EP0072429B1 - Behälter zur Langzeitlagerung radioaktiver Abfälle - Google Patents

Behälter zur Langzeitlagerung radioaktiver Abfälle Download PDF

Info

Publication number
EP0072429B1
EP0072429B1 EP82106184A EP82106184A EP0072429B1 EP 0072429 B1 EP0072429 B1 EP 0072429B1 EP 82106184 A EP82106184 A EP 82106184A EP 82106184 A EP82106184 A EP 82106184A EP 0072429 B1 EP0072429 B1 EP 0072429B1
Authority
EP
European Patent Office
Prior art keywords
container
protective layer
long
term storage
radioactive waste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP82106184A
Other languages
English (en)
French (fr)
Other versions
EP0072429A1 (de
Inventor
Jürgen Dr. Dipl.-Chem. Hofmann
Hans Dipl.-Chem. Pirk
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Deutsche Gesellschaft fuer Wiederaufarbeitung von Kernbrennstoffen mbH
Nukem GmbH
Original Assignee
Deutsche Gesellschaft fuer Wiederaufarbeitung von Kernbrennstoffen mbH
Nukem GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deutsche Gesellschaft fuer Wiederaufarbeitung von Kernbrennstoffen mbH, Nukem GmbH filed Critical Deutsche Gesellschaft fuer Wiederaufarbeitung von Kernbrennstoffen mbH
Publication of EP0072429A1 publication Critical patent/EP0072429A1/de
Application granted granted Critical
Publication of EP0072429B1 publication Critical patent/EP0072429B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/28Treating solids
    • G21F9/34Disposal of solid waste
    • G21F9/36Disposal of solid waste by packaging; by baling
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F1/00Shielding characterised by the composition of the materials
    • G21F1/02Selection of uniform shielding materials
    • G21F1/10Organic substances; Dispersions in organic carriers

Definitions

  • the invention relates to a container for the long-term storage of radioactive waste, in particular spent fuel elements, in suitable geological formations, consisting of a container body and a protective layer applied to the outer surface, the protective layer being made of a plastic from the group consisting of polyurethane, polytetrafluoroethylene, polycarbonate, Epoxy resins, phenol formaldehyde resins and acrylate rubber.
  • Irradiated, spent fuel elements are processed either immediately after temporary storage in the water basin or after a limited further interim storage.
  • the nuclear fuels and broods are separated from the fission products and returned to the fuel cycle.
  • the cleavage products are by known methods, usually using large amounts of valuable materials, such as. B. lead and copper, conditioned and in suitable geological formations practically no longer removable.
  • Very complex concepts are known in some cases for storing the irradiated fuel elements in metal, concrete in salt, sand or in rock caverns.
  • Containers made of alloyed and unexposed steel, copper and corundum are proposed as packaging for radioactive materials and irradiated fuel elements.
  • the steel containers are either not sufficiently corrosion-resistant or, like copper, are very expensive.
  • Corundum containers are generally suitable, but the experience required for their manufacture is lacking.
  • the fuel elements for packaging would have to be disassembled into small corundum containers for manufacturing reasons, which is associated with considerable effort.
  • Such containers only partially meet the conditions of long-term storage, such as tight containment at the pressures and temperatures that occur, and corrosion against brine, or they must be made very thick-walled.
  • they are usually not suitable as a transport container at the same time, so that the waste must be reloaded from the transport container into the final storage container at considerable expense.
  • Repository containers for spent fuel elements have also been proposed, which consist of alloyed and unalloyed steels with galvanic protective layers selected according to the electrochemical voltage series. These known externally applied protective layers are often sensitive to mechanical loads, they can be partially destroyed and, in the event of a malfunction, corrosion can proceed from these damaged areas.
  • a storage concept for radioactive waste is known from US-A-3935467, in which a large number of smaller containers containing the waste are accommodated in a larger, corrosion-resistant container. The spaces between these containers are filled with a shock-absorbing polyurethane foam. This polyurethane foam cannot perform corrosion-inhibiting and fission product retention functions.
  • the invention was therefore based on the object of providing a container for the long-term storage of radioactive waste, in particular spent fuel elements, in suitable geological formations, consisting of a container base body and a protective layer applied to the outer surface, the outer protective layer being made of a plastic from the Group of polyurethanes, polytetrafluoroethylene, polycarbonate, epoxy resins, phenol formaldehyde resins and acrylic rubber and is suitable for any cheap basic container body, has the highest possible protection against corrosion and offers protection against mechanical damage, and prevents leakage products from escaping from the repository.
  • the object is achieved in that a filler which has swellable, ion-exchange and adsorptive properties in the presence of water is incorporated in the protective layer.
  • Layered silicates of the montmorillonite type have proven particularly useful as fillers. Bentonite is preferably used for this, while polyurethane has proven to be particularly suitable as the plastic component.
  • the two-component system of the polyurethane contains bentonite as a filler in one component.
  • the two components of the polyurethane system After the two components of the polyurethane system have reacted on the surface of the repository, the latter has a well-adhering and dense coating that contains bentonite in a homogeneous distribution.
  • the coating has a surprisingly high mechanical resistance to pressure and shock and thus reliably prevents damage to the body of the container.
  • this polyurethane coating with the filler it contains against brine as it would be present in the repository formations intended in Germany in the event of a fault, is absolutely corrosion-resistant.
  • the bentonite preferably contained in the polyurethane as a filler offers additional protection and forms a second barrier. If the plastic layer is damaged, e.g. B. a crack, the filler is exposed. This swells in the presence of water to 4 to 7 times its volume and thus seals the crack that has formed.
  • the layered silicate filling offers protection against the discharge of fission products from a damaged repository.
  • Bentonite has both adsorptive and ion exchange properties. Fission products emerging from the final storage container would thus be bound to the bentonite both by adsorption and by ion exchange and be prevented from entering the biosphere.
  • the protective layer according to the invention offers multiple protection and significantly increases the safety of the final storage of spent fuel elements.
  • the figure shows schematically an exemplary embodiment of the container according to the invention.
  • a protective layer (2) consisting of a well-adhering plastic and a swellable filler is applied to the container body (1).

