EP0048248B1 - Verfahren und vorrichtung zum transport eines aus kastenlosen-giessformen zusammengestellten formenstrangs - Google Patents

Verfahren und vorrichtung zum transport eines aus kastenlosen-giessformen zusammengestellten formenstrangs Download PDF

Info

Publication number
EP0048248B1
EP0048248B1 EP81900652A EP81900652A EP0048248B1 EP 0048248 B1 EP0048248 B1 EP 0048248B1 EP 81900652 A EP81900652 A EP 81900652A EP 81900652 A EP81900652 A EP 81900652A EP 0048248 B1 EP0048248 B1 EP 0048248B1
Authority
EP
European Patent Office
Prior art keywords
mold
train
molds
transport
driving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP81900652A
Other languages
English (en)
French (fr)
Other versions
EP0048248A1 (de
Inventor
Eugen Dipl.-Ing. Bühler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BUEHLER, EUGEN, DIPL.-ING.
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19803011265 external-priority patent/DE3011265C2/de
Priority claimed from DE19803020349 external-priority patent/DE3020349C1/de
Application filed by Individual filed Critical Individual
Publication of EP0048248A1 publication Critical patent/EP0048248A1/de
Application granted granted Critical
Publication of EP0048248B1 publication Critical patent/EP0048248B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D47/00Casting plants
    • B22D47/02Casting plants for both moulding and casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D33/00Equipment for handling moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D33/00Equipment for handling moulds
    • B22D33/005Transporting flaskless moulds

Definitions

  • the invention relates to a method for transporting boxless casting molds over a supply, casting and cooling section of a casting installation having at least one rectilinear branch, the casting molds having face and side surfaces oriented perpendicular to the transport plane being put together to form a complete mold strand the casting molds are continuously placed in the area of its rear end and casting molds are removed in the area of its front end to the same extent, and the forces required to accelerate the mold strand to be transported are introduced into the mold strand at the rear end of the mold strand in the transport direction.
  • Another inventive concept relates to a device for performing such a method.
  • a method and a device of the type mentioned in the opening paragraph are known from US-A 3800935.
  • the known device consists of a stationary table arranged downstream of a forming station and a transport device arranged upstream of an unpacking station and having a drivable conveyor belt.
  • the boxless molds completed in the molding station are pushed onto the stationary table by means of an ejection piston, the molds coming into contact with one another and being pushed by the ejection piston in the form of a strand over the stationary table and onto the conveyor belt, which is at a feed rate corresponding speed is driven.
  • the conveyor belt is driven at such a speed that the molds coming from the table onto the conveyor belt remain in mutual engagement and at the same time the rear molds are not crushed by the push-out piston.
  • the mold strand here comprises two sections, namely the section accommodated on the stationary table and the section accommodated on the driven conveyor belt, different transport conditions being present in both sections.
  • In the area of the stationary table there are frictional forces between the table support surface and the contact surface of the molds that come into contact with it.
  • this friction must first be overcome by means of the ejection piston driving the section of the mold strand lying on the table, which friction counteracts the movement of the section of the mold strand lying on the table when the driving force ceases. It is therefore extremely difficult to hold the mold strand together in such a way that the adjacent molds support each other.
  • the movable arrangement of the belt eliminates frictional forces of the type outlined above. Since the conveyor belt has its own drive, the casting molds accommodated on the conveyor belt do not have to transmit any acceleration forces introduced at the rear end of the mold strand. Rather, they are transferred by friction from the driven conveyor belt to each individual mold that is accommodated thereon. Even when using constant belt ratios, it is also very difficult to achieve reliable mutual reinforcement in the area of the strand section taken up on the conveyor belt. This is further complicated by the fact that the mutual abutment of the casting molds arranged next to one another additionally depends on the stretching or shrinking of the conveyor belt and, in addition, belt tracking is very difficult to avoid. In the case of a belt follow-up, however, the mold strand is inevitably torn off, since the friction which acts in the area of the stationary table and counteracts the movement practically prevents the mold strand lying on the stationary table from running on.
  • the stationary table downstream of the molding station makes it necessary to drive the section of the mold strand lying thereon by means of the ejection piston pushing out the new mold to be placed on the mold strand, and practically does not permit any other drive.
  • the push-out piston which accomplishes these two processes must be pulled back into its starting position in order to start a new casting mold. When the mold strand is at a standstill, therefore, no force acts on the rear end of the mold strand that counteracts thermal expansion of the mold strand, apart from the frictional forces.
  • the solution to this problem relating to the method is that the acceleration of the mold strand takes place independently of the acceleration of the new casting mold to be placed in each case at the rear end of the mold strand, and that the acceleration or braking of the entire mold strand occurs between that the downstream mold and the front mold upstream of the mold to be removed, or the forces required to hold the entire mold strand together, counteracting the thermal expansion, into the rear end of the mold strand downstream of the mold to be adjusted or the front mold upstream of the mold to be removed Introduced at the end of the mold strand and along the entire length of the mold strand between the rearmost mold downstream of the mold to be positioned thereon and the front mold upstream of the mold to be removed therefrom
  • the first mold can only be transferred uniformly from one mold to the next through the mold itself.
  • the mold strand is held together with an adjustable force that counteracts the thermal expansion force outside the acceleration phases and in particular during the breaks, so that the individual casting molds are reinforced.
  • This measure can prove to be particularly advantageous if the mold strand is at rest due to a lack of replenishment of liquid metal.
  • the noticeable thermal expansion occurring during such breaks is contained here by the force holding the strand together.
  • the force holding the mold strand together can advantageously be selected such that it is greater than the force required to completely prevent thermal expansion within the strand. Thermal expansion of the strand is therefore not possible here.
  • the force holding the mold strand together can be dimensioned such that it is somewhat smaller than the force required to move the mold adjacent to the first cast mold or its parts on its respective base. This ensures that when excessive forces occur within the mold strand, a certain amount of expansion of the mold strand can take place. However, the clamping force acting on the mold strand is retained.
  • the molds are expediently designed in such a way that the force required to move the mold adjacent to the first cast mold or its parts on its respective base is in any case greater than the force generated within the mold strand due to the thermal expansion, so that due to the normal thermal expansion no expansion of the mold strand is to be feared.
  • the solution directed to the device for carrying out the method outlined at the outset is characterized in that, in the case of a device of the generic type, with a roller conveyor, which is arranged between a molding station and an unpacking station and has at least one rectilinear branch and is formed by stationary rollers, on the respective one or more casting molds load-bearing transport units are movable, the length of the transport units in the transport direction is less than the length of the mold or casting molds that can be accommodated thereon, which are arranged projecting forward and backward on the respectively assigned transport unit in the transport direction and that within a branch of the mold strand in the transport direction each rearmost and frontmost transport unit with the interposition of at least one slip clutch, the transmission torque of which is adjustable, is in engagement with a drive or braking station.
  • the measures according to the invention also ensure that the casting molds are in a resting position with respect to their respective base, despite the mutual support achieved here during transport. At the same time, the easy mobility of the transport units, which are mounted so as to be slidable or carriage-shaped, comes into play.
  • the drive station can consist of at least one drive roller connected with the interposition of the assigned slip clutch with a drive element that can be blocked at least against the direction of transport
  • the brake station can consist of at least one brake roller connected with the interposition of the associated slip clutch with a brake element that can be blocked in the transport direction.
  • the drive roller and the brake roller can expediently engage the associated transport units in a frictional manner in such a way that the force that can be transmitted thereon is greater than the maximum adjustable force on the respectively assigned slip clutch, which can have a very wear-reducing effect.
  • the rollers arranged between the drive station and the brake station can simply be designed as non-driven support rollers, so that overall a very simple structure results.
  • a further advantageous measure can consist in that each branch of the roller conveyor is inclined in the transport direction in such a way that the resistance acting on its rollers is at least almost completely equalized by the downward slope.
