EP0177981A1 - Verfahren zur Herstellung von Hochleistungs-Graphitelektroden - Google Patents

Verfahren zur Herstellung von Hochleistungs-Graphitelektroden Download PDF

Info

Publication number
EP0177981A1
EP0177981A1 EP85200993A EP85200993A EP0177981A1 EP 0177981 A1 EP0177981 A1 EP 0177981A1 EP 85200993 A EP85200993 A EP 85200993A EP 85200993 A EP85200993 A EP 85200993A EP 0177981 A1 EP0177981 A1 EP 0177981A1
Authority
EP
European Patent Office
Prior art keywords
weight
electrode
coke
binder
coal tar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP85200993A
Other languages
English (en)
French (fr)
Other versions
EP0177981B1 (de
Inventor
Herbert Glaser
Friedhelm Alsmeier
Rolf Marrett
Jürgen Dr. Stadelhofer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ruetgers Germany GmbH
Original Assignee
Ruetgerswerke AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ruetgerswerke AG filed Critical Ruetgerswerke AG
Publication of EP0177981A1 publication Critical patent/EP0177981A1/de
Application granted granted Critical
Publication of EP0177981B1 publication Critical patent/EP0177981B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B7/00Heating by electric discharge
    • H05B7/02Details
    • H05B7/06Electrodes
    • H05B7/08Electrodes non-consumable
    • H05B7/085Electrodes non-consumable mainly consisting of carbon

Definitions

  • the invention relates to a method for producing high-performance graphite electrodes for the production of electrical steel from anisotropic needle coke using an electrode binder by mixing the components, shaping the green electrode, firing and graphitizing the electrode.
  • the quality of graphite electrodes is determined by physical parameters such as Characterized thermal expansion coefficient, specific electrical and thermal conductivity, ash value, trace elements and density.
  • Modern high-performance electrodes are characterized, among other things, by a high specific current load. Extreme specific current loads are only achieved, however, if the graphite material with the appropriate Strength has a particularly high electrical conductivity.
  • the initial coke quality had to be improved; So-called needle cokes with a very low coefficient of thermal expansion (CTE) of less than 1 ⁇ 10 -6 K -1 were developed.
  • Pretreated coal tar pitch has proven to be a particularly suitable raw material for such needle coke with a low coefficient of thermal expansion.
  • needle coke with a previously unattained low CTE can be obtained from this raw material.
  • 1 6 K -1 by the use of high-quality pitch-needle coke to 0 x 10 -6 K - so the CTE of graphite could moldings of previously employed high-grade petroleum needle coke in the temperature range 20-200 ° C to 0.7 x 10 - 1 can be reduced.
  • the large-scale use of needle coke, particularly based on coal tar pitch as a graphite electrode raw material is impaired because of a negative accompanying property, "puffing".
  • coal tar pitch needle coke electrodes show a stronger puffing, which cannot be significantly inhibited by Fe 2 0 3 .
  • this patent application describes a method to minimize the puffing of graphite electrodes from pitch needle coke without the additional use of inhibiting agents.
  • this application places particular emphasis on an extremely low-ash electrode coke, which also has a specifically set degree of crystalline orientation.
  • the crystalline degree of orientation of the coke is achieved through the selection of suitable raw materials and a coking process adapted to the raw material.
  • the irreversible deformation ( ⁇ 1) of standard pitch needle With optimized needle cokes, koksen is reduced from 0.9% to less than 0.2% (measured in the longitudinal direction).
  • the object was therefore to develop a process for producing high-performance graphite electrodes from anisotropic needle cokes using an electrode binder by mixing the two components, shaping the green electrode, firing and graphitizing the electrode, in which the properties of the needle coke are fully utilized so that a graphite electrode with optimal properties is obtained.
  • This object is achieved in that 70 to 80 parts by weight of a highly anisotropic needle coke with 20 to 30 parts by weight of a binder, predominantly based on coal tar pitch, with a proportion of ß-resins (toluene-insoluble - quinoline-insoluble) of more than 20% by weight, a quinoline-insoluble content of more than 5% by weight with an atomic C / H ratio of at most 3: 1, an ash value of 0.1% by weight or less and a softening point (Kraemer-Sarnow) of 80 to 120 ° C are mixed homogeneously and the mixture is formed into green electrodes, fired and graphitized according to methods known per se.
  • ß-resins toluene-insoluble - quinoline-insoluble
  • High-performance graphite electrodes are usually made from anisotropic filler coke and a largely isotropically coking binder. Therefore, a fired electrode body consists morphologically of two phases with different crystallinity. This results in divergent physical properties that lead to opposite effects at the phase interfaces.
  • Improved morphological properties of the polycrystalline carbon body are more surprising Wisely achieved when anisotropic filler cokes, preferably coal tar pitch needle coke, are processed with largely ash-free, also anisotropically coking binders to form electrode moldings.
  • the puffing behavior is also effectively improved. The more the puffing tendency of an anisotropic coke, the more pronounced is the puffing-damping effect of an anisotropic ash-free binder coke in the electrode body.
  • An anisotropic binder coke structure in the electrode body improves the electrical conductivity and the modulus of elasticity with approximately the same breaking strength.
  • the anisotropically coking binder preferably with 0.01 to 0.1% by weight of ash, is preferably produced in the usual way from coal tar pitch alone.
  • the ash removal is carried out by methods known per se, such as centrifuging, separating, filtering or promoter-accelerated settling (settling) at elevated temperature.
  • Aromatic petro- or carbo-derived hydrocarbon fractions can be added to the coal tar pitch to facilitate the separation of the ash formers.
  • Another important requirement for an anisotropically coking binder is the atomic C / H ratio of the quinoline-insoluble (QI). It should be in the range of 2.3: 1 to 3.0: 1. Higher C / H ratios lead to isotropic binder cokes.
  • the CjH ratio in the binder is preferably 1.85: 1 to 2.04: 1 with a QI content of preferably 10 to 20% by weight.
  • Three needle cokes with different degrees of pre-orientation and for comparison an isotropic pitch coke are processed according to the invention with an anisotropically coking electrode binder and for comparison with a conventional isotropically coking electrode binder in a known manner to shaped body pastes and converted into fired electrodes.
  • the analysis data of the electrodes graphitized under the same conditions clearly show the advantages of electrode production in the combination of puffing coke with anisotropically coking binder.
  • the characteristics of the coke are shown in Table 1.
  • the binders used are characterized in Table 2.
  • the pastes produced in accordance with the recipe given in Table 3 are extruded into green shaped bodies by known technology and fired under identical conditions at 1000 ° C and then graphitized to 2800 ° C.
  • the important characteristics of the fired electrodes are shown in the upper part of Table 4, the characteristics of the graphitized electrodes are in the lower part of Table 4.
  • a comparison of Examples 1 and 2, 3 and 4 and 5 and 6 clearly shows the influence of the anisotropically coking binder on the puffing behavior of the electrode when graphitizing. In all cases, puffing is reduced by more than 70%, especially in the longitudinal direction.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Discharge Heating (AREA)
  • Coke Industry (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Herstellung von Hochleistungs-Graphitelektroden mit verbessertem Puffing-Verhalten und guten mechanischen Eigenschaften durch Verwendung eines anisotrop verkokenden Bindemittels auf der Basis von Steinkohlenteerpech mit weniger als 0,2 Gew.-% Asche und einem Gehalt an Chinolinunlöslichen von mehr als 5 Gew.-% mit einem atomaren C/H-Verhältnis von weniger als 3:1.