Landscapes

  • Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Laminated Bodies (AREA)
  • Processing Of Solid Wastes (AREA)
  • Wrappers (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)
  • Packages (AREA)
  • Details Of Rigid Or Semi-Rigid Containers (AREA)

Description

  • Gegenstand der Erfindung ist ein Behälter zur Langzeitlagerung von radioaktiven Abfällen, insbesondere von abgebrannten Brennelementen, in geeigneten geologischen Formationen, bestehend aus einem Behältergrundkörper und einer auf der äußeren Oberfläche aufgebrachten Schutzschicht, wobei die Schutzschicht aus einem Kunststoff aus der Gruppe Polyurethan, Polytetrafluoräthylen, Polycarbonat, Epoxyharze, Phenolformaldehydharze und Acrylatkautschuk besteht.
  • Bestrahlte, abgebrannte Brennelemente werden nach einer vorübergehenden Aufbewahrung im Wasserbecken entweder sofort oder nach einer begrenzten weiteren Zwischenlagerung aufgearbeitet. Dabei werden die nuklearen Brenn-und Brutstoffe von den Spaltprodukten abgetrennt und wieder dem Brennstoffkreislauf zugeführt. Die Spaltprodukte werden nach bekannten Verfahren, meist unter Verwendung großer Mengen Wertstoffe, wie z. B. Blei und Kupfer, konditioniert und in geeigneten geologischen Formationen praktisch nicht mehr entnehmbar endgelagert.
  • Darüber hinaus wird vorgeschlagen (Berichte des Kernforschungszentrums Karlsruhe KFK 2535 und 2650), die bestrahlten Brennelemente in absehbarer Zeit nicht aufzuarbeiten, auf die in ihnen vorhandenen Brenn- Brutstoffe zunächst zu verzichten und die Brennelementenach einer angemessenen Abklingzeit in dafür vorgesehene Lagern- gegebenenfalls wieder entnehmbar endzulagern. Die Lagerzeiten können mehrere Generationen bis zu mehreren tausend Jahren betragen, wobei sich das Gefährdungspotential des radioaktiven Inventars in dieser Zeit, den bekannten physikalischen Gesetzen folgend, entsprechend seiner Zusammensetzung außerordentlich stark verringert.
  • Wegen der unbestimmten Lagerdauer werden an derartige, für die Langzeitlagerung geeignete Behälter, die gegenüber bekannten Transport-und Lagerbehälter eine mehrfache Betriebszeit aufweisen müssen, besondere Anforderungen gestellt. Erschwerend kommt hinzu, daß die Behälterlager schwer zugänglich sein müssen und folglich den Überwachungsmöglichkeiten Grenzen gesetzt sind.
  • Es sind teilweise sehr aufwendige Konzepte bekannt, die bestrahlten Brennelemente mittels Behältern aus Metall oder Beton in Salz, Sand oder in Fels-Kavernen zu lagern.
  • Als Verpackung für radioaktive Stoffe und bestrahlte Brennelemente werden Behälter aus legierten und unlegerten Stählen, aus Kupfer sowie aus Korund vorgeschlagen. Die Behälter aus Stahl sind entweder nicht genügend korrosionsbeständig oder wie solche aus Kupfer sehr teuer. Behälter aus Korund sind grundsätzlich geeignet, jedoch fehlen die für die Herstellung notwendigen Erfahrungen. Darüber hinaus müßten die Brennelemente zur Verpackung in die aus herstellungsbedingten Gründen kleinen Korundbehälter zerlegt werden, was mit einem erheblichen Aufwand verbunden ist. Solche Behälter erfüllen die Bedingungen der Langzeitlagerung, wie dichter Einschluß bei den auftretenden Drucken und Temperaturen, sowie Korrosion gegen Salzlaugen, nur zum Teil, oder sie müssen sehr dickwandig ausgebildet werden. Außerdem eignen sie sich meist nicht gleichzeitig auch als Transportbehälter, sodaß unter erheblichem Aufwand eine Umladung der Abfälle vom Transportbehälter in den Endlagerbehälter erfolgen muß.
  • Es sind auch Endlagerbehälter für abgebrannte Brennelemente vorgeschlagen worden, die aus legierten und unlegierten Stählen mit nach der elektrochemischen Spannungsreihe ausgewählten galvanischen Schutzschichten bestehen. Diese bekannten außen aufgebrachte Schutzschichten sind vielfach gegen mechanische Belastungen empfindlich, sie können teilweise zerstört werden und im Störfall kann von diesen beschädigten Stellen ausgehend die Korrosion ihren Fortschritt nehmen.
