EP0172477A2 - Procédé et dispositif pour l'enregistrement de particules ou de quanta avec un détecteur - Google Patents

Procédé et dispositif pour l'enregistrement de particules ou de quanta avec un détecteur Download PDF

Info

Publication number
EP0172477A2
EP0172477A2 EP85109762A EP85109762A EP0172477A2 EP 0172477 A2 EP0172477 A2 EP 0172477A2 EP 85109762 A EP85109762 A EP 85109762A EP 85109762 A EP85109762 A EP 85109762A EP 0172477 A2 EP0172477 A2 EP 0172477A2
Authority
EP
European Patent Office
Prior art keywords
detector
particles
analyzer
quanta
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP85109762A
Other languages
German (de)
English (en)
Other versions
EP0172477A3 (fr
Inventor
Stefan Meier
Karl-Heinz Dr. Müller
Walter Reimann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Balzers und Leybold Deutschland Holding AG
Original Assignee
Leybold AG
Leybold Heraeus GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leybold AG, Leybold Heraeus GmbH filed Critical Leybold AG
Publication of EP0172477A2 publication Critical patent/EP0172477A2/fr
Publication of EP0172477A3 publication Critical patent/EP0172477A3/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/025Detectors specially adapted to particle spectrometers

Definitions

  • the invention relates to a method for registering particles or quanta in a spectroscopic analysis method, in which a detector is arranged downstream of the devices belonging to the respective measuring method.
  • the invention also relates to a spectroscopic analyzer suitable for carrying out this method.
  • Spectroscopic analysis methods are based on the investigation of certain properties of emitted particles or quanta, e.g. their mass, energy, spatial distribution, wavelength, intensity or the like.
  • Spectroscopic analysis methods include in particular surface analysis, residual gas analysis, mass spectrometry, electron spectrometry and optical emission spectrometry. These analysis methods mainly use secondary electron multipliers, channeltrons or channel plates (in the case of quantum detection with upstream scintillators) as detectors.
  • One way to expand the dynamic range is to change the operating mode of the detector. It is e.g. known to work with a secondary electron multiplier not only in the counting mode, but also in the current mode. However, such a switching of the operating mode always requires careful calibration and is associated with a high outlay in terms of apparatus and time.
  • the present invention is based on the object of proposing a method for registering particles or quanta in a spectroscopic analysis method in which the devices belonging to the respective measuring method are arranged downstream, and to provide a spectroscopic analyzer suitable for carrying out this method, with which in higher dynamics can be achieved in a simple manner without impairing the linearity in the detection.
  • this object is achieved in that between the analyzer and the detector, a defined masking of a part of the particles or quanta to be detected is carried out when the rate of the particles or quanta reaching the detector exceeds a maximum permissible value.
  • the main advantage of these measures is that neither a change in amplification on the detector which affects linearity nor any measures on the sample side which impair optimal test conditions are required in order to be able to measure with dynamics exceeding 10 6 .
  • Another advantage is that the measures according to the invention can be implemented in a simple manner using electronic aids. It is no longer necessary to switch the operating mode of the detector. Finally, there is no longer a risk that protracted measurement results, for example in the case of unexpected dynamic increases (for example in the case of unknown samples), will become unusable.
  • FIGS. 1 to 3 Further advantages and details of the invention will be explained on the basis of exemplary embodiments schematically illustrated in FIGS. 1 to 3.
  • the aperture (6) can e.g. be designed as an iris diaphragm that can be adjusted by hand or by motor.
  • the particles or quanta that have passed through the analyzer exit from the outlet opening 2 and are registered by the detector 4. Downstream of the detector 4 are detector electronics 8, generally shown as a block, and a measurement value acquisition 9. The signals emitted by the last unit are usually fed to an evaluation unit (block 11).
  • the signals of the measured value acquisition are fed to a control unit 12, with the aid of which the aperture 7 can be controlled via the line 13.
  • the aid of the aperture 7 can be controlled via the line 13.
  • the exemplary embodiment shown in FIG. 1 works as follows: as long as the particle rate entering through the detector inlet opening 5 does not exceed, for example, the value 1.10 6 particles / sec, the aperture 7 has its maximum opening width. If the particle rate exceeds the stated value, the aperture control is used 12 a reduction of the aperture 7 by a certain ratio, for example by a factor of 100. This factor corresponds to a dynamic gain of two orders of magnitude.
  • the electronic signal detection (blocks 8, 9, 11) can be designed so that it automatically detects the "reduction" so that jumps in the measurement results are compensated for.
  • the analyzer control 13 If the analyzer 1 is e.g. a mass analyzer, which is successively set to different masses, then the analyzer control 13 has the task of setting the analyzer again to the mass at which the undesirable increase in dynamics occurred. With this measuring method, it is possible to determine or to control the attenuation factor for a measured value, which results from a defined blanking, from the ratio of the two measuring points repeated at the time the diaphragm is activated.
  • the desired blanking takes place solely on the basis of the effect of electrical fields.
  • a device of this type can therefore only be used when working with charged particles.
  • three tubular section electrodes 16 to 18 are arranged, which form an electron-optical lens.
  • This lens has the task of focusing the particle beam leaving the analyzer 1 through the outlet opening 2 onto the inlet opening 5 of the detector 4.
  • the masking is activated by changing the voltage conditions at the electrodes 16 to 18 in such a way that a defocusing effect occurs with a known masking ratio.
  • the control can take place in the manner described for the exemplary embodiment according to FIG. 1. With the help of the panel control unit 12, the voltages required in each case are applied to the electrodes 16, 17, 18 via the lines 13 ', 13 "and 13"'.
  • the analyzer 1 is a quadrupole mass analyzer, the rods of which are designated by 21. Downstream of this is an individual lens 22 for focusing the particle stream emerging from the outlet opening 2 of the quadrupole mass analyzer 1.
  • the individual lens 22 comprises the electrodes 23, 24 and 25.
  • the individual lens 22 is followed by a deflection unit 26 which e.g. can be designed as a plate capacitor (plates 27 and 28).
  • the adjustable diaphragm 6 and the detector 4 designed as a secondary electron multiplier are arranged offset to the axis 3 of the analyzer 1 in such a way that there is no line of sight between the outlet opening 2 of the analyzer 1 and the inlet opening 5 of the detector 4. This reduces the background caused by neutral particles.
  • the deflection unit 26 has the task of imaging the focused particle beam onto the opening 7 of the adjustable diaphragm 6. The desired blanking of the particle beam takes place in the manner described for the exemplary embodiment according to FIG. 1 by reducing the aperture 7.
  • the deflection unit 26 is followed by a gap system 29.
  • This comprises three electrodes 31, 32 and 33 extending vertically to the image plane, between which the stomata 34 and 35 exist.
  • the cross-section of the stomata is different in size and chosen according to the desired blanking ratio.
  • the particle flow is optionally deflected onto the gap opening 34 or 35, depending on whether the particle rate has a value permissible for the detector 4 or not.
  • the arrangement of the electrodes 31, 32 and 33 is such that the central electrode 32 lies on the axis 3 of the system. This again prevents a direct line of sight between the outlet opening 2 of the analyzer 1 and the inlet opening 5 of the detector 4.
  • the electrodes 31, 32 and 33 therefore also have the task of returning the particle beam deflected by the deflection unit 26 from the axis 3 to the axis 3 and to the inlet opening 5 of the detector 4.
  • the electrodes 31, 32, 33 are to be supplied with voltages in a corresponding manner.
  • the paths formed by the electrodes 31, 32 and 33 (dash-dotted line Li lines 36, 37) curved such that the respective particle stream is aligned with the inlet opening 5 of the detector 4 after leaving the aperture system 29.
  • the voltages to be applied to the individual components in the exemplary embodiment according to FIG. 4 are designated U 2 to U 7 .
  • the electrodes 23 and 25 of the individual lens 22 are expediently at ground potential (U l ).
  • U l ground potential
  • a useful value for U 2 is -100 V.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Electron Tubes For Measurement (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
EP85109762A 1984-08-23 1985-08-02 Procédé et dispositif pour l'enregistrement de particules ou de quanta avec un détecteur Withdrawn EP0172477A3 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3430984 1984-08-23
DE19843430984 DE3430984A1 (de) 1984-08-23 1984-08-23 Verfahren und vorrichtung zur registrierung von teilchen oder quanten mit hilfe eines detektors

Publications (2)

Publication Number Publication Date
EP0172477A2 true EP0172477A2 (fr) 1986-02-26
EP0172477A3 EP0172477A3 (fr) 1987-01-07

Family

ID=6243694

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85109762A Withdrawn EP0172477A3 (fr) 1984-08-23 1985-08-02 Procédé et dispositif pour l'enregistrement de particules ou de quanta avec un détecteur

Country Status (3)

Country Link
EP (1) EP0172477A3 (fr)
JP (1) JPS6159246A (fr)
DE (1) DE3430984A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2716264A1 (fr) * 1994-02-11 1995-08-18 Balzers Hochvakuum Procédé et dispositif pour mesurer la quantité de charge s'écoulant dans le vide.
US20160027628A1 (en) * 2013-03-14 2016-01-28 Micromass Uk Limited Improved Method of Data Dependent Control
WO2017040640A1 (fr) * 2015-09-04 2017-03-09 United States Of America As Represented By The Administrator Of The National Aeronautics And Space Dispositif de mesure d'émission d'électrons optiquement stimulée et procédé pour caractériser et comparer des niveaux et des espèces de contaminants de surface