  • the equalization of the internal friction advantageously results in almost identical supporting forces between the individual molds in the area of the entire mold strand.
  • the force required to move the mold strand can be relatively small, which enables smooth operation.
  • the setting speed of the mold to be placed on the last mold of the mold strand is selected such that when the mold hits the mold strand released kinetic energy can be absorbed in the plastic area of the molding compound and is not sufficient in the case of horizontally divided casting molds to bring about molding offset.
  • a feed unit formed by at least one drive roller can expediently be used, which is coupled to a drive element via a slip clutch with an adjustable transmission torque and which frictionally interacts with a transport element receiving the assigned casting mold.
  • the slip clutch can be set to a relatively small value, so that the associated drive element immediately rotates empty when the casting mold to be connected hits the rear end of the mold strand, so that molded part deformation and the like are avoided.
  • the slipping clutches with adjustable transmission torque used can advantageously be designed as contactless magnetic clutches, preferably magnetostatic hysteresis clutches, to ensure freedom from wear.
  • a casting plant of the type on which the figures are based consists, as can best be seen from FIG. 1, of a molding station 1 in which boxless casting molds are produced, an unpacking station 2 in which the finished castings are separated from the sand of the casting molds and one Storage, casting and cooling section 3, which pass through the molds on the way from the molding station 1 to the unpacking station 2.
  • the area adjoining the molding station 1 is considered to be a supply section which serves to provide finished molds.
  • the casting section which can be operated with a pan, indicated at 4, holding liquid metal for pouring the casting molds through it.
  • the guidance of the pan 4 that leads past a melting furnace (not shown) is indicated at 5.
  • the casting section, which can be operated by pan 4 is followed by the cooling section, in which the castings cool down to the unpacking temperature.
  • the supply, pouring and cooling section consists of a forward load and a return load.
  • a roller conveyor 6 provided with stationary rollers is provided.
  • the casting molds designated as a whole as 7 which are designed here as horizontally divided double block molds with an upper part 11 and a lower part 12
  • transport units running on the rollers of the roller conveyor 6, here in the form of pallets 8 each holding a casting mold 7, are provided.
  • the pallets 8 are cleared by means of a clearing blade indicated at 9 in FIG. 1 and then transferred to the rear end of the forward branch to accommodate a new casting mold leaving the molding station 1.
  • the pallets 8 together with the mold 7 located thereon are transferred onto the return branch.
  • translation units are provided at the ends of forward load 3a and return load 3b, indicated in FIG. 1 by arrows 10.
  • these can each consist of a carriage which is provided with a lifting device and can be moved perpendicular to the normal transport direction.
  • the upper parts 11 and lower parts 12 of the molds 7, which are horizontally divided here, should be exactly the same size in the exemplary embodiment shown and have end faces 13 and side faces 14 oriented perpendicular to the transport plane.
  • the length of the casting molds 7, as can also be seen in FIG. 2, at least in the transport direction, is greater than the length of the respectively assigned pallet 8, so that the molds 7 placed in the center protrude forward and backward from the respectively assigned pallet 8 in the transport direction .
  • the successive casting molds can therefore be supported directly against one another with their vertical end faces, so that in the region of the forward branch 3a and the return branch 3b of the supply, casting and cooling section, there is a gapless mold strand 15, as shown in FIG. 1.
  • the force flow caused by the driving and braking forces and possibly by the thermal expansion forces within each mold strand 15 runs over the casting molds 7.
  • the pallets 8 receiving the casting molds 7 remain unaffected by this.
  • the direct mutual end support of the casting molds thus enables a reinforcing effect to be achieved and therefore high accuracy and dimensional accuracy can be expected.
  • each of the mold strands 15 is assigned a drive station 16 arranged in the region of its rear end, which is expediently integrated in the roller conveyor 6 here, and a brake station 17 arranged in the region of its front end and expediently integrated in the roller conveyor 6 .
  • the drive station 16 and the brake station 17 are each assigned a drive element 18 or brake element 19 shown in FIG. 3, wherein a slip clutch 20 is provided in the kinematic drive chain hoist, the transmission torque of which is adjustable, so that the mold strand 15 to be introduced or the drive or braking force to be derived from this is also adjustable. This ensures that no uncontrolled forces act on the associated mold strand 15, so that very gentle handling of the casting molds 7 is ensured.
  • this frictional engagement is expediently designed to be stronger than the maximum transmission torque that can be set in the area of the associated slip clutch 20, so that in the event of slippage this occurs in the area of the slip clutch.
  • the rollers of the roller conveyor 6 located between the drive station 16 and the braking station 17 are simply designed as freely rotatable, non-driven support rollers 27.
  • the rollers 25, 26, 27 can be designed as rollers running across the width of the roller conveyor 6. In the illustrated embodiment, mutually opposite pairs of rollers are used.
  • the drive station 16 and the brake station 17 each extend approximately over the length of a pallet 8 and are each equipped with 3 pairs of rollers, so that the drive or braking forces can be transmitted safely and without slippage with each adjustment of the clutches 20.
  • An electric geared motor can expediently be used as the drive element 18 or brake element 19.
  • the drive element 18 In the idle state, the drive element 18 is blocked at least in the opposite direction to the transport direction and the brake element 19 is blocked at least in the transport direction.
  • the drive element 18 can for this purpose with a backstop 30 be provided.
  • the brake element 19 is provided with a blocking brake 31 that engages automatically when the vehicle is at a standstill. If the mold strand held together in this way tries to expand under the action of internal thermal expansion forces, these thermal expansion forces are contained by the blocked drive element 18 or brake element 19 up to the level of the force which can be transmitted by the slip clutches 20 or are held completely in the strand.
  • the slipping clutches 20 are therefore expediently to be set such that no slippage occurs due to thermal expansion forces, which prevents expansion of the mold strand 15.
  • the thermal expansion forces are relatively easy to determine since, as tests have shown, these do not add up over the length of the strand.
  • the complete molds 7 could slide against the pallets 8 or the mold upper parts 11 against the associated mold lower parts 12.
  • the force required to accomplish such a shift is also easy to determine by experiment and is usually known.
  • the molds 7 are not displaced with respect to the pallets 8 or the upper mold parts 11 with respect to the lower mold parts 12 if the displacement force required for this is greater than the thermal expansion force.
  • the force that can be transmitted by the slip clutches 20 can be set to a value that is slightly below the displacement force, so that there is a slight stretching of the mold strand 15 rather than a mutual offset of the upper parts relative to the lower parts of the casting molds located in the region of the supply section. However, this does not occur under normal operating conditions.
  • the drive station 16 When the mold strand 15 accelerates from standstill to the normal operating speed, the drive station 16 is activated and the required acceleration force is introduced into the mold strand 15.
  • the setting of the assigned slip clutch 20 represents the limitation of the acceleration force.
  • Activation of the braking station 17 together with the braking element 19 is not necessary in this phase. Only the blocking brake 31 has to be released. In this case, the braking station 17 is simply carried empty by the pallets 8 passing over the braking rollers 26.
  • the internal resistance for example in the area of the gear motor forming the braking element 19, counteracts the feed force.
  • the acceleration forces transmitted from one mold to the next mold 7 in the area of the abutting end faces 13 decrease from the back to the front.
  • Adequate mutual clamping of the casting molds 7 is therefore ensured in the rear region of the mold strand, which is particularly at risk from thermal expansion.
  • the braking element 19 is activated and the transport speed is thereby kept constant. This can be accomplished by operating the brake 31.
  • the braking force acting on the mold strand corresponds to the force resulting from the transmission torque of the slip clutch 20.
  • the slipping clutch assigned to the braking element 19 is expediently set to a somewhat lower value than the slipping clutch 20 assigned to the drive element 18, so that the driving force which takes effect slightly outweighs.
  • the drive motor 18 and the gear motor forming the braking element 19 are put into operation simultaneously.
  • the gear motor forming the braking element 19 runs idle.
  • a freewheel 32 forming an overrunning clutch is provided in the kinematic drive chain hoist leading to the brake rollers 26.
  • the freewheel 32 acts as a transmission element, whereby the brake element 19 is itself carried by the brake rollers 26.
  • the electric motor forming the braking element 19 is operated as a generator.
  • the braking force acting on the mold strand 15 corresponds to the generator force.
  • the electric motor forming the braking element 19 is connected in terms of control to the electric motor forming the drive element 18 and, as soon as it is operated as a generator, takes the lead in terms of speed.
  • the end of the acceleration phase can advantageously be detected automatically, so that a very uniform strand movement results.
  • the translation of the gear assigned to the braking element is expediently somewhat less than the translation of the transmission assigned to the drive element 18, so that the same engine speed results in a somewhat lower transmission output speed in the area of the braking station than in the area of the drive station. This ensures that a defined generator force is available as a braking force in the last area of the acceleration phase and during normal feed operation, as a result of which the mold strand is held together cleanly.
  • the gear assigned to the drive element 18 and the brake element 19 can be combined with the respective electric motor to form a structural unit or, as indicated in the exemplary embodiment shown at 33, can be designed as a separate additional gear.
  • the drive station 16 is passivated by switching off the associated electric motor.
  • the brake 31 of the brake element 19 is actuated, thereby blocking the motor forming the brake element 19.
  • the braking force acting on the mold strand corresponds to the force resulting from the torque that can be transmitted in the area of the associated slip clutch 20.
  • the blocked brake 31, together with the automatically acting backstop 30 in the area of the drive station 16, results in the clamping of the mold strand 15 between the drive station 16 and the brake station 17, which is particularly desired at a standstill, which results in the desired end-face reinforcement of the casting molds 7.
  • the side surfaces 14 can also be reinforced.
  • clamping plates 21 resting on the side surfaces 14 of the casting molds 7 can be used.
  • the clamping plates 21 are pivotally supported by two-armed angle levers 22 on a load iron 23 placed on the upper part 11 for weighting.
  • the angle levers 22, with their arms projecting from the associated load iron 23, form an opening pair of scissors into which a stick 24 can be inserted in order to achieve a self-locking lock and further weighting.
  • a feed device 127 arranged upstream of the drive station 16 is provided.
  • a pull-off device 28 is arranged downstream of the braking station 17 of each mold strand 15, by means of which the foremost casting mold of the associated mold strand can be pulled off the front end of the strand.
  • the feed device 127 and the take-off device 28 here, as can be seen from FIG., also consist of three pairs of drive rollers 25, which are coupled to an assigned drive element 29 via slip clutches 20 which can be set with regard to the transmissible torque.
  • the respectively assigned slip clutches 20 can be set to a relatively small transmission torque, so that the associated drive elements 29 spin empty when a slight resistance occurs, with which a load on the assigned mold is counteracted.
  • a feed force of 100 N that is effective in the area of the feed device 127 has proven to be particularly expedient.
  • the feed device 127 and the take-off device 28 run to achieve an effective infeed or an effective take-off, each with a speed slightly exceeding the transport speed of the assigned mold strand, and the speed difference in the area of the feed device 127 is preferably selected such that the resulting kinetic energy during Casserole of the casting mold to be started on the rear end of the mold strand in the plastic region of the molding sand is receivable and is not sufficient to offset the upper mold part relative to the associated lower mold part.
  • a speed difference of the order of 5 cm / s has proven to be particularly useful.
  • the translation units 10 are integrated in the feed device 127 or the take-off device 28. If, as in the illustrated exemplary embodiment, a plurality of rollers or pairs of rollers are driven via a drive element and a respective slip clutch 20, these are of course connected to one another in a rotationally locking manner by chains, gearwheels or the like.
  • a transport device for a mold strand likewise designated 15, which consists of casting molds 7 lined up with a vertical parting joint.
  • This can be the same monoblock shape as in the case of FIG. 5, or so-called double block shapes, each consisting of an upper part and a lower part and tilted by 90 ° after completion, according to FIG. 6.
  • the transport of the mold strand 15 takes place step by step in accordance with the replenishment of new molds from the molding station, not shown here.
  • the entire strand 15, consisting of casting molds 7 which are gently lined up, rests on a plurality of transport units arranged one behind the other.
  • the transport units are designed as conveyor grates 34 that can be moved back and forth in steps formed, which consist of a plurality of rails arranged next to one another at a distance and mesh with a standing grate 35 which extends over the entire length of the associated mold strand 15 and which also consists of a plurality of rails arranged next to one another at a distance, between the rails of the conveyor grates 34 forming the transport units intervene with sufficient running play.
  • the standing grate 35 is arranged stationary.
  • the conveyor grates 34 are received on a roller conveyor, also designated 6, the structure and mode of operation of which corresponds essentially to the roller conveyor 6 according to FIGS. 2 and 3. The same reference numerals are therefore used for the same parts.
  • the roller conveyor 6 also consists of drive rollers 25 arranged in the region of its rear end to form a drive station, brake rollers 26 arranged in the region of its front end to form a brake station and non-driven support rollers 27 arranged between drive and brake station.
  • the drive rollers 25 and brake rollers 26 are also to be connected in the present exemplary embodiment with the interposition of a respectively assigned slip clutch, the transmission torque of which is adjustable, to an electric gear motor as a drive element, the electric gear motor assigned to the brake rollers 26 as in the example above according to FIGS. 2 and 3 a blocking brake of the type indicated at 31 in FIG. 3 and a free-wheeling of the type indicated at 32 in FIG.
  • the conveyor grates 34 each hold a plurality of casting molds 7 arranged one behind the other.
  • the length of the conveyor grates 34 is dimensioned such that the molds 7 accommodated thereon together have a somewhat greater overall length.
  • the torque which can be transmitted with the slip clutch assigned to the drive rollers 25 is set to such a value that the feed force required to accelerate the mold strand 15 can just be transmitted.
  • the slip clutch assigned to the brake rollers 26 can expediently be set to a somewhat smaller value.
  • the mold strand 15 can be accommodated on the conveyor grates 34, the associated drive rollers 25 and brake rollers 26 being blocked to counter thermal expansion of the mold strand 15 against or in the direction of conveyance, likewise as in FIG 2 and 3.
  • a backstop or a blocking brake can also be provided.
  • the force counteracting the thermal expansion force corresponds to the force resulting from the transmission torque set on the couplings 20, which is expediently above the thermal expansion force in order to completely prevent thermal expansion. If the mold strand 15 rests on the stand grate 35 during the breaks, the thermal expansion is contained by the frictional force in the area of the strand support.
  • the standing grate 35 and the conveyor grates 34 serving as transport units are alternatively adjustable relative to one another in the vertical direction so that the mold strand 15 either rests on the conveyor grates 34, as indicated in FIG. 5, or on the stand grating 35, as indicated in FIG. 6 .
  • the mold strand 15 placed on the conveyor grates 34 is thereby moved forward by the length of a casting mold and placed on the grate 35 at the end of the assigned movement path.
  • the released conveyor grates 34 are then returned to their starting position. This can be accomplished, for example, by reversing the drive rollers 25.
  • the distance between the individual conveyor grates is fixed to a constant dimension by suitable drivers. This fixation is released as soon as the conveyor grates are brought into engagement with the strand.
  • a feed device 127 is provided between the rearmost conveyor grate 34 in the transport direction and the molding station (not shown).
  • This consists of a push-on carriage 36 placed on drive rollers 25, which, to the same extent as the conveyor grates 34, has rails which are spaced apart from one another and which can engage between the rails of the standing grate 35.
  • the push-on carriage 36 is connected to the adjacent conveyor grate 34 via guide pins 37, which ensure exact centering.
  • adjustable shields 39 are provided, one of which can be locked against an adjustable stop on the carriage frame and the other is adjustable by means of a cylinder-piston unit.
  • the mold inserted between the shields 39 is hereby pressed onto the lockable shield and thus precisely aligned.
  • double-block molds which consist of an upper part 11 and a lower part 12
  • a trolley with an angular grate is used, which, as shown in FIG. 6, can be tilted by 90 ° about an axis of rotation 40, so that parts that are subsequently aligned perpendicular to the transport plane are subsequently used eyes 41 result.
  • the drive rollers 25 assigned to the feed device 127 are also via a force adjustable slip clutch connected to an associated drive motor.
  • the torque that can be transmitted by this slip clutch must be set so that the resulting feed force is approximately 100 N.
  • the speed of the drive rollers 25 assigned to the feed device 127 is set in such a way that there is an excess of speed of the casting mold to be set in relation to the moving mold strand 15 by approximately 5 cm / s.
  • the kinetic energy released when the casting mold hits the rear end of the mold strand is absorbed in the plastic area of the molding material, so that shock-like loads and thus deformations and damage are also avoided from this side.
  • the connection of a new casting mold to the rear end of the mold strand 15 in the direction of transport expediently takes place during the forward movement brought about by the conveyor grates 34 with the standing grate 35 lowered.
  • the last casting mold 7 in each case is pushed off a transport device 42 leading to an unpacking station, not shown in any more detail .
  • the backward movement of the push-on carriage 36 into its starting position can also be expediently accomplished by reversing the assigned drive rollers 25.
  • slip clutches 20 used according to the invention are expediently designed as contactless electrostatic hysteresis clutches, which ensures complete freedom from wear.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Casting Devices For Molds (AREA)

Description

  • Die Erfindung betrifft gemäss einem ersten Erfindungsgedanken ein Verfahren zum Transport kastenloser Giessformen über eine zumindest einen geradlinigen Ast aufweisende Vorrats-, Giess- und Kühlstrecke einer Giessanlage, wobei die lotrecht zur Transportebene ausgerichtete Stirn- und Seitenflächen aufweisenden Giessformen zu einem lückenlosen Formenstrang zusammengestellt werden, an den im Bereich seines hinteren Endes laufend neue Giessformen angestellt und im Bereich seines vorderen Endes im selben Masse laufend Giessformen abgenommen werden und wobei die zum Beschleunigen des zu transportierenden Formenstrangs erforderlichen Kräfte in jeweils einstellbarer Grösse am in Transportrichtung hinteren Ende des Formenstrangs in diesen eingeleitet werden. Ein weiterer Erfindungsgedanke betrifft eine Vorrichtung zur Durchführung eines derartigen Verfahrens.
  • Ein Verfahren und eine Vorrichtung eingangs erwähnter Art sind aus der US-A 3800935 bekannt. Die bekannte Vorrichtung besteht aus einem einer Formstation nachgeordneten, stationären Tisch und einem einer Auspackstation vorgeordneten, ein antreibbares Transportband aufweisenden Transporteinrichtung. Die in der Formstation fertiggestellten, kastenlosen Formen werden mittels eines Ausschubkolbens auf den stationären Tisch aufgeschoben, wobei die Formen in gegenseitige Anlage kommen und durch den Ausschubkolben in Form eines Strangs über den stationären Tisch hinweg und auf das Transportband hinaufgeschoben werden, das mit einer der Vorschubgeschwindigkeit entsprechenden Geschwindigkeit angetrieben wird. Der Antrieb des Transportbands erfolgt dabei mit solcher Geschwindigkeit, dass die vom Tisch auf das Transportband gelangenden Formen in gegenseitigem Eingriff bleiben und gleichzeitig die hinteren Formen vom Ausschubkolben nicht zerdrückt werden. Dies ist bei der bekannten Anordnung jedoch nur sehr schwierig zu erreichen. Der Formenstrang umfasst hierbei zwei Abschnitte, nämlich den auf dem stationären Tisch aufgenommenen Abschnitt und den auf dem angetriebenen Transportband aufgenommenen Abschnitt, wobei in beiden Abschnitten unterschiedliche Transportverhältnisse vorliegen. Im Bereich des stationären Tisches ergeben sich Reibungskräfte zwischen der Tischauflagefläche und der hiermit in Verbindung kommenden Auflagefläche der Formen. Zur Bewerkstelligung einer Vorwärtsbewegung des Formenstrangs muss daher mittels des den auf dem Tisch aufliegenden Abschnitt des Formenstrangs antreibenden Ausschubkolbens zunächst diese Reibung überwunden werden, die bei Wegfall der Antriebskraft der Bewegung des auf dem Tisch aufliegenden Abschnitts des Formenstrangs entgegenwirkt. Es ist daher hierbei äusserst schwierig, den Formenstrang so zusammenzuhalten, dass sich die einander benachbarten Formen gegenseitig abstützen. Im Bereich des angetriebenen Transportbands entfallen aufgrund der bewegbaren Anordnung des Bands Reibungskräfte vorstehend umrissener Art. Da das Transportband einen eigenen Antrieb besitzt, haben die auf dem Transportband aufgenommenen Giessformen hier keine am hinteren Ende des Formenstrangs eingeleiteten Beschleunigungskräfte zu übertragen. Vielmehr werden diese durch Reibung vom angetriebenen Transportband auf jede einzelne, hierauf aufgenommene Giessform übertragen. Auch bei Zugrundelegung konstanter Bandverhältnisse ist es hierbei ebenfalls sehr schwierig, im Bereich des auf dem Transportband aufgenommenen Strangabschnitts eine zuverlässige gegenseitige Armierung zu erreichen. Dies wird dadurch noch verkompliziert, dass hierbei die gegenseitige Anlage der nebeneinander angeordneten Giessformen zusätzlich von der Dehnung bzw. Schrumpfung des Transportbands abhängen und ausserdem ein Bandnachlauf nur sehr schwer zu vermeiden ist. Im Falle eines Bandnachlaufs kommt es jedoch unweigerlich zu einem Abreissen des Formenstrangs, da die im Bereich des stationären Tisches zur Wirkung kommende, der Bewegung entgegenwirkende Reibung einen Nachlauf des auf dem stationären Tisch aufliegenden Formenstrangs praktisch verhindert.
  • Der hier der Formstation nachgeordnete, stationäre Tisch macht einen Antrieb des hierauf aufliegenden Abschnitts des Formenstrangs durch den die neu an den Formenstrang anzustellende Giessform ausschiebenden Ausschubkolben erforderlich und lässt einen anderen Antrieb praktisch nicht zu. Hierbei ergibt sich demnach eine Kombination des Anstellvorgangs zum Anstellen einer neuen Giessform an den Formenstrang und der Beschleunigung des Formenstrangs. Der diese beiden Vorgänge bewerkstelligende Ausschubkolben muss jedoch zum Anstellen einer neuen Giessform in seine Ausgangsstellung zurückgezogen werden. Im Stillstand des Formenstrangs greift hierbei daher am hinteren Ende des Formenstrangs keine Kraft an, die einer Wärmedehnung des Formenstrangs entgegenwirkt, von den Reibungskräften einmal abgesehen. Es besteht hierbei daher die Gefahr, dass sich die Formen aufgrund einer nicht zu vermeidenden Wärmedehnung vergrössern bzw. gegeneinander verschieben und dass im Falle einer anschliessenden Abkühlung, etwa im Falle einer Pause, der gegenseitige Kontakt der Formen verlorengeht. Dies gilt nicht nur für die auf dem stationären Tisch aufliegenden Formen, sondern auch für die auf dem Transportband aufgenommenen Formen. Ein weiterer Nachteil des vom Anstellvorgang abhängigen Transports des Formenstrangs ist darin zu sehen, dass beim Auftreffen der anzustellenden Giessform auf den Formenstrang hohe Kräfte auftreten können, die zu einer Beschädigung führen können, wenn nicht ein sehr grosser Steuerungsaufwand betrieben wird.
