EP0057429B1 - Mehrschichtiger Transport- und Lagerbehälter für radioaktive Abfälle - Google Patents

Mehrschichtiger Transport- und Lagerbehälter für radioaktive Abfälle Download PDF

Info

Publication number
EP0057429B1
EP0057429B1 EP82100591A EP82100591A EP0057429B1 EP 0057429 B1 EP0057429 B1 EP 0057429B1 EP 82100591 A EP82100591 A EP 82100591A EP 82100591 A EP82100591 A EP 82100591A EP 0057429 B1 EP0057429 B1 EP 0057429B1
Authority
EP
European Patent Office
Prior art keywords
container
layers
storage
transporting
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP82100591A
Other languages
English (en)
French (fr)
Other versions
EP0057429A2 (de
EP0057429A3 (en
Inventor
Horst Dr. Dipl.Chem. Vietzke
Hans Dr. Dipl.Chem. Huschka
Elmar Dr. Dipl.Ing. Schlich
Günther Dr. Luthardt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Deutsche Gesellschaft fuer Wiederaufarbeitung von Kernbrennstoffen mbH
Nukem GmbH
Original Assignee
Deutsche Gesellschaft fuer Wiederaufarbeitung von Kernbrennstoffen mbH
Nukem GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deutsche Gesellschaft fuer Wiederaufarbeitung von Kernbrennstoffen mbH, Nukem GmbH filed Critical Deutsche Gesellschaft fuer Wiederaufarbeitung von Kernbrennstoffen mbH
Publication of EP0057429A2 publication Critical patent/EP0057429A2/de
Publication of EP0057429A3 publication Critical patent/EP0057429A3/de
Application granted granted Critical
Publication of EP0057429B1 publication Critical patent/EP0057429B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/28Treating solids
    • G21F9/34Disposal of solid waste
    • G21F9/36Disposal of solid waste by packaging; by baling

Definitions

  • the invention relates to a multilayered transport and storage container for the long-term storage of radioactive waste, in particular spent fuel elements, in suitable geological formations, the container consisting of three or more layers of different metals or metal alloys, which from the outside inward in the electrochemical voltage series become more and more noble (positive).
  • Irradiated, spent fuel elements are processed either immediately after temporary storage in the water basin or after a limited further interim storage.
  • the nuclear fuels and broods are separated from the fission products and returned to the fuel cycle.
  • the cleavage products are by known methods, usually using large amounts of valuable materials, such as. B. lead and copper, conditioned and in suitable geological formations practically no longer removable.
  • Containers made of alloyed and unalloyed steel, copper and corundum are proposed as packaging for radioactive materials and irradiated fuel elements.
  • the steel containers are either not sufficiently corrosion-resistant or, like copper, are very expensive.
  • Corundum containers are generally suitable, but the experience required for their manufacture is lacking.
  • the fuel elements for packaging would have to be disassembled into small corundum containers for manufacturing reasons, which is associated with considerable effort.
  • Such containers only partially meet the conditions of long-term storage, such as tight containment at the pressures and temperatures that occur, and corrosion against brine, or they must be made very thick-walled. In addition, they are usually not suitable as a transport container at the same time, so that the waste has to be reloaded from the transport container into the final storage container at considerable expense.
  • Steel containers for receiving spent fuel elements are known from DE-A-2804828, on the inner and / or outer surface of which aluminum layers of 0.5 to 2 mm thickness are located. These containers are also not sufficiently corrosion-resistant for long-term storage.
  • the container has at least three layers, of which the outer layer is made of cast iron, the next inner layer of nickel or a nickel alloy and the inner layer of copper or a copper alloy. This ensures that, even if there is a partial corrosive breakthrough through the outer layer, the subsequent layer can only be attacked when the outer layer has completely dissolved. This means that the resistance time value can be calculated and the service life against corrosion is retained even in the event of unforeseeable malfunctions.
  • the time for the dissolution of the second jacket can also be calculated. Based on the removal rates per time and area, the service life of the outer jacket in a certain corrosive medium, as well as the service life of the second jacket etc. can be calculated. With this arrangement, it is possible to manufacture the outer jacket from relatively inexpensive material, such as cast iron, to make the container for its suitability as a transport container to give the necessary rigidity for the 9 m drop test.
  • the repository container consists of the outer jacket (1) with a welded or joined lid (5). Alloyed cast iron, preferably cast iron, is used as the material.
  • the first inner jacket (2) located in this outer container consists of nickel or a nickel alloy, which is more noble in the electrochemical series than the outer jacket (1). An excessively large potential spacing is not desirable so as not to accelerate too much in the event of local element formation as the outer sheath goes into solution.
  • the second inner container (3) must again be nobler in material than the first inner jacket (2). Here nickel-copper alloys come into consideration.
  • the interior (4) is filled with spent fuel or highly active waste. All three container layers are self-contained, which can be done, for example, by welding.
  • the electrochemical potentials of the adjacent layers are not too far apart.
  • the layer thicknesses of the outer layers are in the range of 5 to 20 cm, those of the other noble layers in the range of 5 to 50 mm. Above all, bronzes, especially tin-rich ones, have proven themselves as corrosion-resistant materials.