Description

  • Verfahren zur Herstellung von Hochleistungs-Graphitelektroden
  • Die Erfindung bezieht sich auf ein Verfahren zur Herstellung von Hochleistungs-Graphitelektroden für die Elektrostahlerzeugung aus anisotropen Nadelkoksen unter Verwendung eines Elektrodenbindemittels durch Mischen der Komponenten, Formen der grünen Elektrode, Brennen und Graphitieren der Elektrode.
  • Die Qualität von Graphitelektroden wird durch physikalische Meßgrößen wie z.B. Wärmeausdehnungskoeffizient, spezifische elektrische und Wärmeleitfähigkeit, Aschewert, Spurenelemente und Dichte charakterisiert.
  • Moderne Hochleistungselektroden zeichnen sich u.a. durch eine hohe spezifische Strombelastung aus. Extreme spezifische Strombelastungen werden jedoch nur erreicht, wenn das Graphitmaterial bei entsprechender Festigkeit eine besonders hohe elektrische Leitfähigkeit besitzt. Um die Graphitelektrode weniger empfindlich gegen die im Betrieb unvermeidbaren großen radialen Temperaturgradienten zu machen, mußte die anfängliche Koksqualität verbessert werden; es wurden sogenannte Nadelkokse mit sehr geringem Wärmeausdehnungskoeffizienten (CTE) von weniger als 1 ·10-6K-1 entwickelt. Als besonders geeigneter Rohstoff für derartige Nadelkokse mit niedrigem Wärmeausdehnungskoeffizienten hat sich vorbehandeltes Steinkohlenteerpech erwiesen.
  • Aus diesem Rohstoff können in Verbindung mit einem geeigneten Verkokungsverfahren (DE-OS 30 35 593) Nadelkokse mit bisher nicht erreichtem niedrigen CTE erhalten werden. So konnte der CTE von Graphitformkörpern von bisher eingesetztem hochwertigen Petrol-Nadelkoks im Temperaturbereich 20-200°C um 0,7 x 10-6 K -1 durch Verwendung von hochwertigen Pech-Nadel- koksen auf 0,1 x 10-6K-1 verringert werden. Die großtechnische Verwendung von Nadelkoksen besonders auf der Basis von Steinkohlenteerpech als Graphitelektrodenrohstoff wird jedoch wegen einer negativen Begleiteigenschaft, des "Puffing", beeinträchtigt.
  • Technisch erzeugte Nadelkokse durchlaufen während einer Hochtemperaturbehandlung bis ca. 3000°C die Modifikationsänderung vom gebrannten Kohlenstoffkörper zum Elektrographit. Dabei erfahren sie neben der reversiblen Verformung infolge Wärmeausdehnung auch eine irreversible Längenänderung, die bis zu 4,5 % betragen kann, das sogenannte Puffing.
  • Durch das Puffing werden die wichtigsten physikalischen Kenngrößen einer Graphitelektrode wie z.B. die Dichte und davon abhängig auch die elektrische und die Wärmeleitfähigkeit sowie die mechanische Festigkeit nachteilig verändert.
  • Das Puffing bei Petrol- wie bei Pech-Nadelkoksen tritt in unterschiedlichem Maße auf.
  • Für die bisher zu Elektrographit verarbeiteten petrostämmigen Nadelkokse ist bekannt, daß die irreversible Volumenvergrößerung mit dem Schwefelgehalt im kalzinierten Koks korrelierbar ist. Durch die Zugabe von z.B. Eisenoxid bei der Herstellung der Formkörperpaste ist das Puffing weitgehend inhibierbar.
  • Dieser Zusammenhang gilt jedoch nicht in gleichem Maße für die ebenfalls als Rohstoff für Elektrographit einsatzfähigen Steinkohlenteerpech-Nadelkokse. Bei gleichem Schwefelgehalt zeigen Steinkohlenteerpech-Nadelkoks-Elektroden ein stärkeres Puffing, das sich durch Fe203 nicht signifikant inhibieren läßt.
  • In den Preprints der "16th Biennial Conference of Carbon" (S. 595-596) wird ein Verfahren beschrieben, Puffing an Petrol- und Steinkohlenteerpech-Nadelkoks-Formkörpern durch Zugabe von 1 - 2 % er203 zu inhibieren. Dieses Verfahren ist wirtschaftlich kaum realisierbar.
  • Alle übrigen bekannten Verfahren zur Puffing-Inhibierung von Graphitelektroden verwenden ebenfalls anorganische Inhibierungsmittel, vorzugsweise Oxide.
  • Dabei geht man von der Vorstellung aus, daß sich neben den im Petrolkoks hauptsächlich vorkommenden Schwefelverbindungen auch weitere bisher unbekannte Einlagerungsverbindungen bei Erreichen individueller Zersetzungstemperaturen spontan in gasförmige Komponenten umwandeln und einen inneren Oberdruck in den Kokspartikeln verursachen, der die Kristallebenen des Kohlenstoffs irreversibel auseinandertreibt. Beim Zusatz von Inhibierungsmitteln bilden sich intermediäre Phasen, die im puffinggefährdeten Temperaturbereich beständig sind.