  • Aus der US-A-3935467 ist ein Lagerkonzept für radioaktive Abfälle bekannt, bei dem in einem größeren, korrosionsresistenten Behälter eine Vielzahl von kleineren, den Abfall enthaltenen Behältern untergebracht sind. Die Zwischenräume zwischen diesen Behältern sind mit einem stoßdämpfenden Polyurethanschaum ausgefüllt. Korrosionshemmende und Spaltprodukt zurückhaltende Funktionen kann dieser Polyurethanschaum nicht übernehmen.
  • Der Erfindung lag deshalb die Aufgabe zugrunde, einen Behälter zur Langzeitlagerung von radioaktiven Abfällen, insbesondere von abgebrannten Brennelementen, in geeigneten geologischen Formationen zu schaffen, bestehend aus einem Behältergrundkörper und einer auf der äußeren Oberfläche aufgebrachten Schutzschicht, wobei die äußere Schutzschicht aus einem Kunststoff aus der Gruppe der Polyurethane, Polytetrafluoräthylen, Polycarbonat, Epoxyharze, Phenolformaldehydharze und Acrylkautschuk besteht und für beliebige, möglichst billige Behältergrundkörper geeignet ist, möglichst hohen Korrosionsschutz aufweist und Schutz gegen mechanische Beschädigungen bietet, sowie das Austreten von Spaltprodukten aus dem Endlagerbehälter verhindert.
  • Die Aufgabe wird erfindungsgemäß dadurch gelöst, daß in die Schutzschicht ein in Gegenwart von Wasser quellfähiger, ionenaustauschfähiger und adsorptive Eigenschaften aufweisender Füllstoff eingelagert ist. Als Füllstoff haben sich besonders Schichtsilikate vom Montmorillonittyp bewährt. Vorzugsweise verwendet man hierfür Bentonit, während als Kunststoffkomponente Polyurethan sich als besonders geeignet erwiesen hat.
  • Auf die Außenseite des verschlossenen Endlagerbehälters, der abgebrannte Brennelemente oder auch Einzelstäbe enthält, wird beispielsweise eine 1-3 cm dicke Schicht aus Polyurethan aufgetragen, wobei das Zweikomponentensystem des Polyurethan in einer Komponente Bentonit als Füllstoff enthält.
  • Nachdem die beiden Komponenten des Polyurethansystems auf der Oberfläche des Endlagerbehälters ausreagiert haben, weist dieser eine gut haftende und dichte Beschichtung, die Bentonit in homogener Verteilung enthält, auf. Die Beschichtung weist eine überraschend hohe mechanische Beständigkeit gegen Druck und Stoß auf und verhindert so sicher eine Beschädigung des Behältergrundkörpers. Gleichzeitig ist diese Beschichtung aus Polyurethan mit dem in ihm enthaltenen Füllstoff gegen Salzlauge, so wie sie im Störanfall in den in Deutschland vorgesehenen Endlagerformationen vorliegen würde, absolut korrosionsbeständig.
  • Der in dem Polyurethan als Füllstoff vorzugsweise enthaltene Bentonit bietet einen zusätzlichen Schutz und bildet eine zweite Barriere. Tritt eine Beschädigung der Kunststoffschicht, z. B. ein Riß auf, so wird der Füllstoff freigelegt. Dieser quillt in Gegenwart von Wasser auf das 4- bis 7fache seines Volumens und dichtet so den entstandenen Riß wieder ab.
  • Zusätzlich bietet die Schichtsilikatfüllung Schutz vor dem Austreten von Spaltprodukten aus einem beschädigten Endlagerbehälter. Bentonit weist sowohl adsorptive als- auch ionenaustauschende Eigenschaften auf. Aus dem Endlagerbehälter austretende Spaltprodukte würden also sowohl durch Adsorption als auch durch Ionenaustausch an den Bentonit gebunden und vom Eintritt in die Biosphäre zurückgehalten werden.
  • Die erfindungsgemäße Schutzschicht bietet auf diese Weise einen Mehrfachschutz und erhöht die Sicherheit der Endlagerung von abgebrannten Brennelementen wesentlich.
  • Die Abbildung zeigt schematisch eine beispielhafte Ausführungsform des erfindungsgemäßen Behälters. Auf dem Behältergrundkörper (1) ist eine Schutzschicht (2) aufgebracht, bestehend aus einem gut haftenden Kunststoff und einem quellfähigen Füllstoff.

