EP0092679B1 - Behälter zur Aufnahme von radioaktiven Stoffen - Google Patents

Behälter zur Aufnahme von radioaktiven Stoffen Download PDF

Info

Publication number
EP0092679B1
EP0092679B1 EP83102908A EP83102908A EP0092679B1 EP 0092679 B1 EP0092679 B1 EP 0092679B1 EP 83102908 A EP83102908 A EP 83102908A EP 83102908 A EP83102908 A EP 83102908A EP 0092679 B1 EP0092679 B1 EP 0092679B1
Authority
EP
European Patent Office
Prior art keywords
container
layer
corrosion
cast
inner layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP83102908A
Other languages
English (en)
French (fr)
Other versions
EP0092679A1 (de
Inventor
Franz-Wolfgang Dipl.-Ing. Popp
Kurt Dipl.-Ing. Feuring
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Deutsche Gesellschaft fuer Wiederaufarbeitung von Kernbrennstoffen mbH
Original Assignee
Deutsche Gesellschaft fuer Wiederaufarbeitung von Kernbrennstoffen mbH
Nukem GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deutsche Gesellschaft fuer Wiederaufarbeitung von Kernbrennstoffen mbH, Nukem GmbH filed Critical Deutsche Gesellschaft fuer Wiederaufarbeitung von Kernbrennstoffen mbH
Publication of EP0092679A1 publication Critical patent/EP0092679A1/de
Application granted granted Critical
Publication of EP0092679B1 publication Critical patent/EP0092679B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F5/00Transportable or portable shielded containers
    • G21F5/005Containers for solid radioactive wastes, e.g. for ultimate disposal
    • G21F5/008Containers for fuel elements

Definitions

  • the invention relates to a container for holding radioactive substances, in particular irradiated nuclear reactor fuel elements, in which the basic container body is constructed in multiple layers, the inner layer consisting of a mechanically stable, inexpensive metallic material and the adjacent layer as a corrosion protection layer made of a cast around the inner layer.
  • high-alloy austenitic cast iron with spheroidal graphite and in which the receiving opening of the container body is closed by a sealing cover welded to the corrosion protection layer.
  • the fuel elements are loaded into a transport container.
  • These transport containers must be sealed gas-tight, which is achieved via a lid sealing system, and ensure adequate shielding against radioactivity.
  • the transport containers must have sufficient mechanical strength that can withstand accident conditions.
  • the transport container must also be designed so that the post-decay heat of the transported fuel elements can be safely dissipated to the outside.
  • the loaded transport containers are brought to an interim storage facility, where they are to be stored until the spent nuclear fuel elements are reprocessed later or for long-term storage, the so-called direct final storage.
  • the transport containers must then be opened again.
  • direct final storage the spent nuclear reactor fuel elements must be packed in special final storage containers and placed in geological formations for safe final storage.
  • the repository containers must have certain endager properties. They have to be mechanically stable, corrosion-proof and tightly sealed.
  • the hardener base of the repository container is therefore made of steel or cast iron to ensure the mechanical stability of the container. It would be preferable to use spheroidal graphite cast iron (GGG 40) for the thick-walled container body, since spheroidal cast iron is characterized by its particularly high strength and toughness.
  • This corrosion-resistant protective layer can consist of ceramic, graphite or other materials.
  • This fuel element container designed in this way can also be used for longer surface storage of the irradiated fuel elements and for transport if the thickness of the cheap inner layer is increased in accordance with the requirements for the shielding.
  • the invention is based on the object of designing a container of the type described at the outset in such a way that it can be used not only for final storage, but also for longer surface storage and for transporting the irradiated fuel elements, the amount of material in the corrosion protection layer being kept as low as possible.
  • the container base body has an outer layer of cast iron with spheroidal graphite cast around the corrosion protection layer.
  • the outer layer is cast in a mold around the corrosion protection layer. The surface of the corrosion protection layer is melted, so that a good connection between the outer layer and the corrosion protection layer is created.
  • the good connection between the two layers is also promoted by the fact that the structure of the outer layer is similar to the structure of the corrosion protection layer.
  • the outer layer made of nodular cast iron is very well suited for the use according to the invention due to the high yield strength of spherulitic cast iron, since the nodular cast iron withstands the shrinkage stresses well due to its high yield strength.
  • An advantageous embodiment of the invention is characterized in that the inner layer consists of a drawn steel tube.
  • the inner layer can have a smaller thickness due to the higher mechanical strength of a drawn steel tube. This smaller thickness means a smaller diameter of the inner layer.
  • the invention provides a fuel assembly container which receives the spent nuclear reactor fuel elements delivered in transport containers after a certain decay time.
  • the fuel assemblies can then be stored on the surface in an intermediate storage facility until the final repository is built or the reprocessing of the fuel assembly is decided.
  • the welded-on cover is milled and the fuel elements removed. If the fuel assemblies are to be sent to the direct repository in a geological formation, the fuel assembly container is brought directly to the repository without reloading or additional transport shielding.
  • test of the fuel element container according to the invention is carried out by the usual test methods such as ultrasound examination and X-ray examination, whereby each cast layer can be checked individually.
  • the container receiving the fuel elements has a thick-walled basic container body 3, which is composed of three layers.
  • the container body 3 is cylindrical and open at its front end.
  • the inner layer 5 of the container body 3 consists of a spherulitic cast iron (GGG 40). At the open end, this pot-shaped inner layer 5 has an internal thread 6, into which a pressure cover 7 is screwed.
  • GGG 40 spherulitic cast iron
  • a corrosion protection layer 8 made of high-alloy austenitic nodular cast iron is cast around the inner layer 5.
  • This cast material which provides protection against corrosion, is an austenitic nodular cast iron with a max. 3% C, 13 to 36% Ni and lower alloy components of Si, Cu and Cr.
  • Such a material is GGGNiCr 20.2 (trade name: "Ni-resist").
  • the corrosion protection coating 8 has a welding lip 9 which is concentric with the receiving opening 4.
  • a corrosion protection cover 11 made of the same material is inserted into the receiving opening 4 and connected to the welding lip 9 of the casing 8 via a counter welding lip 12.
  • the outer layer 13 of the container body consists of cast iron with spheroidal graphite (GGG 40).
  • a shielding cover 14 made of spherulitic cast iron is screwed to the outer cast body 13.
  • the respective cup-shaped casting layer was inserted as a molded part in the casting mold during the manufacturing process of the next outer layer. After the material melt of the next layer has been poured in, the surface connects to the cast layer. The three layers of the container body 3 are thus firmly connected.
  • the corrosion protection cover 11 is made of the same material as the corrosion protection layer 8. A subsequent heat treatment of the container after the cover is welded is therefore not necessary.
  • the inner layer 21 is formed from a drawn steel tube, which is welded at the end opposite the receiving opening 4 by a circular steel plate 23.
  • Drawn steel pipes have a higher mechanical strength than corresponding cast bodies. Therefore, the inner layer 21 of the container body 3 can be made thinner. The result of this is that the central corrosion protection layer 8 is of a smaller diameter.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)
  • Laminated Bodies (AREA)
  • Devices For Use In Laboratory Experiments (AREA)
  • Thermally Insulated Containers For Foods (AREA)
  • Secondary Cells (AREA)

Description

  • Die Erfindung betrifft einen Behälter zur Aufnahme von radioaktiven Stoffen, insbesondere bestrahlten Kernreaktorbrennelementen, bei dem der Behältergrundkörper mehrschichtig aufgebaut ist, wobei die innere Schicht aus einem mechanisch stabilen, billigen metallischen Werkstoff und die daran angrenzende Schicht als Korrosionsschutzschicht aus einem um die innere Schicht gegossenen, hochlegierten austenitischen Gusswerkstoff mit Kugelgraphit besteht, und bei dem die Aufnahmeöffnung ds Behältergrundkörpers durch einen mit der Korrosionsschutzschicht verschweissten Verschlussdeckel verschlossen ist.
  • Zum Transport der abgebrannten Kernreaktorbrennelemente zu einer Lagerstelle werden die Brennelemente in einen Transportbehälter geladen. Diese Transportbehälter müssen gasdicht verschlossen sein, was über ein Deckeldichtsystem erreicht wird, und eine ausreichende Abschirmung der Radioaktivität gewährleisten. Die Transportbehälter müssen eine ausreichende mechanische Festigkeit aufweisen, die auch Unfallbedingungen widerstehen kann. Weiter muss der Transportbehälter so ausgelegt sein, dass die Nachzerfallswärme der transportierten Brennelemente sicher nach aussen abgeleitet werden kann.
  • Die beladenen Transportbehälter werden in ein Zwischenlagerverbracht, wo sie bis zu einer späteren Wiederaufbereitung der abgebrannten Kernbrennelemente oder einer Langzeitlagerung, der sogenannten direkten Endlagerung, aufbewahrt werden sollen. Die Transportbehälter müssen dann wieder geöffnet wrden. Im Falle der direkten Endlagerung müssen die abgebrannten Kernreaktorbrennelemente in spezielle Endlagerbehälter gepackt und in diesen in geologische Formationen zur sicheren Endlagerung verbracht werden.
  • Die Endlagerbehälter müssen bestimmte Endiagereigenschaften aufweisen. Sie müssen mechanisch stabil, korrosionsfest und dicht verschlossen sein. Der Behärtergrundkörper des Endlagerbehälters wird daher aus Stahl oder Gusseisen hergestellt, um die mechanische Stabilität des Behälters zu gewährleisten. Bevorzugt möchte man für den dickwandigen Behältergrundkörper Gusseisen mit Kugelgraphit (GGG 40) verwenden, da sphärolithisches Gusseisen sich durch besonders hohe Festigkeit und Zähigkeit auszeichnet.
  • Da aber die Korrosionsbeständigkeit von Stahl oder Gusseisen mit Kugelgraphit für den Zweck der Endlagerung ungenügend ist, wurde bereits vorgeschlagen, auf dem Behältergrundkörper aus Stahl oder Gusseisen aussen eine korrosionsfeste Schutzschicht aufzubringen. Diese korrosionsfeste Schutzschicht kann aus Keramik, Graphit oder anderen Werkstoffen bestehen.
  • In einer nicht vorveröffentlichten Patentanmeldung (EP-A Nr. 0083024) wird vorgeschlagen, einen Behälter für die Endlagerung von bestrahlten Kernreaktorbrennelementen aus zwei metallischen Schichten aufzubauen, wobei die innere Schicht aus einem mechanisch stabilen, billigen Werkstoff und die äussere Schicht aus einem korrosionsfesten Werkstoff besteht. Dabei soll die innere Schicht aus Gusseisen mit Kugelgraphit oder Lamellengraphit und die äussere Schicht aus einem um die innere Schicht gegossenen, hochlegierten austenitischen Gusswerkstoff mit Kugelgraphit bestehen. Die Aufnahmeöffnung des Behälters ist durch einen mit der äusseren Schicht verschweissten Verschlussdeckel verschlossen.
  • Dieser so ausgebildete Brennelementbehälter kann auch zur längeren Oberflächenlagerung der bestrahlten Brennelemente und zum Transport genutzt werden, wenn die Dicke der billigen inneren Schicht entsprechend den Anforderungen für die Abschirmung erhöht wird. Dieses hätte allerdings die Folge, dass die teure Korrosionsschutzschicht, die, um für eine Endlagerung ausreichend zu sein, immer eine bestimmte Dicke haben muss, auf einem grösseren Behälterdurchmesser liegt. Der Umfang und damit die erforderliche Werkstoffmenge der Korrosionsschutzschicht wird vergrössert.
  • Der Erfindung liegt dieAufgabe zugrunde, einen Behälter der eingangs beschriebenen Art derart auszugestalten, dass er nicht nur zur Endlagerung, sondern auch zur längeren Oberflächenlagerung und zum Transport der bestrahlten Brennelemente nutzbar ist, wobei die Werkstoffmenge der Korrosionsschutzschicht möglichst niedrig gehalten werden soll.
  • Die Aufgabe wird erfindungsgemäss dadurch gelöst dass der Behältergrundkörper eine um die Karrosionsschuizschicht gegossene äussere Schicht aus Gusseisen mit Kugelgraphit aufweist.
  • Es ist nun möglich, die Korrosionsschutzschicht des Behättergrundkörpers auf einem möglichst kleinen Durchmesser zu belassen, da die Dicke der äusseren Schicht entsprechend der erforderlichen Abschirmwirkung gewählt werden kann. Die äussere Schicht wird in einer Giessform um die Korrosionsschutzschicht gegossen. Die Oberfläche der Korrosionsschutzschicht wird angeschmolzen, so dass eine gute Verbindung zwischen der äusseren Schicht und der Korrosionsschutzschicht entsteht.
  • Die gute Verbindung zwischen den beiden Schichten wird auch dadurch gefördert, dass der Gefügeaufbau der äusseren Schicht dem Gefügeaufbau der Korrosionsschutzschicht ähnlich ist. Die äussere Schicht aus Sphäroguss ist aufgrund der hohen Streckgrenze des sphärolithischen Gusseisens für den erfindungsgemässen Einsatz denkbar gut geeignet, da der Sphäroguss aufgrund seiner hohen Streckgrenze die Schrumpfspannungen gut aushält.
  • Eine vorteilhafte Ausgestaltung der Erfindung wird dadurch gekennzeichnet, dass die innere Schicht aus einem gezogenen Stahlrohr besteht. Dieses hat den wesentlichen Vorteil, dass die innere Schicht aufgrund der höheren mechanischen Festigkeit eines gezogenen Stahlrohres eine geringere Dicke erhalten kann. Diese geringere Dicke bedeutet einen kleineren Durchmeser der inneren Schicht. Das hatvorteilhaftzur Folge, dass die teure Korrosionsschutzschicht auch auf einem kleineren Durchmesser liegt und somit einen geringeren Umfang hat.
  • Durch die Erfindung wird ein Brennelementbehälter geschaffen, der die in Transportbehältern gelieferten abgebrannten Kernreaktorbrennelemente nach einer bestimmten Abklingzeit aufnimmt. In diesem Brennelementbehälter können die Brennelemente dann in einem Zwischenlager an der Oberfläche gelagert werden, bis das Endlager errichtet oder die Wiederaufarbeitung der Brennelemente beschlossen ist.
  • Bei der Entscheidung für eine Wiederaufarbeitung wird der aufgeschweisste Deckel aufgefräst und die Brennelemente entnommen. Sollen die Brennelemente der direkten Endlagerung in einer geologischen Formation zugeführt werden, so wird der Brennelementbehälter direkt ohne ein Umladen oder eine zusätzliche Transportabschirmung in das Endlager verbracht.
  • Die Prüfung deserfindungsgemässen Brennelementbehälters wird durch die üblichen Prüfungsmethoden wie Ultraschalluntersuchung und Röntgenuntersuchung durchgeführt, wobei jede Gusslage einzeln geprüft werden kann.
  • Anhand der Zeichnung werden nachstehend zwei Ausführungsbeispiele der Erfindung näher erläutert. Es zeigt
    • Fig. einen dreischichtigen gegossenen Brennelementbehälter im Längsschnitt,
    • Fig. 2 eine Ausführungsform eines dreischichtigen Brennelementbehälters, bei der die innere Schicht aus einem gezogenen Stahlrohr besteht.
  • Der die hier nicht gezeigten Brennelemente aufnehmende Behälter (Fig. 1) weist einen dickwandigen Behältergrundkörper 3 auf, der aus drei Schichten aufgebaut ist. Der Behältergrundkörper 3 ist zylindrisch ausgebildet und an seinem stirnseitigen Ende offen.
  • Dadurch wird eineAufnahmeöffnung 4 zum Beladen mit den hier nicht gezeigten Brennelementen gebildet.
  • Die innere Schicht 5 des Behältergrundkörpers 3 besteht aus einem sphärolithischen Gusseisen (GGG 40). Am offenen Ende weist diese topfförmige Innenschicht 5 ein Innengewinde 6 auf, in das ein Druckdeckel 7 eingeschraubt ist.
  • Um die Innenschicht 5 ist eine Korrosionsschutzschicht 8 aus hochlegiertem austenitischem Sphäroguss gegossen. Dieser den Korrosionsschutz bewirkende Gusswerkstoff ist ein austenitischer Sphäroguss mit max. 3% C, 13 bis 36% Ni sowie geringeren Legierungsbestandteilen von Si, Cu und Cr. Ein derartiger Werkstoff ist GGGNiCr 20.2 (Handelsname: «Ni-resist»). An seinem offenen Ende weist die Korrosionsschutzschichtumhüllung 8 eine zur Aufnahmeöffnung 4 konzentrischen Schweisslippe 9 auf. In die Aufnahmeöffnung 4 ist ein Korrosionsschutzdeckel 11 aus dem gleichen Werkstoff eingesetzt und über eine Gegenschweisslippe 12 mit der Schweisslippe 9 der Hülle 8 verbunden. Die äussere Schicht 13 des Behältergrundkörpers besteht aus Gusseisen mit Kugelgraphit (GGG 40).
  • Ein aus sphärolithischem Gusseisen bestehenderabschirmdeckel 14 ist mit dem äusseren Gusskörper 13 verschraubt.
  • Die jeweilige topfförmige Gussschicht ist beim Herstellungsvorgang der nächstäusseren Schicht als Formteil in die Giessform eingesetzt worden. Nach dem jeweiligen Eingiessen der Werkstoffschmelze der nächsten Schicht verbindet sich die Oberfläche mit der vergossenen Schicht. Die drei Schichten des Behältergrundkörpers 3 sind somit fest miteinander verbunden.
  • Der Korrosionsschutzdeckel 11 ist aus dem gleichen Werkstoff wie die Korrosionsschutzschicht 8. Eine nachträgliche Wärmebehandlung des Behälters nach dem Deckelverschweissen ist daher nicht notwendig.
  • Bei der in der Fig. 2 gezeigten Ausführungsform des Behälters ist die innere Schicht 21 aus einem gezogenen Stahlrohr gebildet, das am der Aufnahmeöffnung 4 gegenüberliegenden Ende durch eine kreisförmige Stahlplatte 23 verschweisst ist. Gezogene Stahlrohre haben eine höhere mechanische Festigkeit als entsprechende Gusskörper. Daher kann die innere Schicht 21 des Behältergrundkörpers 3 dünner ausgebildet werden. Das hat zur Folge, dass die mittlere Korrosionsschutzschicht 8 auf einem kleineren Durchmesser liegt.

Claims (2)

1. Behälter zur Aufnahme von radioaktiven Stoffen, insbesondere bestrahlten Kernreaktorbrennelementen, bei dem der Behältergrundkörper mehrschichtig aufgebaut ist, wobei die innere Schicht aus einem mechanisch stabilen, billigen metallischen Werkstoff und die daran angrenzende Schicht als Korrosionsschutzschicht aus einem um die innere Schicht gegossenen, hochlegierten austenitischen Gusswerkstoff mit Kugelgraphit besteht, und bei dem die Aufnahmeöffnung des Behältergrundkörpers durch einen mit der Korrosionsschutzschicht verschweissten Verschlussdeckel verschlossen ist, dadurch gekennzeichnet, dass der Behältergrundkörper (3) eine um die Korrosionsschutzschicht (8) gegossene, äussere Schicht (13) aus Gusseisen mit Kugelgraphit aufweist.
2. Behälter nach Anspruch 1, dadurch gekennzeichnet, dass die innere Schicht aus einem gezogenen Stahlrohr (21 ) besteht.
EP83102908A 1982-04-22 1983-03-24 Behälter zur Aufnahme von radioaktiven Stoffen Expired EP0092679B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19823214880 DE3214880A1 (de) 1982-04-22 1982-04-22 Behaelter zur aufnahme von radioaktiven stoffen
DE3214880 1982-04-22

Publications (2)

Publication Number Publication Date
EP0092679A1 EP0092679A1 (de) 1983-11-02
EP0092679B1 true EP0092679B1 (de) 1986-01-29

Family

ID=6161574

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83102908A Expired EP0092679B1 (de) 1982-04-22 1983-03-24 Behälter zur Aufnahme von radioaktiven Stoffen

Country Status (7)

Country Link
US (1) US4569818A (de)
EP (1) EP0092679B1 (de)
JP (1) JPS58190798A (de)
BR (1) BR8302011A (de)
CA (1) CA1189203A (de)
DE (2) DE3214880A1 (de)
ES (1) ES522024A0 (de)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60158399A (ja) * 1984-01-09 1985-08-19 ウエスチングハウス エレクトリック コ−ポレ−ション 鋳鉄製容器
DE3445124C1 (de) * 1984-12-11 1986-01-23 Nukem Gmbh, 6450 Hanau Auskleidung fuer Bohrloecher in Salzstoecken
DE3447278A1 (de) * 1984-12-22 1986-06-26 Kernforschungszentrum Karlsruhe Gmbh, 7500 Karlsruhe Langzeitbestaendige korrosionsschutzumhuellung fuer dicht verschlossene gebinde mit hochradioaktivem inhalt
US4700863A (en) * 1986-01-09 1987-10-20 The United States Of America As Represented By The United States Department Of Energy Seal welded cast iron nuclear waste container
DE3610862A1 (de) * 1986-04-01 1987-10-08 Kernforschungsz Karlsruhe Laengszylindrischer behaelter fuer die endlagerung von einer oder mehreren mit hochradioaktiven abfaellen gefuellten kokillen
DE3632270A1 (de) * 1986-09-23 1988-04-07 Wiederaufarbeitung Von Kernbre Verfahren und vorrichtung zum beladen und verschliessen eines doppelbehaeltersystems fuer die lagerung von radioaktivem material sowie verschluss fuer das doppelbehaeltersystem
US4754894A (en) * 1987-05-11 1988-07-05 Centre Foundry & Machine Co. Waste container
US5337917A (en) * 1991-10-21 1994-08-16 Sandia Corporation Crash resistant container
DE4204527C2 (de) * 1992-02-15 1993-12-23 Siempelkamp Gmbh & Co Verfahren zum Herstellen eines Abschirm-Transportbehälters für bestrahlte Kernreaktorbrennelemente
AT398012B (de) * 1992-07-13 1994-08-25 Theodor Haering Behälter zum transport und zur endlagerung von atomaren brennstäben
US5442186A (en) * 1993-12-07 1995-08-15 Troxler Electronic Laboratories, Inc. Radioactive source re-encapsulation including scored outer jacket
US6891179B2 (en) * 2002-10-25 2005-05-10 Agilent Technologies, Inc. Iron ore composite material and method for manufacturing radiation shielding enclosure
NO20044434D0 (no) * 2004-10-19 2004-10-19 Nuclear Prot Products As Lang-tids lagringscontainer og fremgangsmate for fremstilling av denne
NO336476B1 (no) 2009-03-11 2015-09-07 Mezonic As En fremgangsmåte og et anlegg for produksjon av en lagringsbeholder for å lagring av nukleærstrålings-materiale
CN102708933B (zh) * 2012-06-06 2014-09-03 清华大学 乏燃料贮存竖井屏蔽井盖及其提升装置
US10020084B2 (en) 2013-03-14 2018-07-10 Energysolutions, Llc System and method for processing spent nuclear fuel
CN111739672B (zh) * 2020-05-13 2023-12-22 中国核电工程有限公司 一种降低氚渗透速率的结构

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0083024A1 (de) * 1981-12-21 1983-07-06 Deutsche Gesellschaft für Wiederaufarbeitung von Kernbrennstoffen mbH Behälter zum Langzeitlagern von bestrahlten Kernreaktorbrennelementen

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1005196A (en) * 1962-07-27 1965-09-22 Nuclear Power Plant Co Ltd Radiation shielding material
GB1073751A (en) * 1964-03-13 1967-06-28 Atomic Energy Authority Uk Improvements in or relating to containers for transporting radioactive and/or fissile materials
FR2258692A1 (en) * 1974-01-23 1975-08-18 Transnucleaire Package for nuclear fuel elements - particularly for transport prior to reprocessing
US4031921A (en) * 1975-09-09 1977-06-28 The United States Of America As Represented By The United States Energy Research And Development Administration Hydrogen-isotope permeation barrier
DE2740933C2 (de) * 1977-09-10 1982-11-25 GNS Gesellschaft für Nuklear-Service mbH, 4300 Essen Transport- bzw. Lagerbehälter für radioaktive Stoffe, insbesondere bestrahlte Kernreaktorbrennelemente
DE7737499U1 (de) * 1977-12-09 1978-05-24 Steag Kernenergie Gmbh, 4300 Essen Abschirmtransport- und/oder abschirmlagerbehaelter fuer radioaktive abfaelle
DE7819282U1 (de) * 1978-06-28 1978-10-12 Transnuklear Gmbh, 6450 Hanau Abschirmbehaelter fuer den transport und die lagerung bestrahlter brennelemente oder sonstiger bioschaedlicher abfaelle
DE2942092C2 (de) * 1979-10-18 1985-01-17 Steag Kernenergie Gmbh, 4300 Essen Endlagerbehälter für radioaktive Abfallstoffe, insbesondere bestrahlte Kernreaktorbrennelemente

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0083024A1 (de) * 1981-12-21 1983-07-06 Deutsche Gesellschaft für Wiederaufarbeitung von Kernbrennstoffen mbH Behälter zum Langzeitlagern von bestrahlten Kernreaktorbrennelementen

Also Published As

Publication number Publication date
DE3361958D1 (en) 1986-03-13
ES8405189A1 (es) 1984-05-16
EP0092679A1 (de) 1983-11-02
CA1189203A (en) 1985-06-18
DE3214880A1 (de) 1983-10-27
JPS58190798A (ja) 1983-11-07
ES522024A0 (es) 1984-05-16
BR8302011A (pt) 1983-12-27
US4569818A (en) 1986-02-11
JPH0437398B2 (de) 1992-06-19

Similar Documents

Publication Publication Date Title
EP0092679B1 (de) Behälter zur Aufnahme von radioaktiven Stoffen
DE3150663A1 (de) Behaelter zum langzeitlagern von bestrahlten kernreaktorbrennelementen
CH650354A5 (de) Behaelterkombination zum transport und zur lagerung bestrahlter kernreaktorbrennelemente.
CH632101A5 (de) Transport- oder lagerbehaelter fuer radioaktive stoffe, insbesondere bestrahlte kernreaktorbrennelemente.
DE2726335A1 (de) Endlagerbehaelter fuer radioaktive abfaelle
EP0072429B1 (de) Behälter zur Langzeitlagerung radioaktiver Abfälle
DE3142646C2 (de) Brennelementbehälter zum Transportieren und/oder Lagern von Kernreaktorbrennelementen
EP0057429B1 (de) Mehrschichtiger Transport- und Lagerbehälter für radioaktive Abfälle
EP0146778B1 (de) Behälter zur Endlagerung von radioaktiven Abfällen
DE19856685A1 (de) Abschirmbehälter
DE3026249A1 (de) Transport- und/oder lagerbehaelter fuer radioaktive stoffe
DE2002620B2 (de) Strahlenquelle für medizinische Zwecke
DE8236359U1 (de) Lagerbehaelter fuer radioaktives material
DE3008992C2 (de) Behälter für den Transport- und/oder die Lagerung radioaktiver Stoffe
EP0057430A1 (de) Transport- und Lagerbehälter für radioaktive Abfälle
DE3610862C2 (de)
DE2105581A1 (en) Transit container for irradiated nuclear fuel - with - cylindrical compartments arranged around a central space
CH649409A5 (en) Shipping and/or storage containers for radioactive materials
DE3709315C2 (de) Verfahren zum Einlagern von radioaktiven Abfallstoffen
DD223853A1 (de) Container zum transport radioaktiver stoffe
DE3403599A1 (de) Verfahren zum transportieren, zwischenlagern und endlagern von abgebrannten brennelementen, behaeltersystem zur durchfuehrung dieses verfahrens sowie herstellung eines behaelters fuer den transport und/oder lagerung von abgebrannten brennelementen
DE3150622A1 (de) "behaelteraggregat fuer bestrahlte kernreaktorbrennelemente"
DE3227512A1 (de) Verlorener abschirmbehaelter fuer radioaktive abfaelle
DE3103494C2 (de) Behälter zur Lagerung radioaktiver Stoffe
EP0035064A2 (de) Störfallschutz für die Lagerung selbsterhitzender radioaktiver Stoffe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE CH DE FR GB LI SE

17P Request for examination filed

Effective date: 19831111

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): BE CH DE FR GB LI SE

REF Corresponds to:

Ref document number: 3361958

Country of ref document: DE

Date of ref document: 19860313

ET Fr: translation filed
RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: DEUTSCHE GESELLSCHAFT FUER WIEDERAUFARBEITUNG VON

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

BECH Be: change of holder

Free format text: 860129 *DEUTSCHE G- FUR WIEDERAUFARBEITUNG VON KERNBRENNSTOFFEN M.B.H

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: DEUTSCHE GESELLSCHAFT FUER WIEDERAUFARBEITUNG VON

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19910228

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19910306

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19910311

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19910322

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19910628

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19920324

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19920324

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19920325

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19920331

Ref country code: CH

Effective date: 19920331

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19921130

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19921201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19930331

BERE Be: lapsed

Owner name: DEUTSCHE G- FUR WIEDERAUFARBEITUNG VON KERNBRENNS

Effective date: 19930331

EUG Se: european patent has lapsed

Ref document number: 83102908.7

Effective date: 19921005