Landscapes

  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Laminated Bodies (AREA)
  • Details Of Rigid Or Semi-Rigid Containers (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Description

  • Gegenstand der Erfindung ist ein mehrschichtiger Transport- und Lagerbehälter zur Langzeitlagerung von radioaktiven Abfällen, insbesondere von abgebrannten Brennelementen, in geeigneten geologischen Formationen, wobei der Behälter aus drei oder mehreren Schichten verschiedener Metalle bzw. Metalllegierungen besteht, die von außen nach innen in der elektrochemischen Spannungsreihe immer edler (positiver) werden.
  • Bestrahlte, abgebrannte Brennelemente werden nach einer vorübergehenden Aufbewahrung im Wasserbecken entweder sofort oder nach einer begrenzten weiteren Zwischenlagerung aufgearbeitet. Dabei werden die nuklearen Brenn-und Brutstoffe von den Spaltprodukten abgetrennt und wieder dem Brennstoffkreislauf zugeführt. Die Spaltprodukte werden nach bekannten Verfahren, meist unter Verwendung großer Mengen Wertstoffe, wie z. B. Blei und Kupfer, konditioniert und in geeigneten geologischen Formationen praktisch nicht mehr entnehmbar endgelagert.
  • Darüberhinaus wird überlegt (Berichte des Kernforschungszentrums Karlsruhe KFK 2535 und 2650), die bestrahlten Brennelemente in absehbarer zeit nicht aufzuarbeiten, auf die in ihnen vorhandenen Brenn- und Brutstoffe zunächst zu verzichten und die Brennelemente - nach einer angemessenen Abklingzeit in dafür vorgesehene Lagern - gegebenenfalls wieder entnehmbar endzulagern. Die Lagerzeiten können meherere Generationen bis zu mehreren tausend Jahren betragen, wobei sich das Gefährdungspotential des radioaktiven Inventars in dieser zeit, den bekannten physikalischen Gesetzen folgend, entsprechend seiner Zusammensetzung außerordentlich stark verringert.
  • Wegen der unbestimmten Lagerdauer werden an derartige, für die Langzeitlagerung geeignete Behälter, die gegenüber bekannten Transport-und Lagerbehälter eine mehrfache Betriebszeit aufweisen müssen, besondere Anforderungen gestellt. Erschwerend kommt hinzu, daß die Behälterlager schwer zugänglich sein müssen und folglich den Überwachungsmöglichkeiten Grenzen gesetzt sind.
  • Es sind teilweise sehr aufwendige Konzepte bekannt, die bestrahlten Brennelemente mittels Behältern aus Metall oder Beton in Salz, sand oder in Fels-Kavernen zu lagern.
  • Als Verpackung für radioaktive Stoffe und bestrahlte Brennelemente werden Behälter aus Legierten und unlegiert.-n Stählen, aus Kupfer sowie aus Korund vorgeschlagen. Die Behälter aus Stahl sind entweder nicht genügend korrosionsbeständig oder wie solche aus Kupfer sehr teuer. Behälter aus Korund sind grundsätzlich geeignet, jedoch fehlen die für die Herstellung notwendigen ErfahrungeN. Darüberhinaus müßten die Brennelemente zur Verpackung in die aus herstellungsbedingten Gründen kleinen Korundbehälter zerlegt werden, was mit einem erheblichen Aufwand verbunden ist.
  • Solche Behälter erfüllen die Bedingungen der Langzeitlagerung, wie dichter Einschluß bei den auftretenden Drucken und Temperaturen, sowie Korrosion gegen Salzlaugen, nur zum Teil, oder sie müssen sehr dickwandig ausgebildet werden. Außerdem eignen sie sich meist nicht gleichzeitig auch als Transportbehälter, so daß unter erheblichem Aufwand eine Umladung der Abfälle vom Transportbehälter in den Endlagerbehälter erfolgen muß.
  • Aus der DE-A-2804828 sind Stahlbehälter für die Aufnahme abgebrannter Brennelemente bekannt, auf deren inneren und/oder äußeren oberfläche sich Aluminiumschichten von 0,5 bis 2 mm Stärke befinden. Auch diese Behälter sind für eine Langzeitlagerung nicht genügend korrosionsbeständig.
  • Es war daher Aufgabe der vorliegenden Erfindung, einen mehrschichtigen Transport- und Lagerbehälter zur Langzeitlagerung von radioaktiven Abfällen, insbesondere von abgebrannten Brennelementen, in geeigneten geologischen Formationen zu schaffen, wobei die Schichten aus verschiedenen Metallen bzw. Metallegierungen bestehen, die von außen nach innen in der elektrochemischen Spannungsreihe immer edler werden, der einen dichten Einschluß auf lange Dauer gewährleistet und vor allem korrosionsbeständig gegen Salzlaugen ist, ohne zu teuer und zu schwer zu sein.