  • Durch die bekannte Art der chemischen Puffing-Inhibierung wird aber der Aschewert des Elektrographits unerwünscht erhöht.
  • Im Gegensatz dazu wird in dieser Patentanmeldung eine Methode beschrieben, das Puffing von Graphitelektroden aus Pech-Nadelkoks ohne zusätzliche Verwendung von Inhibierungsmitteln zu minimieren.
  • Im Gegensatz zu den bekannten Verfahren wird in dieser Anmeldung besonderer Wert auf einen extrem aschearmen Elektrodenkoks gelegt, der außerdem einen gezielt eingestellten kristallinen Orientierungsgrad aufweist. Der kristalline Orientierungsgrad des Kokses wird erreicht durch die Auswahl geeigneter Rohstoffe und ein dem Rohstoff angepaßtes Verkokungsverfahren. Die irreversible Verformung (Δ1) von Standard-Pech-Nadelkoksen verringert sich bei optimierten Nadelkoksen von 0,9 % auf weniger als 0,2 % (in Längsrichtung gemessen).
  • Mit der Entwicklung von hochwertigen Kokstypen allein wird jedoch das in den Rohstoffen liegende Qualitätspotential noch nicht voll genutzt.
  • Es bestand daher die Aufgabe, ein Verfahren zur Herstellung von Hochleistungsgraphitelektroden aus anisotropen Nadelkoksen unter Verwendung eines Elektrodenbindemittels durch Mischen der beiden Komponenten, Formen der grünen Elektrode, Brennen und Graphitieren der Elektrode zu entwickeln, bei dem die Eigenschaften der Nadelkokse voll genutzt werden, so daß eine Graphitelektrode mit optimalen Eigenschaften erhalten wird.
  • Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß 70 bis 80 Gew.-Teile eines hochanisotropen Nadelkokses mit 20 bis 30 Gew.-Teilen eines Bindemittels, überwiegend auf der Basis von Steinkohlenteerpech, mit einem Anteil an ß-Harzen (Toluolunlösliches - Chinolinunlösliches) von mehr als 20 Gew-%, einem Chinolinunlöslichengehalt von mehr als 5 Gew-% mit einem atomaren C/H-Verhältnis von maximal 3:1, einem Aschewert von 0,1 Gew.-% oder weniger und einem Erweichungspunkt (Kraemer-Sarnow) von 80 bis 120°C homogen gemischt werden und das Gemisch nach an sich bekannten Verfahren zu grünen Elektroden geformt, gebrannt und graphitiert wird. Hochleistungsgraphitelektroden werden üblicherweise aus anisotropem Füllerkoks und einem weitgehend isotrop verkokenden Bindemittel hergestellt. Daher besteht ein gebrannter Elektrodenkörper morphologisch aus zwei Phasen mit unterschiedlicher Kristallinität. Hieraus resultieren divergierende physikalische Eigenschaften, die an den Phasengrenzflächen zu gegenläufigen Effekten führen.
  • Bereits während des Brennprozesses ergeben sich unterschiedliche Wärmedehnungen zwischen Füller- und Binderkoks, die zu Relativbewegungen führen, die Riß-und Ablöseerscheinungen zur Folge haben. Wegen des normalerweise höheren Grades an Spurenbestandteilen sind Elektrodenbinder Fremdatomemittenten, die vor und während der Brennphase vorzugsweise in das anisotrope Füllerkorn diffundieren. Bei der nachfolgenden thermischen Umwandlung des aus zwei unterschiedlichen Kristallphasen bestehenden Kohlenstoffkörpers in Graphit ist die Rekristallisation im höher vororientierten Füllerkoks früher abgeschlossen als im isotropen Binderkoks. Bereits umgewandelte Füllerkoksbereiche sind der bei höheren Temperaturen erfolgenden Fremdatomdiffusion ausgesetzt und zeigen irreversibles Puffing. Verwendet man an Stelle der bisher gebräuchlichen Petrol-Nadelkokse einen besser vororientierten Steinkohlenteerpech-Nadelkoks, werden die beschriebenen Effekte vor allem durch die früher abgeschlossene Graphitierung des Füllerkokses noch verstärkt.
  • Verbesserte morphologische Eigenschaften des polykristallinen Kohlenstoffkörpers werden überraschenderweise erreicht, wenn anisotrope Füllerkokse, vorzugsweise Steinkohlenteerpech-Nadelkokse, mit weitgehend aschefreien, ebenfalls anisotrop verkokenden Bindemitteln zu Elektroden-Formkörpern verarbeitet werden. Neben anderen meßbaren Kenngrößen wird auch das Puffing-verhalten wirksam verbessert. Je stärker die Puffingneigung eines anisotropen Kokses, um so ausgeprägter ist die puffing-dämpfende Wirkung eines ebenfalls anisotropen aschefreien Binderkokses im Elektrodenkörper.
  • Korreliert man die mittlere wahre Dichte S des bei 1300°C kalzinierten Füllerkokses mit dem Anteil der irreversiblen Verformung Δl lo beim Graphitieren der Elektrode, so findet man zwei charakteristische Kurvenverläufe in Abhängigkeit von der Kristallmodifikation des Bindemittelkokses, wie in Fig. 1 dargestellt.
  • Durch ein anisotropes Binderkoksgefüge im Elektrodenkörper werden bei etwa gleicher Bruchfestigkeit die elektrische Leitfähigkeit und der E-Modul verbessert.
  • Das anisotrop verkokende Bindemittel mit vorzugsweise 0,01 bis 0,1 Gew. % Asche wird in üblicher Weise vorzugsweise allein aus Steinkohlenteerpech hergestellt. Die Entaschung erfolgt dabei durch an sich bekannte Verfahren wie Zentrifugieren, Separieren, Filtrieren oder promotorbeschleunigtes Absitzenlassen (Settlen) bei erhöhter Temperatur. Hierbei können dem Steinkohlenteerpech aromatische petro- oder carbostämmige Kohlenwasserstofffraktionen zugesetzt werden, um die Abtrennung der Aschebildner zu erleichtern.
  • Eine weitere wichtige Voraussetzung für ein anisotrop verkokendes Bindemittel ist das atomare C/H-Verhältnis des Chinolinunlöslichen (QI). Es sollte im Bereich von 2,3:1 bis 3,0:1 liegen. Höhere C/H-Verhältnisse führen zu isotropen Bindemittelkoksen.
  • Das CjH-Verhältnis im Bindemittel beträgt vorzugsweise 1,85:1 bis 2,04:1 bei einem QI-Gehalt von vorzugsweise 10 bis 20 Gew.%.
  • Die Erfindung wird anhand der nachfolgenden Beispiele näher erläutert, ohne darauf beschränkt zu sein.
  • Beispiele
  • Drei Nadelkokse mit unterschiedlichem kristallinen Vororientierungsgrad und zum Vergleich ein isotroper Pechkoks werden erfindungsgemäß mit einem anisotrop verkokenden Elektrodenbindemittel und zum Vergleich mit einem herkömmlichen isotrop verkokenden Elektrodenbindemittel in bekannter Weise zu Formkörperpasten verarbeitet und in gebrannte Elektroden überführt. An den Analysendaten der unter gleichen Bedingungen graphitierten Elektroden werden die Vorteile der Elektrodenfertigung in der Kombination von puffenden Koksen mit anisotrop verkokendem Binder deutlich erkennbar.
  • Die Kenndaten der Kokse sind in Tabelle 1 wiedergegeben. In Tabelle 2 werden die verwendeten Bindemittel charakterisiert. Die gemäß der in Tabelle 3 angegebenen Rezeptur hergestellten Pasten werden nach bekannter Technik zu grünen Formkörpern extrudiert und unter identischen Bedingungen bei 1000°C gebrannt und anschließend bis 2800°C graphitiert. Die wichtigen Kenndaten der gebrannten Elektroden sind im oberen Teil der Tabelle 4 enthalten, die Kenndaten der graphitierten Elektroden stehen im unteren Teil der Tabelle 4.
    Figure imgb0001
    Figure imgb0002
    Figure imgb0003
    Figure imgb0004
    Ein Vergleich der Beispiele 1 und 2, 3 und 4 sowie 5 und 6 zeigt deutlich den Einfluß des anisotrop verkokenden Bindemittels auf das Puffing-Verhalten der Elektrode beim Graphitieren. In allen Fällen verringert sich das Puffing vor allem in Längsrichtung um mehr als 70%. Bei den Nadelkoksen aus Steinkohlenteerpech nimmt das Puffing senkrecht (quer) zur Längsachse der Elektrode um etwa 30 % ab. Bei der Verwendung von Petrolkoks ist dieser Effekt geringer. Gleichzeitig werden die übrigen Kenndaten der Elektrode verbessert. Bei der Verwendung eines isotropen Pechkokses für die Elektrodenherstellung hingegen wirkt sich ein anisotrop verkokendes Bindemittel negativ auf die mechanischen Eigenschaften der Elektrode aus.
  • Hieraus ergibt sich, daß überraschenderweise die Verwendung eines anisotrop verkokenden Bindemittels insbesondere in Verbindung mit Steinkohlenteerpech-Nadelkoksen zur Herstellung von Hochleistungs-Graphitelektroden zu einer Verbesserung der Elektrodeneigenschaften und zu einer Verminderung des Puffing führt.