Claims (3)

1. Behälter zur Langzeitlagerung von radioaktiven Abfällen, insbesondere von abgebrannten Brennelementen, in geeigneten geologischen Formationen, bestehend aus einem Behältergrundkörper und einer auf der äußeren Oberfläche aufgebrachten Schutzschicht, wobei die Schutzschicht (2) aus einem Kunststoff aus der Gruppe der Polyurethane, Polytetrafluoräthylen, Polycarbonat, Epoxyharze, Phenolformaldehydharze und Acrylatkautschuk besteht, dadurch gekennzeichnet, daß in die Schutzschicht (2) ein in Gegenwart von Wasser quellfähiger, ionenaustauschfähiger und adsorptive Eigenschaften aufweisender Füllstoff eingelagert ist.
2. Behälter nach Anspruch 1, dadurch gekennzeichnet, daß der Füllstoff ein Schichtsilikat vom Montmorillonittyp ist.
3. Behälter nach Anspruch 1 und 2, dadurch gekennzeichnet, daß als Schichtsilikat Bentonit verwendet wird.
EP82106184A 1981-08-19 1982-07-10 Behälter zur Langzeitlagerung radioaktiver Abfälle Expired EP0072429B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3132704 1981-08-19
DE3132704A DE3132704C2 (de) 1981-08-19 1981-08-19 Behälter zur Langzeitlagerung radioaktiver Abfälle

Publications (2)

Publication Number Publication Date
EP0072429A1 EP0072429A1 (de) 1983-02-23
EP0072429B1 true EP0072429B1 (de) 1985-04-17

Family

ID=6139600

Family Applications (1)

Application Number Title Priority Date Filing Date
EP82106184A Expired EP0072429B1 (de) 1981-08-19 1982-07-10 Behälter zur Langzeitlagerung radioaktiver Abfälle

Country Status (6)

Country Link
EP (1) EP0072429B1 (de)
JP (1) JPS5840000A (de)
BR (1) BR8204782A (de)
CA (1) CA1170845A (de)
DE (2) DE3132704C2 (de)
ES (1) ES280865Y (de)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HU191255B (en) * 1984-03-05 1987-01-28 Eroemue- Es Halozattervezoe Vallalat,Hu Container for transporting radioactive matters
JPS6190995U (de) * 1984-11-19 1986-06-13
DE3447278A1 (de) * 1984-12-22 1986-06-26 Kernforschungszentrum Karlsruhe Gmbh, 7500 Karlsruhe Langzeitbestaendige korrosionsschutzumhuellung fuer dicht verschlossene gebinde mit hochradioaktivem inhalt
DE3520450A1 (de) * 1985-06-07 1986-12-11 Gattys Technique S.A., Freiburg/Fribourg Strahlenschutzbehaelter zum transport und zur lagerung radioaktiver materialien und verfahren zu seiner herstellung
GB2176925A (en) * 1985-06-19 1987-01-07 Us Energy Waste disposal package
GB2217631A (en) * 1988-03-31 1989-11-01 Westinghouse Electric Corp Method for attenuating gas diffusion through a structure
DE3927815C2 (de) * 1989-08-23 1999-12-23 Sipra Patent Beteiligung Plüsch- oder Florstrickware und Rundstrickmaschine zu deren Herstellung
EP1124234A1 (de) * 2000-02-11 2001-08-16 Jesse Yang Verfahren zum Abdichten und Verpacken von giftigen Abfällen
DE10329170A1 (de) * 2003-06-27 2005-01-13 Polybern Gmbh Verbessertes Verfahren zum Einschluss von Sonderabfall
DE102011051991A1 (de) * 2011-07-20 2013-01-24 Siempelkamp Nukleartechnik Gmbh Verfahren zur Ertüchtigung eines Abfallbehälters
DE102011085480A1 (de) 2011-10-28 2013-05-02 Volkmar Gräf Behältersystem zur endlagerung von radioaktivem abfall und/oder giftmüll
DE102014002390B3 (de) * 2014-02-24 2015-05-13 Cura Ingenieurgesellschaft Mbh Behälter zur Lagerung von radioaktivem Abfall
FR3030864B1 (fr) * 2014-12-22 2020-04-24 Tn International Utilisation d'une composition elastomerique chargee pour la fabrication d'un joint pour emballage de matiere radioactive, joint et emballage associes

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1350579A (fr) * 1963-03-18 1964-01-24 Substance sorbante et son procédé de fabrication
DE2065863B2 (de) * 1969-08-13 1981-07-16 Transnucléaire, Société pour les Transports de l'Industrie Nucléaire, Paris Behälter für die Lagerung und den Transport von radioaktiven Materialien
FR2199479A1 (en) * 1972-09-15 1974-04-12 Peabody Gci Absorbent/filter for gas or liquid - with powder absorber sandwiched between fibrous or open-cellular sheets, esp. used as continuous band
FR2212174B1 (de) * 1972-12-30 1978-06-09 Toyo Jozo Kk
US3935467A (en) * 1973-11-09 1976-01-27 Nuclear Engineering Co., Inc. Repository for fissile materials
FR2473213B1 (fr) * 1980-01-07 1986-03-21 Ecopo Dispositif de confinement a long terme de dechets radioactifs ou toxiques et son procede de fabrication

Also Published As

Publication number Publication date
CA1170845A (en) 1984-07-17
DE3132704C2 (de) 1985-12-19
DE3132704A1 (de) 1983-03-10
ES280865U (es) 1985-02-01
DE3263122D1 (en) 1985-05-23
JPS5840000A (ja) 1983-03-08
EP0072429A1 (de) 1983-02-23
BR8204782A (pt) 1983-08-02
ES280865Y (es) 1985-08-01

Similar Documents

Publication Publication Date Title
EP0072429B1 (de) Behälter zur Langzeitlagerung radioaktiver Abfälle
DE1514957C3 (de) Anordnung für den Transport eines radioaktiven und/oder spaltbaren Stoffes
EP1831896B1 (de) Mehrschichtige strahlenschutzwand und strahlenchutzkammer
EP0036954A1 (de) Behälter zum Transport und/oder Lagerung radioaktiver Stoffe
EP0092679B1 (de) Behälter zur Aufnahme von radioaktiven Stoffen
DE2418518A1 (de) Speichervorrichtung fuer radioaktiven abfall
EP0057429B1 (de) Mehrschichtiger Transport- und Lagerbehälter für radioaktive Abfälle
EP0044023B1 (de) Transport- und/oder Lagerbehälter für radioaktive Stoffe
EP0146778B1 (de) Behälter zur Endlagerung von radioaktiven Abfällen
EP0035670B1 (de) Behälter für radioaktive Stoffe
DE2836290C2 (de) Verfahren zur Einlagerung von abgebrannten Kernbrennstoffelementen und hochradioaktiven Abfällen aus Kernkraftwerken
DE1167459B (de) Neutronenschirm
EP0091175A1 (de) Verfahren zur sicheren Lagerung von gefährlichem, den Menschen und/oder die Umwelt gefährendem Material und für dieses Verfahren geeignete Schutzhülle
DE3103494C2 (de) Behälter zur Lagerung radioaktiver Stoffe
DE3716913C2 (de)
DE2745458C3 (de) Verfahren zum Dekontaminieren von hochradioaktive Wandschichten aufweisenden Gegenständen
DE3403599A1 (de) Verfahren zum transportieren, zwischenlagern und endlagern von abgebrannten brennelementen, behaeltersystem zur durchfuehrung dieses verfahrens sowie herstellung eines behaelters fuer den transport und/oder lagerung von abgebrannten brennelementen
DE3212651A1 (de) Verfahren zur sicheren lagerung von gefaehrlichem, den menschen und/oder die umwelt gefaehrdendem material
DE3006507A1 (de) Stoerfallschutz fuer die lagerung selbsterhitzender radioaktiver stoffe
DE8102695U1 (de) Transport- und lagerbehaelter fuer radioaktive abfaelle
DE8209727U1 (de) Schutzhuelle fuer die Handhabung und Lagerung von gefaehrlichem den Menschen und/oder die Umwelt gefaehrderdem Material
DE3106418A1 (de) "verfahren und andordnung zur lagerung von bestrahlten brennelementen"
DE2952168A1 (de) Transport- und/oder lagerbehaelter fuer radioaktive stoffe
DE7739303U1 (de) Endlagerfass fuer radioaktive abfaelle
Brennecke et al. Conditioning and disposal of decommissioning wastes/Konditionierung und Endlagerung von Stillegungsabfällen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19820710

AK Designated contracting states

Designated state(s): BE CH DE FR GB LI SE

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): BE CH DE FR GB LI SE

REF Corresponds to:

Ref document number: 3263122

Country of ref document: DE

Date of ref document: 19850523

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19860711

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19860731

Ref country code: CH

Effective date: 19860731

Ref country code: BE

Effective date: 19860731

BERE Be: lapsed

Owner name: DEUTSCHE G- FUR WIEDERAUFARBEITUNG VON KERNBRENNS

Effective date: 19860731

Owner name: NUKEM G.M.B.H.

Effective date: 19860731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19870331

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19870401

GBPC Gb: european patent ceased through non-payment of renewal fee
REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19881121

EUG Se: european patent has lapsed

Ref document number: 82106184.3

Effective date: 19870609