EP0035064A2 - Störfallschutz für die Lagerung selbsterhitzender radioaktiver Stoffe - Google Patents

Störfallschutz für die Lagerung selbsterhitzender radioaktiver Stoffe Download PDF

Info

Publication number
EP0035064A2
EP0035064A2 EP80107972A EP80107972A EP0035064A2 EP 0035064 A2 EP0035064 A2 EP 0035064A2 EP 80107972 A EP80107972 A EP 80107972A EP 80107972 A EP80107972 A EP 80107972A EP 0035064 A2 EP0035064 A2 EP 0035064A2
Authority
EP
European Patent Office
Prior art keywords
storage
self
packaging
heating
protection according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP80107972A
Other languages
English (en)
French (fr)
Other versions
EP0035064A3 (de
Inventor
Stefan Ing. Grad. Ahner
Ernst Dr. Warnecke
Konrad Dr. Schmidt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nukem GmbH
Original Assignee
Nukem GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nukem GmbH filed Critical Nukem GmbH
Publication of EP0035064A2 publication Critical patent/EP0035064A2/de
Publication of EP0035064A3 publication Critical patent/EP0035064A3/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F5/00Transportable or portable shielded containers
    • G21F5/06Details of, or accessories to, the containers
    • G21F5/10Heat-removal systems, e.g. using circulating fluid or cooling fins
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F5/00Transportable or portable shielded containers
    • G21F5/005Containers for solid radioactive wastes, e.g. for ultimate disposal

Definitions

  • the invention relates to accident prevention for the storage of self-heating radioactive materials, in particular in air-cooled stores, the radioactive materials being enclosed in suitable packaging or leach-resistant particles which are placed in storage containers which can also be used as transport containers, and the space between the packaging or the particles and the storage container is filled with a solid material.
  • Self-heating radioactive materials must be stored temporarily until they are reprocessed or until they are finally disposed of.
  • This intermediate storage takes place mainly in water storage pools, in which the water takes over the cooling and the shielding function.
  • Storage in air-cooled stores has also been proposed, since this type of storage has advantages over storage in water storage tanks, especially when using inherently safe natural draft cooling.
  • cooling means that the shielding function must be ensured by safe barriers that surround the radioactive substances.
  • Such barriers mostly double containers, however prevent direct cooling of the stored goods by the cooling air.
  • the heat dissipation compared to self-heating radioactive material that is in single containers is significantly impaired. It is particularly disadvantageous that the supply of cooling air in the event of a malfunction must practically not be interrupted, since only a very limited “cooling reserve” is available and the stored goods would heat up to an unacceptably high level.
  • This accident protection should be able to cool the self-heating stored goods even if the external cooling fails until intervention measures can be taken without burdening the stored goods packaging with a melt when filling the gap.
  • the object was achieved in that the solid material is used in the form of bulk material, the melting point of which is below the permissible maximum temperature of the self-heating radioactive substance.
  • the storage goods packaging (1) for example compressed gas bottles, with the self-heating storage goods (2), for example Krypton-85, is placed, for example, five times stacked in a storage sleeve (3).
  • the gap between the packaged goods (2) and the bearing bush (3) is filled according to the invention with a loose bed (4).
  • a soft solder granulate is used as a loose bed (4), Grain size approx. 1 mm, melting point 190 o C, composition 40% Pb, 60% Sn.
  • the additional bottle temperature in this example is 200 ° C.
  • the bearing bush (3) is closed with a tightly closing, remote-controlled cover (5) with hold-down device (11).
  • the bearing bush (3) has test connections (6) and is located in a storage shaft (8) with spacer plates (10) of the storage rack (9).
  • the cooling air (7) flows naturally through the annular gap between the storage shaft (8) and the bearing bush (3).
  • the decay heat is transported from the inner storage goods packaging (1) by heat conduction via the solder granulate (4) to the bearing bush (3) and from there to the cooling air (7) flowing past.
  • the maximum bottle temperature is reduced by approximately 50 ° C. compared to storage with a gap that has not been filled.
  • the permissible interruption of cooling air (malfunction) until the solder reaches the melting temperature is extended by approx. 2 hours. It takes another 4 hours until all of the solder granules have melted, so that the duration of the cooling air interruption, which is permitted until the compressed gas cylinders reach their design pressure, is increased by about 6 hours to about four times as long as storage with an unfilled gap becomes.
  • This time saving is sufficient to include and complete intervention measures to eliminate the cooling accident. Compared to filling the gap with a salt or metal melt, this time saving is not prolonged, but there is no burden on the storage goods packaging when pouring out.
  • the accident protection according to the invention can also be applied to other self-heating stored goods, in particular also to glazed, highly radioactive waste and to spent fuel from nuclear reactors.
  • Glazed, highly radioactive waste is usually filled into stainless steel molds.
  • the packaging is then the mold and the glass block.
  • a particularly advantageous application of the accident protection according to the invention results, however, if e.g. the glass product in the form of balls, rods or the like is filled into a mold or can together with a granulate or powder according to the invention.
  • Such a bearing bush (14) with a tightly closing cover (15) is shown in an exemplary embodiment in longitudinal section in FIG. II.
  • the gradient between the maximum central temperature and the marginal temperature which is steep in the case of glazed highly radioactive waste, is additionally reduced, so that the liner temperature rises and thus a greater temperature difference is available for heat dissipation to the cooling air.
  • spent nuclear fuel elements in which the actual fuel is to be regarded as stored goods and the fuel casing (e.g. cladding tubes for light water reactor fuel elements, graphite matrix for high-temperature reactor elements) is to be regarded as packaging for the stored goods.
  • the fuel casing e.g. cladding tubes for light water reactor fuel elements, graphite matrix for high-temperature reactor elements
  • the accident protection according to the invention also has significant advantages over metal and salt melts. In most cases, without a malfunction caused by cooling interruption, storage goods packaging and bulk material, no connection. After storage, any material that is still loosely attached to the storage goods packaging can be easily and completely removed using simple mechanical cleaning processes.
  • its melting temperature can advantageously be chosen as high as it is for the stored goods in the event of an accident is still allowed. This makes the cases in which a meltdown can actually be expected in the event of a malfunction much less likely.
  • compaction e.g. by applying a vibrator, particularly advantageous.
  • salts or salt mixtures aluminum powder, granules or powder from lead, tin and zinc or their alloys, and possibly also Al-Ni, are furthermore suitable as materials for the bulk material.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Packages (AREA)
  • Thermotherapy And Cooling Therapy Devices (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

Beim Lagern selbsterhitzender radioaktiver Stoffe benötigt man einen Störfallschutz, der verhindert, daß die Temperatur des Lagergutes bei Ausfall der Kühlung in kurzer Zeit stark ansteigt. Es ist bekannt, das verpackte Lagergut in einen Lagerbehälter zu geben und mit einer Salz- oder Metallschmelze zu fixieren. Einen guten Störfallschutz erhält man, wenn man zwischen Lagergut und Lagerbehälter ein festes Material in Form von Schüttgut einsetzt, dessen Schmelzpunkt unter der zulässigen Höchsttemperatur des selbsterhitzenden radioaktiven Stoffes liegt.

Description

  • Gegenstand der Erfindung ist ein Störfallschutz für die Lagerung selbsterhitzender radioaktiver Stoffe, insbesondere in luftgekühlten Lagern, wobei die radioaktiven Stoffe in geeigneten Verpackungen oder auslaugbeständigen Teilchen eingeschlossen werden, die in auch als Transportbehälter verwendbaren Lagerbhältern eingebracht sind, und der Zwischenraum zwischen den Verpackungen, bzw. den Teilchen und dem Lagerbehälter mit einem'festen Material ausgefüllt ist.
  • Selbsterhitzende radioaktive Stoffe müssen bis zu ihrer Wiederaufarbeitung bzw. bis zu ihrer Endlagerung zwischengelagert werden. Diese Zwischenlagerung erfolgt überwiegend in Wasserlagerbecken, in denen das Wasser die Kühlung sowie die Abschirmfunktion übernimmt. Es wurde auch die Lagerung in luftgekühlten Lagern vorgeschlagen, da diese Art der Lagerung gegenüber der Lagerung in Wasserlagerbecken Vorzüge aufweist, insbesondere bei Anwendung der inhärent sicheren Naturzugkühlung. Allerdings bedingt eine derartige Kühlung, daß die Abschirmfunktion durch sichere Barrieren, die die radioaktiven Stoffe umgeben, gewährleistet werden muß. Solche Barrieren, meist Doppelcontainments, verhindern jedoch die direkte Kühlung des Lagergutes durch die Kühlluft. Dadurch wird die Wärmeabfuhr gegenüber selbsterhitzendem radioaktivem Material, das sich in Einfachcontainments befindet, deutlich beeinträchtigt. Nachteilig ist dabei besonders, daß die Kühlluftzufuhr im Störfall praktisch nicht unterbrochen werden darf, da nur eine sehr begrenzte "Kühlungsreserve" zur Verfügung steht und sich das Lagergut unzulässig hoch erhitzen würde.
  • Es ist bekannt, den Zwischenraum zwischen den Barrieren bzw. zwischen der Verpackung des eingeschlossenen Gutes und dem Containment oder auch zwischen dem Lagergut und der Verpackung mit einer Salzschmelze oder einem niedrig schmelzenden Metall auszugießen (DE-OS 2824240). Mit diesem Verfahren wird beabsichtigt, eine weitere Abschirmbarriere zu schaffen, die das Lagergut auch zusätzlich fixiert. Ein Kühlungsstörfall wird nicht diskutiert, jedoch stände bei einem solchen Ereignis die zum Wiederaufschmelzen erforderliche Schmelzwärme als gewisse "Kühlungsreserve" zur Verfügung. Dieses bekannte Verfahren hat jedoch entscheidende Nachteile:
    • 1. Die Lagergutverpackung ist beim Einbringen des Salzes bzw. Metalles in jedem Fall der flüssigen Schmelze und damit der Gefahr der Legierungsbildung und Korrosion ausgesetzt.
    • 2. Das Lagergut und seine Verpackung werden beim Ausgießen mit flüssigen Schmelzen mindestens auf die Schmelztemperatur erwärmt, die jedoch bei ungestörtem, d. h. normalem Lagerbetrieb nie erreicht wird. Damit werden Lagergut und Verpackung schon vor der eigentlichen Lagerung zusätzlich belastet. Die Schmelztemperatur muß daher so niedrig liegen, daß mit Sicherheit eine Belastung bzw. Beschädigung des Lagergutes und der Verpackung auszuschließen ist. Das bedingt jedoch, daß die "Kühlungsreserve" sehr begrenzt ist und im Störfall nicht ausreicht, rechtzeitig Interventionsmaßnahmen erfolgreich abzuschließen.
    • 3. Das schmelzflüssige Ausgießen stellt eine wesentliche Erschwerung des Einlagerungs- und Auslagerungsprozesses dar. Es müssen Vorrichtungen zum Flüssigausgießen bei der Einlagerung und zum Aufschmelzen bei der Auslagerung vorgesehen werden, welche im allgemeinen nicht am endgültigen Lagerstandort installiert werden können.
    • 4. Schließlich läßt sich beim schmelzflüssigen Ausgießen des Spaltes nach dem Aufschmelzen bei der späteren Auslagerung eine nachteilige, bleibende Verunreinigung der Lagergutverpackung nicht vermeiden. Wird als selbsterhitzendes Lagergut jedoch abgebrannter Brennstoff gelagert, wobei als Lagergutverpackung die Brennelementhüllrohre anzusehen sind, so stellt diese Verunreinigung der Hüllrohre eine wesentliche Erschwerung der Wiederaufarbeitung, insbesondere beim Extraktionsprozess, dar. Außerdem entstehen große Mengen von unerwünschtem Sekundärabfall.
  • Es war daher Aufgabe der vorliegenden Erfindung, einen Ströfallschutz für die Lagerung selbsterhitzender radioaktiver Stoffe, insbesondere in luftgekühlten Lagern, zu finden, wobei die radioaktiven Stoffe in geeigneten oder auslaugbestätigen Teilchen eingeschlossen werden, die in auch als Transportbehälter verwendbaren Lagerbehältern eingebracht sind, und der Zwischenraum zwischen den Verpackungen bzw. den Teilchen und dem Lagerbehälter mit einem festen Material ausgefüllt ist. Dieser Störfallschutz sollte in der Lage sein, das sich selbsterhitzende Lagergut auch bei Ausfall der äußeren Kühlung solange zu kühlen, bis Interventionsmaßnahmen getroffen werden können, ohne die Lagergutverpackung beim Ausfüllen des Spaltes mit einer Schmelze zu belasten.
  • Die Aufgabe wurde erfindungsgemäß dadurch gelöst, daß das feste Material in Form von Schüttgut eingesetzt wird, dessen Schmelzpunkt unter der zulässigen Höchsttemperatur des selbsterhitzenden radioaktiven Stoffes liegt.
  • Der erfindungsgemäße Störfallschutz ist in den Abbildungen I und II schematisch in beispielhaften Ausführungsformen näher erläutert.
  • Die Lagergutverpackung (1), z.B. Druckgasflaschen, mit dem selbsterhitzenden Lagergut (2), z.B. Krypton-85, wird beispielsweise fünf-fach gestapelt in eine Lagerbüchse (3) eingestellt. Der Spalt zwischen der Lagergutverpackung (2) und der Lagerbüchse (3) wird erfindungsgemäß mit einer losen Schüttung (4) ausgefüllt. Als lose Schüttung (4) wird bei dieser beispielhaften Ausführung ein Weichlotgranulat, Korngröße ca. 1 mm, Schmelzpunkt 190 oC, Zusammensetzung 40% Pb, 60% Sn, gewählt. Die zusätzliche Flaschentemperatur ist in diesem Beispiel 200 °C.
  • Die Lagerbüchse (3) wird mit einem dichtschließenden fernbedienbaren Deckel (5) mit Niederhalter (11) verschlossen.
  • Die Lagerbüchse (3) hat Prüfanschlüsse (6) und steht in einem Lagerschacht (8) mit Distanzblechen (10) des Lagergestells (9). Die Kühlluft (7) strömt im Naturzug durch den Ringspalt zwischen Lagerschacht (8) und Lagerbüchse (3).
  • Die Zerfallswärme wird von der inneren Lagergutverpackung (1) durch Wärmeleitung über das Lotgranulat (4) an die Lagerbüchse (3) transportiert und von dort an die vorbeiströmende Kühlluft (7) übertragen.
  • Durch die erfindungsgemäße Füllung des Spaltes mit Lotgranulat wird die maximale Flaschentemperatur um ca. 50 °C gegenüber einer Lagerung mit nicht ausgefülltem Spalt reduziert. Die zulässige Kühlluftunterbrechung (Störfall) bis zum Erreichen der Schmelztemperatur des Lotes wird um ca. 2 Stunden verlängert. Bis alles Lotgranulat aufgeschmolzen ist, vergehen noch einmal ca. 4 Stunden, so daß die Dauer der Kühlluftunterbrechung, die zulässig ist, bis die Druckgasflaschen ihren Auslegungsdruck erreichen, um ca. 6 Stunden auf etwa die vierfache Zeit gegenüber einer Lagerung mit nicht ausgefülltem Spalt verlängert wird. Dieser Zeitgewinn reicht aus, InterventionsmaBnahmen zur Beseitigung des Kühlungsstörfalles aufzunehmen und abzuschließen. Gegenüber der Ausfüllung des Spaltes mit einer Salz- oder Metallschmelze wird dieser Zeitgewinn zwar nicht verlängert, es entfällt jedoch die Belastung der Lagergutverpackung beim Ausgießen.
  • Der erfindungsgemäße Störfallschutz ist auch auf andere selbsterhitzende Lagergüter anwendbar, insbesondere auch auf verglasten, hochradioaktiven Abfall und auf abgebrannten Brennstoff aus Kernreaktoren.
  • Verglaster, hochradioaktiver Abfall wird üblicherweise in Kokillen aus Edelstahl abgefüllt. Lagergutverpackung ist dann die Kokille und Lagergut der Glasblock. Eine besonders vorteilhafte Anwendung des erfindungsgemäßen Störfallschutzes ergibt sich jedoch, wenn z.B. das Glasprodukt in Form von Kugeln, Stangen oder dergleichen zusammen mit einem erfindungsgemäßen Granulat oder Pulver in eine Kokille oder Büchse abgefüllt wird. In Abb. II ist in beispielhafter Ausführung im Längsschnitt eine solche Lagerbüchse (14) mit dichtschließendem Deckel (15) gezeigt. In dieser Kokille befinden sich Kügelchen (12) aus verglastem hochradioaktivem Abfall und metallischen Lotgranulat oder Pulver (13). Bei diesem Anweadungsfall wird zusätzlich der bei verglastem hochradioaktiven Abfall steile Gradient zwischen maximaler Zentraltemperatur und Randtemperatur reduziert, so daß die Büchsentemperatur steigt und damit eine größere Temperaturdifferenz zur Wärmeabfuhr an die Kühlluft zur Verfügung steht.
  • Dasselbe gilt für abgebrannte Kernbrennelemente, bei denen der eigentliche Brennstoff als Lagergut und die Brennstoffhülle (z.B. Hüllrohre bei Leichtwasserreaktor-Brennelementen, Graphitmatrix bei Hochtemperaturreaktor-Elementen) als Lagergutverpackung anzusehen ist.
  • Der erfindungsgemäße Störfallschutz hat auch gegenüber Metall-und Salzschmelzen bedeutende Vorteile. So gehen im überwiegenden Normalfall d.h. ohne durch Kühlungsunterbrechung verursachter Störfall, Lagergutverpackung und Schüttmaterial keine Verbindung ein. Nach der Auslagerung kann eventuell noch lose an der Lagergutverpackung haftendes Material durch einfache mechanische Reinigungsverfahren leicht und vollständig entfernt werden.
  • Beim Füllen mit der erfindungsgemäßen losen Schüttung kann deren Schmelztemperatur vorteilhafterweise so hoch gewählt werden, wie es für das Lagergut bei einem Störfall gerade noch zulässig ist. Damit werden die Fälle, in denen bei einem Störfall tatsächlich mit einem Aufschmelzen zu rechnen ist, wesentlich unwahrscheinlicher.
  • Es ist ferner bequem möglich, den mit der erfindungsgemäßen Schüttung ausgefüllten Zwischenraum mit Meßgeräten zu überwachen und gegebenenfalls freigesetzte gasgebundene Radioaktivität abzusaugen.
  • Zur Verbesserung der Wärmeabtfuhr und zur Unterbringung einer möglichst großen Menge Schüttgut ist eine Verdichtung, z.B. durch Ansetzen eines Rüttlers, besonders vorteilhaft.
  • Je nach der zulässigen Höchsttemperatur des selbsterhitzenden radioaktiven Lagergutes sind als Materialien für das Schüttgut weiterhin auch Salze bzw. Salzgemische, Aluminiumpulver, Granulate bzw. Pulver aus Blei, Zinn und Zink bzw. deren Legierungen, gegebenenfalls auch Al-Ni gut geeignet.

Claims (5)

1. Störfallschutz für die Lagerung selbsterhitzender radioaktiver Stoffe, insbesondere in luftgekühlten Lagern, wobei die radioaktiven Stoffe in geeigneten Verpackungen oder auslaugbeständigen Teilchen eingeschlossen werden, die in auch als Transport behälter verwendbaren Lagerbehältern eingebracht sind, und der Zwischenraum zwischen den Verpackungen bzw. den Teilchen und dem Lagerbehälter mit einem festen Material ausgefüllt ist, dadurch gekennzeichnet, daß das feste Material in Form von Schüttgut (4, 13) eingesetzt wird, dessen Schmelzpunkt unter der zulässigen Höchsttemperatur des selbsterhitzenden radioaktiven Stoffes liegt.
2. Störfallschutz nach Anspruch 1, dadurch gekennzeichnet, daß das Schüttgut (4, 13) aus Metallpulver bzw. Metallgranulat besteht.
3. Störfallschutz nach Anspruch 1 und 2, dadurch zekennzeichnet, daß Metallpulver bzw. Metallgranulat aus einer Zinn-Blei-Legierung besteht.
4. Störfallschutz nach Ansprüchen 1 bis 3, dadurch eekennzeichnet, daß die Zusammensetzung der Zinn-Blei-Legierung so gewählt ist, daß der Schmelzpunkt nur geringfügig unterhalb der zulässigen Höchsttemperatur des Lagergutes liegt.
5. Störfallschutz nach Ansprüchen 1 bis 4, dadurch zekennzeichnet, daß das Schüttgut (4, 13) mechanisch verdichtet ist.
EP80107972A 1980-02-21 1980-12-17 Störfallschutz für die Lagerung selbsterhitzender radioaktiver Stoffe Withdrawn EP0035064A3 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3006507 1980-02-21
DE19803006507 DE3006507A1 (de) 1980-02-21 1980-02-21 Stoerfallschutz fuer die lagerung selbsterhitzender radioaktiver stoffe

Publications (2)

Publication Number Publication Date
EP0035064A2 true EP0035064A2 (de) 1981-09-09
EP0035064A3 EP0035064A3 (de) 1981-12-16

Family

ID=6095204

Family Applications (1)

Application Number Title Priority Date Filing Date
EP80107972A Withdrawn EP0035064A3 (de) 1980-02-21 1980-12-17 Störfallschutz für die Lagerung selbsterhitzender radioaktiver Stoffe

Country Status (3)

Country Link
EP (1) EP0035064A3 (de)
DE (1) DE3006507A1 (de)
FI (1) FI803939L (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2786309A1 (fr) * 1998-11-23 2000-05-26 Transnucleaire Dispositif amortisseur de chocs pour conteneurs de matieres radioactives
EP2866231A1 (de) * 2013-10-25 2015-04-29 GNS Gesellschaft für Nuklear-Service mbH Transport- und/oder Lagerbehälter
RU187096U1 (ru) * 2018-09-25 2019-02-19 Федеральное государственное бюджетное образовательное учреждение высшего образования "Петрозаводский государственный университет" Контейнер для транспортировки и хранения отработавшего ядерного топлива

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH032695A (ja) * 1989-05-31 1991-01-09 Nisshin Steel Co Ltd 高除熱性の放射線しゃへい材

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1376964A (fr) * 1963-11-27 1964-10-31 Lemer & Cie Application nouvelle de certains alliages et composés du plomb, à point de fusion élevé, pour assurer la protection biologique de récipients contenant des produits radioactifs
FR1411473A (fr) * 1964-10-09 1965-09-17 Lemer & Cie Conteneur de transport pour produits radioactifs résistant aux chocs et au feu
DE2313786A1 (de) * 1973-03-20 1974-09-26 Transnuklear Gmbh Transportbehaelter fuer radioaktive ionenaustauscherharze
FR2334177A1 (fr) * 1975-12-01 1977-07-01 Atomic Energy Authority Uk Conteneur de transport de matieres radioactives
DE2824240A1 (de) * 1978-06-02 1979-12-06 Amtrust Ag Verfahren zur handhabung abgebrannter brennelemente, transport- und/oder lagerbehaelter zum transportieren und/oder lagern von brennelementen, sowie in verbindung mit dem verfahren verwendbare wiederaufbereitungsanlage

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1376964A (fr) * 1963-11-27 1964-10-31 Lemer & Cie Application nouvelle de certains alliages et composés du plomb, à point de fusion élevé, pour assurer la protection biologique de récipients contenant des produits radioactifs
FR1411473A (fr) * 1964-10-09 1965-09-17 Lemer & Cie Conteneur de transport pour produits radioactifs résistant aux chocs et au feu
DE2313786A1 (de) * 1973-03-20 1974-09-26 Transnuklear Gmbh Transportbehaelter fuer radioaktive ionenaustauscherharze
FR2334177A1 (fr) * 1975-12-01 1977-07-01 Atomic Energy Authority Uk Conteneur de transport de matieres radioactives
DE2824240A1 (de) * 1978-06-02 1979-12-06 Amtrust Ag Verfahren zur handhabung abgebrannter brennelemente, transport- und/oder lagerbehaelter zum transportieren und/oder lagern von brennelementen, sowie in verbindung mit dem verfahren verwendbare wiederaufbereitungsanlage

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2786309A1 (fr) * 1998-11-23 2000-05-26 Transnucleaire Dispositif amortisseur de chocs pour conteneurs de matieres radioactives
EP1005049A1 (de) * 1998-11-23 2000-05-31 Transnucléaire Stossdämpfungsvorrichtung für einen Behälter zum Einschluss von radioaktiven Stoffen
US6234311B1 (en) 1998-11-23 2001-05-22 Transnucleaire Sa Shock-absorbing system for containers of radioactive material
EP2866231A1 (de) * 2013-10-25 2015-04-29 GNS Gesellschaft für Nuklear-Service mbH Transport- und/oder Lagerbehälter
RU187096U1 (ru) * 2018-09-25 2019-02-19 Федеральное государственное бюджетное образовательное учреждение высшего образования "Петрозаводский государственный университет" Контейнер для транспортировки и хранения отработавшего ядерного топлива

Also Published As

Publication number Publication date
DE3006507A1 (de) 1981-08-27
EP0035064A3 (de) 1981-12-16
FI803939L (fi) 1981-08-22

Similar Documents

Publication Publication Date Title
DE2915376C2 (de) Behälterkombination für den Transport und die Lagerung bestrahlter Brennelemente aus Kernreaktoren
DE1514957C3 (de) Anordnung für den Transport eines radioaktiven und/oder spaltbaren Stoffes
EP0036954B1 (de) Behälter zum Transport und/oder Lagerung radioaktiver Stoffe
DE2821780A1 (de) Transport- und lagereinrichtung fuer radioaktive stoffe
DE2363845C2 (de) Einrichtung zur Verringerung der Gefahren, die infolge eines Niederschmelzens eines Kernreaktor-Cores entstehen können
EP0036982B1 (de) Einsatzkorb für radioaktives Material in Transport- und/oder Lagerbehältern
EP0146778B1 (de) Behälter zur Endlagerung von radioaktiven Abfällen
DE2459339B2 (de) Kuehl- und auffangvorrichtung fuer den schmelzenden oder geschmolzenen kern eines atomkernreaktors
DE2722472A1 (de) Verfahren zur einlagerung von nuklearabfaellen, die als feststoffschuettung anfallen
EP0035064A2 (de) Störfallschutz für die Lagerung selbsterhitzender radioaktiver Stoffe
DE1089488B (de) Kernreaktor mit einsetzbarer Sicherheitsvorrichtung
DE3103526A1 (de) "mehrschichtiger transport- und lagerbehaelter fuer radioaktive abfaelle"
DE2363844C2 (de) Einrichtung zur Verringerung der Gefahren, die infolge eines Niederschmelzens eines Kernreaktor-Cores entstehen können
DE2019446A1 (de) Verpackung fuer radioaktive Stoffe od.dgl.
DE2524169A1 (de) Hochradioaktiven abfall enthaltende koerper und verfahren zu ihrer herstellung
DE3842380A1 (de) Zylinderfoermiger behaelter aus stahl zur zwischen- und endlagerung von gefaehrlichen stoffen
DE2931729C2 (de) Einrichtung zur Aufnahme des geschmolzenen Kerns eines flüssigkeitsgekühlten Kernreaktors nach einem Störfall und Verwendung der Einrichtung
DE2734810C2 (de) Sicherheitseinrichtung für die Sicherheitshülle eines Druckwasserreaktors
DE2731548A1 (de) Verfahren und anlage zur manipulation von radioaktiven abfaellen
DE3046083A1 (de) Lager- und transportbehaelter vorzugsweise fuer mindestens eine, mit in glas eingeschmolzenen radioaktiven abfaellen gefuellte kokille
DE2911185A1 (de) Verfahren sowie behaelter zum lagern und/oder zum transportieren von radioaktiven brennelementen sowie schuettgut zur verwendung bei dem verfahren
RU2022378C1 (ru) Способ включения твердых высокоактивных отходов в металлическую матрицу
DE8032545U1 (de) Lager- und transportbehaelter fuer mindestens eine, mit in glas eingeschmolzenen radioaktiven abfaellen gefuellte kokille
DE2806353A1 (de) Verfahren zum einbringen von radioaktiven gegenstaenden in einem transport- und/oder lagerbehaelter sowie zum transportieren und/oder lagern des behaelters und zum spaeteren entnehmen der gegenstaende aus dem behaelter sowie behaelter zum transportieren und/oder lagern von radioaktiven gegenstaenden
DE3106418A1 (de) "verfahren und andordnung zur lagerung von bestrahlten brennelementen"

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19801217

AK Designated contracting states

Designated state(s): BE CH IT SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): BE CH IT SE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Withdrawal date: 19830208

RIN1 Information on inventor provided before grant (corrected)

Inventor name: AHNER, STEFAN, ING. GRAD.

Inventor name: SCHMIDT, KONRAD, DR.

Inventor name: WARNECKE, ERNST, DR.