Claims (4)

1. Verfahren zur Herstellung von Hochleistungs-Graphitelektroden aus anisotropen Nadelkoksen unter Verwendung eines Elektrodenbindemittels durch Mischen der beiden Komponenten, Formen der grünen Elektrode, Brennen und Graphitieren der Elektrode, dadurch gekenn-zeichnet, daß 70 bis 80 Gew.-Teile eines anisotropen Nadelkokses mit 20 bis 30 Gew.-Teilen eines Bindemittels, überwiegend auf der Basis von Steinkohlenteerpech, mit einem Anteil an ß-Harzen (Toluolunlösliches - Chinolinunlösliches) von mehr als 20 Gew.-%, einem Chinolinunlöslichengehalt (QI) von mehr als 5 Gew.-% mit einem atomaren C/H-Verhältnis von maximal 3 : 1, einem Aschewert von 0,1 Gew.-% oder weniger und einem Erweichungspunkt (Kraemer-Sarnow) von 80 bis 120°C homogen gemischt werden und das Gemisch nach an sich bekannten Verfahren zu grünen Elektroden geformt, gebrannt und graphitiert wird.
2. Verfahren nach Anspruch 1, dadurch gekenn-zeichnet, daß der anisotrope Nadelkoks aus Steinkohlenteerpech hergestellt ist.
3. Verfahren nach Anspruch 1, dadurch gekenn-zeichnet, daß das Elektrodenbindemittel aus filtriertem Steinkohlenteerpech hergestellt ist und einen Aschewert von 0,01 bis 0,1 % hat.
4. Verfahren nach Anspruch 1, dadurch gekenn-zeichnet, daß das Elektrodenbindemittel einen Chinolinunlöslichengehalt von 10 bis 20 Gew.% hat mit einem atomaren C/H-Verhältnis im Bereich von 2,3:1 bis 3,0:1.
EP85200993A 1984-09-07 1985-06-24 Verfahren zur Herstellung von Hochleistungs-Graphitelektroden Expired EP0177981B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19843432887 DE3432887A1 (de) 1984-09-07 1984-09-07 Verfahren zur herstellung von hochleistungs-graphitelektroden
DE3432887 1984-09-07

Publications (2)

Publication Number Publication Date
EP0177981A1 true EP0177981A1 (de) 1986-04-16
EP0177981B1 EP0177981B1 (de) 1988-11-09

Family

ID=6244856

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85200993A Expired EP0177981B1 (de) 1984-09-07 1985-06-24 Verfahren zur Herstellung von Hochleistungs-Graphitelektroden

Country Status (2)

Country Link
EP (1) EP0177981B1 (de)
DE (2) DE3432887A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT515982A1 (de) * 2014-07-02 2016-01-15 Gerhard Hubweber Verfahren und Anlage zur Erzeugung von Kohlenstoffkörpern

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107840328B (zh) * 2017-11-22 2019-10-25 大同新成新材料股份有限公司 一种等静压石墨及其生产方法
CN114133753A (zh) * 2021-10-13 2022-03-04 大同宇林德石墨新材料股份有限公司 一种石墨电极接头栓制备工艺

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT196135B (de) * 1953-04-24 1958-02-25 Vaw Ver Aluminium Werke Ag Verfahren zur Herstellung von kontinuierlichen Elektroden für Elektroöfen, insbesondere für die Schmelzflußelektrolyse von Aluminium, und Kohleblöcke für das Verfahren
AT199383B (de) * 1956-01-24 1958-08-25 Aluminium Ind Ag Selbstbackende, kontinuierliche Anode für Aluminiumelektrolyseöfen und Verfahren zu deren Herstellung
AT229054B (de) * 1959-12-03 1963-08-26 Farbwerke Hoechst Aktiengesellschaft Vormals Meister Lucius & Bruening
DE1471506A1 (de) * 1963-02-22 1969-01-23 United Coke And Chemicals Co L Verfahren zum Herstellen von Formlingen aus Elektrographit
DE3035593A1 (de) * 1980-09-20 1982-04-15 Rütgerswerke AG, 6000 Frankfurt Verfahren zur verkokung hochsiedender, aromatischer kohlenwasserstoffgemische zu kohlenstoffmaterialien mit gleichbleibenden eigenschaften

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT196135B (de) * 1953-04-24 1958-02-25 Vaw Ver Aluminium Werke Ag Verfahren zur Herstellung von kontinuierlichen Elektroden für Elektroöfen, insbesondere für die Schmelzflußelektrolyse von Aluminium, und Kohleblöcke für das Verfahren
AT199383B (de) * 1956-01-24 1958-08-25 Aluminium Ind Ag Selbstbackende, kontinuierliche Anode für Aluminiumelektrolyseöfen und Verfahren zu deren Herstellung
AT229054B (de) * 1959-12-03 1963-08-26 Farbwerke Hoechst Aktiengesellschaft Vormals Meister Lucius & Bruening
DE1471506A1 (de) * 1963-02-22 1969-01-23 United Coke And Chemicals Co L Verfahren zum Herstellen von Formlingen aus Elektrographit
DE3035593A1 (de) * 1980-09-20 1982-04-15 Rütgerswerke AG, 6000 Frankfurt Verfahren zur verkokung hochsiedender, aromatischer kohlenwasserstoffgemische zu kohlenstoffmaterialien mit gleichbleibenden eigenschaften

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT515982A1 (de) * 2014-07-02 2016-01-15 Gerhard Hubweber Verfahren und Anlage zur Erzeugung von Kohlenstoffkörpern
AT515982B1 (de) * 2014-07-02 2018-03-15 Hubweber Gerhard Verfahren und Anlage zur Erzeugung von Kohlenstoffkörpern

Also Published As

Publication number Publication date
EP0177981B1 (de) 1988-11-09
DE3432887A1 (de) 1986-03-20
DE3566209D1 (en) 1988-12-15

Similar Documents

Publication Publication Date Title
DE2813666C2 (de)
DE69123778T2 (de) Verbindungsnipple für Graphitelektroden
DE102015222439B4 (de) Verfahren zur Herstellung von Graphitkörpern
DE2504561C2 (de) Verfahren zur Herstellung von Gegenständen aus festem Kohlenstoffmaterial
DE3034359C2 (de) Verfahren zur Herstellung von Kohlenstoffmaterialien hoher Dichte und hoher Festigkeit
DE60130195T2 (de) Stift zum verbinden von kohlenstoffelektroden und verfahren hierzu
DE2146274A1 (de) Verfahren zum Herstellen von ver bessertem Koks
DE3033510C2 (de)
DE3528185A1 (de) Verfahren zur herstellung von carbonmaterialien
EP0177981B1 (de) Verfahren zur Herstellung von Hochleistungs-Graphitelektroden
DE3907158C1 (de)
DE3907156A1 (de) Verfahren zur inhibierung des puffing von aus steinkohlenteerpechen hergestellten koksen
DE2415455C3 (de) Sinterelektrode für Bogenlampen und Verfahren zu ihrer Herstellung
DE69417522T2 (de) Verfahren zur Herstellung von hochdichten und hochfesten Gegenständen aus Kohlenstoff unter Verwendung selbsthaftender, körniger Kohlenstoffmaterialien
DE968148C (de) Kohlenstoff-Formstuecke, insbesondere Elektroden, und Verfahren zu ihrer Herstellung
EP0174035B1 (de) Verfahren zur Herstellung von Nadelkoks mit geringen irreversiblen Volumenausdehnungen aus Steinkohlenteerpech
DE1671303C3 (de)
DE69020185T2 (de) Pechbasierte Kohlenstoffasern und Verfahren zu deren Herstellung.
DE2164691B2 (de) Kohlemikrophon
DE3533106A1 (de) Elektrodenbindemittel
DE2112287B2 (de) Kohlenstoffblock als Kathode für eine elektrolytische Aluminiumzelle und Verfahren zu dessen Herstellung
DD221996A1 (de) Verfahren zur herstellung von graphitelektroden und -nippeln
EP0068518A2 (de) Verfahren zur Herstellung von Kohlenstofformkörpern aus Koks ohne zusätzliches Bindemittel
DE1471120B2 (de) Elektrodenmasse für die Herstellung selbstbackender Elektroden mit verbesserten Absandungseigenschaften für die schmelzflußelektrolytische Aluminiumerzeugung
DE1796147C (de) Verfahren zur Anreicherung eines calcinierten Kokses an Teilchen einer nadeiförmigen Struktur

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19860205

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT NL

ITCL It: translation for ep claims filed

Representative=s name: BARZANO' E ZANARDO ROMA S.P.A.

TCNL Nl: translation of patent claims filed
EL Fr: translation of claims filed
17Q First examination report despatched

Effective date: 19880330

ITF It: translation for a ep patent filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT NL

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3566209

Country of ref document: DE

Date of ref document: 19881215

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19940609

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19940615

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19940630

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19940701

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19950624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19960101

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19950624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19960229

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19960101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19960301

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST