UHFFFAOYSA-N Raney nickel Chemical compound [Al].[Ni] NPXOKRUENSOPAO-UHFFFAOYSA-N 0.000 claims description 5
- 229910000907 nickel aluminide Inorganic materials 0.000 claims description 5
- 229910000147 aluminium phosphate Inorganic materials 0.000 claims description 4
- 238000010285 flame spraying Methods 0.000 claims description 3
- 239000011874 heated mixture Substances 0.000 claims description 2
- 235000011007 phosphoric acid Nutrition 0.000 abstract description 5
- 229910045601 alloy Inorganic materials 0.000 description 8
- 239000000956 alloy Substances 0.000 description 8
- 235000011054 acetic acid Nutrition 0.000 description 7
- 229960000583 acetic acid Drugs 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 229910000601 superalloy Inorganic materials 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 150000001243 acetic acids Chemical class 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 239000012362 glacial acetic acid Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23F—NON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
- C23F1/00—Etching metallic material by chemical means
- C23F1/44—Compositions for etching metallic material from a metallic material substrate of different composition
Definitions
- This invention relates to the removal of aluminide coatings from nickelor cobalt-base alloy substrates.
- One surface treatment to improve the life of rotors and other components used in gas turbine engines involves the coating of the nickel-base or cobalt-base superalloys of which the components are commonly fabricated.
- One known coating process involves covering the parts with aluminum or aluminum base alloys and then be subsequent treatment converting the coating to an aluminide of nickel or cobalt.
- Suitable base materials for the turbine parts are described in an earlier patent issued on an invention made jointly be me, namely, US. Pat. No. 3,155,536, issued Nov. 3, 1964, and are known in the art as superalloys.
- the aluminide coating is not suited to the intended application either because it is too thick or too thin, or because the aluminide coating is not uniform, or is incomplete on some area of the article to be protected.
- the present invention is directed to the removal of such unsuitable coatings without any damage to the base material so that the turbine vane or bucket or other component can be salvaged whether it be for the purpose of recoating, machining and then recoating, or for the purpose of recovering the alloy by melting the alloy, uncontaminated by the coating. Because of the complicated shape of such parts, machining or other forms of mechanical removal of the aluminide coating is not feasible. Further, when the parts are hollow, a coating inside the bore is usually inaccessible to mechanical tools.
- the present invention provides a chemical method for stripping the aluminide coating from such base materials, by use of a concentrated mixture of phosphoric, nitric and acetic acids.
- One preferred composition comprises the three acids in the proportions 2: l :1 by volume, but the proportions can be varied over the following ranges (percent of volume):
- Stripping of the aluminide coating from the base material is accomplished by simply immersing the coated article in a solution consisting of a mixture of the three acids formed by adding the nitric and acetic acids to the phosphoric acid and stirring the mixture.
- chloroacetic acid may be used in place of some or of all of the glacial acetic acid.
- the use of chloroacetic acid has been found to be particularly desirable when stripping coatings which contain relatively high percentages of chromium in the coating.
- One method of operation found suitable has been to heat the solution to between about and F. before immersing the part to be stripped and then heating the stripping liquid to between about 185 and 200 F., as the stripping proceeds toward completion.
- Another method found suitable has been to place the parts in the solution, heat to 165 F., hold at 165 F. for 2 hours, then remove from solution, rinse in water and proceed with liquid honing.
- the method of the present invention has been applied successfully to salvaging engine-run parts, such as buckets or blades on which the aluminide coating has been eroded in service at only certain locations such as the leading edge.
- the solution dissolves only the aluminide coating and does not attack the superalloy base material. It is also effective for the removal of nickel aluminide deposited by flame spraying or plasma arc spraying onto other metal substrates.
- a process for removing aluminide coatings from substrates selected from the group consisting of Ni-base alloys Co-base alloys and superalloys comprising: immersing the coated substrate in a mixture of phosphoric, nitric and acetic acids, the duration of the immersion being for a time sufficient for the aluminide coating to dissolve.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- ing And Chemical Polishing (AREA)
Abstract
Aluminide coatings are removed without attack of the substrate by immersion of coated articles in an aqueous liquid composed of a mixture of orthophosphoric acid, nitric acid and acetic and/or chloroacetic acid. For more rapid chemical stripping, the mixture of acids should be heated.
Description
United States Patent 2,446,060 7/1948 Pray et a1.. 2,650,157
Inventor Joseph G. Lucas Trumbull, Conn.
Appi. No. 834,522
Filed June 18, 1969 Patented Sept. 21, 1971 Assignee Avco Corporation Stratiord, Conn.
CHEMICAL STRTPPING PROCESS 11 Claims, No Drawings 11.5. C1 134/3, 134/41, 252/79.4, 25 2 5; Int. Cl B081) 3/08, C23g 1/12 Fieid of Search 134/3, 41; 252/792, 79.4, 101, 142; 75/121 References Cited UNITED STATES PATENTS 8/1953 Cochran 2,678,875 5/1954 Spooner 252/79.2 X 3,008,812 11/1961 Spahn 252/142 X 3,041,227 6/1962 Jumer 252/101 X 3,119,726 1/1964 King et a1.. 252/101 X 3,202,612 8/1965 Neison 252/79.2 3,458,353 7/1969 Baidi 134/3 3,514,407 5/1970 Missei 134/41 X FOREIGN PATENTS 174,489 2/1922 Great Britain 252/101 474,228 9/1952 Italy 252/79.2
Primary Examiner-Joseph Scovronek Assistant Examiner-D. G. Miliman Att0rneys-Char1es M. Hogan, irwin P. Garfinkle and Lawrence 1. Field ABSTRACT: Aluminide coatings are removed without attack of the substrate by immersion of coated articles in an aqueous liquid composed of a mixture of orthophosphoric acid, nitric acid and acetic and/or chloroacetic acid. For more rapid chemical stripping, the mixture of acids should be heated.
CHEMICAL STRIPPING PROCESS This invention relates to the removal of aluminide coatings from nickelor cobalt-base alloy substrates.
One surface treatment to improve the life of rotors and other components used in gas turbine engines involves the coating of the nickel-base or cobalt-base superalloys of which the components are commonly fabricated. One known coating process involves covering the parts with aluminum or aluminum base alloys and then be subsequent treatment converting the coating to an aluminide of nickel or cobalt.
Suitable base materials for the turbine parts are described in an earlier patent issued on an invention made jointly be me, namely, US. Pat. No. 3,155,536, issued Nov. 3, 1964, and are known in the art as superalloys.
Later developments in the coating of such alloys are described in a copending patent application, U.S. Ser. No. 686,852 filed Nov. 30, 1967.
Other patents which describe the formation of aluminide coatings of Nior Co-base alloys and superalloys include US. Pat. Nos. 3,079,276 and 3,096,160 issued Feb. 26, 1963, and July 2, 1963, respectively.
in many instances, the aluminide coating is not suited to the intended application either because it is too thick or too thin, or because the aluminide coating is not uniform, or is incomplete on some area of the article to be protected.
The present invention is directed to the removal of such unsuitable coatings without any damage to the base material so that the turbine vane or bucket or other component can be salvaged whether it be for the purpose of recoating, machining and then recoating, or for the purpose of recovering the alloy by melting the alloy, uncontaminated by the coating. Because of the complicated shape of such parts, machining or other forms of mechanical removal of the aluminide coating is not feasible. Further, when the parts are hollow, a coating inside the bore is usually inaccessible to mechanical tools.
The present invention provides a chemical method for stripping the aluminide coating from such base materials, by use of a concentrated mixture of phosphoric, nitric and acetic acids.
One preferred composition comprises the three acids in the proportions 2: l :1 by volume, but the proportions can be varied over the following ranges (percent of volume):
Broad Preferred mm, (85% cone) -80 40-60 HNO (70% cone) 10-80 l530 Glacial Acetic (99% cone) 015-85 -30 From the above, it will be seen that the final mixture contains several percent of water.
Stripping of the aluminide coating from the base material is accomplished by simply immersing the coated article in a solution consisting of a mixture of the three acids formed by adding the nitric and acetic acids to the phosphoric acid and stirring the mixture.
The preferred formula No. 4 above (2:1: 1 gives a strip rate of approximately 0.001 inch per 10 minutes at 165F.
In order to avoid the evolution of unpleasant acetic acid vapors from the heated stripping solution, chloroacetic acid may be used in place of some or of all of the glacial acetic acid. The use of chloroacetic acid has been found to be particularly desirable when stripping coatings which contain relatively high percentages of chromium in the coating.
No agitation of the solution is required when a heated solution is used, because action is quite vigorous when the solution is hot. However, in order to insure that all portions of the work are exposed to the stripping solution, it is preferred to move the work through the solution so that stripping liquid flows relative to the coated surface of the work.
One method of operation found suitable has been to heat the solution to between about and F. before immersing the part to be stripped and then heating the stripping liquid to between about 185 and 200 F., as the stripping proceeds toward completion.
If the solution is permitted to cool to about 180 F. and no action is apparent, then the stripping is complete and the part is removed for rinsing in water.
Any smut which may be present after stripping is removed by liquid honing (vapor blast) and if removal of the coating does not appear to be complete, the part can be immersed in the stripping solution for a short time.
Another method found suitable has been to place the parts in the solution, heat to 165 F., hold at 165 F. for 2 hours, then remove from solution, rinse in water and proceed with liquid honing.
Usually immersion for between 30 minutes and 90 minutes is sufficient, but immersion overnight or for as long as 20 hours has not produced any attack or intergranular corrosion of the part being treated.
The method of the present invention has been applied successfully to salvaging engine-run parts, such as buckets or blades on which the aluminide coating has been eroded in service at only certain locations such as the leading edge.
After completion of the removal of the aluminide coating, the part is dried and is then ready for recoating according to the pack cementation procedure described in US. Pat. application Ser. No. 686,852 filed Nov. 30*, 1967, or other suitable process.
it should be particularly noted that the solution dissolves only the aluminide coating and does not attack the superalloy base material. It is also effective for the removal of nickel aluminide deposited by flame spraying or plasma arc spraying onto other metal substrates.
in some cases it may be desirable to strip only the excess coating to restore the part to specifications, thus saving the cost of completely stripping and recoating to specification.
The following data shows actual rates of stripping aluminide coatings at 165 F.:
Resultant Time in coating Coating strip, thickness, removal, Initial coating thickness, inches minutes inches inches TABLE Phosphoric acid 83... 80 G7... 50., 34..." 10 i0. Nitricucid .17.,.. 10. 25 33. 80 10. Acetic acid 0 0.. 33". 10 80. Water content 17.5... 15 20..... 15..." 15 25.6 4.5. Strip ratc Slow.. Moderate Fast Fast. Fast" Very fast Very slow.
1 Percent by volume. 2 Percent by woightcalculat ed.
Having now described the invention, it is not intended that it be limited except as required by the appended claims.
1. A process for removing aluminide coatings from substrates selected from the group consisting of Ni-base alloys Co-base alloys and superalloys comprising: immersing the coated substrate in a mixture of phosphoric, nitric and acetic acids, the duration of the immersion being for a time sufficient for the aluminide coating to dissolve.
2. The process of claim 1 wherein at least some of the acetic acid is replaced by chloroacetic acid.
3. The process of claim 1 wherein the immersion is in heated mixture of acids, heated to a temperature between about 130 F. and about 220 F.
4. The process of claim 1 wherein the mixture of acids is heated to between about 140 and 165 F. before an article to be stripped is immersed therein and then heated to between about 185 and 200 F. after the part is immersed and the stripping proceeds.
5. The process of claim wherein the stripped substrate is permitted to cool in the solution until no further action is visible.
6. The process of claim 1 wherein, after completion of stripping, the substrate is removed from the stripping mixture and is then liquid honed.
7. The process of claim 1 wherein the coating removed is nickel aluminide deposited by flame spraying.
8. The process of claim 1 where in the coating removed is nickel aluminide deposited by pack cementation.
9. The process of claim 1 wherein the coating removed is an aluminide formed by any means.
10. The process of claim 1 wherein the relative proportions of acids in the stripping mixtures are respectively 2:121 by volume, based on a phosphoric acid concentration of percent, nitric acid concentration of 70 percent, and acetic acid concentration of 99 percent.
11. The process of claim 10 wherein the temperature is about F.
PO-1O5Q UNITED STATES PATENT OFFICE 5G9 CERTIFICATE OF CORRECTION Patent No. 3,607,398 Dated September 1971 Inventor(s) Joseph Lucas It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:
Column 1, line 9, "be" should read by Column 1, line 50, change "015-85 to 0-85 Signed and sealed this 29th day of February 1972.
(SEAL) Attest:
ROBERT GOTTSGHALK EDWARD M.FLETCHER, JR.
Commissioner of Patents Attesting Officer
Claims (10)
- 2. The process of claim 1 wherein at least some of the acetic acid is replaced by chloroacetic acid.
- 3. The process of claim 1 wherein the immersion is in heated mixture of acids, heated to a temperature between about 130* F. and about 220 F.
- 4. The process of claim 1 wherein the mixture of acids is heated to between about 140* and 165* F. before an article to be stripped is immersed therein and then heated to between about 185* and 200 F. after the part is immersed and the stripping proceeds.
- 5. The process of claim 1 wherein the stripped substrate is permitted to cool in the solution until no further action is visible.
- 6. The process of claim 1 wherein, after completion of stripping, the substrate is removed from the stripping mixture and is then liquid honed.
- 7. The process of claim 1 wherein the coating removed is nickel aluminide deposited by flame spraying.
- 8. The process of claim 1 where in the coating removed is nickel aluminide deposited by pack cementation.
- 9. The process of claim 1 wherein the coating removed is an aluminide formed by any means.
- 10. The process of claim 1 wherein the relative proportions of acids in the stripping mixtures are respectively 2:1:1 by volume, based on a phosphoric acid concentration of 85 percent, nitric acid concentration of 70 percent, and acetic acid concentration of 99 percent.
- 11. The process of claim 10 wherein the temperature is about 165* F.
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US83452269A | 1969-06-18 | 1969-06-18 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US3607398A true US3607398A (en) | 1971-09-21 |
Family
ID=25267118
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US834522A Expired - Lifetime US3607398A (en) | 1969-06-18 | 1969-06-18 | Chemical stripping process |
Country Status (1)
| Country | Link |
|---|---|
| US (1) | US3607398A (en) |
Cited By (23)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3833414A (en) * | 1972-09-05 | 1974-09-03 | Gen Electric | Aluminide coating removal method |
| FR2472620A1 (en) * | 1979-12-26 | 1981-07-03 | Gen Electric | METHOD FOR THE CHEMICAL REMOVAL OF METAL OR CERAMIC FILLING MATERIALS ATTACHED TO A BASIC ELEMENT |
| US4282041A (en) * | 1978-12-05 | 1981-08-04 | Rolls-Royce Limited | Method for removing aluminide coatings from nickel or cobalt base alloys |
| DE3248041A1 (en) * | 1982-01-11 | 1983-07-21 | Enthone, Inc., West Haven, Conn. | MEANS AND METHOD FOR SELECTIVELY REMOVING HARD SURFACE COATINGS FROM METAL SUBSTRATES |
| US4439339A (en) * | 1983-02-08 | 1984-03-27 | Doumit Carl J | Descaler composition and method |
| US4944807A (en) * | 1987-12-01 | 1990-07-31 | Bbc Brown Boveri Ag | Process for chemically stripping a surface-protection layer with a high chromium content from the main body of a component composed of a nickel-based or cobalt-based superalloy |
| US5417600A (en) * | 1992-01-22 | 1995-05-23 | Mitsubishi Denki Kabushiki Kaisha | Method of manufacturing an impregnation type cathode |
| US5938855A (en) * | 1998-01-20 | 1999-08-17 | General Electric Company | Method for cleaning a turbine component |
| US5976265A (en) * | 1998-04-27 | 1999-11-02 | General Electric Company | Method for removing an aluminide-containing material from a metal substrate |
| EP1013797A1 (en) * | 1998-12-22 | 2000-06-28 | General Electric Company | Method of removing hot corrosion products from a diffusion aluminide coating |
| US20020100493A1 (en) * | 2001-01-29 | 2002-08-01 | General Electric Company | Method for removing oxides and coatings from a substrate |
| EP1213370A3 (en) * | 2000-12-05 | 2002-11-27 | General Electric Company | Method and composition for cleaning a turbine engine component |
| US6494960B1 (en) | 1998-04-27 | 2002-12-17 | General Electric Company | Method for removing an aluminide coating from a substrate |
| US20030116237A1 (en) * | 2001-12-20 | 2003-06-26 | Worthing Richard Roy | Process for rejuvenating a diffusion aluminide coating |
| US6599416B2 (en) | 2001-09-28 | 2003-07-29 | General Electric Company | Method and apparatus for selectively removing coatings from substrates |
| RU2215877C2 (en) * | 2001-12-06 | 2003-11-10 | Гойхенберг Михаил Михайлович | Cooled blade of turbomachine |
| US6758914B2 (en) | 2001-10-25 | 2004-07-06 | General Electric Company | Process for partial stripping of diffusion aluminide coatings from metal substrates, and related compositions |
| US20040169013A1 (en) * | 2003-02-28 | 2004-09-02 | General Electric Company | Method for chemically removing aluminum-containing materials from a substrate |
| US6833328B1 (en) | 2000-06-09 | 2004-12-21 | General Electric Company | Method for removing a coating from a substrate, and related compositions |
| US20050115926A1 (en) * | 2003-06-16 | 2005-06-02 | General Electric Company | Process for removing chromide coatings from metal substrates, and related compositions |
| US20100147803A1 (en) * | 2008-12-15 | 2010-06-17 | General Electric Company | Process for removing metallic material from casted substates, and related compositions |
| US20100223788A1 (en) * | 2009-03-05 | 2010-09-09 | Staroselsky Alexander V | Method of maintaining gas turbine engine components |
| US10107110B2 (en) | 2013-11-15 | 2018-10-23 | United Technologies Corporation | Fluidic machining method and system |
Citations (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| GB174489A (en) * | 1920-11-22 | 1922-02-02 | George Samuel Gilmore | An improved fluid for use in cleaning or removing oxide from metal |
| US2446060A (en) * | 1944-07-04 | 1948-07-27 | Battelle Development Corp | Chemical polishing of metal surfaces |
| US2650157A (en) * | 1947-12-31 | 1953-08-25 | Aluminum Co Of America | Brightening aluminum |
| US2678875A (en) * | 1950-06-29 | 1954-05-18 | Aluminium Lab Ltd | Chemical brightening of aluminum |
| US3008812A (en) * | 1957-08-20 | 1961-11-14 | Albright & Wilson Mfg Ltd | Method for chemical polishing of copper |
| US3041227A (en) * | 1958-09-19 | 1962-06-26 | John F Jumer | Chemical polishing composition and method for aluminum metals |
| US3119726A (en) * | 1962-10-22 | 1964-01-28 | Virginia Carolina Chem Corp | Process and composition for brightening aluminum |
| US3202612A (en) * | 1960-12-05 | 1965-08-24 | Monsanto Co | Composition for bright polishing aluminum |
| US3458353A (en) * | 1966-11-16 | 1969-07-29 | Alloy Surfaces Co Inc | Process of removing coatings from nickel and cobalt base refractory alloys |
| US3514407A (en) * | 1966-09-28 | 1970-05-26 | Lockheed Aircraft Corp | Chemical polishing of titanium and titanium alloys |
-
1969
- 1969-06-18 US US834522A patent/US3607398A/en not_active Expired - Lifetime
Patent Citations (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| GB174489A (en) * | 1920-11-22 | 1922-02-02 | George Samuel Gilmore | An improved fluid for use in cleaning or removing oxide from metal |
| US2446060A (en) * | 1944-07-04 | 1948-07-27 | Battelle Development Corp | Chemical polishing of metal surfaces |
| US2650157A (en) * | 1947-12-31 | 1953-08-25 | Aluminum Co Of America | Brightening aluminum |
| US2678875A (en) * | 1950-06-29 | 1954-05-18 | Aluminium Lab Ltd | Chemical brightening of aluminum |
| US3008812A (en) * | 1957-08-20 | 1961-11-14 | Albright & Wilson Mfg Ltd | Method for chemical polishing of copper |
| US3041227A (en) * | 1958-09-19 | 1962-06-26 | John F Jumer | Chemical polishing composition and method for aluminum metals |
| US3202612A (en) * | 1960-12-05 | 1965-08-24 | Monsanto Co | Composition for bright polishing aluminum |
| US3119726A (en) * | 1962-10-22 | 1964-01-28 | Virginia Carolina Chem Corp | Process and composition for brightening aluminum |
| US3514407A (en) * | 1966-09-28 | 1970-05-26 | Lockheed Aircraft Corp | Chemical polishing of titanium and titanium alloys |
| US3458353A (en) * | 1966-11-16 | 1969-07-29 | Alloy Surfaces Co Inc | Process of removing coatings from nickel and cobalt base refractory alloys |
Cited By (32)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3833414A (en) * | 1972-09-05 | 1974-09-03 | Gen Electric | Aluminide coating removal method |
| US4282041A (en) * | 1978-12-05 | 1981-08-04 | Rolls-Royce Limited | Method for removing aluminide coatings from nickel or cobalt base alloys |
| FR2472620A1 (en) * | 1979-12-26 | 1981-07-03 | Gen Electric | METHOD FOR THE CHEMICAL REMOVAL OF METAL OR CERAMIC FILLING MATERIALS ATTACHED TO A BASIC ELEMENT |
| DE3248041A1 (en) * | 1982-01-11 | 1983-07-21 | Enthone, Inc., West Haven, Conn. | MEANS AND METHOD FOR SELECTIVELY REMOVING HARD SURFACE COATINGS FROM METAL SUBSTRATES |
| US4439339A (en) * | 1983-02-08 | 1984-03-27 | Doumit Carl J | Descaler composition and method |
| US4944807A (en) * | 1987-12-01 | 1990-07-31 | Bbc Brown Boveri Ag | Process for chemically stripping a surface-protection layer with a high chromium content from the main body of a component composed of a nickel-based or cobalt-based superalloy |
| US5417600A (en) * | 1992-01-22 | 1995-05-23 | Mitsubishi Denki Kabushiki Kaisha | Method of manufacturing an impregnation type cathode |
| US5938855A (en) * | 1998-01-20 | 1999-08-17 | General Electric Company | Method for cleaning a turbine component |
| US5976265A (en) * | 1998-04-27 | 1999-11-02 | General Electric Company | Method for removing an aluminide-containing material from a metal substrate |
| US6494960B1 (en) | 1998-04-27 | 2002-12-17 | General Electric Company | Method for removing an aluminide coating from a substrate |
| EP1013797A1 (en) * | 1998-12-22 | 2000-06-28 | General Electric Company | Method of removing hot corrosion products from a diffusion aluminide coating |
| US6174380B1 (en) | 1998-12-22 | 2001-01-16 | General Electric Company | Method of removing hot corrosion products from a diffusion aluminide coating |
| SG82048A1 (en) * | 1998-12-22 | 2001-07-24 | Gen Electric | Method of removing hot corrosion products from a diffusion aluminide coating |
| US6833328B1 (en) | 2000-06-09 | 2004-12-21 | General Electric Company | Method for removing a coating from a substrate, and related compositions |
| EP1213370A3 (en) * | 2000-12-05 | 2002-11-27 | General Electric Company | Method and composition for cleaning a turbine engine component |
| US20020100493A1 (en) * | 2001-01-29 | 2002-08-01 | General Electric Company | Method for removing oxides and coatings from a substrate |
| US6863738B2 (en) | 2001-01-29 | 2005-03-08 | General Electric Company | Method for removing oxides and coatings from a substrate |
| US6599416B2 (en) | 2001-09-28 | 2003-07-29 | General Electric Company | Method and apparatus for selectively removing coatings from substrates |
| US6758914B2 (en) | 2001-10-25 | 2004-07-06 | General Electric Company | Process for partial stripping of diffusion aluminide coatings from metal substrates, and related compositions |
| RU2215877C2 (en) * | 2001-12-06 | 2003-11-10 | Гойхенберг Михаил Михайлович | Cooled blade of turbomachine |
| EP1321536B2 (en) † | 2001-12-20 | 2014-11-19 | General Electric Company | Process for rejuvenating a diffusion aluminide coating |
| US20030116237A1 (en) * | 2001-12-20 | 2003-06-26 | Worthing Richard Roy | Process for rejuvenating a diffusion aluminide coating |
| US6875292B2 (en) * | 2001-12-20 | 2005-04-05 | General Electric Company | Process for rejuvenating a diffusion aluminide coating |
| US20050161438A1 (en) * | 2003-02-28 | 2005-07-28 | Kool Lawrence B. | Method for chemically removing aluminum-containing materials from a substrate |
| US20040169013A1 (en) * | 2003-02-28 | 2004-09-02 | General Electric Company | Method for chemically removing aluminum-containing materials from a substrate |
| US20050115926A1 (en) * | 2003-06-16 | 2005-06-02 | General Electric Company | Process for removing chromide coatings from metal substrates, and related compositions |
| US6953533B2 (en) | 2003-06-16 | 2005-10-11 | General Electric Company | Process for removing chromide coatings from metal substrates, and related compositions |
| US20100147803A1 (en) * | 2008-12-15 | 2010-06-17 | General Electric Company | Process for removing metallic material from casted substates, and related compositions |
| US20100223788A1 (en) * | 2009-03-05 | 2010-09-09 | Staroselsky Alexander V | Method of maintaining gas turbine engine components |
| US8776370B2 (en) | 2009-03-05 | 2014-07-15 | United Technologies Corporation | Method of maintaining gas turbine engine components |
| US10107110B2 (en) | 2013-11-15 | 2018-10-23 | United Technologies Corporation | Fluidic machining method and system |
| US10954800B2 (en) | 2013-11-15 | 2021-03-23 | Raytheon Technologies Corporation | Fluidic machining method and system |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US3607398A (en) | Chemical stripping process | |
| US3622391A (en) | Process of stripping aluminide coating from cobalt and nickel base alloys | |
| US4339282A (en) | Method and composition for removing aluminide coatings from nickel superalloys | |
| US3833414A (en) | Aluminide coating removal method | |
| US6494960B1 (en) | Method for removing an aluminide coating from a substrate | |
| JP3027005B2 (en) | Method for re-polishing corroded superalloy or heat-resistant steel member and re-polished member | |
| US4425185A (en) | Method and composition for removing nickel aluminide coatings from nickel superalloys | |
| CA2359342C (en) | Electrochemical stripping of turbine blades | |
| US8021491B2 (en) | Method for selectively removing coatings from metal substrates | |
| CA1294856C (en) | Chemical etching bath for heat-resisting alloy parts | |
| US3458353A (en) | Process of removing coatings from nickel and cobalt base refractory alloys | |
| US6174448B1 (en) | Method for stripping aluminum from a diffusion coating | |
| US5944909A (en) | Method for chemically stripping a cobalt-base substrate | |
| US5248381A (en) | Etch solution and associated process for removal of protective metal layers and reaction deposits on turbine blades | |
| JP2599629B2 (en) | Electrolysis method and bath for stripping coating from aluminum substrate | |
| JPS58130280A (en) | Selective chemical removal of hard surface coating from superalloy substrate | |
| US3155536A (en) | Aluminum oxidation resistant coating for nickel and cobalt base alloy parts | |
| EP2565295A1 (en) | Method for stripping gamma-gamma prime coating from gamma-gamma prime alloy | |
| EP2130946A1 (en) | Microwave assisted chemical stripping method of metallic coatings | |
| JP7570594B2 (en) | Coating: Peeling of AL-containing coating | |
| RU2844663C1 (en) | Method for removal of heat-resistant and heat-protective coatings from parts of gas-thermal engines | |
| JPS6137980A (en) | How to remove gold/nickel brazing | |
| CA2663911C (en) | Method for removing an aluminide coating from a substrate | |
| MXPA99012031A (en) | Method of removing hot corrosion products from a diffusion aluminide coating |