EP0174035B1 - Verfahren zur Herstellung von Nadelkoks mit geringen irreversiblen Volumenausdehnungen aus Steinkohlenteerpech - Google Patents

Verfahren zur Herstellung von Nadelkoks mit geringen irreversiblen Volumenausdehnungen aus Steinkohlenteerpech Download PDF

Info

Publication number
EP0174035B1
EP0174035B1 EP85200849A EP85200849A EP0174035B1 EP 0174035 B1 EP0174035 B1 EP 0174035B1 EP 85200849 A EP85200849 A EP 85200849A EP 85200849 A EP85200849 A EP 85200849A EP 0174035 B1 EP0174035 B1 EP 0174035B1
Authority
EP
European Patent Office
Prior art keywords
coke
process according
pitch
raw material
coking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP85200849A
Other languages
English (en)
French (fr)
Other versions
EP0174035A3 (en
EP0174035A2 (de
Inventor
Herbert Di. Glaser
Rolf Di. Marrett
Jürgen Dr. Stadelhofer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ruetgers Germany GmbH
Original Assignee
Ruetgerswerke AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ruetgerswerke AG filed Critical Ruetgerswerke AG
Publication of EP0174035A2 publication Critical patent/EP0174035A2/de
Publication of EP0174035A3 publication Critical patent/EP0174035A3/de
Application granted granted Critical
Publication of EP0174035B1 publication Critical patent/EP0174035B1/de
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B55/00Coking mineral oils, bitumen, tar, and the like or mixtures thereof with solid carbonaceous material

Definitions

  • the invention relates to a process for the production of needle coke from coal tar pitch with small irreversible volume increases during the graphitization of needle coke moldings, e.g. Graphite electrodes for electrical steel production by smoldering coke from Pechen with a quinoline insoluble content of maximum 1.0% by weight.
  • the quality of electrographite moldings is determined by several physical properties such as Thermal expansion coefficients, specific electrical and thermal conductivity, ash value, trace elements and density are characterized.
  • shaped carbon bodies which are made from petroleum coke or coal tar pitch coke with a binder also show an irreversible increase in volume, the so-called puffing, during the graphitization process in addition to the reversible thermal expansion. Puffing deteriorates the physical properties of the molded body, such as its strength and electrical conductivity.
  • High-quality electrographites are made from so-called needle cokes with a linear coefficient of thermal expansion of less than 0.7 10-6 K- 1 (measured in the range 20-200 ° C).
  • electrographites of electrodes made from petrostatic needle coke it has been found that the irreversible increase in volume can be correlated with the sulfur content in the calcined coke and can be reduced by adding, for example, iron oxide to the molding paste.
  • Patents EP 0087489 B1 and EP 0085121 B1 describe the targeted introduction of intercalation compounds into the graphite and subsequent heating to higher temperatures at which the intercalation compounds spontaneously decompose into gaseous phases in the production of expanded graphite from petroleum coke. This creates an internal overpressure in the graphite. In order to break it down, the gas must diffuse through the crystal layers of the carbon, the crystal layers being expanded irreversibly. At extreme diffusion current densities, expansion factors of 200: 1 to 400: 1 occur.
  • Electrographite from high-quality coal tar pitch coke may be puffed using an analogous mechanism and is normally up to 0.9% relative change in length.
  • Only macroscopically isotropic cokes can be produced from coal tar pitch with a high content of quinoline-insoluble substances (Q1), from which graphite bodies can be produced without irreversible linear expansion.
  • Q1 quinoline-insoluble substances
  • JP 5898,385 claims the production of a low-puffing needle coke from coal tar pitch, the content of which is 0.03% in quinoline-insoluble constituents.
  • a Fe 2 0 3 content of 0.5% an electrographite is obtained after heat treatment up to 2800 ° C, which only shows an irreversible change in length of 0.5% in the axial direction of the electrode.
  • An electrographite made from a coal tar pitch that contains no insoluble components has a change in length of 2.1%.
  • the addition of Fe 2 0 3 as an inhibitor cannot be dispensed with.
  • the addition of Fe 2 0 3 increases the ash value of the electrographite to an undesirable extent.
  • the object of the invention is therefore to develop a method for producing such needle coke from coal tar pitch, which can be processed into low-puffing electrographite without additional inhibiting agents.
  • the object is achieved according to the invention in that the ash-forming constituents are removed from the coal tar pitch down to at least 0.01% by weight and the crystalline order of the coke is disturbed by suitable raw material selection and / or by the coking parameters so that the true density of the at 1,300 ° C calcined coke is reduced to an amount of 2.08 to 2.14 g / cm 3 .
  • the ash-forming constituents in the feed product can be reduced by known mechanical or thermal processes, as are customary for the separation of solid particles. These processes include, for example, centrifuging and separating, filtering, extracting and promoter-accelerated settling. With this ash removal, however, the puffing can only Ash removal, however, can only partially reduce puffing.
  • the crystal structure of coke can be influenced by changing the coking tendency of the feed, e.g. by using selected hard coal tars and pitches, or also by adding up to 50% by weight, based on the pitch, of a high-boiling carbo- and petro-derived hydrocarbon fraction.
  • Another option is to vary the coking conditions such as pressure, heating rate, coking time and coking temperature. A combination of both measures is possible, but not necessary in every case.
  • feedstocks are pretreated according to the specified procedures in order to ash the pitches.
  • the separation takes place in a plate separator at 200 ° C, without the addition of solvents.
  • the feed products are filtered through a gap filter with a gap width of 100 to 200 ⁇ m at 240 to 280 ° C and a maximum pressure of 8 - 10 5 Pa is.
  • This method is particularly suitable for ash removal from pitches. Ashing by promoter-accelerated settling is also possible, as comparative example 1 shows, and equivalent to separation.
  • the feed is mixed homogeneously with 50% by weight of methylnaphthalene and 50% by weight of kerosene, based on the feed, at 175 ° C. and left at 170 ° C. A heavy phase settles on the bottom of the container.
  • Coking of the precursor obtained in this way takes place either according to the delayed-coking process under 5 bar at a tube furnace outlet temperature of 480 ° C or in pressure-resistant retorts under a pressure of 1-5 bar and a heating rate of 5 or 10 K / h to 500 ° C instead.
  • the coke is crushed, ground and sieved so that there is a uniform granulometry of 100% ⁇ 1 mm 0, 75% ⁇ 0.5 mm 0 and 15% dust ( ⁇ 63 ⁇ m 0).
  • the ground coke is made using a commercially available electrode binder that meets the specifications
  • the pastes are then extruded into shaped bodies in a suitable device and fired to solid carbon bodies in a conventional manner.
  • the burned carbon bodies are graphitized under identical conditions and the irreversible change in shape that occurs is measured.
  • puffing is influenced not only by ash removal, but to a considerable extent by the choice of coking conditions.
  • the coking process most regarded as the most suitable for coking in retorts with slow heating (5 K / h) and low shear forces results in a coke with relatively high irreversible linear expansion.
  • the linear expansion coefficient increases as a result of this procedure, it is still within the range favorable for needle coke.
  • the electrical conductivity of the graphitized moldings also increases, which is a further positive feature of the method according to the invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Coke Industry (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