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2585616B2 (ja) * 1987-08-12 1997-02-26 株式会社日立製作所 二次イオン質量分析計方法
JP2577941B2 (ja) * 1988-01-13 1997-02-05 旭化成工業株式会社 Zsm―5を用いるアルコールの製造方法
JPH0731496Y2 (ja) * 1988-11-05 1995-07-19 セイコー電子工業株式会社 Icp質量分析装置
JPH05310415A (ja) * 1991-05-17 1993-11-22 Asahi Chem Ind Co Ltd ゼオライト微粒子体の製造方法
DE102004061442B4 (de) * 2004-12-17 2017-01-19 Thermo Fisher Scientific (Bremen) Gmbh Verfahren und Vorrichtung zur Messung von Ionen
GB2467548B (en) 2009-02-04 2013-02-27 Nu Instr Ltd Detection arrangements in mass spectrometers
DE102010032823B4 (de) * 2010-07-30 2013-02-07 Ion-Tof Technologies Gmbh Verfahren sowie ein Massenspektrometer zum Nachweis von Ionen oder nachionisierten Neutralteilchen aus Proben

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB780999A (en) * 1953-12-12 1957-08-14 Tno Improvements in or relating to mass spectrometers
FR2102931A5 (en) * 1970-08-31 1972-04-07 Thomson Csf Mass spectrometry - instantaneous alternative of direct or high gain reception of ion beam
US4058819A (en) * 1974-12-30 1977-11-15 Agfa-Gevaert, A.G. Analog/digital control arrangement for photographic apparatus
JPS5823157A (ja) * 1981-07-31 1983-02-10 Shimadzu Corp 質量分析装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1080320B (de) * 1954-04-09 1960-04-21 Siemens Ag Einrichtung zur Beugung von Roentgenstrahlen
DE1073655B (de) * 1958-11-29 1960-01-21 Fa. Carl Zeiss, Heidenheim/Brenz Verfahren zum Ändern der Bildhelligkeit in Korpuskularstrahlgeräten, insbesondere in Elektronenmikroskopen
DE1111846B (de) * 1960-04-14 1961-07-27 Bodenseewerk Perkin Elmer Co Vorrichtung zur Regelung der Spaltbreite bei Spektrophotometern
DE1564235C3 (de) * 1966-07-08 1974-11-14 Kernforschungsanlage Juelich Gmbh, 5170 Juelich Strahlenverschluß
US3583813A (en) * 1969-09-25 1971-06-08 Shimadzu Susakusho Ltd Spectrophotometer
US4013891A (en) * 1975-12-15 1977-03-22 Ibm Corporation Method for varying the diameter of a beam of charged particles
FR2442505A1 (fr) * 1978-11-23 1980-06-20 Commissariat Energie Atomique Groupeur-degroupeur de faisceau d'ions a intervalles dissymetriques et fonctionnant dans une large gamme de vitesse
US4365160A (en) * 1980-07-02 1982-12-21 Bell Telephone Laboratories, Incorporated Brightness enhancement of positron sources

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB780999A (en) * 1953-12-12 1957-08-14 Tno Improvements in or relating to mass spectrometers
FR2102931A5 (en) * 1970-08-31 1972-04-07 Thomson Csf Mass spectrometry - instantaneous alternative of direct or high gain reception of ion beam
US4058819A (en) * 1974-12-30 1977-11-15 Agfa-Gevaert, A.G. Analog/digital control arrangement for photographic apparatus
JPS5823157A (ja) * 1981-07-31 1983-02-10 Shimadzu Corp 質量分析装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ANALYTICAL BIOCHEMISTRY, Band 53, Nr. 1, Mai 1973, Seiten 98-107, Academic Press Inc., New York, US; H.C. BEALL et al.: "A photon counting device for the measurement of nanosecond and microsecond kinetics of light emission from biological systems" *
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH, SECTION B, Band 232, Nr. 1, Juni 1984, Seiten 167-169, Elsevier Science Publishers B.V., Amsterdam, NL; M.G. DOWSETT et al.: "An electrostatic iris for use in quadrupole sims instruments" *
PATENTS ABSTRACTS OF JAPAN, Band 7, Nr. 103 (E-173)[1248], 6. Mai 1983; & JP-A-58 23 157 (SHIMAZU SEISAKUSHO K.K.) 10-02-1983 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2716264A1 (fr) * 1994-02-11 1995-08-18 Balzers Hochvakuum Procédé et dispositif pour mesurer la quantité de charge s'écoulant dans le vide.
US5644220A (en) * 1994-02-11 1997-07-01 Balzers Aktiengesellschaft Process and apparatus for measuring charge quantity flowing in a vacuum
DE19502439B4 (de) * 1994-02-11 2007-08-16 Oc Oerlikon Balzers Ag Verfahren und Messanordnung zum Messen der pro Zeiteinheit einen Vakuumvolumenbereich in gegebener Richtung durchströmenden elektrischen Ladungsmenge und deren Verwendung für Massenspektrometer
US20160027628A1 (en) * 2013-03-14 2016-01-28 Micromass Uk Limited Improved Method of Data Dependent Control
US10832898B2 (en) * 2013-03-14 2020-11-10 Micromass Uk Limited Method of data dependent control
WO2017040640A1 (fr) * 2015-09-04 2017-03-09 United States Of America As Represented By The Administrator Of The National Aeronautics And Space Dispositif de mesure d'émission d'électrons optiquement stimulée et procédé pour caractériser et comparer des niveaux et des espèces de contaminants de surface
US10302556B2 (en) 2015-09-04 2019-05-28 The United States Of America As Represented By The Administrator Of Nasa Optically stimulated electron emission measurement device and method for characterizing and comparing levels and species of surface contaminants

Also Published As

Publication number Publication date
DE3430984A1 (de) 1986-03-06
EP0172477A3 (fr) 1987-01-07
JPS6159246A (ja) 1986-03-26

Similar Documents

Publication Publication Date Title
DE4134905A1 (de) Tandem-massenspektrometer basierend auf flugzeitanalyse
DE69936800T2 (de) Massenspektrometer
EP0048857B1 (fr) Dispositif stroboscopique de détermination d'un potentiel utilisant un appareil de mesure de faisceaux électroniques et méthode de fonctionnement d'un tel dispositif
DE19929185A1 (de) Vorrichtung und Verfahren zur energie- und winkelaufgelösten Elektronenspektroskopie
DE60126048T2 (de) Massenspektrometer und massenspektrometrisches Verfahren
EP0172477A2 (fr) Procédé et dispositif pour l'enregistrement de particules ou de quanta avec un détecteur
DE19635645C2 (de) Verfahren für die hochauflösende Spektrenaufnahme von Analytionen in einem linearen Flugzeitmassenspektrometer
DE2701606A1 (de) System zum verarbeiten positiver und negativer ionen im massenspektrometer
DE2458025A1 (de) Vorrichtung fuer massenanalyse und strukturanalyse einer oberflaechenschicht durch ionenstreuung
EP0123860A2 (fr) Analyseur d'énergie d'électrons avec un détecteur à plusieurs canaux
DE102016009643B4 (de) Verbesserung des Dynamikbereichs für die Isotopenverhältnis-Massenspektrometrie
EP0854495A1 (fr) Dispositif et méthode de mise en oeuvre d'un spectromètre avec résolution en énergie et résolution angulaire
DE2646394A1 (de) Vorrichtung zur messung des spinpolarisationsgrades eines elektronenstrahls
DE2105805C3 (de) Gerät zur Elektronenspektroskopie
DE102007040921A1 (de) Vorrichtung zur Messung eines Teilchenstroms
EP0708976A1 (fr) Procede d'exploitation d'un spectrometre de masse pour ions secondaires fonctionnant par mesure du temps de vol
DE4002849C2 (fr)
DE2461224A1 (de) Vorrichtung zum elektrischen nachweis von ionen zur massenspektroskopischen bestimmung der massenwerte und/oder der massenintensitaeten der ionen
EP0232790A1 (fr) Procédé et dispositif pour mesurer des signaux en fonction du temps avec une sonde à rayon corpusculaire
DE2759116A1 (de) Massenspektrometer
DE3928836A1 (de) Massenspektrometer
DE102004061442B4 (de) Verfahren und Vorrichtung zur Messung von Ionen
DE2733966C3 (de) lonenemissionsmikroskop-Mikroanalysator
DE3407071A1 (de) Verfahren zur automatischen einstellung der spannungsaufloesung in korpuskularstrahl-messgeraeten und vorrichtung zur durchfuehrung eines solchen verfahrens
DE10351010B4 (de) Massenspektrometer

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): CH DE FR GB IT LI

17P Request for examination filed

Effective date: 19860613

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): CH DE FR GB IT LI

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LEYBOLD AKTIENGESELLSCHAFT

18D Application deemed to be withdrawn

Effective date: 19880301

RIN1 Information on inventor provided before grant (corrected)

Inventor name: MUELLER, KARL-HEINZ, DR.

Inventor name: MEIER, STEFAN

Inventor name: REIMANN, WALTER