  • Die Aufgabe wurde erfindungsgemäß dadurch gelöst, daß der Behälter mindestens drei Schichten aufweist von denen die äußere Schicht aus Gußeisen, die nächstinnere Schicht aus Nickel oder einer Nickellegierung und die innere Schicht aus Kupfer oder einer Kupferlegierung besteht. Dadurch wird gewährleistet, daß auch bei partiellem korrosivem Durchbruch durch die äußere Schicht die nachstinnere Schicht erst angegriffen werden kann, wenn sich die äußere Schicht volständig aufgelöst hat. Damit wird der Widerstandszeitwert berechenbar, und die Standzeit gegen Korrosion bleibt auch bei unvorhersehbaren Störfällen erhalten.
  • Es hat sich gezeigt, daß man bei mehrschichtigen Behältern kostengünstige Metalle zur Erreichung der nötigen Behälterfestigkeit einsetzen kann, wenn man dafür sorgt, daß das Metall der nächstinneren Schicht in der elektrochemischen Spannungsreihe höher steht als das Metall der Außenschicht. Tritt nun beim Außenmantel durch partielle Korrosion der Salzlösung ein Durchbruch auf, wie im Störfall angenommen wird, so beginnt der Korrosionsangriff an dem edleren Innenbehälter nicht sofort, weil aufgrund der elektrochemischen Spannungsreihe sich im Elektrolyt nun ein Potential zwischen beiden Metallen aufbaut, wobei das edlere Metall bzw. Metalllegierung der inneren Schicht zur Kathode wird und das äußere, unedlere Metall anodisch in Lösung geht. Auf diese Weise muß erst das gesamte Metall des Außenmantels in Lösung gehen, bevor die innere schicht angegriffen wird. Bei einer Kombination von beispielsweise drei verschiedenen Schichten ist auch die zeit für die Auflösung des zweiten Mantels kalkulierbar. Aufgrund der Abtragsraten pro zeit und Fläche läßt sich die Standzeit des Außenmantels in einem bestimmten korrosiven Medium ausrechnen, ebenso die Standzeit des zweiten Mantels usw. Durch diese Anordnung ist es möglich, den Außenmantel aus relativ billigem Material, wie Eisengraphitguß herzustellen, um dem Behälter für seine Eignung als Transportbehälter die nötige Steifigkeit für den 9 m Falltest zu geben.
  • Der erfindungsgemäße Behälter wird nachstehend anhand der schematischen Abbildung beispielhaft näher erläutert.
  • Der erfindungsgemäße Endlagerbehälter besteht aus dem Außenmantel (1) mit aufgeschweißtem oder gefügtem Deckel (5). Als Material wird legierter Eisenguß, vorzugsweise Eisengraphitguß, verwendet. Der in diesem Außenbehälter befindliche erste Innenmantel (2) besteht aus Nickel oder einer Nickellegierung, die in der elektrochemischen Spannungsreihe edler als der Außenmantel (1) ist. Ein zu großer Potentialabstand ist nicht erwünscht, um im Falle der Lokalelementbildung des Inlösunggehen des Außenmantels nicht zu sehr zu beschleunigen. Der zweite innere Behälter (3) muß im Material wieder edler sein als der erste Innenmantel (2). Hier kommen Nickel-Kupfer-Legierungen in Betracht. Der Innenraum (4) wird mit abgebrannten Brennelementen oder hochaktiven Abfall befüllt. Alle drei Behälterschichten sind in sich geschlossen, was beispielsweise durch Verschweißen geschehen kann.
  • Bei Korrosionstesten hat sich als besonders vorteilhaft erwiesen, wenn die elektrochemischen Potentiale der benachbarten Schichten nicht zu weit auseinander liegen. Vorzugsweise liegen sich nicht mehr als 50 bis 500 mV auseinander. Außerdem ist es möglich, den Behälter noch mit weiteren Auskleidungen in Inneren oder auf der Behälteroberfläche zu versehen, oder einen Innenbehälter aus geeignetem Material einzubringen. So ist es zum Beispiel möglich, einen monolithischen Graphitblock als Innenbehälter einzubringen.
  • Die Schichtdicken der Außenschichten liegen im Bereich von 5 bis 20 cm, die der weiteren edleren Schichten im Bereich von 5 bis 50 mm. Als korrosionsbeständige Materialien haben sich vor allem Bronzen, insbesondere zinnreiche, bewährt.
  • Bei der erfindungsgemäßen Festlegung der Reihenfolge der Metallschichten sind natürlich Legierungsbestandteile und deren Auswirkungen auf die Potentiale, aber auch auf das Korrosionsverhalten, wie z. B. Spaltkorrosion, zu berücksichtigen.

Claims (2)

1. Mehrschichtiger Transport- und Lagerbehälter zur Langzeitlagerung von radioaktiven Abfällen, insbesondere abgebrannten Brennelementen in geeigneten geologischen Formationen, wobei die Schichten (1, 2, 3) aus verschiedenen Metallen bzw. Metallegierungen bestehen, die von außen nach innen in der elektrochemischen Spannungsreihe immer edler (positiver) werden, dadurch gekennzeichnet, daß der Behälter mindestens drei Schichten aufweist, von denen die äußere Schicht (1) aus Gußeisen, die nächstinnere Schicht (2) aus Nickel oder einer Nickellegierung und die innere Schicht (3) aus Kupfer oder einer Kupferlegierung besteht.
2. Transport- und Lagerbehälter nach Anspruch 1, dadurch gekennzeichnet, daß der Unterschied der elektrochemischen Potentiale der benachbarten Metallschichten (1, 2, 3) im Bereich von 50 bis 500 mV liegt.
EP82100591A 1981-02-03 1982-01-28 Mehrschichtiger Transport- und Lagerbehälter für radioaktive Abfälle Expired EP0057429B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3103526A DE3103526C2 (de) 1981-02-03 1981-02-03 Mehrschichtiger Transport- und Lagerbehälter für radioaktive Abfälle
DE3103526 1981-02-03

Publications (3)

Publication Number Publication Date
EP0057429A2 EP0057429A2 (de) 1982-08-11
EP0057429A3 EP0057429A3 (en) 1985-12-11
EP0057429B1 true EP0057429B1 (de) 1989-03-15

Family

ID=6123895

Family Applications (1)

Application Number Title Priority Date Filing Date
EP82100591A Expired EP0057429B1 (de) 1981-02-03 1982-01-28 Mehrschichtiger Transport- und Lagerbehälter für radioaktive Abfälle

Country Status (5)

Country Link
US (1) US4562001A (de)
EP (1) EP0057429B1 (de)
JP (1) JPS57178189A (de)
CA (1) CA1166027A (de)
DE (2) DE3103526C2 (de)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4935943A (en) * 1984-08-30 1990-06-19 The United States Of America As Represented By The United States Department Of Energy Corrosion resistant storage container for radioactive material
DE3445124C1 (de) * 1984-12-11 1986-01-23 Nukem Gmbh, 6450 Hanau Auskleidung fuer Bohrloecher in Salzstoecken
DE3610862A1 (de) * 1986-04-01 1987-10-08 Kernforschungsz Karlsruhe Laengszylindrischer behaelter fuer die endlagerung von einer oder mehreren mit hochradioaktiven abfaellen gefuellten kokillen
US4891165A (en) * 1988-07-28 1990-01-02 Best Industries, Inc. Device and method for encapsulating radioactive materials
JP2796153B2 (ja) * 1988-07-28 1998-09-10 ベスト インダストリーズ インコーポレーテッド 放射性材料収納カプセル
US4861520A (en) * 1988-10-28 1989-08-29 Eric van't Hooft Capsule for radioactive source
US5683345A (en) 1994-10-27 1997-11-04 Novoste Corporation Method and apparatus for treating a desired area in the vascular system of a patient
US5899882A (en) 1994-10-27 1999-05-04 Novoste Corporation Catheter apparatus for radiation treatment of a desired area in the vascular system of a patient
US5611429A (en) * 1995-04-05 1997-03-18 Phillips; Paul B. Medical syringe disposal
US6544606B1 (en) * 2000-01-11 2003-04-08 Nac International Systems and methods for storing fissile materials
NO20044434D0 (no) * 2004-10-19 2004-10-19 Nuclear Prot Products As Lang-tids lagringscontainer og fremgangsmate for fremstilling av denne
SE531261C2 (sv) * 2007-05-25 2009-02-03 Olle Grinder Kapsel avsedd för slutförvaring av utbränt kärnbränsle
CN111739672B (zh) * 2020-05-13 2023-12-22 中国核电工程有限公司 一种降低氚渗透速率的结构

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3610290A (en) * 1968-10-22 1971-10-05 Texas Instruments Inc Metal laminates and tubing embodying such laminates
US4208453A (en) * 1969-06-30 1980-06-17 Alloy Surfaces Company, Inc. Modified diffusion coating of the interior of a steam boiler tube
US4031921A (en) * 1975-09-09 1977-06-28 The United States Of America As Represented By The United States Energy Research And Development Administration Hydrogen-isotope permeation barrier
US4290847A (en) * 1975-11-10 1981-09-22 Minnesota Mining And Manufacturing Company Multishell microcapsules
FR2375695A1 (fr) * 1976-12-21 1978-07-21 Asea Ab Procede pour le traitement de dechets radioactifs
JPS6051070B2 (ja) * 1977-07-21 1985-11-12 株式会社東芝 核燃料要素およびその製造方法
JPS5428738A (en) * 1977-08-08 1979-03-03 Usui Kokusai Sangyo Kk Double plated band steel for use in making corrosion resistant overlapped steel pipes
DE2804828A1 (de) * 1978-02-04 1979-08-09 Nukem Gmbh Stahlbehaelter zur aufnahme abgebrannter brennelemente
US4192765A (en) * 1978-02-15 1980-03-11 John N. Bird Container for radioactive nuclear waste materials
US4337167A (en) * 1978-02-15 1982-06-29 Bird John M Container for radioactive nuclear waste materials
JPS5589792A (en) * 1978-12-28 1980-07-07 Tokyo Shibaura Electric Co Nuclear fuel rod
US4362696A (en) * 1979-05-21 1982-12-07 The United States Of America As Represented By The United States Department Of Energy Corrosion-resistant fuel cladding allow for liquid metal fast breeder reactors
US4292528A (en) * 1979-06-21 1981-09-29 The Carborundum Company Cask for radioactive material and method for preventing release of neutrons from radioactive material
US4338215A (en) * 1979-09-24 1982-07-06 Kennecott Corporation Conversion of radioactive wastes to stable form for disposal
JPS5662955A (en) * 1979-10-26 1981-05-29 Hitachi Ltd Manufacture of nuclear fuel cladding pipe

Also Published As

Publication number Publication date
EP0057429A2 (de) 1982-08-11
DE3103526C2 (de) 1985-11-14
DE3103526A1 (de) 1982-08-12
US4562001A (en) 1985-12-31
JPS57178189A (en) 1982-11-02
CA1166027A (en) 1984-04-24
DE3279552D1 (en) 1989-04-20
EP0057429A3 (en) 1985-12-11

Similar Documents

Publication Publication Date Title
EP0057429B1 (de) Mehrschichtiger Transport- und Lagerbehälter für radioaktive Abfälle
DE69602136T2 (de) Transport- und Lagerungsbehälter für radioaktive Stoffe
DE69521715T2 (de) Hydrophiles system zur verhinderung der anodischen korrosion
DE2418518A1 (de) Speichervorrichtung fuer radioaktiven abfall
EP0072429B1 (de) Behälter zur Langzeitlagerung radioaktiver Abfälle
EP0092679B1 (de) Behälter zur Aufnahme von radioaktiven Stoffen
DE3027999C2 (de) Verfahren zum Herstellen einer Brennstabhülle für Kernbrennstoffelemente
DE3519438A1 (de) Korrosionsschutzverfahren fuer ein rohr eines dampferzeugers und vorrichtung zur durchfuehrung dieses verfahrens
DE1521694A1 (de) Zersetzbare Zinkanode
DE2527686C2 (de) Kernbrennelement mit einem zylindrischen Behälter
EP0057867A1 (de) Mehrschichtiger Behälter zur sicheren Langzeitlagerung von radioaktivem Material
DE3346355C2 (de) Behälter zur Endlagerung von radioaktiven Abfällen
DE3012310A1 (de) Einsatzkorb fuer radioaktives material in transport- und/oder lagerbehaelter
EP0556455B1 (de) Abschirm-Transportbehälter für bestrahlte Kernreaktorbrennelemente und Verfahren zum Aufbringen einer Abschlussschicht auf den Abschirm-Transportbehälter
EP0057866B1 (de) Vorrichtung zum Korrosionsschutz von radioaktive Stoffe enthaltenden Behältern
EP0057430A1 (de) Transport- und Lagerbehälter für radioaktive Abfälle
DE3518799C2 (de) Mehrschichten-Gleitlager
DE3610862C2 (de)
EP0062831B1 (de) Behälter zur Langzeitlagerung von radioaktiven Stoffen (II)
DE19581642C2 (de) Kalt- und Heißwasserzuführungs-Kupferlegierungsrohr mit einem Schutzfilm auf der inneren Oberfläche, Verfahren zu seiner Herstellung sowie ein Heißwasserzuführungs-Wärmeaustauscher
DE897742C (de) Verfahren zur Herstellung radioaktiver Metallfolien und Draehte
DE3239813C2 (de) Wärmetauscher
DE3716913C2 (de)
DE3103494C2 (de) Behälter zur Lagerung radioaktiver Stoffe
EP0111231B1 (de) Transport- und/oder Lagerbehälter für wärmeproduzierende radioaktive Stoffe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE DE FR GB SE

17P Request for examination filed

Effective date: 19820925

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): BE DE FR GB SE

17Q First examination report despatched

Effective date: 19870428

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR GB SE

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3279552

Country of ref document: DE

Date of ref document: 19890420

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19891213

Year of fee payment: 9

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19911001

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19911216

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19911224

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19911230

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19920117

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19930128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19930129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19930131

BERE Be: lapsed

Owner name: DEUTSCHE -G. FUR WIEDERAUFARBEITUNG VON KERNBRENN

Effective date: 19930131

Owner name: NUKEM G.M.B.H.-

Effective date: 19930131

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19930128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19930930

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 82100591.5

Effective date: 19930810