  • Die Erfindung bezieht sich auf ein Verfahren zur Herstellung von Nadelkoks aus Steinkohlenteerpech mit geringen irreversiblen Volumenvergrösserungen während der Graphitierung von Nadelkoks-Formkörpern, z.B. Graphit-Elektroden für die Elektrostahlgewinnung durch Schwelverkoken von Pechen mit einem Chinolinunlöslichengehalt von maximal 1,0 Gew.-%.
  • Die Qualität von Elektrographit-Formkörpern wird durch mehrere physikalische Eigenschaften wie z.B. Wärmeausdehnungskoeffizienten, spezifische elektrische und Wärmeleitfähigkeit, Aschewert, Spurenelemente und Dichte charakterisiert.
  • Es ist bekannt, dass Kohlenstoff-Formkörper, die aus Petrolkoks oder Steinkohlenteerpechkoks mit einem Bindemittel hergestellt sind, während des Graphitierungsprozesses zusätzlich zur reversiblen Wärmeausdehnung auch eine irreversible Volumenvergrösserung, das sogenannte Puffing zeigen. Durch das Puffing verschlechtern sich die physikalischen Formkörpereigenschaften wie die Festigkeit und die elektrische Leitfähigkeit.
  • Hochwertige Elektrographite werden aus sogenannten Nadelkoksen mit einem linearen Wärmeausdehnungskoeffizienten von weniger als 0,7 10-6 K-1 (im Bereich 20-200°C gemessen) hergestellt. Bei Elektrographiten von Elektroden aus petrostämmigen Nadelkoksen hat man gefunden, dass die irreversible Volumenvergrösserung mit dem Schwefelgehalt im kalzinierten Koks korrelierbar ist und durch die Zugabe von z.B. Eisenoxid zur Formkörperpaste verringert werden kann.
  • Dieser Zusammenhang gilt jedoch nicht für Steinkohlenteerpech-Nadelkokse. Bei gleichem Schwefelgehalt zeigen Formkörper aus Steinkohlenteerpech-Nadelkoks ein stärkeres Puffing, das sich durch Zugabe von Fe203 als allgemein gebräuchliches Inhibierungsmittel nur wenig beeinflussen lässt.
  • In den Preprints der «16th Biennial Conference on Carbon (18./22.07.1983, San Diego, USA; S. 595-596) wird beschrieben, dass das irreversible Puffing von Formkörpern aus Steinkohlenteerpech-Nadelkoks durch Zugabe von 1-2% Cr203 verringert werden kann. Dieses Verfahren ist jedoch grosstechnisch kaum wirtschaftlich realisierbar.
  • In den Patenten EP 0087489 B1 und EP 0085121 B1 wird bei der Herstellung von geblähtem Graphit aus Petrolkoksen das gezielte Einbringen von Intercalationsverbindungen in den Graphit sowie ein nachgeschaltetes Erwärmen auf höhere Temperaturen, unter denen sich die Einlagerungsverbindungen spontan in gasförmige Phasen zersetzen, beschrieben. Dabei entsteht ein innerer Überdruck im Graphit. Um diesen abzubauen, muss das Gas durch die Kristallschichten des Kohlenstoffs hindurch diffundieren, wobei die Kristallschichten irreversibel erweitert werden. Bei extremen Diffusionsstromdichten treten Expansionsfaktoren von 200:1 bis 400:1 auf.
  • Das Puffing von Elektrographit aus hochwertigem Steinkohlenteerpech-Nadelkoks erfolgt möglicherweise nach einem analogen Mechanismus und beträgt normalerweise bis 0,9% relative Längenänderung. Aus Steinkohlenteerpechen mit hohem Gehalt an in Chinolin unlöslichen Stoffen (Q1) können nur makroskopisch isotrope Kokse hergestellt werden, aus denen sich Graphitkörper ohne irreversible Längenausdehnung herstellen lassen. Diese haben jedoch eine geringe Leitfähigkeit und einen hohen Wärmeausdehnungskoeffizienten.
  • Daraus ergibt sich die Notwendigkeit, das Steinkohlenteerpech als Precursorfür den Steinkohlenteerpech-Nadelkoks von in Chinolin unlöslichen Bestandteilen zu befreien. Hierdurch wird auch die Konzentration schädlicher Einlagerungsverbindungen im Kohlenstoffkörper und damit die zu erwartende Diffusionsstromdichte verringert, wobei jedoch geringe Mengen an schädlichen Verbindungen im Precursor verbleiben. Eine gezielte Schwefel- und Stickstoffverminderung im Rohstoff hingegen ist schwierig.
  • Im JP 5898,385 wird die Herstellung eines puffingarmen Nadelkokses aus Steinkohlenteerpech beansprucht, dessen Gehalt an in Chinolin unlöslichen Bestandteilen 0,03% beträgt. Mit einem Fe203-Anteil von 0,5% wird nach einer Wärmebehandlung bis 2800°C ein Elektrographit erhalten, der in Achsrichtung der Elektrode nur noch eine irreversible Längenänderung von 0,5% aufweist. Ein Elektrographit aus einem Steinkohlenteerpech, das keine unlöslichen Bestandteile enthält, hat eine Längenänderung von 2,1%. Auch auf der Basis von aschearmem Steinkohlenteerpech als Rohstoff für den Nadelkoks und damit für den Elektrographit kann daher nicht auf den Zusatz von Fe203 als Inhibitor verzichtet werden. Der Zusatz von Fe203 erhöht jedoch im unerwünschten Masse den Aschewert des Elektrographits.
  • Aufgabe der Erfindung ist es deshalb, ein Verfahren zur Herstellung eines solchen Nadelkokses aus Steinkohlenteerpech zu entwickeln, der ohne zusätzliche Inhibierungsmittel zu puffingarmem Elektrographit verarbeitet werden kann.
  • Die Aufgabe wird erfindungsgemäss dadurch gelöst, dass die aschebildenden Bestandteile aus dem Steinkohlenteerpech bis auf mindestens 0,01 Gew.-% entfernt werden und die kristalline Ordnung des Kokses durch geeignete Rohstoffauswahl und/oder durch die Verkokungsparameter so gestört wird, dass die wahre Dichte des bei 1 300°C kalzinierten Kokses auf einen Betrag von 2,08 bis 2,14 g/cm3 verringert wird.
  • Die aschebildenden Bestandteile im Einsatzprodukt lassen sich durch bekannte mechanische oder thermische Verfahren, wie sie zur Abtrennung von Feststoffpartikeln üblich sind, verringern. Zu diesen Verfahren gehören beispielsweise das Zentrifugieren und Separieren, das Filtrieren, das Extrahieren und das promotorbeschleunigte Absitzenlassen (Settlen). Durch diese Ascheentfernung kann das Puffing jedoch nur zu Ascheentfernung kann das Puffing jedoch nur zu einem Teil vermindert werden.
  • Die Kristallstruktur von Koksen lässt sich durch Veränderung der Verkokungsneigung des Einsatzproduktes beeinflussen, z.B. durch Verwendung ausgewählter Steinkohlenteere und Peche, oder aber auch durch Zumischen von bis zu 50 Gew.-%, bezogen auf das Pech, einer hochsiedenden carbo- und petrostämmigen Kohlenwasserstofffraktion. Eine andere Möglichkeit ist die Variation der Verkokungsbedingungen wie Druck, Aufheizgeschwindigkeit, Verkokungszeit und Verkokungstemperatur. Eine Kombination beider Massnahmen ist möglich, aber nicht in jedem Fall erforderlich.
  • Beim verfahrensgemäss beanspruchten Vorgehen erhält man durch Schwelverkokung und anschliessende Kalzination bis zu 1 300°C, beispielsweise Kokse, die sich durch folgende Daten charakterisieren lassen:
    Figure imgb0001
  • Anhand einiger ausgewählter Versuchsdaten in Tabelle 1 ist zu erkennen, dass durch Variation der Massnahmen (1) und (2) Nadelkokse erhalten werden, die sich durch unterschiedliche Dichten und Aschewerte auszeichnen. Die wahre Dichte ß ist als einfache Messgrösse ein Mass für den kristallinen Orientierungsgrad im Koks.
  • Werden diese erhaltenen Kokse anschliessend unter bekannten, gleichbleibenden Bedingungen (Journal of Materials Science 18, 1983, Seiten 3161 EZ 176) zu Formkörpern verarbeitet und bis 2500°C graphitiert, findet man unterschiedliche irreversible Längenänderungen.
  • Überrraschend an diesen Untersuchungen ist die Tatsache, dass Kokse mit gleichem Aschewert bei geringerer Dichte, d.h. bei geringerer kristalliner Ordnung ein deutlich verbessertes Puffingverhalten zeigen, ohne dass die Nadelkokseigenschaften in unzulässiger Weise verschlechtert werden. Es muss angenommen werden, dass neben der Verminderung der für das Puffing mitverantwortlichen Aschebestandteile die gestörten Kristallstrukturen des Kokses die Diffusion der durch die verbleibenden Einlagerungsverbindungen beim Graphitieren entstehenden Gase erleichter, so dass ein Aufblähen der Graphitstruktur vermindert wird.
  • Mit den beschriebenen Massnahmen - Verringerung der Aschebildner im Pech und Beeinflussung der Kristallinität des Pechkokses - zur Beeinflussung irreversibler Längenausdehnungen bei Pech-Nadelkoksen ist eine Möglichkeit gefunden, das unerwünschte Formkörper-Puffing ohne verunreinigende Zusätze zu minimieren.
  • Die Einzelmassnahmen sind für sich allein wirksam, aber erst in Kombination bewirken sie ein optimales Ergebnis. Die Erfindung wird anhand der nachfolgenden Beispiele näher erläutert, ohne darauf beschränkt zu sein.
  • Beispiele
  • Es werden 10 Kokse gegenübergestellt, die aus Pechen, teilweise in Mischung mit hocharomatischen Ölen, mit geringem Gehalt an in Chinolin unlöslichen Stoffen (QI) hergestellt werden. Die Einsatzprodukte sind durch folgende Analysendaten gekennzeichnet:
    Figure imgb0002
    Pyrolyserückstandsöl aus der Wasserdampfspaltung:
    Figure imgb0003
    Figure imgb0004
    Anthracenöl aus der Steinkohlenteeraufarbeitung:
    Siedebereich 355 bis 470°C.
  • Diese Einsatzprodukte werden nach den angegebenen Verfahren vorbehandelt, um die Peche zu entaschen. Das Separieren erfolgt in einem Tellerseparator bei 200°C, ohne Zusatz von Lösungsmitteln. Filtriert werden die Einsatzprodukte über ein Spaltfilter mit 100 bis 200 um Spaltweite bei 240 bis 280°C und einem maximalen Druck von 8 - 105 Pa, wobei den Einsatzprodukten eine übliche Filterhilfe zugesetzt wird, deren Anteil bis zum Doppelten der Menge an Chinolinunlöslichem im Einsatzprodukt beträgt. Dieses Verfahren ist zur Entaschung von Pechen besonders geeignet. Eine Entaschung durch promotorbeschleunigtes Absetzenlassen (Settlen) ist ebenfalls möglich, wie das Vergleichsbeispiel 1 zeigt, und dem Separieren gleichwertig. Das Einsatzprodukt wird hierbei mit 50 Gew.-% Methylnaphthalin und 50 Gew.-% Kerosin, bezogen auf das Einsatzprodukt, bei 175°C homogen durchmischt und bei 170°C stehengelassen. Dabei setzt sich eine schwere Phase am Boden des Behälters ab. Die überstehende leichte Phase wird abgenommen und durch Flashdestillation von den leichtsiedenden Lösungsmitteln befreit. Die Verkokung des so gewonnenen Precursors findet entweder nach dem Delayed-Coking-Verfahren unter 5 bar bei einer Röhrenofenaustrittstemperatur von 480°C oder in druckfesten Retorten unter einem Druck von 1-5 bar und einer Aufheizgeschwindigkeit von 5 bzw. 10 K/h bis 500°C statt.
  • Durch unterschiedliche Vorbehandlungen und Verkokungsbedingungen werden Kokse mit verschiedenen Aschegehalten und wahren Dichten, gemessen am bei 1300°C kalzinierten Koks, gewonnen.
  • Die Kokse werden so zerkleinert, gemahlen und abgesiebt, dass eine einheitliche Granulometrie von 100% <1 mm 0, 75%<0,5 mm 0 und 15% Staub (<63 µm 0) vorliegt.
  • Die gemahlenen Kokse werden mit einem handelsüblichen Elektrodenbinder, der die Spezifikationen
  • Figure imgb0005
    aufweist, zu Pasten mit einem Binderanteil von 24 Gew.-%, bezogen auf das Gemisch, vermengt.
  • Anschliessend werden die Pasten in einer geeigneten Vorrichtung zu Formkörpern extrudiert und in herkömmlicher Weise zu festen Kohlenstoffkörpern gebrannt.
  • Die gebrannten Kohlenstoffkörper werden unter identischen Bedingungen graphitiert und die dabei auftretende irreversible Formänderung vermessen.
  • Die Ergebnisse sind in der Tabelle 2 wiedergegeben.
    Figure imgb0006
  • Wie ein Vergleich der Beispiele 1 und 2 mit den entsprechenden Vergleichsbeispielen zeigt, wird das Puffing nicht allein durch das Entaschen, sondern in erheblichem Masse durch die Wahl der Verkokungsbedingungen beeinflusst. So ergibt das für die Verkokung am günstigsten angesehene Verkokungsverfahren in Retorten bei langsamer Aufheizung (5 K/h) und geringen Scherkräften einen Koks mit noch relativ hohen irreversiblen Längenausdehnungen. Das Delayed-Coking-Verfahren mit schneller Aufheizung und danach nahezu konstant gehaltener Temperatur bei grossen Scherkräften, wodurch das Wachstum grosser Kristallite verhindert wird, führt hingegen zu einem Koks mit geringerem Puffing. Der lineare Ausdehnungskoeffizient steigt durch diese Verfahrensweise zwar an, liegt aber noch innerhalb des für Nadelkokse günstigen Bereichs. Zusätzlich erhöht sich ausserdem die elektrische Leitfähigkeit der graphitierten Formkörper, was ein weiteres positives Merkmal des erfindungsgemässen Verfahrens ist.

Claims (7)

1. Verfahren zur Herstellung von Nadelkoks aus Steinkohlenteerpech mit geringer irreversibler Volumenvergrösserung während der Graphitierung der daraus hergestellten Formkörper durch Schwelverkoken von Pechen mit einem chinolinunlöslichen Gehalt von maximal 1,0 Gew.-%, dadurch gekennzeichnet, dass die aschebildenden Bestandteile aus dem Einsatzprodukt bis auf mindestens 0.01 Gew.-% entfernt werden und die kristalline Ordnung des Kokses durch geeignete Rohstoffauswahl und/oder durch die Verkokungsparameter so gestört wird, dass die wahre Dichte des bei 1300°C kalzinierten Kokses auf einen Betrag von 2,08 bis 2,14g/cm3 vermindert wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Einsatzprodukt durch Filtrieren bei 240 bis 280°C und einem maximalen Druck von 8 - 105 Pa mit einem Zusatz von Filterhilfe bis zur doppelten Menge des Chinolinunlöslichen im Einsatzprodukt über ein Spaltfilter mit 100 bis 200 J.Lm Spaltweite entascht wird.
3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass dem Steinkohlenteerpech bis zu 50 Gew.-%, bezogen auf das Pech, einer hochsiedenden aromatischen petro- oder carbostämmigen Kohlenwasserstofffraktion zugemischt wird.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass die Kohlenwasserstofffraktion ein Rückstandsöl aus der Wasserdampfpyrolyse von Erdölfraktionen ist.
5. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass die Kohlenwasserstofffraktion ein Braunkohlenteerpech ist.
6. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass bei der Verkokung des Precursors unter einem Druck von 1-5 bar ein Aufheizgradient von mindestens 5 K/h aufrechterhalten wird.
7. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Precursor in einem Delayed-Coker bei einem Druck von maximal 5 bar und einer Röhrenofenaustrittstemperatur von etwa 480°C verkokt wird.
EP85200849A 1984-09-07 1985-05-28 Verfahren zur Herstellung von Nadelkoks mit geringen irreversiblen Volumenausdehnungen aus Steinkohlenteerpech Expired EP0174035B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3432886 1984-09-07
DE19843432886 DE3432886A1 (de) 1984-09-07 1984-09-07 Verfahren zur herstellung von nadelkoks mit geringen irreversiblen volumenausdehnungen aus steinkohlenteerpech

Publications (3)

Publication Number Publication Date
EP0174035A2 EP0174035A2 (de) 1986-03-12
EP0174035A3 EP0174035A3 (en) 1987-05-20
EP0174035B1 true EP0174035B1 (de) 1988-10-26

Family

ID=6244855

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85200849A Expired EP0174035B1 (de) 1984-09-07 1985-05-28 Verfahren zur Herstellung von Nadelkoks mit geringen irreversiblen Volumenausdehnungen aus Steinkohlenteerpech

Country Status (2)

Country Link
EP (1) EP0174035B1 (de)
DE (2) DE3432886A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4933976A (en) * 1988-01-25 1990-06-12 C.F.A. Technologies, Inc. System for generating rolled fingerprint images
JPWO2021054122A1 (de) * 2019-09-17 2021-03-25
CN115404090B (zh) * 2022-09-22 2023-08-08 西北大学 利用煤基与石油基重组分复配制备针状焦的方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3799865A (en) * 1971-11-30 1974-03-26 Nittetsu Chem Ind Co Process for producing needle-shaped coal pitch coke
JPS6041111B2 (ja) * 1976-11-26 1985-09-13 新日鐵化学株式会社 コ−クス製造原料の調整方法
JPS5641817A (en) * 1979-09-06 1981-04-18 Mitsubishi Chem Ind Ltd Manufacture of molded carbon material
DE3142826A1 (de) * 1981-10-29 1983-05-11 Rütgerswerke AG, 6000 Frankfurt Verfahren zur herstellung einer hochreaktiven pechfraktion und deren verwendung

Also Published As

Publication number Publication date
EP0174035A3 (en) 1987-05-20
DE3432886A1 (de) 1986-03-20
EP0174035A2 (de) 1986-03-12
DE3565854D1 (en) 1988-12-01

Similar Documents

Publication Publication Date Title
DE2752511C3 (de) Verfahren zur Herstellung eines Rohmaterials für die Erzeugung von Nadelkoks
DE102004035934B4 (de) Verfahren zur Erzeugung von Nadelkoks
DE2747495C2 (de) Verfahren zum kontinuierlichen Herstellen eines Kokses
DE3034359C2 (de) Verfahren zur Herstellung von Kohlenstoffmaterialien hoher Dichte und hoher Festigkeit
DE2834475C2 (de)
DE2614448C3 (de) Verfahren zum Herstellen eines Pechkokses mit nadeiförmiger Textur
DE3630986C2 (de) Verfahren zur Herstellung von hochreinem Koks
EP0174035B1 (de) Verfahren zur Herstellung von Nadelkoks mit geringen irreversiblen Volumenausdehnungen aus Steinkohlenteerpech
DE3033510A1 (de) Verfahren zur herstellung von kohlenstofferzeugnissen
DE3907156C2 (de)
DE2614541B2 (de) Verfahren zum herstellen eines isotropen kokses
DE2635451C2 (de) Verfahren zum Herstellen eines Steinkohlenteerpechkokses
DE3347352A1 (de) Verfahren zur herstellung von nadelkoks
DE3608130A1 (de) Verfahren zur herstellung modifizierter peche und deren verwendung
DE3116517A1 (de) Verfahren zur herstellung von pech aus erdoelfraktionen und das erhaltene pech
AT212272B (de) Verfahren zur Herstellung von Koks mit nadelähnlicher Struktur
DE2258034A1 (de) Verfahren zur herstellung von pech und koks
DE2310308C3 (de) Verfahren zur Herstellung von Petrolkoks
DE2116504B2 (de) Verfahren zur Herstellung von Spezialtcoksen
DE2064695C3 (de) Verfahren zur Herstellung eines anisotropen und leicht graphitierbaren Kokses
DE2813578C3 (de) Verfahren zur Gewinnung von schwefelarmem Elektrodenkoks aus schwefelhaltigen Petroleumrohstoffen und Steinkohleverarbeitungsprodukten
DE2614490C3 (de) Verfahren zum Herstellen eines Pechkokses
DE2122620C (de) Verfahren zur Herstellung von Spe zialkoksen
DE1047700B (de) Verfahren zur Herstellung von Kohleelektroden
AT359035B (de) Verfahren zur herstellung von spezialkoksen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB IT NL

ITCL It: translation for ep claims filed

Representative=s name: BARZANO' E ZANARDO ROMA S.P.A.

TCNL Nl: translation of patent claims filed
EL Fr: translation of claims filed
PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB IT NL

17P Request for examination filed

Effective date: 19870402

17Q First examination report despatched

Effective date: 19880229

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO ROMA S.P.A.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT NL

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3565854

Country of ref document: DE

Date of ref document: 19881201

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19930603

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19940511

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19940518

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19940531

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19950201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19950528

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19951201

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19950528

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19951201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19960229

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST