EP0103234B1 - Verfahren zum Verdichten von anodisch erzeugten Oxidschichten auf Aluminium oder Aluminiumlegierungen - Google Patents

Verfahren zum Verdichten von anodisch erzeugten Oxidschichten auf Aluminium oder Aluminiumlegierungen Download PDF

Info

Publication number
EP0103234B1
EP0103234B1 EP83108560A EP83108560A EP0103234B1 EP 0103234 B1 EP0103234 B1 EP 0103234B1 EP 83108560 A EP83108560 A EP 83108560A EP 83108560 A EP83108560 A EP 83108560A EP 0103234 B1 EP0103234 B1 EP 0103234B1
Authority
EP
European Patent Office
Prior art keywords
acid
sealing
water
reaction
soluble salts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP83108560A
Other languages
English (en)
French (fr)
Other versions
EP0103234A3 (en
EP0103234A2 (de
Inventor
Hans Jürgen Dr. Göhausen
Winfried Kirchhoff
Jürgen Lindener
Harald Wennemann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henkel AG and Co KGaA
Original Assignee
Henkel AG and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel AG and Co KGaA filed Critical Henkel AG and Co KGaA
Priority to AT83108560T priority Critical patent/ATE28218T1/de
Publication of EP0103234A2 publication Critical patent/EP0103234A2/de
Publication of EP0103234A3 publication Critical patent/EP0103234A3/de
Application granted granted Critical
Publication of EP0103234B1 publication Critical patent/EP0103234B1/de
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/18After-treatment, e.g. pore-sealing
    • C25D11/24Chemical after-treatment
    • C25D11/246Chemical after-treatment for sealing layers

Definitions

  • the invention relates to a method for compacting anodically produced oxide layers on aluminum or aluminum alloys by treatment with aqueous solutions at elevated temperatures, the occurrence of disruptive aluminum hydroxide coatings (sealing coatings) on the surfaces being prevented.
  • Anodically produced oxide layers are often applied to aluminum surfaces for the purpose of corrosion protection. These oxide layers protect the aluminum surfaces from the effects of weather and other corrosive media. Furthermore, the anodic oxide layers are also applied in order to obtain a harder surface and thus to achieve increased wear resistance of the aluminum. Due to the intrinsic color of the oxide layers and their partially easy egg coloring, particularly decorative effects can be achieved.
  • a number of methods are known for applying anodic oxide layers to aluminum.
  • the oxide layers are produced with direct current in solutions of sulfuric acid (direct current-sulfuric acid method).
  • These layers can be subsequently colored by dipping in solutions of a suitable dye or by alternating current treatment in an electrolyte containing metal salts.
  • solutions of organic acids such as, in particular, sulfophthalic acid or sulfanilic acid, or else these in a mixture with sulfuric acid, are frequently used for the application of the oxide layers. The latter methods are known as color anodization methods.
  • these anodically applied oxide layers do not meet all requirements with regard to corrosion protection, since they have a porous structure. For this reason, it is necessary to densify the oxide layers. This densification is often carried out with hot or boiling water and referred to as «sealing. This closes the pores and thus significantly increases the protection against corrosion.
  • the so-called sealing coating is also formed on the entire surface.
  • This consists of hydrated aluminum oxide and is not touch-proof, so that the decorative effect of the layer is adversely affected. It also reduces the adhesive strength when gluing such aluminum parts and, due to the increased effective surface area, promotes later contamination and corrosion. For these reasons, it was previously necessary to remove the covering by hand, mechanically or chemically.
  • the object of the present invention is to further improve the previous methods of operation and to make them even safer in order to arrive at an improved method for compacting anodic oxide layers on aluminum or aluminum alloys.
  • phosphinocarboxylic acids used in the process according to the invention can be prepared by known processes.
  • reaction products of hypophosphorous acid are used, such as those used in the reaction with acrylic acid, methacrylic acid, ethyl acrylic acid, crotonic acid, maleic acid, glutaronic acid, citraconic acid, itaconic acid, 2-butene-2-carboxylic acid, dimethyl maleic acid, 2-methylene glutaric acid, butene polycarboxylic acids and ethylene tetracarboxylic acids, ethylene tetracarboxylic acids, ethylene tetracarboxylic acids and ethylene tetracarboxylic acids, ethylene tetracarboxylic acids, and ethylene tetracarboxylic acids, and ethylene tetracarboxylic acids, and ethylene tetracarboxylic acids Cinnamic acid are created.
  • reaction products with hypophosphorous acid derived from higher unsaturated carboxylic acids can also be used.
  • their use in terms of optimal bath management becomes increasingly complex.
  • their water-soluble salts in which all or part of the acidic protons have been replaced, for example, by alkali metal, ammonium, alkaline earth metal, alkylammonium or alkanolammonium ions, can also be used for carrying out the process.
  • the salts are used in an amount which corresponds to 0.0005 to 0.5 g / l of the free acids.
  • a preferred embodiment of the process is that the compression is carried out in solutions which contain the reaction products formed in the addition of 2-8 molecules of acrylic acid to the two PH functions of the hypophosphorous acid or their water-soluble salts in an amount of 0.0005 to 0.5 g / l included.
  • a further embodiment of the process consists in that the compaction is carried out in solutions which contain the reaction products obtained in the reaction of maleic acid with hypophosphorous acid or their water-soluble salts.
  • the solutions of the acids or salts according to the invention are adjusted to a pH of 4 to 8, preferably 5 to 6. This setting can be made with ammonia or acetic acid.
  • the compression with the solutions according to the invention is carried out at temperatures between 90 ° C. and the boiling point. In general, a temperature of 95 to 100 ° C is maintained.
  • the compression time is within the usual range and is about 1.5 to 3.5 min / gm layer thickness of the anodic oxide layer.
  • Additives known per se, such as nickel or cobalt acetate, can also be added to the compression solutions for this purpose in small amounts between 0.0001 and 0.5 g / l.
  • the new process makes it possible to prevent the formation of sealing coatings without impairing the anodic oxide layer or reducing the quality of the compression.
  • the special properties of the active ingredients used greatly reduce the risk of unintentional harmful overdosing. Rinsing after compaction or spraying to remove any residue from the surface are not required.
  • the appearance of the surface is not influenced by the method according to the invention; the effects that were achieved by pretreatment and anodization are retained.
  • the designation of the aluminum alloys was made in accordance with DIN 1725.
  • the quality of the oxide layers was determined by the apparent conductance or y-value according to DIN 50949 and by the loss factor d according to ISO / TC 79 / SC2 (ALL-1) Doc. 65 E.
  • the quality of the compression was also checked using the chromophosphoric acid test (ISO 3210).
  • Al 99.5 An alkaline degreased and pickled aluminum sheet (Al 99.5) was compressed after the anodic oxidation using the direct current sulfuric acid method (layer thickness 20 ⁇ m) in a solution containing 0.01 g / l of a reaction product of 2 mol maleic acid in deionized water Contained 1 mol of hypophosphorous acid and had been adjusted to pH 5.8 with ammonia.
  • the reaction product of 2 moles of maleic acid with 1 mole of hypophosphorous acid was prepared by adding 45 g of sodium hypophosphite monohydrate to 100 g of maleic acid dissolved in 250 ml of water. The reaction mixture was heated to 60 ° C. and 8 g of ammonium persulfate dissolved in water were added dropwise in small portions over 4 hours. The reaction mixture was kept at 60 ° C. for a further 2 hours. The solution thus obtained was used for the experiments without isolating the reaction product, the active substance content resulting from the raw materials used.
  • the anodized aluminum was densified for 60 min. performed at 98 ° C. After that, the sheets showed no sealing coating. The layer thickness remained unchanged at 20 ⁇ m. The dielectric loss factor was 0.42 and the admittance had dropped from over 400 to 12.5 ⁇ S. A weight loss of 12.9 mg / dm 2 was found in the chromophosphoric acid test.
  • Alkaline degreased and pickled profiles made from the alloy AIMgSi 0.5 were anodized according to the direct current sulfuric acid-oxalic acid method (layer thickness 19 ⁇ m) and colored electrolytically bronze in a tin-containing coloring electrolyte. The profiles were then compacted for a time corresponding to 3 min / ⁇ m layer thickness at 98 ° C. in a solution adjusted to pH 6.0, which solution had been obtained in deionized water 0.001 g / l of a reaction product of hypophosphorous acid with 8 mol of acrylic acid.
  • the reaction product of acrylic acid with hypophosphorous acid was prepared as follows:
  • Profiles made from the alloy AIMgSi 0.5 degreased and pickled by the usual method were anodized using the direct current sulfuric acid method (layer thickness 18-21 ⁇ m). These were at a pH of 5.8 (adjusted with ammonia or acetic acid) in solutions containing the reaction products of hypophosphorous acid with itaconic acid, Citra consic acid or 1-butene-2,3,4-tricarboxylic acid - prepared by the process mentioned in Example 1 - contained in the stated amounts at 97-100 ° C for 60 min. condensed.
  • the table shows the deposit-preventing effect and the influence of the substances on the layer quality, expressed according to the results of the admittance measurement of the dielectric loss factor and the weight loss in the chromium-phosphoric acid test.
  • the sealing coating is prevented and the layer quality is not impaired.
  • Comparative experiments with cyclohexane hexacarboxylic acid and phosphonobutane-2,3,4-tricarboxylic acid were included in the table, which show that, although the sealing coating is prevented in the case of the comparison substances, severe layer damage occurs even at the higher concentrations. (See table on page 6 f.)

Description

  • Die Erfindung betrifft ein Verfahren zum Verdichten von anodisch erzeugten Oxidschichten auf Aluminium oder Aluminiumlegierungen durch Behandlung mit wäßrigen Lösungen bei erhöhten Temperaturen, wobei das Auftreten von störenden Aluminiumhydroxidbelägen (Sealingbelägen) auf den Oberflächen verhindert wird.
  • Auf Aluminiumoberflächen werden zum Zwecke des Korrosionsschutzes vielfach anodisch erzeugte Oxidschichten aufgebracht. Diese Oxidschichten schützen die Aluminiumoberflächen vor den Einflüssen der Witterung und anderer korrodierender Medien. Ferner werden die anodischen Oxidschichten auch aufgebracht, um eine härtere Oberfläche zu erhalten und damit eine erhöhte Verschleißfestigkeit des Aluminiums zu erreichen. Durch die Eigenfarbe der Oxidschichten bzw. ihre teilweise leichte Eihfärbbarkeit lassen sich besonders dekorative Effekte erzielen.
  • Für das Aufbringen von anodischen Oxidschichten auf Aluminium sind eine Reihe von Verfahren bekannt. Beispielsweise erfolgt die Erzeugung der Oxidschichten mit Gleichstrom in Lösungen von Schwefelsäure (Gleichstrom-Schwefelsäure-Verfahren).
  • Diese Schichten können durch Tauchen in Lösungen eines geeigneten Farbstoffes oder durch eine Wechselstrombehandlung in einem metallsalzhaltigen Elektrolyten nachträglich eingefärbt werden. Häufig werden für das Aufbringen der Oxidschichten jedoch auch Lösungen organischer Säuren, wie insbesondere Sulfophtalsäure bzw. Sulfanilsäure oder aber diese im Gemisch mit Schwefelsäure, verwendet. Die zuletzt genannten Verfahren sind als Farbanodisationsverfahren bekannt.
  • Diese anodisch aufgebrachten Oxidschichten erfüllen aber nicht alle Anforderungen im Hinblick auf den Korrosionsschutz, da sie eine poröse Struktur aufweisen. Aus diesem Grunde ist es erforderlich, die Oxidschichten nachzuverdichten. Diese Nachverdichtung wird vielfach mit heißem bzw. siedendem Wasser vorgenommen und als « Sealing bezeichnet. Hierdurch werden die Poren verschlossen und damit der Korrosionsschutz erheblich erhöht.
  • Bei der Nachverdichtung anodisch aufgebrachter Oxidschichten werden aber nicht nur die Poren verschlossen, sondern es bildet sich auch auf der gesamten Fläche ein mehr oder weniger starker samtartiger Belag, der sogenannte Sealingbelag. Dieser besteht aus hydratisiertem Aluminiumoxid und ist nicht griffest, so daß der dekorative Effekt der Schicht hierdurch beeinträchtigt wird. Ferner vermindert er die Haftfestigkeit bei der Verklebung solcher Aluminiumteile und fördert durch die vergrößerte effektive Oberfläche spätere Verschmutzung und Korrosion. Aus diesen Gründen war es bisher notwendig, den Belag von Hand mechanisch oder auf chemischem Wege zu entfernen.
  • Es ist bereits bekannt, von verdichteten und mit Sealingbelag behafteten Oberflächen durch eine Mineralsäurenachbehandlung diesen Belag wieder abzulösen. Bei diesem Verfahren ist somit ein weiterer Behandlungsschritt notwendig, und es erfordert außerdem eine sehr sorgfältige Nachbehandlung mit der Mineralsäure, um eine Schichtschädigung auszuschließen.
  • Weiterhin gehört es zum Stand der Technik, zur Verhinderung von Sealingbelägen eine Nachverdichtung mit Lösungen durchzuführen, die Nickelacetat und Ligninsulfonat enthalten. Nachteilig bei dieser Arbeitsweise ist unter anderem das Vergilben der erhaltenen Oxidschichten unter Lichteinfluß. Schließlich sind auch schon Verfahren beschrieben, bei denen zur Verhinderung der Sealingbeläge eine Heißwasserverdichtung unter Zusatz bestimmter Polyacrylate (DE-PS 19 38 039) oder bestimmter Dextrine (DE-PS 1944452) erfolgt. Diese Verfahren haben sich gut bewährt. In manchen Fällen, insbesondere bei steigendem Molekulargewicht der verwendeten Wirkstoffe, können jedoch mehr oder weniger sichtbare Polymerfilme auf der Oberfläche entstehen. Diese sind unerwünscht. Auch hat man bereits beschrieben, Oxycarbonsäuren wie Citronensäure (DE-PS 21 62674) sowie verschiedene Phosphonsäuren (DE-PS 22 11 553) in kleinen Mengen als Sealingbelagverhinderer zu verwenden. Bei Einsatz dieser Substanzen hat sich jedoch gezeigt, daß insbesondere in großen, schlecht umgewälzten Bädern Schwierigkeiten mit der Überdosierung des Wirkstoffs entstehen können. Es ist nämlich nicht immer problemlos, den Konzentrationsbereich einzuhalten, bei dem einerseits der Sealingbelag absolut sicher verhindert wird, ohne daß andererseits das Ergebnis der Kurzzeitprüfungen negativ beeinflußt wird. Obwohl die Gefahr der Überdosierung durch die bereits bekannte Verwendung von bestimmten cycloaliphatischen oder aromatischen Polycarbonsäuren (DE-OS 26 50 989) weiter reduziert werden konnte, waren in der Praxis gelegentlich immer noch unbeabsichtigte Abweichungen von dem optimalen Konzentrationsbereich festzustellen. Dementsprechend stellt sich die vorliegende Erfindung die Aufgabe, die bisherigen Arbeitsweisen weiter zu verbessern und noch sicherer zu gestalten, um zu einem verbesserten Verfahren zum Verdichten von anodischen Oxidschichten auf Aluminium oder Aluminiumlegierungen zu gelangen.
  • Die Erfindung betrifft demgemäß ein Verfahren zum Verdichten von anodisch erzeugten Oxidschichten auf Aluminium oder Aluminiumlegierungen durch Behandlung mit wäßrigen Lösungen mit einem pH-Wert von 4 bis 8 bei Temperaturen zwischen 90 °C und der Siedetemperatur, das dadurch gekennzeichnet ist, daß man die Verdichtung mit Lösungen durchführt, die 0,0005 bis 0,5 g/I Phosphinocarbonsäuren, die bei der Umsetzung von hypophosphoriger Säure mit ungesättigten mono- oder polyfunktionellen Carbonsäuren der allgemeinen Formel I
    Figure imgb0001
    in der
    • R1 Wasserstoff oder einen der Reste
      Figure imgb0002
      Figure imgb0003
      Figure imgb0004
      Figure imgb0005
      sowie
    • R2, R3 und R4 Wasserstoff oder einen der Reste -CH3, -C2H5, -COOH, -CH2-COOH, ―CH2―CH2―COOH, bedeuten und wobei mindestens einer der Reste R1 bis R4 eine COOH-Gruppe darstellt oder enthält, im Molverhältnis 1 : 1 bis 1 : 8 gebildet werden, oder deren wasserlösliche Salze enthalten.
  • Die im erfindungsgemäßen Verfahren eingesetzten Phosphinocarbonsäuren können nach bekannten Verfahren hergestellt werden. Beispielsweise sei auf das allgemein bekannte Lehrbuch Houben-Weyl, « Methoden der organischen Chemie » 4. Aufl., Bd. XII/1, Stuttgart 1963, S. 228 bis 229 verwiesen.
  • Demgemäß finden Umsetzungsprodukte von hypophosphoriger Säure Verwendung, wie sie bei der Umsetzung mit Acrylsäure, Methacrylsäure, Ethylacrylsäure, Crotonsäure, Maleinsäure, Glutarconsäure, Citraconsäure, Itaconsäure, 2-Buten-2-carbonsäure, Dimethylmaleinsäure, 2-Methylenglutarsäure, Butenpolycarbonsäuren, Ethylentetracarbonsäure, Pentenpolycarbonsäuren und Zimtsäure entstehen. Erfindungsgemäß können auch von höheren ungesättigten Carbonsäuren abgeleitete Umsetzungsprodukte mit hypophosphoriger Säure verwendet werden. Mit steigendem Molekulargewicht wird deren Anwendung hinsichtlich einer optimalen Badführung jedoch zunehmend aufwendiger. Für die Durchführung des Verfahrens können außer den Säuren auch ihre wasserlöslichen Salze angewandt werden, bei denen alle oder ein Teil der sauren Protonen beispielsweise durch Alkali-, Ammonium-, Erdalkali-, Alkylammonium- oder Alkanolammoniumionen ersetzt wurden. Hierbei werden die Salze in einer Menge eingesetzt, die 0,0005 bis 0,5 g/I der freien Säuren entspricht.
  • Eine bevorzugte Ausführungsform des Verfahrens besteht darin, daß man die Verdichtung in Lösungen durchführt, welche die bei der Anlagerung von 2-8 Molekülen Acrylsäure an die beiden P-H-Funktionen der hypophosphorigen Säure entstandenen Umsetzungsprodukte oder deren wasserlösliche Salze in einer Menge von 0,0005 bis 0,5 g/I enthalten.
  • Eine weitere Ausführungsform des Verfahrens besteht darin, daß die Verdichtung in Lösungen durchgeführt wird, die die bei der Umsetzung von Maleinsäure mit hypophosphoriger Säure erhaltenden Umsetzungsprodukte oder deren wasserlösliche Salze enthalten.
  • Als vorteilhaft hat es sich ebenfalls erwiesen, die Verdichtung in Lösungen durchzuführen, welche die bei der Umsetzung von hypophosphoriger Säure mit Itaconsäure erhaltenen Umsetzungsprodukte oder deren wasserlösliche Salze enthalten.
  • Eine ebenso günstige Ausführungsform des Verfahrens ist gegeben durch die Verwendung von Anlagerungsprodukten der 1-Buten-2,3,4-tricarbonsäure an hypophosphorige Säure oder deren wasserlösliche Salze.
  • Die Lösungen der erfindungsgemäßen Säuren bzw. Salze werden auf einen pH-Wert von 4 bis 8, vorzugsweise 5 bis 6, eingestellt. Diese Einstellung kann mit Ammoniak bzw. Essigsäure erfolgen. Für den Ansatz der Lösungen ist es vorteilhaft, wenn vollentsalztes bzw. destilliertes oder Kondenswasser verwendet wird.
  • Die Verdichtung mit den erfindungsgemäßen Lösungen wird bei Temperaturen zwischen 90 °C und der Siedetemperatur durchgeführt. Im allgemeinen wird eine Temperatur von 95 bis 100 °C eingehalten. Die Verdichtungszeit hält sich hierbei in dem üblichen Rahmen und beträgt etwa 1,5 bis 3,5 min/gm Schichtdicke der anodischen Oxidschicht. Den Verdichtungslösungen können weiterhin auch noch für diese Zwecke an sich bekannte Zusätze wie Nickel- oder Kobaltacetat in kleinen Mengen zwischen 0,0001 und 0,5 g/I zugesetzt werden. Durch das neue Verfahren ist es möglich, die Ausbildung von Sealingbelägen zu verhindern, ohne daß die anodische Oxidschicht beeinträchtigt oder die Qualität der Verdichtung herabgesetzt wird. Durch die besonderen Eigenschaften der verwendeten Wirkstoffe ist die Gefahr einer unbeabsichtigten schädlichen Überdosierung stark reduziert. Eine Nachspülung nach der Verdichtung oder ein Absprühen, um irgendwelche Rückstände von der Oberfläche zu entfernen, sind nicht erforderlich. Das Aussehen der Oberfläche wird durch das erfindungsgemäße Verfahren nicht beeinflußt ; es bleiben die Effekte erhalten, wie sie durch Vorbehandlung und Anodisation erzielt wurden.
  • In den nachfolgenden Beispielen wurde die Bezeichnung der Aluminiumlegierungen gemäß DIN 1725 vorgenommen. Die Qualität der Oxidschichten wurde durch den Scheinleitwert oder y-Wert nach DIN 50949 und durch den Verlustfaktor d nach ISO/TC 79/SC2 (ALL-1) Dok.65 E bestimmt. Weiterhin wurde die Güte der Verdichtung mittels des Chromphosphorsäuretests (ISO 3210) geprüft.
  • Beispiel 1
  • Ein alkalisch entfettetes und gebeiztes Aluminiumblech (Al 99,5) wurde nach der anodischen Oxidation im Gleichstrom-Schwefelsäure-Verfahren (Schichtdicke 20 µm) in einer Lösung verdichtet, die in entionisiertem Wasser 0,01 g/I eines Umsetzungsproduktes von 2 Mol Maleinsäure mit 1 Mol hypophosphoriger Säure enthielt und mit Ammoniak auf pH 5,8 eingestellt worden war.
  • Das Umsetzungsprodukt von 2 Mol Maleinsäure mit 1 Mol hypophosphoriger Säure wurde hergestellt, indem zu 100 g Maleinsäure, gelöst in 250 ml Wasser, 45 g Natriumhypophosphitmonohydrat gegeben wurde. Das Reaktionsgemisch wurde auf 60 °C erwärmt und während 4 Stunden in kleinen Portionen 8 g Ammoniumpersulfat gelöst in Wasser zutropfen lassen. Das Reaktionsgemisch wurde für 2 weitere Stunden auf 60 °C gehalten. Die so erhaltene Lösung wurde ohne Isolierung des Umsetzungsproduktes für die Versuche verwendet, wobei sich der Aktivsubstanzgehalt aus den eingesetzten Rohstoffen ergab.
  • Die Verdichtung des anodisierten Aluminiums wurde während 60 min. bei 98 °C durchgeführt. Danach zeigten die Bleche keinen Sealingbelag. Die Schichtdicke betrug unverändert 20 µm. Der dielektrische Verlustfaktor betrug 0,42, und der Scheinleitwert war von über 400 auf 12,5 µS abgefallen. Im Chromphosphorsäuretest wurde ein Gewichtsverlust von 12,9 mg/dm2 gefunden.
  • Praktisch identische Ergebnisse wurden nach entsprechender pH-Einstellung mit Essigsäure erhalten, wenn man von den äquivalenten Mengen der Natrium-, Kalium-, Ammonium-, Magnesium-, Calcium-, Tetramethylammonium- oder Alkanolaminsalzen des Umsetzungsproduktes von 2 Mol Maleinsäure mit 1 Mol hypophosphoriger Säure ausging.
  • Beispiel 2
  • Alkalisch entfettete und gebeizte Profile aus der Legierung AIMgSi 0,5 wurden nach dem Gleichstrom-Schwefelsäure-Oxalsäure-Verfahren anodisch oxidiert (Schichtdicke 19 µm) und in einem zinnhaltigen Färbeelektrolyten elektrolytisch bronze eingefärbt. Die Profile wurden darauf während einer 3 min./µm Schichtdicke entsprechenden Zeit bei 98 °C in einer auf pH 6,0 eingestellten Lösung verdichtet, die in entionisiertem Wasser 0,001 g/I eines Umsetzungsproduktes von hypophosphoriger Säure mit 8 Mol Acrylsäure erhalten worden war.
  • Das Umsetzungsprodukt von Acrylsäure mit hypophosphoriger Säure wurde wie folgt hergestellt :
  • Die Suspension von 100 g 50 %iger hypophosphoriger Säure, 40 g Acrylsäure, 4 g Benzoylperoxid mit einem Gehalt von 25 % Wasser und 300 ml Wasser wurde unter Rühren vorsichtig auf 95-98 °C erwärmt. Die einsetzende exotherme Reaktion wurde ohne weitere zusätzliche Erwärmung durch Zugabe von 340 g Acrylsäure während 45 min. in Gang gehalten. Nach vollständiger Zugabe und Nachlassen der exothermen Reaktion wurde die Mischung 3 Stunden bei 95-100 °C gerührt. Die so erhaltene viskose Lösung, die rechnerisch 430 g Aktivsubstanz enthielt, wurde für die Versuche verwendet.
  • Nach der wie oben beschrieben durchgeführten Verdichtung zeigten die Profile keinen Sealingbelag oder sonstige sichtbare Ablagerungen auf der Oberfläche. Die Schichtdicke betrug nach wie vor 19 µm. Der Scheinleitwert war von über 400 auf 17 µS abgesunken. Der dielektrische Verlusttaktor betrug 0,45. Im Chromphosphorsäure-Test wurde ein Gewichtsverlust von 9,3 mg/dm2 gefunden.
  • Die gleichen Ergebnisse wurden erzielt, wenn das Umsetzungsprodukt von Acrylsäure mit hypophosphoriger Säure im Molverhältnis 4 : 1 oder äquivalente Mengen seines Natrium-, Kalium-, Ammonium-, Magnesium-, Kalzium-, Tetramethylammonium- oder Alkanolaminsalzes nach entsprechender pH-Einstellung eingesetzt wurden.
  • Beispiel 3
  • Nach dem üblichen Verfahren entfettete und gebeizte Profile aus der Legierung AIMgSi 0,5 wurden nach dem Gleichstrom-Schwefelsäure-Verfahren anodisch oxidiert (Schichtdicke 18-21 µm). Diese wurden bei einem pH-Wert von 5,8 (eingestellt mit Ammoniak bzw. Essigsäure) in Lösungen, welche die in der Tabelle aufgeführten Umsetzungsprodukte von hypophosphoriger Säure mit Itaconsäure, Citraconsäure bzw. 1-Buten-2,3,4-tricarbonsäure - hergestellt nach dem in Beispiel 1 genannten Verfahren - in den angegebenen Mengen enthielten, bei 97-100 °C 60 min. verdichtet.
  • In der Tabelle sind die belagsverhindernde Wirkung und der Einfluß der Substanzen auf die Schichtqualität, ausgedrückt nach den Ergebnissen der Scheinleitwertmessung des dielektrischen Verlustfaktors und des Gewichtsverlustes im Chrom-Phosphorsäure-Test, zusammengestellt. Bei der Verwendung der erfindungsgemäßen Verbindungen in entsprechenden Konzentrationen wird der Sealingbelag verhindert und die Schichtqualität nicht beeinträchtigt. In die Tabelle wurden Vergleichsversuche mit Cyclohexanhexacarbonsäure und Phosphonobutan-2,3,4-tricarbonsäure aufgenommen, die zeigen, daß bei den Vergleichssubstanzen zwar der Sealingbelag verhindert wird, jedoch bereits bei den höheren Konzentrationen eine starke Schichtschädigung eintritt.
    (Siehe Tabelle Seite 6 f.)
    Figure imgb0006

Claims (7)

1. Verfahren zum Verdichten von anodisch erzeugten Oxidschichten auf Aluminium oder Aluminiumlegierungen durch Behandlung mit wäßrigen Lösungen mit einem pH-Wert von 4 bis 8 bei Temperaturen zwischen 90 °C und der Siedetemperatur, das dadurch gekennzeichnet ist, daß man die Verdichtung mit Lösungen durchführt, die 0,0005 bis 0,5 g/I Phosphinocarbonsäuren, die bei der Umsetzung von hypophosphoriger Säure mit ungesättigten mono- oder polyfunktionellen Carbonsäuren der allgemeinen Formel 1
Figure imgb0007
in der
R1 Wasserstoff oder einen der Reste
Figure imgb0008
Figure imgb0009
Figure imgb0010
Figure imgb0011
sowie
R2, R3 und R4 Wasserstoff oder einen der Reste ―CH3, ―C2H5, ―COOH. ―CH2―COOH, ―CH2―CH2-COOH, bedeuten und wobei mindestens einer der Reste R1 bis R4 eine COOH-Gruppe darstellt oder enthält, im Molverhältnis 1 : bis 1 : 8 gebildet werden,

oder deren wasserlösliche Salze enthalten.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man die Verdichtung mit Lösungen durchführt, die Phosphinocarbonsäuren, die bei der Umsetzung von 1 Mol hypophosphoriger Säure mit 2 bis 8 Mol Acrylsäure gebildet werden, oder deren wasserlösliche Salze enthalten.
3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man die Verdichtung mit Lösungen durchführt, die Phosphinocarbonsäuren, die bei der Umsetzung von 1 Mol hypophosphoriger Säure mit 1 bis 2 Mol Maleinsäure gebildet werden, oder deren wasserlösliche Salze enthalten.
4. Verfahren nach Ansprueh 1, dadurch gekennzeichnet, daß man die Verdichtung mit Lösungen durchführt, die Phosphinocarbonsäuren, die bei der Umsetzung von 1 Mol hypophosphoriger Säure mit 1 bis 2 Mol Itaconsäure gebildet werden, oder deren wasserlösliche Salze enthalten.
5. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man die Verdichtung mit Lösungen durchführt, die Phosphinocarbonsäuren, die bei der Umsetzung von 1 Mol hypophosphoriger Säure mit 1 bis 2 Mol Citraconsäure gebildet werden, oder deren wasserlösliche Salze enthalten.
6. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man die Verdichtung mit Lösungen durchführt, die Phosphinocarbonsäuren, die bei der Umsetzung von 1 Mol hypophosphoriger Säure mit 1 bis 2 Mol 1-Buten-2,3,4-tricarbonsäure gebildet werden, oder deren wasserlösliche Salze enthalten.
7. Verfahren nach Ansprüchen 1 bis 6, dadurch gekennzeichnet, daß der pH-Wert bei 5 bis 6 liegt.
EP83108560A 1982-09-09 1983-08-31 Verfahren zum Verdichten von anodisch erzeugten Oxidschichten auf Aluminium oder Aluminiumlegierungen Expired EP0103234B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT83108560T ATE28218T1 (de) 1982-09-09 1983-08-31 Verfahren zum verdichten von anodisch erzeugten oxidschichten auf aluminium oder aluminiumlegierungen.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3233411 1982-09-09
DE19823233411 DE3233411A1 (de) 1982-09-09 1982-09-09 Verfahren zum verdichten von anodisch erzeugten oxidschichten auf aluminium oder aluminiumlegierungen

Publications (3)

Publication Number Publication Date
EP0103234A2 EP0103234A2 (de) 1984-03-21
EP0103234A3 EP0103234A3 (en) 1985-09-25
EP0103234B1 true EP0103234B1 (de) 1987-07-08

Family

ID=6172769

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83108560A Expired EP0103234B1 (de) 1982-09-09 1983-08-31 Verfahren zum Verdichten von anodisch erzeugten Oxidschichten auf Aluminium oder Aluminiumlegierungen

Country Status (14)

Country Link
US (1) US4445983A (de)
EP (1) EP0103234B1 (de)
JP (1) JPS5970797A (de)
AT (1) ATE28218T1 (de)
AU (1) AU565677B2 (de)
BR (1) BR8304885A (de)
CA (1) CA1212072A (de)
DE (2) DE3233411A1 (de)
DK (1) DK158748C (de)
ES (1) ES525508A0 (de)
GR (1) GR79624B (de)
NO (1) NO159945C (de)
PT (1) PT77295B (de)
ZA (1) ZA836673B (de)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3900169A1 (de) * 1989-01-05 1990-07-12 Henkel Kgaa Verfahren zum impraegnieren anodisch erzeugter oberflaechen von aluminium
DE3917188A1 (de) * 1989-05-26 1990-11-29 Happich Gmbh Gebr Verfahren zur erzeugung farbiger oberflaechen auf teilen aus aluminium oder aluminium-legierungen
DE69114177T2 (de) * 1990-04-25 1996-06-05 Nalco Chemical Co Phospinsäureesteroligomere, ihre Zusammensetzungen und Verfahren zu ihrer Herstellung und ihre Verwendung.
DE19621818A1 (de) * 1996-05-31 1997-12-04 Henkel Kgaa Kurzzeit-Heißverdichtung anodisierter Metalloberflächen mit tensidhaltigen Lösungen
DE10161478A1 (de) * 2001-12-14 2003-06-26 Henkel Kgaa Verfahren zum Verdichten von anodisierten Metalloberflächen im mittleren Temperaturbereich
JP4936791B2 (ja) * 2006-05-22 2012-05-23 株式会社東芝 曝気レス水処理装置
US8512872B2 (en) 2010-05-19 2013-08-20 Dupalectpa-CHN, LLC Sealed anodic coatings
US8609254B2 (en) 2010-05-19 2013-12-17 Sanford Process Corporation Microcrystalline anodic coatings and related methods therefor
CN109518253B (zh) * 2017-09-18 2021-05-21 中铝材料应用研究院有限公司 一种基于铝合金表面的高胶接和耐腐蚀的阳极氧化方法
CN109518252B (zh) * 2017-09-18 2021-05-21 中铝材料应用研究院有限公司 一种基于铝合金的高胶接和耐腐蚀的阳极氧化方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3400023A (en) * 1964-05-11 1968-09-03 Kelite Corp Composition for preservation of metals, process and article
US3634146A (en) * 1969-09-04 1972-01-11 American Cyanamid Co Chemical treatment of metal
US3813303A (en) * 1971-04-14 1974-05-28 Alusuisse Method of treating an aluminum surface
US3770513A (en) * 1972-06-08 1973-11-06 American Cyanamid Co Chemical treatment of metal
US4293441A (en) * 1979-03-12 1981-10-06 Minnesota Mining And Manufacturing Company Corrosion inhibiting heat transfer liquid

Also Published As

Publication number Publication date
ES8405450A1 (es) 1984-06-01
NO832927L (no) 1984-03-12
DK371883A (da) 1984-03-10
NO159945B (no) 1988-11-14
DK158748C (da) 1990-12-10
ES525508A0 (es) 1984-06-01
JPS5970797A (ja) 1984-04-21
ATE28218T1 (de) 1987-07-15
DE3372382D1 (en) 1987-08-13
DE3233411A1 (de) 1984-03-15
GR79624B (de) 1984-10-31
PT77295A (de) 1983-10-01
EP0103234A3 (en) 1985-09-25
ZA836673B (en) 1984-04-25
DK371883D0 (da) 1983-08-15
BR8304885A (pt) 1984-04-24
CA1212072A (en) 1986-09-30
PT77295B (de) 1986-02-04
AU1892383A (en) 1984-03-15
DK158748B (da) 1990-07-09
NO159945C (no) 1989-02-22
US4445983A (en) 1984-05-01
AU565677B2 (en) 1987-09-24
JPH0312159B2 (de) 1991-02-19
EP0103234A2 (de) 1984-03-21

Similar Documents

Publication Publication Date Title
DE2812116C2 (de) Verfahren zum Aufbringen eines härtbaren Überzugs auf eine gedichtete anodische Oxidschicht auf Aluminium
DE2211553C3 (de) Verfahren zum Verdichten von anodischen Oxidschichten auf Aluminium und Aluminiumlegierungen
DE2715292C2 (de)
DE3118375C2 (de)
EP0902849B1 (de) Kurzzeit-heissverdichtung anodisierter metalloberflächen mit tensidhaltigen lösungen
DE2162674C3 (de) Verfahren zum Verdichten von anodischen Oxidschichten auf Aluminium- oder Aluminiumlegierungen
DE2650989C2 (de) Verfahren zur Behandlung von Aluminiumoberflächen durch Oxidation mit einer nachfolgenden Verdichtung
EP0103234B1 (de) Verfahren zum Verdichten von anodisch erzeugten Oxidschichten auf Aluminium oder Aluminiumlegierungen
DE1938039C3 (de) Verfahren zur Behandlung von anodisch oxydierten Aluminiumoberflächen
EP0154367B1 (de) Verfahren zur Phosphatierung von Metallen
EP0347663B1 (de) Verfahren zum Verdichten von anodisierten Oxidschichten auf Aluminium und Aluminiumlegierungen
DE827149C (de) Verfahren zur Erzeugung von UEberzuegen auf Eisen, Zink und deren Legierungen
DE2715291C3 (de) Verfahren zur Herstellung einses amorphen, leichten, fest haftenden Phosphatüberzugs auf Eisenmetalloberflächen
WO1997014828A1 (de) Kurzzeit-heissverdichtung anodisierter metalloberflächen
EP0815293B1 (de) Chromfreies verfahren zur verbesserung der lackhaftung nach dünnschicht-anodisierung
DE2155726A1 (de) Verfahren und Lösung zur chemischen Oberflächenbehandlung von Metallen
EP0201841B1 (de) Verfahren zur Phosphatierung von Metalloberflächen
EP0127774B1 (de) Verfahren zum Schutz von anodisch oxidiertem Aluminium
DE1281219B (de) Verfahren zur anodischen Herstellung eines UEberzuges auf Metallen
DE863280C (de) Verfahren und Mittel zur Erhoehung der Korrosionsfestigkeit von Metalloberflaechen
DE2500075C3 (de) Verfahren zur Ausbildung von farblosen Überzügen auf Aluminiumoberflächen und Lösung zur Durchführung des Verfahrens
DE692124C (de) Verfahren zur elektrolytischen Oxydation von Eisen und Stahl
DE1521879B2 (de) Verfahren zum Aufbringen von Phosphatüberzügen auf Eisen und Stahl
DE1621467A1 (de) Verfahren zum Nachbehandeln von Oxyd- oder anderen anorganischen Schutzschichten auf Metalloberflaechen
DE3300358C2 (de) Verfahren zur Erzeugung belagfreier Oberflächen von anodisierten und verdichteten Aluminiumoxidschichten

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19851220

17Q First examination report despatched

Effective date: 19860911

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 28218

Country of ref document: AT

Date of ref document: 19870715

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3372382

Country of ref document: DE

Date of ref document: 19870813

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19920824

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19920831

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19930831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19940301

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19930831

EAL Se: european patent in force in sweden

Ref document number: 83108560.0

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19980813

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19980909

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990831

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990831

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20010807

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20010810

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20010828

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20011016

Year of fee payment: 19

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020901

BERE Be: lapsed

Owner name: *HENKEL K.G.A.A.

Effective date: 20020831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030430

EUG Se: european patent has lapsed
REG Reference to a national code

Ref country code: FR

Ref legal event code: ST