EP0085828A1 - Verwendung eines Kohlenstoff-Mangan-Stahles für Bauteile mit hoher Festigkeit und Zähigkeit bei einfacher Wärmebehandlung - Google Patents

Verwendung eines Kohlenstoff-Mangan-Stahles für Bauteile mit hoher Festigkeit und Zähigkeit bei einfacher Wärmebehandlung Download PDF

Info

Publication number
EP0085828A1
EP0085828A1 EP83100080A EP83100080A EP0085828A1 EP 0085828 A1 EP0085828 A1 EP 0085828A1 EP 83100080 A EP83100080 A EP 83100080A EP 83100080 A EP83100080 A EP 83100080A EP 0085828 A1 EP0085828 A1 EP 0085828A1
Authority
EP
European Patent Office
Prior art keywords
steel
components
cooling
temperatures
toughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP83100080A
Other languages
English (en)
French (fr)
Other versions
EP0085828B1 (de
Inventor
Richard Sommer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MAN B&W Diesel GmbH
Original Assignee
MAN Maschinenfabrik Augsburg Nuernberg AG
MAN B&W Diesel GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6153210&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0085828(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by MAN Maschinenfabrik Augsburg Nuernberg AG, MAN B&W Diesel GmbH filed Critical MAN Maschinenfabrik Augsburg Nuernberg AG
Publication of EP0085828A1 publication Critical patent/EP0085828A1/de
Application granted granted Critical
Publication of EP0085828B1 publication Critical patent/EP0085828B1/de
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium

Definitions

  • the invention relates to the use of a steel as a material for components with a cross section from about. 4 0 cm 2 , which after hot forming by rolling, forging or pressing at final deformation temperatures up to about 1000 ° C or annealing temperatures up to about 1000 ° C and then cooling in still or moving air, optionally after controlled cooling, a ferritic-pearlitic structure with about 5 to 20% ferrite, remainder pearlite and a yield or 0.2 limit of at least 580 N / mm 2 and a notched bar impact work measured on ISO-U samples of at least 25 J.
  • Such a steel specified in said patent specification with relatively high proportions of vanadium, aluminum and nitrogen within the analysis limits is said to have a 0.2 limit of 578 N / mm 2 and a tensile strength of 865 N when placed in air on a rod rolled to 155 mm 0 / mm2 and have a notched bar impact energy measured on DVM samples of 35 J.
  • the object of the invention is to provide steel for components with even higher strength and at least as high toughness, which should be achievable by simple cooling of the components in air after hot forming or an annealing process without further heat treatment.
  • the invention is based on the following considerations shown below:
  • the percentage of pearlite in steel increases, and with it its strength, hardness and brittleness; up to about 0.6% carbon content, at the same time its conversion rate decreases when it cools down from the final deformation temperature or annealing temperature.
  • manganese and chromium are very soluble in d, iron and increase strength without embrittlement by increasing the hardness of the ferrite component, which is necessary to achieve good toughness.
  • manganese forms carbide which deteriorates the later machinability of the component and lowers the eutectoid point far less than chromium; Even with relatively large amounts of manganese, the formation of cementite is avoided, which would have a particularly adverse effect on the subsequent processing of the component.
  • Manganese also delayed as mentioned above, a carbon content to 0.6%, the conversion speed during cooling of the component from Endverformungstemperatur or annealing temperature of about 1000 ° C, but at the same time lowered mwandlungstemperaturen all U; within a large Abkühl Ecks Kunststoffes also provides an almost constant with pearlitisation dependent on the same high strength, a, also for components with through un- t eretzliche wall thickness caused by different cooling at various points. Due to the high affinity of manganese for impurities such. B.
  • the conversion rate can be further slowed down by one or more powers of ten.
  • Micro additions of vanadium and aluminum and possibly also of zirconium and niobium in appropriate coordination to the nitrogen content cause nitride and carbonitride formation as crystallization nuclei for fine grain formation, a good distribution of the ferrite, as well as precipitation hardening in the ferrite, an increase in the yield strength / breaking strength ratio and also an increase of firmness.
  • Said process takes place in the case of a component which is unaffectedly cooled in room air from a final deformation temperature or annealing temperature of approximately 1000 ° C., depending on the wall thickness or thickness of the component at a certain speed, which can be achieved by lightly blowing on, for example by means of an air shower, can advantageously be shortened.
  • such a steel is to be used for a component, the carbon and manganese content of which is primarily determined so that the desired strength can be achieved, whereby manganese can also be replaced to a certain extent by chromium.
  • the fine-grain-forming and precipitation-hardening alloy components must also be coordinated with each other as well as with regard to the carbon and manganese content.
  • so much boron and / or molybdenum must be added that the dimensions and Production conditions of the component adapted cooling conditions with slow or faster cooling in still or moving air sets such pearlization as the desired toughness values require.
  • the stated values indicate that with such a simply treated manganese steel, practically strength and toughness values can be achieved as with a tempered steel, the latter with the same dimensions (diameter 250 mm) to achieve the same strength and toughness values at least three times would have to be so highly alloyed with alloying elements such as chromium, nickel, molybdenum and others, which in their then necessary proportions, in contrast to those of the manganese steel used according to the invention, would considerably impair the later machinability of the component.
  • the steel proposed according to the invention provides these advantages particularly in the production of components with larger cross sections of approximately 40 cm 2 onwards, such as crankshafts or camshafts of internal combustion engines and the like, alternatively stressed machine parts.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

Als Werkstoff für Bauteile mit einem Querschnitt ab etwa 40 cm2, die nach einem Warmumformen durch Walzen, Schmieden oder Pressen bei Endverformungstemperaturen oder Glühtemperaturen bis zu etwa 1000°C und anschließendem Abkühlen in ruhender oder bewegter Luft, gegebenenfalls nach gesteuerter Abkühlung ein ferritischperlitisches Gefüge mit etwa 5 bis 20 % Ferrit, Rest Perlit und eine Streck-oder 0,2-Grenze von mindestens 580 N/mm2 und eine Kerbschlagarbeit gemessen an ISO-U-Proben von mindestens 25 J aufweisen sollen, wird die Verwendung eines Stahles vorgeschlagen mit innerhalb folgender Grenzwerte bei zweckgerechter Abstimmung der einzelnen Stoffe untereinander gegebener Analyse:
Figure imga0001
weniger als 0,0003 % Wasserstoff
Rest Eisen und erschmelzungsbedingte Verunreinigungen.

Description

  • Die Erfindung betrifft die Verwendung eines Stahles als Werkstoff für Bauteile mit einem Querschnitt ab etwa. 40 cm2, die nach einem Warmumformen durch Walzen, Schmieden oder Pressen bei Endverformungstemperaturen bis zu etwa 1000°C oder Glühtemperaturen bis zu etwa 1000°C und anschließendem Abkühlen in ruhender oder bewegter Luft gegebenenfalls nach gesteuerter Abkühlung ein ferritisch-perlitisches Gefüge mit etwa 5 bis 20 % Ferrit, Rest Perlit und eine Streck- oder 0,2-Grenze von mindestens 580 N/mm2 sowie eine Kerbschlagarbeit gemessen an ISO-U-Proben von mindestens 25 J aufweisen.
  • Aus der DE-PS 3 009 443 ist die Verwendung eines bestimmten Stahles für Bauteile bekannt, die neben einer hohen Festigkeit auch eine beachtliche Zähigkeit haben sollen, nämlich bei einer Streck- oder O,2-Grenze von 580 N/mm2 eine Kerbschlagarbeit gemessen an DVM-Proben von 35 J, ohne daß sie einer aufwendigen Wärmebehandlung unterzogen werden müßten. Als Zusammensetzung wird für einen derartige Bedingungen erfüllenden Stahl angegeben:
  • Figure imgb0001
  • Rest Eisen und erschmelzungsbedingte Verunreinigungen.
  • Ein solcher in der besagten Patentschrift angegebener Stahl mit innerhalb den Analysegrenzen relativ hohen Anteilen von Vanadium, Aluminium und Stickstoff soll bei Ablegen an Luft einer auf 155 mm 0 gewalzten Stange eine 0,2-Grenze von 578 N/mm2, eine Zugfestigkeit von 865 N/mm2 und eine Kerbschlagarbeit gemessen an DVM-Proben von 35 J aufweisen.
  • Demgegenüber besteht die Aufgabe der Erfindung darin, Stahl für Bauteile mit noch höherer Festigkeit bei gleichzeitig mindestens so hoher Zähigkeit bereitzustellen, wobei dies durch einfache Abkühlung der Bauteile an Luft nach einer Warmumformung bzw. einem Glühvorgang ohne weitere Wärmebehandlung erzielbar sein soll.
  • Als Lösung dieser Aufgabe wird für den angegebenen Zweck die Verwendung von Stahl entsprechend der im Anspruch 1 angegebenen Analyse vorgeschlagen. Weitere vorteilhafte Angaben hierzu sind in den Unteransprüchen gekennzeichnet.
  • Der Erfindung liegen dabei folgende nachstehend aufgezeigte Überlegungen zugrunde:
  • Mit größer werdendem Kohlenstoffgehalt erhöht sich der Perlitanteil im Stahl und damit auch seine Festigkeit, Härte und Sprödigkeit; bis zu etwa 0,6 % Kohlenstoffgehalt nimmt zugleich auch seine Umwandlungsgeschwindigkeit bei Abkühlung aus Endverformungstemperatur oder Glühtemperatur ab. Mit bis zu 3 % Anteil ist Mangan ebenso wie Chrom im d,-Eisen sehr gut löslich und erhöht die Festigkeit ohne Versprödung durch Härtesteigerung des Ferritanteiles, der zur Erzielung guter Zähigkeit nötig ist. Mangan bildet jedoch im Gegensatz zu Chrom weit weniger die spätere Bearbeitbarkeit des Bauteiles verschlechternde Karbide und erniedrigt weit weniger als Chrom den Eutektoidpunkt; selbst bei relativ großen Mangananteilen wird die Bildung von Zementit vermieden, was die spätere Bearbeitung des Bauteiles besonders beeinträchtigen würde. Mangan verzögert ebenfalls wie vorstehend genannt ein Kohlenstoffgehalt bis 0,6 % die Umwandlungsgeschwindigkeit bei Abkühlung des Bauteiles aus Endverformungstemperatur oder Glühtemperatur von etwa 1000°C, erniedrigt jedoch zugleich auch alle Umwandlungstemperaturen; innerhalb eines großen Abkühlgeschwindigkeitsbereiches stellt sich außerdem eine fast konstante Perlitisierung mit davon abhängig gleich hoher Festigkeit ein, auch bei Bauteilen mit durch un- terschiedliche Wandstärken verursachter unterschiedlicher Abkühlgeschwindigkeit an verschiedenen Stellen. Die durch die große Affinität von Mangan zu Verunreinigungen wie z. B. Schwefel mögliche unterschiedliche Längs- und Querfestigkeit bedingt durch langgezogene Gefügeunterbrechungen, verursacht durch Mangansulfide und Gaseinschlüsse, kann bei Einstellung des Schwefelgehaltes durch Einblase- und Evakuierungsverfahren bei der Pfannenbehandlung mit entsprechenden Zugaben durch Bildung kugeliger Verunreinigungen umgangen werden. Diese beeinträchtigen die Festigkeitsisotropie weit weniger und gewähren trotzdem eine vom Schwefelgehalt abhängig gute Bearbeitbarkeit des Bauteiles.
  • Mit kleinsten Zugaben von Bor und/oder kleinen Zugaben von Molybdän kann die Umwandlungsgeschwindigkeit noch um eine oder mehrere Zehnerpotenzen weiter verlangsamt werden.
  • Mikrobeigaben von Vanadium und Aluminium und gegebenenfalls auch von Zirkon und Niob in entsprechender Abstimmung zum Stickstoffgehalt bewirken durch Nitrid-und Karbonitridbildung als Kristallisationskerne für Feinkornbildung, eine gute Verteilung des Ferrits, sowie durch Ausscheidungshärtung im Ferrit eine Erhöhung des Verhältnisses Streckgrenze/Bruchfestigkeit und außerdem eine Erhöhung der Festigkeit. Besagter Vorgang erfolgt bei einem Bauteil, das unbeeinflußt in Raumluft aus einer Endverformungstemperatur oder Glühtemperatur von etwa 1000°C abgekühlt wird, in Abhängigkeit von der Wandstärke bzw. -dicke des Bauteiles mit einer bestimmten Geschwindigkeit, die durch leichtes Anblasen, beispielsweise mittels einer Luftbrause, vorteilhaft verkürzt werden kann.
  • Unter Berücksichtigung dieser vorstehenden Überlegungen ist für ein Bauteil ein solcher Stahl zu verwenden, dessen Kohlenstoff- und Mangangehalt vornehmlich danach festgesetzt wird, daß die angestrebte Festigkeit erzielbar ist, wobei Mangan in einem gewissen Umfang auch durch Chrom ersetzt werden kann. Die feinkornbildenden und ausscheidungshärtenden Legierungsbestandteile müssen ebenfalls sowohl untereinander als auch in Bezug auf den Kohlenstoff- und Mangangehalt abgestimmt sein. Ferner muß so viel Bor und/oder Molybdän zugegeben sein, daß sich bei den den Abmessungen und Produktionsbedingungen des Bauteiles angepaßten Abkühlungsbedingungen mit langsamer oder schnellerer Abkühlung in ruhender oder bewegter Luft eine solche Perlitisierung einstellt, wie die gewünschten Zähigkeitswerte es verlangen.
  • Auf diese Weise können durch geringfügiges Legieren mit gut bereitstellbaren, billigen Beigaben bei einfachster Behandlungsmethode - da keine kostspieligen Einrichungen nötig sind - und mit äußerst geringem Energieverbrauch kostengünstige, gut weiterbearbeitbare Bauteile erstellt werden, die den aufgabengemäßen Festigkeits-und Zähigkeitsanforderungen genügen. Diese Anforderungen können erfindungsgemäß durch die Verwendung von Stahl mit folgenden Analysegrenzen erfüllt werden:
    Figure imgb0002
    Rest Eisen und erschmelzungsbedingte Verunreinigungen.
  • Mit einem den obigen Bedingungen und innerhalb der entsprechenden Analysegrenzen liegenden Stahl mit
    Figure imgb0003
  • Rest Eisen und erschmelzungsbedingte Verunreinigungen wurden Wellen mit einem Durchmesser von 250 mm aus einer Schmiedeendtemperatur von 950°C auf 500°C in Luft abgekühlt und folgende, der nachstehenden Tabelle entnehmbare Festigkeitswerte erzielt:
    Figure imgb0004
  • Aus der vorstehenden Tabelle ist ersichtlich, daß bei einem Bauteil mit einem nach der Erfindung vorgeschlagenen Material schon bei Abkühlung an ruhender Luft sehr hohe Festigkeits- und Zähigkeitswerte erzielbar sind, die durch gezielte Beeinflussung der Abkühlung an Luft noch ganz wesentlich hinsichtlich noch besserer Werte beeinflußbar sind. Diese Werte können durch noch günstigere Legierungsabstimmung speziell der Mikrobeigaben noch weiter verbessert werden. Die angegebenen Werte lassen jedenfalls erkennen, daß mit einem solchen, einfach behandelten Mangan-Stahl praktisch Festigkeits- und Zähigkeitswerte wie mit einem vergüteten Stahl erreichbar sind, welch letzterer bei gleichen Abmessungen (Durchmesser 250 mm) zur Erzielung der gleichen Festigkeits- und Zähigkeitswerte wenigstens dreimal so hoch legiert sein müßte mit Legierungselementen wie Chrom, Nickel, Molybdän und anderen, die in ihren dann notwendigen Anteilen ganz im Gegensatz zu jenen des erfindungsgemäß verwendeten Manganstahles die spätere Bearbeitbarkeit des Bauteiles erheblich verschlechtern würden.
  • Der erfindungsgemäß vorgeschlagene Stahl erbringt diese Vorteile besonders bei der Herstellung von Bauteilen mit größeren Querschnitten von etwa 40 cm2 an aufwärts wie Kurbelwellen oder Nockenwellen von Brennkraftmaschinen und dergleichen wechselbeanspruchte Maschinenteile.

Claims (3)

1. Verwendung eines Stahles mit
Figure imgb0005
weniger als 0,0003 % Wasserstoff Rest Eisen und erschmelzungsbedingte Verunreinigungen als Werkstoff für Bauteile mit einem Querschnitt ab etwa 40 cm2, die nach einem Warmumformen durch Walzen, Schmieden oder Pressen oder einem Glühvorgang bei Endverformungstemperaturen bis zu etwa 1000°C oder Glühtemperaturen bis zu etwa 1000°C und anschließendem Abkühlen in ruhender oder bewegter Luft gegebenenfalls nach gesteuerter Abkühlung ein ferritisch- perlitisches Gefüge mit etwa 5 bis 20 % Ferrit, Rest Perlit und eine Streck- bzw. O,2-Grenze von mindestens 580 N/mm2 sowie eine Kerbschlagarbeit gemessen an ISO-U-Proben von mindestens 25 J aufweisen.
2. Verwendung eines innerhalb der in Anspruch 1 angegebenen Analysegrenzen liegenden Stahles mit
Figure imgb0006
Rest Eisen und erschmelzungsbedingte Verunreinigungen als Werkstoff für Bauteile mit einem Querschnitt ab etwa 40 cm2 bis etwa 500 cm2, die nach einem Warmumformen durch Walzen, Schmieden oder Pressen bei Endverformungstemperaturen oder Glühtemperaturen von 900 bis 950°C und einem anschließenden Abkühlen in ruhender Luft länger als 60 Minuten oder in bewegter Luft kürzer als 30 Minuten ein ferritisch-perlitisches Gefüge mit etwa 5 bis 20 % Ferrit, Rest Perlit sowie folgende Festigkeits-, Zähigkeits- und Härtewerte aufweisen:
Figure imgb0007
Figure imgb0008
Figure imgb0009
Figure imgb0010
Figure imgb0011
Figure imgb0012
Härteabfall vom Rand zum Kern des größten Querschnittes von 500 cm2 nur 3 % bis 15 %.
3. Verwendung eines Stahles der Zusammensetzung, Behandlung und Eigenschaften nach den Ansprüchen 1 und 2 als Werkstoff für Bauteile wie Kurbelwellen, Nockenwellen von Brennkraftmaschinen oder dergleichen wechselbeanspruchte Maschinenelemente.
EP83100080A 1982-01-16 1983-01-07 Verwendung eines Kohlenstoff-Mangan-Stahles für Bauteile mit hoher Festigkeit und Zähigkeit bei einfacher Wärmebehandlung Expired EP0085828B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3201204 1982-01-16
DE19823201204 DE3201204C2 (de) 1982-01-16 1982-01-16 "Verwendung eines Kohlenstoff-Mangan-Stahles für Bauteile mit hoher Festigkeit und Zähigkeit bei einfacher Wärmebehandlung"

Publications (2)

Publication Number Publication Date
EP0085828A1 true EP0085828A1 (de) 1983-08-17
EP0085828B1 EP0085828B1 (de) 1986-07-30

Family

ID=6153210

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83100080A Expired EP0085828B1 (de) 1982-01-16 1983-01-07 Verwendung eines Kohlenstoff-Mangan-Stahles für Bauteile mit hoher Festigkeit und Zähigkeit bei einfacher Wärmebehandlung

Country Status (3)

Country Link
EP (1) EP0085828B1 (de)
JP (1) JPS58123856A (de)
DE (1) DE3201204C2 (de)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0247415A2 (de) * 1986-05-28 1987-12-02 Uddeholm Tooling Aktiebolag Erzeugnis aus legiertem Stahl, Stempelblöcke und andere daraus hergestellte Schmiede- und Gussstücke und ein Verfahren zur Herstellung dieses Stahles
EP0348633A1 (de) * 1988-04-30 1990-01-03 Qinghua University Lufthärtende Stähle mit Zwei-Phasen-Mikrostruktur-Bainit-Martensit
GB2246579A (en) * 1990-08-03 1992-02-05 Samsung Heavy Ind High toughness non-refined steels and method for manufacturing them
EP0632138A1 (de) * 1993-06-30 1995-01-04 Samsung Heavy Industry Co., Ltd Hochzäher und hochfester, nicht angelassener Stahl und Herstellungsverfahren dazu
WO1997033010A1 (de) * 1996-03-06 1997-09-12 Carl Dan. Peddinghaus Gmbh & Co. Kg Stahlwerkstoff mit hoher warmfestigkeit zur herstellung von motorkolbenoberteilen
US5882585A (en) * 1996-03-06 1999-03-16 Carl Dan Peddinghaus Gmbh & Co. Kg Steel material with high thermal-resistance for producing engine piston upper parts
CN103898408A (zh) * 2014-01-24 2014-07-02 江苏省沙钢钢铁研究院有限公司 一种700MPa级螺纹钢筋及其生产方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3320896C1 (de) * 1983-06-09 1984-08-16 Bayerische Motoren Werke AG, 8000 München Steuereinrichtung einer Druckgießmaschine
DE3434744A1 (de) * 1984-09-21 1986-04-03 M.A.N.-B & W Diesel GmbH, 8900 Augsburg Verfahren zur herstellung von warmgewalzten stangen
DE3434743A1 (de) * 1984-09-21 1986-04-03 M.A.N.-B & W Diesel GmbH, 8900 Augsburg Verfahren zur herstellung von stangenfoermigen maschinenteilen
DE3434759A1 (de) * 1984-09-21 1986-05-22 M.A.N.-B & W Diesel GmbH, 8900 Augsburg Verfahren zur herstellung von statisch und/oder dynamisch hochbelastbaren maschinenteilen

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2610388B2 (de) * 1976-02-07 1980-08-28 Gerlach-Werke Gmbh, 6650 Homburg Stahl aus Ausgangswerkstoff für die formgebende Bearbeitung
DE3009443C2 (de) * 1980-03-12 1981-11-19 Thyssen Edelstahlwerke AG, 4000 Düsseldorf Verwendung eines Stahls hoher Festigkeit und Zähigkeit

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB972533A (en) * 1961-04-20 1964-10-14 Esco Corp Alloy steel
GB1077994A (en) * 1963-04-18 1967-08-02 Kobe Steel Ltd Process for producing cold-forged products from tempered steel wire
BE706252A (de) * 1966-11-17 1968-05-08
FR2200847A5 (en) * 1972-05-04 1974-04-19 Ugine Aciers Heat-treatable, surface-hardenable gear steel - containing carbon, silicon, manganese, chromium, molybdenum, and boron, and opt aluminium, vanadium, niobium, titanium, or nickel
JPS5324892B2 (de) * 1972-10-19 1978-07-24
US3806378A (en) * 1972-12-20 1974-04-23 Bethlehem Steel Corp As-worked bainitic ferrous alloy and method
FR2339678A1 (fr) * 1976-01-28 1977-08-26 Ugine Aciers Aciers a caracteristiques mecaniques ameliorees par additions controlees de b, al et n
JPS52152814A (en) * 1976-06-14 1977-12-19 Nippon Steel Corp Thermo-mechanical treatment of seamless steel pipe
JPS54128918A (en) * 1978-02-27 1979-10-05 Kobe Steel Ltd High tensile steel with superior flash butt weldability
JPS5853708B2 (ja) * 1979-03-15 1983-11-30 住友金属工業株式会社 衝合部靭性の優れた溶接鋼管
JPS5810444B2 (ja) * 1979-03-28 1983-02-25 住友金属工業株式会社 耐水素誘起割れ性のすぐれた鋼板の製造法
DE2935690C2 (de) * 1979-09-04 1984-10-18 Kawasaki Steel Corp., Kobe, Hyogo Verfahren zum Herstellen von Röhrenstahl
JPS583949A (ja) * 1981-06-30 1983-01-10 Daido Steel Co Ltd ツ−ルジヨイント用材料

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2610388B2 (de) * 1976-02-07 1980-08-28 Gerlach-Werke Gmbh, 6650 Homburg Stahl aus Ausgangswerkstoff für die formgebende Bearbeitung
DE3009443C2 (de) * 1980-03-12 1981-11-19 Thyssen Edelstahlwerke AG, 4000 Düsseldorf Verwendung eines Stahls hoher Festigkeit und Zähigkeit

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Patent Abstracts of Japan, Band 4, Nr. 129, 10. September 1980, Seite 113C24 & JP-A-55-82749 *
VDI-Z, Band 122, Nr. 17, September 1980, S. ENGINEER et al. "Entwicklungen auf dem Gebiet der Stähle für Gesenkschmiedestücke" *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0247415A2 (de) * 1986-05-28 1987-12-02 Uddeholm Tooling Aktiebolag Erzeugnis aus legiertem Stahl, Stempelblöcke und andere daraus hergestellte Schmiede- und Gussstücke und ein Verfahren zur Herstellung dieses Stahles
EP0247415A3 (en) * 1986-05-28 1989-01-18 Uddeholm Tooling Aktiebolag Alloy steel product, die blocks and other forgings and castings made thereof and a method to manufacture the product
EP0348633A1 (de) * 1988-04-30 1990-01-03 Qinghua University Lufthärtende Stähle mit Zwei-Phasen-Mikrostruktur-Bainit-Martensit
GB2246579A (en) * 1990-08-03 1992-02-05 Samsung Heavy Ind High toughness non-refined steels and method for manufacturing them
FR2665461A1 (fr) * 1990-08-03 1992-02-07 Samsung Heavy Ind Aciers non affines a tenacite elevee et procede pour leur fabrication.
GB2246579B (en) * 1990-08-03 1994-11-30 Samsung Heavy Ind Method for manufacturing high toughness non-refined steels
EP0632138A1 (de) * 1993-06-30 1995-01-04 Samsung Heavy Industry Co., Ltd Hochzäher und hochfester, nicht angelassener Stahl und Herstellungsverfahren dazu
WO1997033010A1 (de) * 1996-03-06 1997-09-12 Carl Dan. Peddinghaus Gmbh & Co. Kg Stahlwerkstoff mit hoher warmfestigkeit zur herstellung von motorkolbenoberteilen
US5882585A (en) * 1996-03-06 1999-03-16 Carl Dan Peddinghaus Gmbh & Co. Kg Steel material with high thermal-resistance for producing engine piston upper parts
CN103898408A (zh) * 2014-01-24 2014-07-02 江苏省沙钢钢铁研究院有限公司 一种700MPa级螺纹钢筋及其生产方法
CN103898408B (zh) * 2014-01-24 2016-01-20 江苏省沙钢钢铁研究院有限公司 一种700MPa级螺纹钢筋及其生产方法

Also Published As

Publication number Publication date
EP0085828B1 (de) 1986-07-30
DE3201204C2 (de) 1983-12-22
JPS58123856A (ja) 1983-07-23
JPH0551653B2 (de) 1993-08-03
DE3201204A1 (de) 1983-08-11

Similar Documents

Publication Publication Date Title
DE3018537C2 (de)
DE60002745T2 (de) Hochfester rostfreier automatenstahl
DE60130755T2 (de) Warmgewalzter draht oder stahlblock, die wärmebandelbar und verwendbar im maschinenbau sind und herstellungsverfahren dafür
DE60300506T2 (de) Automatenstahl mit niedrigem Kohlenstoffgehalt
EP3504349B1 (de) Verfahren zur herstellung eines höchstfesten stahlbandes mit verbesserten eigenschaften bei der weiterverarbeitung und ein derartiges stahlband
DE60021670T2 (de) Verfahren zur Herstellung eines Werkzeugstahles sowie Werkzeug
DE60300561T2 (de) Verfahren zur Herstellung eines warmgewalzten Stahlbandes
DE2830850C3 (de) Verwendung eines Einsatzstahls
EP0085828A1 (de) Verwendung eines Kohlenstoff-Mangan-Stahles für Bauteile mit hoher Festigkeit und Zähigkeit bei einfacher Wärmebehandlung
DE3934037C1 (de)
EP2103704B1 (de) Warmgewalztes Langprodukt und Verfahren zu dessen Herstellung
DE2800444A1 (de) Legierter stahl
DE60027355T2 (de) Selbstschmierendes Kolbenringmaterial für Verbrennungsmotoren und Kolbenring
DE102019122638A1 (de) Werkzeugstahl für Kaltarbeits- und Schnellarbeitsanwendungen
DE3113844A1 (de) "ferritfreier, ausscheidungshaertbarer rostfreier stahl"
DE69007201T2 (de) Hitzebeständiger Stahl verwendbar für Ventile von Verbrennungsmotoren.
DE1918176B2 (de) Niedriglegiertes homogenes eisenpulver zur herstellung von haertbaren sinterstaehlen
DE102016115618A1 (de) Verfahren zur Herstellung eines höchstfesten Stahlbandes mit verbesserten Eigenschaften bei der Weiterverarbeitung und ein derartiges Stahlband
DE3509709C2 (de)
EP3061838B1 (de) Blankes bainitisches langprodukt und verfahren zu dessen herstellung
DE112015004992T5 (de) Walzdraht mit verbesserter festigkeit und schlagzähigkeit und herstellungsverfahren für diesen
DE102008050152B4 (de) Hochfeste, duktile Gusseisenlegierung mit Kugelgraphit sowie Verfahren zu deren Herstellung
DE910309C (de) Eisen- und Stahllegierungen mit guter Bearbeitbarkeit durch Schneidwerkzeuge
DE3837400C2 (de) Verfahren zur Herstellung nahtloser Druckbehälter
EP0035681B1 (de) Verwendung eines Stahls hoher Festigkeit und Zähigkeit

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): FR GB NL

17P Request for examination filed

Effective date: 19830624

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: M.A.N. - B&W DIESEL GMBH

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): FR GB NL

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19870131

Year of fee payment: 5

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: DAIMLER-BENZ AKTIENGESELLSCHAFT

Effective date: 19870430

Opponent name: KLOECKNER-HUMBOLDT-DEUTZ AG

Effective date: 19870429

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

26 Opposition filed

Opponent name: GERLACH-WERKE GMBH

Effective date: 19870430

Opponent name: OVAKO OY AB

Effective date: 19870430

Opponent name: THYSSEN EDELSTAHLWERKE AG

Effective date: 19870430

NLR1 Nl: opposition has been filed with the epo

Opponent name: DAIMLER - BENZ AKTIENGESELLSCHAFT

Opponent name: OVAKO OY AB

Opponent name: THYSSEN EDELSTAHLWERKE AG

Opponent name: GERLACH-WERKE GMBH

Opponent name: KLOECKNER- HUMBOLD- DEUTSCH AG

R26 Opposition filed (corrected)

Opponent name: KLOECKNER-HUMBOLDT-DEUTZ AG * 870430 DAIMLER-BENZ

Effective date: 19870429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19890801

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: MAN B & W DIESEL AKTIENGESELLSCHAFT

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 19920512

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20001212

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20010103

Year of fee payment: 19

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020107

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20020107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020930

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO