EP0057867A1 - Mehrschichtiger Behälter zur sicheren Langzeitlagerung von radioaktivem Material - Google Patents

Mehrschichtiger Behälter zur sicheren Langzeitlagerung von radioaktivem Material Download PDF

Info

Publication number
EP0057867A1
EP0057867A1 EP82100592A EP82100592A EP0057867A1 EP 0057867 A1 EP0057867 A1 EP 0057867A1 EP 82100592 A EP82100592 A EP 82100592A EP 82100592 A EP82100592 A EP 82100592A EP 0057867 A1 EP0057867 A1 EP 0057867A1
Authority
EP
European Patent Office
Prior art keywords
storage container
container according
storage
layer
outer layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP82100592A
Other languages
English (en)
French (fr)
Inventor
Roland Van Hecke
Heinrich Quillmann
Werner Schulmeyer
Reinhard Vötsch
Herbert Dr. Zehner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Deutsche Gesellschaft fuer Wiederaufarbeitung von Kernbrennstoffen mbH
Nukem GmbH
Original Assignee
Deutsche Gesellschaft fuer Wiederaufarbeitung von Kernbrennstoffen mbH
Nukem GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deutsche Gesellschaft fuer Wiederaufarbeitung von Kernbrennstoffen mbH, Nukem GmbH filed Critical Deutsche Gesellschaft fuer Wiederaufarbeitung von Kernbrennstoffen mbH
Publication of EP0057867A1 publication Critical patent/EP0057867A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/28Treating solids
    • G21F9/34Disposal of solid waste
    • G21F9/36Disposal of solid waste by packaging; by baling

Definitions

  • the invention relates to a multi-layer storage container for storing radioactive material, in particular for long-term storage of irradiated fuel elements, in suitable geological formations, consisting of a container body and a lid, each made of at least two layers of material.
  • Irradiated fuel assemblies are either processed immediately after temporary storage in water basins or after a further limited storage period.
  • the nuclear fuel and nuclear fuel are separated from the fission products and again uel cycle supplied to the B.
  • the fission products are conditioned by known methods, usually using large quantities of valuable substances, such as lead and copper, and are virtually no longer removable in geological formations.
  • Containers made of alloyed and unalloyed steel, copper and corundum are proposed as packaging for radioactive materials and irradiated fuel elements.
  • the steel containers are either not corrosion-resistant or, like copper, are very expensive.
  • Container made of corundum are basically g e is, however, the need for making experiences are missing.
  • the fuel elements for packaging would have to be disassembled into small corundum containers for manufacturing reasons, which is associated with considerable effort.
  • the E rfindüng is therefore based on the task of creating a multilayered container for the storage of radioactive material, in particular for the long-term storage of irradiated fuel elements, in suitable geological formations, consisting of a container body and a lid each made of at least two layers, which is not complex and has sufficient strength and barrier functions over a longer period of time.
  • the inner layer consists of a mechanically stable, inexpensive material and the outer layer consists of a material which is corrosion-resistant with respect to the storage medium.
  • metallic materials such as alloy steels, tantalum, lead, are suitable.
  • Ceramic materials such as the oxides of aluminum, silicon, magnesium, the carbides of silicon or boron, and spinels, silicates and graphite, are also suitable in some cases. Materials based on zirconium and titanium are preferably used.
  • the thickness of the outer layer is advantageously such that it corresponds to the removal during the time in which the barrier effect is to be retained even in the worst case, and reliably protects the inner layer against corrosion for the duration of the intended storage.
  • the required layer thickness is determined taking known corrosion data into account.
  • the outer layer is preferably applied to the inner layer by plating or by flame or plasma spraying. Since the closed containers can be sprayed in one operation, seamless coatings can be obtained.
  • the filled storage container is closed by a two-layer cover, which can also be designed as a double cover.
  • the inner cover, or the inner cover layer is made of the same material as the inner layer of the container body and can have a thread in the lower part for screwing the cover into the cylindrical part of the container.
  • a pin with an internal square for example, can be screwed into the cover. After screwing in the lid this inner cover is welded gas-tight by a fillet weld.
  • the pin is made of the same material as the outer corrosion protection layer of the container body and the outer cover, or the outer cover layer, which is to ensure the corrosion protection. As a result, the material of the base body is completely protected without the pin having to be plated, which would mean a considerable outlay.
  • other locking mechanisms known per se can also be used.
  • one or more cavities for holding helium can advantageously be introduced between the material layers of the cover.
  • Figures I and II schematically show two exemplary embodiments of the storage container according to the invention.
  • Figure I shows a storage container, the container body (1) and lid (2) each consisting of an inner layer (3) and an outer layer (4).
  • the inner layer (3) a fine grain steel WSTE 43 is chosen, a heat-resistant structural steel. Its corrosion resistance is poor, its strength is good, and the steel is also easy to weld. Its low price is a great advantage, especially compared to heat-resistant tempering steels, which are also suitable.
  • Zircaloy-2 is g ut weldable and inexpensive compared with the likewise g ut suitable materials based on titanium, such as titanium or Ticode 12th
  • a layer thickness> -4 mm is selected, for example.
  • the Zircaloy plating can be applied in two different ways. Either a cover made of Zirkaloy-2 is prefabricated, pulled over the inner container and shrunk on, or the prefabricated Zirkaloy sheets are applied to the base body by roll welding plating. Both versions are almost equivalent.
  • the container is then loaded and closed with the lid (2), which is designed as a "double lid with inner (5) and outer lid (6). Leak tests are carried out between the inner (5) and outer lid (6) or several cavities (7) filled with helium.
  • the container interior (8) can be poured out with a metal, for example lead, after loading with the spent fuel elements.
  • Figure II shows a container in which the outer layer (4) consists of two individual layers (°, 10), the material of the inner individual layer (10) compared to the outer individual layer (9) nobler in terms of its position in the electrochemical series is. In the event of corrosion breakthroughs (for example pitting) of the outer individual layer (9), this prevents the load-bearing inner layer (3) from being corroded. Furthermore, this storage container inside the container (8) additionally consists of an inner container (11) for receiving the radioactive material.

Landscapes

  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

Zur Lanzeitlagerung von radioaktivem Material, insbesondere von bestrahlten Brennelementen, in geeigneter geologischer Formationen werden mehrschichtige Lagerbehälter benötigt, die nicht aufwendig gebaut sind und trotzdem über einen längeren Zeitraum ausreichende Festigkeits- und Barrierefunktionen aufweisen. Dazu benutzt man einen Behälter, dessen innere Schicht (3) aus einem mechanisch stabilen, warmfesten, billigen Werkstoff und dessen äußere Schicht (4) aus einem gegenüber dem Lagermedium korrosionsbeständigem Material besteht, wobei die Schichtdicken jeweils so gewählt werden, daß sie den auftretenden mechanischen Belastungen beziehungsweise der Korrosion widerstehen.

Description

  • Die Erfindung betrifft einen mehrschichtigen Lagerbehälter zur Lagerung von radioaktivem Material, insbesondere für die Langzeitlagerung bestrahlter Brennelemente, in geeigneten geologischen Formationen, bestehend aus einem Behälterkörper und einem Deckel aus jeweils mindestens zwei Materialschichten.
  • Bestrahlte Brennelemente werden nach einer vorübergehenden Aufbewahrung in Wasserbecken entweder sofort oder nach einer begrenzten weiteren Zwischenlagerung aufgearbeitet. Dabei werden die nuklearen Brenn- und Brutstoffe von den Spaltprodukten abgetrennt und wieder dem Brennstoffkreislauf zugeführt. Die Spaltprodukte werden nach bekannten Verfahren, meist unter Verwendung großer Mengen Wertstbffe, wie zum Beispiel Blei und Kupfer, konditioniert und in geologischen Formationen praktisch nicht mehr entnehmbar endgelagert.
  • Darüberhinaus wird überlegt (Berichte des Kernforschungszentrums Karlsruhe KFK 2535 und 2560), die bestrahlten Brennelemente in absehbarer Zeit nicht aufzuarbeiten, auf die in ihnen vorhandenen Brenn-und Brutstoffe zunächst zu verzichten und die Brennelemente - nach einer angemessenen Abklingzeit in dafür vorgesehene Lagern - gegebenenfalls wieder entnehmbar endzulagern. Die Lagerzeiten können mehrere Generationen betragen, wobei sich entsprechend seiner Zusammensetzung das Gefährdungspotential des radioaktiven Inventars in dieser Zeit, den bekannten physikalischen Gesetzen folgend, außerordentlich stark verringert.
  • Wegen der unbestimmten Lagerdauer werden an derartige, für die Langzeitlagerung geeignete Behälter, die gegenüber bekannten Transport- und Lagerbehältern eine mehrfache Betriebszeit aufweisen müssen, besondere Anforderungen gestellt. Erschwerend kommt hinzu, daß die Behälterlager schwer zugänglich sein müssen und folglich den Überwachungsmöglichkeiten Grenzen gesetzt sind.
  • Es sind teilweise sehr aufwendige Konzepte bekannt, die bestrahlten Brennelementen mittels Behälter aus Metall oder Beton in Salz, Sand oder in Fels-Kavernen zu lagern. Als Verpackung für radioaktive Stoffe und bestrahlte Brennelemente werden Behälter aus legierten und unlegierten Stählen, aus Kupfer sowie aus Korund vorgeschlagen. Die Behälter aus Stahl sind entweder nicht korrosionsbeständig oder wie solche aus Kupfer sehr teuer. Behälter aus Korund sind grundsätzlich ge-eignet, jedoch fehlen die für die Herstellung notwendigen Erfahrungen. Darüber hinaus müßten die Brennelemente zur Verpackung in die aus herstellungsbedingten Gründen kleinen Korundbehälter zerlegt werden, was mit einem erheblichen Aufwand verbunden ist.
  • Der Erfindüng liegt daher die Aufgabe zugrunde, einen mehrschichtigen Behälter zur Lagerung von radioaktivem Material, insbesondere für die Langzeitlagerung bestrahlter Brennelemente, in geeigneten geologischen Formationen, bestehend aus einem Behälterkörper und einem Deckel aus jeweils mindestens zwei Schichten, zu schaffen, der nicht aufwendig gebaut ist und über einen längeren Zeitraum ausreichende Festigkeit und Barrierenfunktionen aufweist.
  • Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß die innere Schicht aus einem mechanisch stabilen, billigen Werkstoff und die äußere Schicht aus einem gegenüber dem Lagermedium korrosionsbeständigen Material besteht. Entsprechend den unterschiedlichen Umgebungsbedingungen in den verschiedenen zur Endlagerung radioaktiver Materialien geeigneten geologischen Formationen sind für den Aufbau der äußeren Schicht verschiedene Werkstoffe geeignet. Infrage kommen metallische Werkstoffe, wie legierte Stähle, Tantal, Blei,. Zirkon, Titan, Beryllium, Kupfer oder Edelmetalle, sowie Legierungen dieser Metalle. Ferner eignen sich in manchen Fällen keramische.Werkstoffe, wie beispielsweise die Oxide des Aluminiums, des Siliziums, des Magnesiums,die Karbide von Silizium oder Bor sowie Spinelle, Silikate und Graphit. Vorzugsweise verwendet man Werkstoffe auf Zirkon- und Titanbasis. Die Dicke der äußeren Schicht wird vorteilhafterweise so bemessen, daß sie dem Abtrag während der Zeit, in der die Barrierewirkung auch im ungünstigen Fall erhalten bleiben soll, entspricht und die innere Schicht für die Dauer der vorgesehenen Lagerung gegen Korrosion zuverlässig schützt. Die Ermittlung der erforderlichen Schichtdicke erfolgt unter Berücksichtigung bekannter Korrosionsdaten.
  • Die äußere Schicht ist auf die innere Schicht vorzugsweise durch Plattieren oder durch Flamm- oder Plasmaspritzen aufgebracht. Da die verschlossenen Behälter in einem Arbeitsgang gespritzt werden können, kann man somit nahtlose Überzüge erhalten.
  • Unter Umständen ist es aus fertigungstechnischen Gründen oder wegen eines verbesserten Korrosionsschutzes günstig, die äußere Korrosionsschutzschicht aus mehreren Einzelschichten aufzubauen, wobei diese Einzelschichten vorteilhafterweise auch aus verschiedenen Werkstoffen bestehen können, die von aussen nach innen immer edler in bezug auf ihre Stellung in der elektrochemischen Spannungsreihe werden.
  • Es ist außerdem günstig, die im Behälter befindlichen Brennelemente mit niedrigschmelzenden Metallen zu vergießen. Hierfür eignen sich beispielsweise Blei, Zink, Zinn oder entsprechende Legierungen. Um ein Aufschwimmen des Brennelementes während des Ausfliessens zu verhindern, können Haltevorrichtungen im Behälterevorgesehen werden. Durch dieses Vergießen wird eine verbesserte Abfuhr der Nachwärme erreicht.
  • Der gefüllte Lagerbehälter ist durch einen Zweischichten-Deckel, der auch als Doppeldeckel ausgebildet sein kann, verschlossen. Der innere Deckel, beziehungsweise die innere Deckelschicht,besteht aus dem gleichen Werkstoff wie die innere Schicht des Behälterkörpers und kann im unteren Teil ein Gewinde zum Einschrauben des Deckels in den zylindrischen Teil des Behälters aufweisen. Um ein fernbedientes Einschrauben zu ermöglichen, kann in den Deckel beispielsweise ein Zapfen mit Innenvierkant eingeschraubt werden. Nach dem Einschrauben des Deckels wird dieser Innendeckel durch eine Kehlnaht gasdicht verschweißt. Der Zapfen besteht aus dem gleichen Werkstoff wie die äußere Korrosionsschutzschicht des Behälterkörpers und der äußere Deckel, beziehungsweise die äußere Deckelschicht, die den Korrosionsschutz gewährleisten soll. Dadurch wird der Werkstoff des Grundkörpers völlig geschützt, ohne daß der Zapfen plattiert werden muß, was einen erheblichen Aufwand bedeuten würde. Es können.jedoch auch andere an sich bekannte Verschlußmechanismen verwendet werden.
  • In manchen Fällen ist es auch vorteilhaft, zusätzlich noch einen Innenbehälter in den Behälterkörper einzubringen. Außerdem kann man vorteilhafterweise zwischen den Werkstoffschichten des Deckels einen oder mehrere Hohlräume zur Aufnahme von Helium einbringen.
  • Die Abbildungen I und II zeigen schematisch zwei beispielhafte Ausführungsformen des erfindungsgemäßen Lagerbehälters.
  • Abbildung I zeigt einen Lagerbehälter, dessen Behälterkörper (1) und Deckel (2) jeweils aus einer inneren Schicht (3) und einer äußeren Schicht (4) besteht. Für die innere Schicht (3) wird ein Feinkornstahl WSTE 43 gewählt, ein warmfester Baustahl. Seine Korrosionsbeständigkeit ist zwar schlecht, seine Festigkeit jedoch gut, und außerdem ist der Stahl gut schweißbar. Von großem Vorteil, insbesondere gegenüber ebenfalls gut geeigneten warmfesten Vergütungsstählen, ist sein günstiger Preis.
  • Zur Gewährleistung der mechanischen Stabilität ist beispielsweise eine Wandcicke von ca. 35 mm erforderlich. Hieraus resultieren folgende Abmessungen für den Behältergrundkörper:
    Figure imgb0001
  • Wegen der außerordentlich guten Korrosionsbeständigkeit von Zirkaloy-2 wird dieser Werkstoff als äußere Schicht (4) verwendet. Zirkaloy-2 ist gut schweißbar und preiswert gegenüber den ebenfalls gut geeigneten Werkstoffen auf Titanbasis, wie Titan oder Ticode 12.
  • Zur Gewährleistung der Integrität während der vorgesehenen Standzeit wird beispielsweise eine Schichtdicke >-4 mm gewählt.
  • Die Zirkaloyplattierung kann auf zwei verschiedene Arten aufgebracht werden. Entweder wird eine Hülle aus Zirkaloy-2 vorgefertigt, über den Innenbehälter gezogen und aufgeschrumpft oder die vorgefertigten Zirkaloybleche werden durch Walzschweißplattierung auf den Grundkörper aufgebracht. Beide Ausführungen sind nahezu gleichwertig.
  • Anschließend wird der Behälter beladen und mit dem Deckel (2)verschlossen, der als"Doppeldeckel mit Innen- (5) und Außendeckel (6) ausgebildet ist. Zur Durchführung von Lecktests befinden sich zwischen Innen- (5) und Außendeckel (6) eine oder mehrere Hohlräume (7), die mit Helium gefüllt sind.
  • Das Behälterinnere (8) kann nach dem Beladen mit den abgebrannten Brennelementen mit einem Metall, beispielsweise Blei, ausgegossen werden.
  • Abbildung II zeigt einen Behälter, bei dem die äußere Schicht (4) aus zwei Einzelschichten (°, 10) besteht, wobei das Material der inneren Einzelschicht (10) gegenüber der äußeren Einzelschicht (9) edler in bezug auf seine Stellung in der elektrochemischen Spannungsreihe ist. Dadurch wird bei eventuellen Korrosionsdurchbrüchen (zum Beispiel Lochfraß) der äußeren Einzelschicht (9) vermieden, daß die tragende innere Schicht (3) korrodiert wird. Weiterhin besteht dieser Lagerbehälter im Behälterinneren (8) zusätzlich aus einem Innenbehälter (11) zur Aufnahme des radioaktiven Materials.

Claims (11)

1. Mehrschichtiger.Lagerbehälter zur Lagerung von radioaktivem Material, insbesondere für die Langzeitlagerung bestrahlter Brennelemente, in geeigneten geologischen Formationen, bestehend aus einem Behälterkörper und einem Deckel aus jewils mindestens zwei Materialschichten, dadurch gekennzeichnet, daß die innere Schicht (3) aus einem mechanisch stabilen, warmfesten, billigen Werkstoff und die äußere Schicht (4) aus einem gegenüber dem Lagermedium korrosionsbeständigen Material besteht.
2. Lagerbehälter nach Anspruch 1, dadurch gekennzeichnet, daß die innere Schicht (3) in ihrer Schichtdicke so bemessen ist,_daß sie während. der vorgesehenen Lagerzeit den auftretenden mechanischen Belastungen standhält.
3. Lagerbehälter nach Anspruch 1 und 2, dadurch ge-kennzeichnet, daß als Material für die innere Schicht (3) warmfeste Stähle verwendet werden.
4. Lagerbehälter nach Anspruch 1 bis 3, dadurch gekennzeichnet, daß die äußere Schicht (4) in ihrer Schichtdicke so bemessen ist, daß die innere Schicht (3) für die Dauer der vorgesehenen Lagerzeit gegen Korrosion geschützt ist.
5. Lagerbehälter nach Anspruch 1 bis 4, dadurch gekennzeichnet, daß die äußere Schicht (4) aus Werkstoffen auf Zirkon- oder Titanbasis besteht.
6. Lagerbehälter nach Anspruch bis 5, dadurch gekennzeichnet, daß die äußere Schicht (4) durch Plattieren oder Plasmaspritzen auf die innere Schicht (3) aufgebracht ist.
7. Lagerbehälter nach Anspruch 1 bis 6, dadurch gekennzeichnet, daß die äußere Schicht (4) aus mehreren Einzelschichten (9, 11) aufgebaut ist.
8. Lagerbehälter nach Anspruch 1 bis 7, dadurch gekennzeichnet, daß die Einzelschichten (9,10), aus verschiedenartigen Werkstoffen bestehen, die von außen nach innen immer edler in bezug auf ihre Stellung in der elektrochemischen Spannungsreihe werden.
9. Lagerbehälter nach Anspruch 1 bis 8, dadurch gekennzeichnet, daß das Behälterinnere (8) nach dem Befüllen mit Metallen ausgegossen ist.
10. Lagerbehälter nach Anspruch 1 bis 9, dadurch gekennzeichnet, daß er zusätzlich einen Innenbehälter (7) enthält.
11. Lagerbehälter nach Anspruch 1 bis 10, dadurch gekennzeichnet, daß bei einer Ausbildung des Dekkels (2) als Doppeldeckel zwischen Innen- (5) und Außendeckel (6) ein oder mehrere Hohlräume (7) zur Aufnahme von Helium angeordnet sind.
EP82100592A 1981-02-03 1982-01-28 Mehrschichtiger Behälter zur sicheren Langzeitlagerung von radioaktivem Material Withdrawn EP0057867A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3103527 1981-02-03
DE3103527 1981-02-03

Publications (1)

Publication Number Publication Date
EP0057867A1 true EP0057867A1 (de) 1982-08-18

Family

ID=6123896

Family Applications (1)

Application Number Title Priority Date Filing Date
EP82100592A Withdrawn EP0057867A1 (de) 1981-02-03 1982-01-28 Mehrschichtiger Behälter zur sicheren Langzeitlagerung von radioaktivem Material

Country Status (2)

Country Link
EP (1) EP0057867A1 (de)
JP (1) JPS57178199A (de)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2575320A1 (fr) * 1984-12-22 1986-06-27 Kernforschungsz Karlsruhe Emballage protecteur de longue duree contre la corrosion pour des colis fermes hermetiquement dont le contenu est hautement radioactif
EP0244599A1 (de) * 1986-04-01 1987-11-11 Kernforschungszentrum Karlsruhe Gmbh Längszylindrischer Behälter für die Endlagerung von einer oder mehreren mit hochradioaktiven Abfällen gefüllten Kokillen
WO1990005365A1 (de) * 1988-11-09 1990-05-17 Lang Ludwig Von Verfahren zur vorbereitung radioaktiver abfälle für die endlagerung
EP0377176A2 (de) * 1988-12-31 1990-07-11 Karlheinz Hösgen Absorptionsmantel für eine radioaktive Strahlungsquelle, insbesondere einen Kernreaktor
US5202522A (en) * 1991-06-07 1993-04-13 Conoco Inc. Deep well storage of radioactive material
US7922065B2 (en) 2004-08-02 2011-04-12 Ati Properties, Inc. Corrosion resistant fluid conducting parts, methods of making corrosion resistant fluid conducting parts and equipment and parts replacement methods utilizing corrosion resistant fluid conducting parts
WO2012045252A1 (zh) * 2010-10-09 2012-04-12 宋世鹏 一种源包壳
EP2160736A4 (de) * 2007-05-25 2016-03-30 Swedish Metallurg And Mining Ab Kanister zur enddeponierung von bestrahltem kernbrennstoff
DE102011115044B4 (de) * 2011-10-06 2017-01-05 Siceram Gmbh Keramischer Behälter und Verfahren zur Endlagerung von radioaktivem Abfall
US10118259B1 (en) 2012-12-11 2018-11-06 Ati Properties Llc Corrosion resistant bimetallic tube manufactured by a two-step process

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4786967B2 (ja) * 2005-08-17 2011-10-05 ライフ工業株式会社 放射線遮蔽容器

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2804828A1 (de) * 1978-02-04 1979-08-09 Nukem Gmbh Stahlbehaelter zur aufnahme abgebrannter brennelemente
GB2024694A (en) * 1978-06-28 1980-01-16 Transnuklear Gmbh Radioactive material enclosures

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2804828A1 (de) * 1978-02-04 1979-08-09 Nukem Gmbh Stahlbehaelter zur aufnahme abgebrannter brennelemente
GB2024694A (en) * 1978-06-28 1980-01-16 Transnuklear Gmbh Radioactive material enclosures

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2575320A1 (fr) * 1984-12-22 1986-06-27 Kernforschungsz Karlsruhe Emballage protecteur de longue duree contre la corrosion pour des colis fermes hermetiquement dont le contenu est hautement radioactif
GB2171632A (en) * 1984-12-22 1986-09-03 Kernforschungsz Karlsruhe Containment with long-time corrosion resistant cover for sealed containers with highly radio-active content
GB2171632B (en) * 1984-12-22 1989-06-07 Kernforschungsz Karlsruhe Long term corrosion-resistant covering structure for sealed containers having a highly radioactive content.
EP0244599A1 (de) * 1986-04-01 1987-11-11 Kernforschungszentrum Karlsruhe Gmbh Längszylindrischer Behälter für die Endlagerung von einer oder mehreren mit hochradioaktiven Abfällen gefüllten Kokillen
WO1990005365A1 (de) * 1988-11-09 1990-05-17 Lang Ludwig Von Verfahren zur vorbereitung radioaktiver abfälle für die endlagerung
EP0377176A2 (de) * 1988-12-31 1990-07-11 Karlheinz Hösgen Absorptionsmantel für eine radioaktive Strahlungsquelle, insbesondere einen Kernreaktor
EP0377176A3 (en) * 1988-12-31 1990-09-12 Karlheinz Hosgen Absorber coat for a radioactive source, especially a nuclear reactor
US5202522A (en) * 1991-06-07 1993-04-13 Conoco Inc. Deep well storage of radioactive material
US7922065B2 (en) 2004-08-02 2011-04-12 Ati Properties, Inc. Corrosion resistant fluid conducting parts, methods of making corrosion resistant fluid conducting parts and equipment and parts replacement methods utilizing corrosion resistant fluid conducting parts
US8973810B2 (en) 2004-08-02 2015-03-10 Ati Properties, Inc. Corrosion resistant fluid conducting parts, methods of making corrosion resistant fluid conducting parts and equipment and parts replacement methods utilizing corrosion resistant fluid conducting parts
US9662740B2 (en) 2004-08-02 2017-05-30 Ati Properties Llc Method for making corrosion resistant fluid conducting parts
EP2160736A4 (de) * 2007-05-25 2016-03-30 Swedish Metallurg And Mining Ab Kanister zur enddeponierung von bestrahltem kernbrennstoff
WO2012045252A1 (zh) * 2010-10-09 2012-04-12 宋世鹏 一种源包壳
CN102446568A (zh) * 2010-10-09 2012-05-09 上海世鹏实验室科技发展有限公司 一种源包壳
DE102011115044B4 (de) * 2011-10-06 2017-01-05 Siceram Gmbh Keramischer Behälter und Verfahren zur Endlagerung von radioaktivem Abfall
US10118259B1 (en) 2012-12-11 2018-11-06 Ati Properties Llc Corrosion resistant bimetallic tube manufactured by a two-step process

Also Published As

Publication number Publication date
JPS57178199A (en) 1982-11-02

Similar Documents

Publication Publication Date Title
EP0057867A1 (de) Mehrschichtiger Behälter zur sicheren Langzeitlagerung von radioaktivem Material
EP0092679B1 (de) Behälter zur Aufnahme von radioaktiven Stoffen
EP0057429B1 (de) Mehrschichtiger Transport- und Lagerbehälter für radioaktive Abfälle
EP0726966A1 (de) Werkstoff und strukturteil aus modifiziertem zirkaloy
EP0036982B1 (de) Einsatzkorb für radioaktives Material in Transport- und/oder Lagerbehältern
DE2756700A1 (de) Verfahren zur einschliessung von radioaktivem abfall
CH680025A5 (de)
EP0538574A1 (de) Abschirmtransport- und/oder Abschirmlagerbehälter und Verfahren zur Herstellung
EP0072429B1 (de) Behälter zur Langzeitlagerung radioaktiver Abfälle
DE8102667U1 (de) "Mehrschichtiger Behälter zur sicheren Langzeitlagerung von radioaktivem Material"
DE8236359U1 (de) Lagerbehaelter fuer radioaktives material
DE2804828A1 (de) Stahlbehaelter zur aufnahme abgebrannter brennelemente
DE2258741B2 (de) Kernreaktoranlage
EP0057430A1 (de) Transport- und Lagerbehälter für radioaktive Abfälle
WO1996036972A1 (de) Verfahren zur herstellung von abschirmelementen zur absorption der bei der kernreaktion radioaktiver materialien entstehenden neutronen
DE2837631A1 (de) Transportabschirm- und/oder lagerabschirmbehaelter
EP0057866B1 (de) Vorrichtung zum Korrosionsschutz von radioaktive Stoffe enthaltenden Behältern
DE4416362C2 (de) Absorberteil
DE3610862C2 (de)
DE3244727A1 (de) Verfahren und behaeltersystem zum ueberfuehren bzw. transportieren von brennelementen aus einem kernkraftwerk zu einer lagerstaette
EP0062831B1 (de) Behälter zur Langzeitlagerung von radioaktiven Stoffen (II)
EP0111231B1 (de) Transport- und/oder Lagerbehälter für wärmeproduzierende radioaktive Stoffe
DE3227512A1 (de) Verlorener abschirmbehaelter fuer radioaktive abfaelle
DE3403599A1 (de) Verfahren zum transportieren, zwischenlagern und endlagern von abgebrannten brennelementen, behaeltersystem zur durchfuehrung dieses verfahrens sowie herstellung eines behaelters fuer den transport und/oder lagerung von abgebrannten brennelementen
DE7828992U1 (de) Abschirmbehaelter zum transport und/oder zur lagerung abgebrannter brennelemente

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE DE FR GB SE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19830727

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SCHULMEYER, WERNER

Inventor name: VOETSCH, REINHARD

Inventor name: QUILLMANN, HEINRICH

Inventor name: VAN HECKE, ROLAND

Inventor name: ZEHNER, HERBERT, DR.