  • Hiervon ausgehend ist es daher die Aufgabe der vorliegenden Erfindung, unter Vermeidung der Nachteile der bekannten Anordnungen ein Verfahren eingangs erwähnter Art und eine zur Durchführung dieses Verfahrens geeignete Vorrichtung zu schaffen, welche die Einhaltung einer bisher nicht für möglich gehaltenen Masshaltigkeit und Genauigkeit gewährleisten.
  • Die auf das Verfahren sich beziehende Lösung dieser Aufgabe besteht erfindungsgemäss darin, dass die Beschleunigung des Formenstrangs unabhängig von der Beschleunigung der an das hintere Ende des Formenstrangs jeweils anzustellenden neuen Giessform erfolgt und dass die zur Beschleunigung bzw. zum Abbremsen des gesamten Formenstrangs zwischen der der hieran anzustellenden Giessform nachgeordneten, hintersten Giessform und der hiervon abzunehmenden Giessform vorgeordneten vordersten Giessform erforderlichen Kräfte bzw. die zum Zusammenhalten des gesamten Formenstrangs erforderlichen, der Wärmedehnung entgegenwirkenden Kräfte in das hintere, der anzustellenden Giessform nachgeordnete Ende des Formstrangs bzw. das vordere, der abzunehmenden Giessform vorgeordnete Ende des Formenstrangs eingeleitet und auf der gesamten Länge des Formenstrangs zwischen der der hieran anzustellenden Giessform nachgeordneten, hintersten Giessform und der der hiervon abzunehmenden Giessform vorgeordneten, vordersten Giessform ausschliesslich durch die Giessform selbst von einer Giessform zur nächsten gleichförmig übertragen werden.
  • Diese Massnahmen stellen sicher, dass sich über der gesamten Länge des Formenstrangs von der letzten angestellten Giessform bis zur vordersten, noch zum Formenstrang gehörenden Giessform ein gleichmässiger, ausschliesslich über die Giessformen laufender Kraftfluss ergibt. Hierdurch ergibt sich demnach auf der gesamten Länge des Formenstrangs eine gleichmässige gegenseitige Armierung der quer zur Transportrichtung verlaufenden Stirnflächen der Giessformen. Gleichzeitig ergibt sich hierbei eine zuverlässige, den Wärmedehnungskräften entgegenwirkende Einspannung des Formenstrangs, so dass auch eine Wärmedehnung nicht zu einer gegenseitigen Verschiebung der Giessformen und damit u.U. zu einem unerwünschten Versatz zwischen Unterteil und jeweils zugeordnetem Oberteil führen kann. Ein weiterer Vorteil der erfindungsgemässen Massnahmen ist darin zu sehen, dass die Antriebs- und Bremskräfte hierbei infolge der gleichbleibenden Verhältnisse über der gesamten Länge des Formenstrangs und der Unabhängigkeit vom Anstellvorgang leicht und einfach einstellbar sind, so dass in jedem Falle nicht nur eine unerwünschte Ausdehnung des Formenstrangs und ein unerwünschter gegenseitiger Versatz der Giessformen, sondern auch eine Beschädigung der Formteile vermeidbar sind. Gleichzeitig lässt sich hierdurch aber auch der erforderliche Energiebedarf auf ein Minimum reduzieren, was wiederum nicht nur wirtschaftliche Vorteile bietet, sondern auch eine sehr sanfte Bewegung des Formenstrangs gewährleistet.
  • In vielen Fällen kann es sich als besonders zweckmässig und daher zu bevorzugen erweisen, wenn der Formenstrang ausserhalb der Beschleunigungsphasen und insbesondere innerhalb der Ruhepausen mit einer einstellbaren, der Wärmeausdehnungskraft entgegenwirkenden Kraft zusammengehalten wird, so dass die einzelnen Giessformen armiert sind. Diese Massnahme kann sich vor allem dann als besonders vorteilhaft erweisen, wenn der Formenstrang etwa infolge mangelnden Nachschubs von flüssigem Metall ruht. Die innerhalb derartiger Ruhepausen merkbar in Erscheinung tretende Wärmedehnung wird hierbei durch die den Strang zusammenhaltende Kraft eingedämmt. Vorteilhaft kann die den Formenstrang zusammenhaltende Kraft so gewählt werden, dass sie grösser als die zur vollständigen Unterbindung einer Wärmeausdehnung innerhalb des Strangs erforderliche Kraft ist. Eine Wärmeausdehnung des Strangs ist demnach hierbei nicht möglich. In weiterer Fortbildung dieses Gedankens kann die den Formenstrang zusammenhaltende Kraft so bemessen sein, dass sie etwas kleiner als die zum Verschieben der der jeweils ersten abgegossenen Giessform benachbarten Giessform bzw. deren Teile auf ihrer jeweiligen Unterlage benötigte Kraft ist. Hierdurch ist sichergestellt, dass beim Auftreten übermässiger Kräfte innerhalb des Formenstrangs eine gewisse Ausgleichsdehnung des Formenstrangs stattfinden kann. Die auf den Formenstrang wirkende Einspannkraft bleibt hierbei jedoch erhalten. Zweckmässig sind die Giessformen dabei so ausgelegt, dass die zum Verschieben der der jeweils ersten abgegossenen Giessform benachbarten Giessform bzw. deren Teile auf ihrer jeweiligen Unterlage benötigte Kraft auf jeden Fall grösser als die aufgrund der Wärmeausdehnung innerhalb des Formenstrangs entstehende Kraft ist, so dass aufgrund der normalen Wärmeausdehnung noch keine Ausdehnung des Formenstrangs zu befürchten ist.
  • Die auf die Vorrichtung zur Durchführung des eingangs umrissenen Verfahrens gerichtete Lösung kennzeichnet sich dadurch, dass bei einer gattungsgemässen Vorrichtung mit einem zwischen einer Formstation und einer Auspackstation angeordneten, zumindest einen geradlinigen Ast aufweisenden, durch stationäre Rollen gebildeten Rollengang, auf dem jeweils eine oder mehrere Giessformen tragende Transporteinheiten bewegbar sind, die Länge der Transporteinheiten in Transportrichtung kleiner als die Länge der hierauf jeweils aufnehmbaren Giessform bzw. Giessformen ist, die auf der jeweils zugeordneten Transporteinheit in Transportrichtung nach vorne und hinten auskragend angeordnet sind und dass die innerhalb eines Astes des Formenstrangs in Transportrichtung jeweils hinterste und vorderste Transporteinheit unter Zwischenschaltung jeweils mindestens einer Rutschkupplung, deren Übertragungsmoment einstellbar ist, im Eingriff mit einer Antriebs- bzw. Bremsstation ist. Diese Massnahmen gewährleisten die Einhaltung eines direkt über die Giessformen laufenden Kraftflusses über der gesamten Länge des Formenstrangs und ermöglichen eine individuelle Dosierung der Antriebs- bzw. Bremskräfte bzw. der der Wärmeausdehnungskraft entgegen wirkenden Kräfte. Die erfindungsgemässen Massnahmen stellen ausserdem sicher, dass die Giessformen trotz der hier bewerkstelligten gegenseitigen Abstützung während des Transports gegenüber ihrer jeweiligen Unterlage in ruhender Stellung sich befinden. Gleichzeitig kommt dabei die leichte Bewegbarkeit der schlitten- bzw. wagenförmig bewegbar gelagerten Transporteinheiten zum Tragen.
  • In zweckmässiger Weiterbildung dieser Massnahmen kann die Antriebsstation aus mindestens einer unter Zwischenschaltung der zugeordneten Rutschkupplung mit einem zumindest entgegen der Transportrichtung blockierbaren Antriebselement verbundenen Treibrolle und die Bremsstation aus mindestens einer unter Zwischenschaltung der zugeordneten Rutschkupplung mit einem zumindest in Transportrichtung blockierbaren Bremselement verbundenen Bremsrolle bestehen. Die Treibrolle und die Bremsrolle können dabei zweckmässig reibschlüssig an den zugeordneten Transporteinheiten angreifen und zwar so, dass die hierauf übertragbare Kraft grösser als die an der jeweils zugeordneten Rutschkupplung maximal einstellbare Kraft ist, was sich als sehr verschleissmindernd auswirken kann. Die zwischen der Antriebsstation und der Bremsstation angeordneten Rollen können dabei einfach als unangetriebene Stützrollen ausgebildet sein, so dass sich insgesamt ein höchst einfacher Aufbau ergibt.
  • Eine weitere vorteilhafte Massnahme kann darin bestehen, dass jeder Ast des Rollengangs in Transportrichtung so geneigt ist, dass der auf seine Rollen wirkende Widerstand durch den Hangabtrieb zumindest nahezu vollständig egalisiert ist. Durch die Egalisierung der inneren Reibung ergeben sich in vorteilhafter Weise im Bereich des gesamten Formenstrangs nahezu gleiche Stützkräfte zwischen den einzelnen Formen. Ausserdem kann die zum Bewegen des Formenstrangs benötigte Kraft verhältnismässig klein sein, was eine sanfte Betriebsweise ermöglicht.
  • Vielfach ergeben sich bereits beim Anstellen einer neuen Giessform an das in Transportrichtung hintere Ende des Formenstrangs Fehler wie Formteilversatz, Formteildeformierung bzw. Formteilbruch, was sich ebenfalls negativ auf die erzielbare Genauigkeit und Masshaltigkeit auswirkt. Von hinten nachkommende Giessformen müssen zur Bewerkstelligung eines Anschlusses an das hintere Ende des Formenstrangs diesen einholen. Um hierbei eine stossartige Beanspruchung der Formteile zu vermeiden, die zu den genannten Fehlern führen kann, ist gemäss einer weiteren vorteilhaften Fortbildung der Erfindung die Anstellgeschwindigkeit der an die jeweils letzte Giessform des Formenstrangs anzustellenden Giessform so gewählt, dass die beim Auftreffen dieser Giessform auf den Formenstrang frei werdende kinetische Energie im plastischen Bereich der Formmasse aufnehmbar ist und im Falle horizontal geteilter Giessformen zur Bewerkstelligung von Formteilversatz nicht ausreicht. Der Geschwindigkeitsüberschuss der anzuschliessenden Giessform soll dabei zweckmässig 5 cm/s nicht übersteigen. Zur Durchführung dieses Verfahrensschritts kann zweckmässig eine durch mindestens eine Treibrolle gebildete Zubringeinheit Verwendung finden, die über eine Rutschkupplung mit einstellbarem Übertragungsmoment mit einem Antriebselement gekoppelt ist und reibschlüssig mit einem die zugeordnete Giessform aufnehmenden Transportelement zusammenwirkt. Die Rutschkupplung kann dabei auf einen verhältnismässig kleinen Wert eingestellt werden, so dass das zugeordnete Antriebselement beim Auftreffen der anzuschliessenden Giessform auf das hintere Ende des Formenstrangs sofort leer durchdreht, so dass eine Formteildeformation und dergleichen unterbleibt.
  • Die verwendeten Rutschkupplungen mit einstellbarem Übertragungsmoment können zur Gewährleistung von Verschleissfreiheit in vorteilhafter Weise als berührungslose Magnetkupplungen, vorzugsweise magnetostatische Hysteresekupplungen, ausgebildet sein.
  • Weitere vorteilhafte Ausgestaltungen und zweckmässige Fortbildungen der übergeordneten Massnahmen ergeben sich aus der nachstehenden Beschreibung bevorzugter Ausführungsbeispiele anhand der Zeichnung in Verbindung mit den restlichen Unteransprüchen.
  • In der Zeichnung zeigen:
    • Fig. 1 eine Gesamtdraufsicht auf eine mit horizontal geteilten, auf Paletten transportierten Giessformen arbeitende Giessanlage mit einer zwei parallele Äste aufweisenden Vorrats-, Giess- und Kühlstrecke in schematischer Darstellung,
    • Fig. 2 eine Seitenansicht eines Astes der Vorrats-, Giess- und Kühlstrecke gemäss Fig. 1,
    • Fig. 3 eine Draufsicht auf die Anordnung nach Fig. 2 mit teilweise entfernten Paletten,
    • Fig. 4 eine Frontansicht einer horizontal geteilten Giessform gemäss Fig. 1 mit seitlichen Armierungsplatten,
    • Fig. 5 eine Seitenansicht eine Vorrats-, Giess-und Kühlstrecke für mit lotrechter Teilfuge aneinandergereihte auf einem Schrittförderrost transportierbare Monoblockformen in Transportstellung und
    • Fig. 6 eine Seitenansicht der Anordnung nach Fig. 5 im Ruhezustand und mit lotrecht geteilten Doppelblockformen beschickt.
  • Eine Giessanlage der den Fig. zugrunde liegenden Art besteht, wie am besten aus Fig. 1 erkennbar ist, aus einer Formstation 1, in welcher kastenlose Giessformen hergestellt werden, einer Auspackstation 2, in welcher die fertigen Gussstücke vom Sand der Giessformen getrennt werden und einer Vorrats-, Giess- und Kühlstrecke 3, welche die Giessformen auf dem Weg von der Formstation 1 zur Auspackstation 2 durchlaufen. Der an die Formstation 1 sich anschliessende Bereich gilt dabei als Vorratsstrecke, die der Bereitstellung fertiger Formen dient. Hieran schliesst sich die Giessstrecke an, die mit einer bei 4 angedeuteten, flüssiges Metall aufnehmenden Pfanne zum Abgiessen der sie durchlaufenden Giessformen bedienbar ist. Die an einem nicht dargestellten Schmelzofen vorbeiführende Führung der Pfanne 4 ist bei 5 angedeutet. Auf die durch die Pfanne 4 bedienbare Giessstrecke folgt die Kühlstrecke, in welcher die Gussstücke bis auf Auspacktemperatrur kühlen. In Fig. 1 besteht die Vorrats-, Giess- und Kühlstrecke aus einem Vorlaufast und einem Rücklaufast.
  • Zur Bildung der Vorrats-, Giess- und Kühlstrekke bzw. deren Vorlaufast und Rücklaufast, ist, wie am besten aus Fig. 2 erkennbar ist, ein mit stationär angeordneten Rollen versehener Rollengang 6 vorgesehen. Zur Aufnahme der als Ganzes mit 7 bezeichneten Giessformen, die hier als horizontal geteilte Doppelblockformen mit einem Oberteil 11 und einem Unterteil 12 ausgebildet sind, sind auf den Rollen des Rollengangs 6 laufende Transporteinheiten, hierin Form von jeweils eine Giessform 7 aufnehmenden Paletten 8, vorgesehen. Am Ende der Kühlstrecke werden die Paletten 8 mittels eines in Fig. 1 bei 9 angedeuteten Räumschilds abgeräumt und anschliessend zur Aufnahme einer neuen, die Formstation 1 verlassenden Giessform auf das hintere Ende des Vorlaufasts übergesetzt. Am vorderen Ende des Vorlaufasts werden die Paletten 8 samt der hierauf sich befindenden Giessform 7 auf den Rücklaufast übergesetzt. Hierzu sind an den Enden von Vorlaufast 3a bzw. Rücklaufast 3b vorgesehene, in Fig. 1 durch die Pfeile 10 angedeutete Übersetzaggregate vorgesehen. Diese können, wie aus Fig. 3 ersichtlich ist, aus jeweils einem mit einer Hubvorrichtung versehenen, senkrecht zur normalen Transportrichtung verfahrbaren Wagen bestehen. Die Oberteile 11 und Unterteile 12 der hier horizontal geteilten Giessformen 7 sollen im dargestellten Ausführungsbeispiel genau gleich gross sein und lotrecht zur Transportebene ausgerichtete Stirnflächen 13 und Seitenflächen 14 aufweisen. Die Länge der Giessformen 7 ist dabei, wie Fig. 2 weiter erkennen lässt, zumindest in Transportrichtung gesehen, grösser als die Länge der jeweils zugeordneten Palette 8, so dass die mittig aufgesetzten Giessformen 7 die jeweils zugeordnete Palette 8 in Transportrichtung nach vorne und hinten überragen. Die aufeinanderfolgenden Giessformen können sich daher mit ihren lotrechten Stirnflächen direkt aneinander abstützen, so dass sich im Bereich des Vorlaufasts 3a und des Rücklaufasts 3b der Vorrats-, Giess- und Kühlstrecke jeweils ein lückenloser Formenstrang 15 ergibt, wie Fig. 1 zeigt. Der durch die Antriebs- und Bremskräfte und gegebenenfalls durch die Wärmedehnungskräfte bewirkte Kraftfluss innerhalb jedes Formenstrangs 15 läuft dabei über die Giessformen 7. Die die Giessformen 7 aufnehmenden Paletten 8 bleiben hiervon unberührt. Die direkte gegenseitige stirnseitige Abstützung der Giessformen ermöglicht somit die Erzielung eines Armierungseffekts und lässt daher eine hohe Genauigkeit und Masshaltigkeit erwarten.
  • Jedem der Formenstränge 15 ist, wie die Fig. 2 und 3 zeigen, eine im Bereich seines hinteren Endes angeordnete, hier zweckmässig in den Rollengang 6 integrierte Antriebsstation 16 und eine im Bereich seines vorderen Endes angeordnete, zweckmässig in den Rollengang 6 integrierte Bremsstation 17 zugeordnet. Der Antriebsstation 16 und der Bremsstation 17 ist jeweils ein in Fig. 3 dargestelltes Antriebselement 18 bzw. Bremselement 19 zugeordnet, wobei im kinematischen Antriebskettenzug jeweils eine Rutschkupplung 20 vorgesehen ist, deren Übertragungsmoment einstellbar ist, so dass die in den zugeordneten Formenstrang 15 einzuleitende bzw. die aus diesem abzuleitende Antriebs- bzw. Bremskraft hierüber ebenfalls einstellbar ist. Hierdurch ist sichergestellt, dass keine unkontrollierten Kräfte auf den zugeordneten Formenstrang 15 wirken, so dass eine sehr schonende Handhabung der Giessformen 7 gewährleistet ist. Die Antriebsstation 16 und die Bremsstation 17 bestehen, wie Fig. 2 weiter erkennen lässt, aus jeweils mindestens einer Treibrolle 25 bzw. Bremsrolle 26, die reibschlüssig an den darüber hinweggehenden Paletten angreifen. Zur Vermeidung von Verschleiss ist dieser Reibschluss dabei zweckmässig stärker als das im Bereich der jeweils zugeordneten Rutschkupplung 20 maximal einstellbare Übertragungsmoment ausgelegt, so dass im Falle von Schlupf dieser im Bereich der Rutschkupplung auftritt. Die zwischen der Antriebsstation 16 und Bremsstation 17 sich befindenden Rollen des Rollengangs 6 sind einfach als frei drehbar gelagerte, unangetriebene Stützrollen 27 ausgebildet. Die Rollen 25, 26, 27 können als über die Breite des Rollengangs 6 durchgehende Rollen ausgebildet sein. Im dargestellten Ausführungsbeispiel finden jeweils einander gegenüberliegende Rollenpaare Verwendung. Im dargestellten Ausführungsbeispiel erstrecken sich die Antriebsstation 16 und die Bremsstation 17 jeweils etwa über die Länge einer Palette 8 und sind mit jeweils 3 Rollenpaaren bestückt, so dass die Antriebs- bzw. Bremskräfte bei jeder Einstellung der Kupplungen 20 sicher und ohne Schlupf übertragen werden können. Als Antriebselement 18 bzw. Bremselement 19 kann zweckmässig jeweils ein Elektro-Getriebemotor Verwendung finden. Zur Ausschaltung der inneren Reibung des Rollengangs 6 sind dessen Äste, wie aus Fig. 2 entnehmbar ist, gegenüber der Horizontalen so geneigt, dass die auf die Rollen wirkenden Lagerreibungskräfte und dergleichen durch den Hangabtrieb der hierauf sich befindenden Paletten 8 samt Giessformen 7 egalisiert sind.
  • Im ruhenden Zustand sind das Antriebselement 18 zumindest entgegen der Transportrichtung und das Bremselement 19 zumindest in Transportrichtung blockiert. Das Antriebselement 18 kann hierzu mit einem Rücklaufgesperre 30 versehen sein. Das Bremselement 19 ist mit einer bei Stillstand automatisch einfallenden Blockierbremse 31 versehen. Sofern der so zusammengehaltene Formenstrang unter der Wirkung innerer Wärmedehnungskräfte sich auszudehnen versucht, werden diese Wärmedehnungskräfte durch das blockierte Antriebselement 18 bzw. Bremselement 19 bis zur Höhe der durch die Rutschkupplungen 20 übertragbaren Kraft eingedämmt bzw. ganz im Strang festgehalten. Die Rutschkupplungen 20 sind daher zweckmässig so einzustellen, dass aufgrund von Wärmedehnungskräften kein Schlupf erfolgt, womit eine Ausdehnung des Formenstrangs 15 unterbunden ist. Die Wärmeausdehnungskräfte sind verhältnismässig leicht zu ermitteln, da diese, wie Versuche gezeigt haben, sich über der Länge des Strangs nicht summieren.
  • Bei der vorstehend genannten Einstellung der Rutschkupplungen 20 könnte es zu einem Gleiten der kompletten Formen 7 gegenüber den Paletten 8 bzw. der Formoberteile 11 gegenüber den zugehörigen Formunterteilen 12 kommen. Die zur Bewerkstelligung einer derartigen Verschiebung er- for.derliche Kraft ist jedoch ebenfalls leicht durch Versuche zu ermitteln und normalerweise bekannt. Eine Verschiebung der Formen 7 gegenüber den Paletten 8 bzw. der Formoberteile 11 gegenüber den Formunterteilen 12 unterbleibt, wenn die hierfür benötigte Verschiebekraft grösser als die Wärmeausdehnungskraft ist. Das ist soweit sich die Giessformen 7 gegenseitig abstützen, was im dargestellten Ausführungsbeispiel aufgrund der gleichen Grösse von Formoberteil und Formunterteil sowohl im Bereich der Oberteile 11 als auch im Bereich der Unterteile 12 der Fall ist, ohne weiteres gegeben, da von in Transportrichtung hinten gesehen die erste abgegossene Giessform, die einer Wärmedehnung unterliegen kann, sämtliche Giessformen der dahinter sich befindenden Vorratsstrecke verschieben müsste, so dass sich die für eine Form ermittelte Verschiebekraft vervielfacht. Bei Giessformen, bei denen die Oberteile etwas kleiner als die Unterteile ausgeführt sind, so dass im Bereich der Oberteile keine gegenseitige Abstützung gegeben ist, lässt sich dies durch eine entsprechende Beschwerung erreichen. Um in Fällen dieser Art jedoch auf jeden Fall eine Verschiebung der Oberteile gegenüber der zugehörigen Unterteile der im Bereich der Vorratsstrecke sich befindenden Giessformen 7 zu vermeiden, kann die von den Rutschkupplungen 20 übertragbare Kraft auf einen die Verschiebekraft leicht unterschreitenden Wert eingestellt werden, so dass sich eher eine leichte Dehnung des Formenstrangs 15 als ein gegenseitiger Versatz der Oberteile gegenüber den Unterteilen der im Bereich der Vorratsstrecke sich befindenden Giessformen ergibt. Dieser Fall tritt jedoch unter normalen Betriebsverhältnissen nicht ein.
  • Beim Beschleunigen des Formenstrangs 15 aus dem Stillstand auf die normale Betriebsgeschwindigkeit wird die Antriebsstation 16 aktiviert und hierüber die erforderliche Beschleunigungskraft in den Formenstrang 15 eingeleitet. Die Einstellung der zugeordneten Rutschkupplung 20 stellt dabei die Begrenzung der Beschleunigungskraft dar. Eine Aktivierung der Bremsstation 17 samt Bremselement 19 ist in dieser Phase nicht erforderlich. Es ist lediglich die Blockierbremse 31 zu lösen. Die Bremsstation 17 wird in diesem Fall einfach durch die über die Bremsrollen 26 hinweggehenden Paletten 8 leer mitgenommen. Der innere Widerstand beispielsweise im Bereich des das Bremselement 19 bildenden Getriebemotors wirkt dabei der Vorschubkraft entgegen. Die im Bereich der aneinander anliegenden Stirnseiten 13 von einer Giessform zurjeweils nächsten Giessform 7 übertragenen Beschleunigungskräfte nehmen von hinten nach vorne ab. In dem vor allem durch die Wärmedehnung gefährdeten hinteren Bereich des Formenstrangs ist daher eine ausreichende gegenseitige Einspannung der Giessformen 7 sichergestellt. Sobald die Transportgeschwindigkeit erreicht ist, wird das Bremselement 19 aktiviert und hierdurch die Transportgeschwindigkeit konstant gehalten. Dies kann durch Betätigen der Bremse 31 bewerkstelligt werden. Die auf den Formenstrang wirkende Bremskraft entspricht dabei der aus dem Übertragungsmoment der Rutschkupplung 20 sich ergebenden Kraft. Die dem Bremselement 19 zugeordnete Rutschkupplung ist zweckmässig auf einen etwas geringeren Wert eingestellt als die dem Antriebselement 18 zugeordnete Rutschkupplung 20, so dass die wirksam werdende Antriebskraft leicht überwiegt. Im dargestellten Ausführungsbeispiel werden der das Antriebselement 18 und der das Bremselement 19 bildende Getriebemotor gleichzeitig in Betrieb genommen. Während der Beschleunigungsphase läuft der das Bremselement 19 bildende Getriebemotor leer mit. Hierzu ist im zu den Bremsrollen 26 führenden kinematischen Antriebskettenzug ein eine Überholkupplung bildender Freilauf 32 vorgesehen. Sobald die von den Paletten 8 mitgenommenen Bremsrollen 26 schneller werden als der das Bremselement 19 bildende Getriebemotor bzw. der zugeordnete Getriebeausgang, wirkt der Freilauf 32 als Übertragungselement, wodurch das Bremselement 19 seinerseits durch die Bremsrollen 26 mitgenommen wird. Der das Bremselement 19 bildende Elektromotor wird dabei als Generator betrieben. Die auf den Formenstrang 15 wirkende Bremskraft entspricht dabei der Generatorkraft. Der das Bremselement 19 bildende Elektromotor ist steuerungsmässig mit dem das Antriebselement 18 bildenden Elektromotor verbunden und übernimmt, sobald er als Generator betrieben wird, hinsichtlich der Geschwindigkeit die Führung. Mit Hilfe des über den Freilauf 32 leer mitlaufenden, nach Überholung durch den Strang als Generator arbeitenden Bremselements 19 lässt sich in vorteilhafter Weise das Ende der Beschleunigungsphase ganz automatisch exakt erfassen, so dass sich eine sehr gleichmässige Strangbewegung ergibt. Die Übersetzung des dem Bremselement zugeordneten Getriebes ist zweckmässig etwas kleiner als die Übersetzung des dem Antriebselement 18 zugeordneten Getriebes, so dass sich bei gleicher Motordrehzahl im Bereich der Bremsstation eine etwas kleinere Getriebeausgangsdrehzahl ergibt als im Bereich der Antriebsstation. Hierdurch ist sichergestellt, dass bereits im letzten Bereich der Beschleunigungsphase sowie während des normalen Vorschubbetriebs eine definierte Generatorkraft als Bremskraft zur Verfügung steht, wodurch der Formenstrang sauber zusammengehalten wird.
  • Das dem Antriebselement 18 und dem Bremselement 19 zugeordnete Getriebe kann mit dem jeweiligen Elektromotor zu einer Baueinheit zusammengefasst oder, wie im dargestellten Ausführungsbeispiel bei 33 angedeutet ist, als separates Vorgelege ausgebildet sein. Zum Beendigen der Bewegung des Formenstrangs wird die Antriebsstation 16 durch Abschalten des zugehörigen Elektromotors passiviert. Gleichzeitig wird die Bremse 31 des Bremselements 19 betätigt und dadurch der das Bremselement 19 bildende Motor blockiert. Die auf den Formenstrang wirkende Bremskraft entspricht dabei der aus dem im Bereich der zugehörigen Rutschkupplung 20 übertragbaren Drehmoment sich ergebenden Kraft. Die blockierte Bremse 31 ergibt dabei zusammen mit dem automatisch wirkenden Rücklaufgesperre 30 im Bereich der Antriebsstation 16 die vor allem im Stillstand gewünschte Einspannung des Formenstrangs 15 zwischen Antriebsstation 16 und Bremsstation 17, wodurch sich die erwünschte stirnseitige Armierung der Giessformen 7 ergibt.
  • Zusätzlich zur stirnseitigen Armierung der Giessformen 7 können auch die Seitenflächen 14 armiert werden. Hierzu können, wie am besten aus Fig. 4 erkennbar ist, an den Seitenflächen 14 der Giessformen 7 anliegende Klemmplatten 21 Verwendung finden. Im dargestellten Ausführungsbeispiel sind die Klemmplatten 21 durch zweiarmige Winkelhebel 22 an einem auf das Formoberteil 11 zur Beschwerung aufgelegten Lasteisen 23 schwenkbar gelagert. Die Winkelhebel 22 bilden mit ihren das zugehörige Lasteisen 23 überragenden Armen eine sich öffnende Schere, in welche zur Bewerkstelligung einer selbsthemmenden Verriegelung und weiteren Beschwerung ein Knüppel 24 einlegbar ist. Zusammen mit der stirnseitigen Abstützung der Giessformen und gleichzeitigen Einspannung des Formenstrangs ergibt sich hiermit eine einer Kastenarmierung gleichwertige Armierung der Giessformen 7 auf sämtlichen vier Umfangsflächen, was eine bei kastenlosen Formen bisher nicht für möglich gehaltene Fertigungsgenauigkeit erwarten lässt.
  • Zum Anstellen von aus der Formstation 1 ausgestossenen neuen Giessformen an das hintere Ende des Formenstrangs 15 ist eine der Antriebsstation 16 vorgeordnete Zubringeinrichtung 127 vorgesehen. Der Bremsstation 17 jedes Formenstrangs 15 ist eine Abzugseinrichtung 28 nachgeordnet, mit welcher die jeweils vorderste Giessform des zugeordneten Formenstrangs vom vorderen Strangende abziehbar ist. Die Zubringeinrichtung 127 und die Abzugseinrichtung 28 bestehen hier, wie aus Fig. erkennbar ist, ebenfalls aus drei Treibrollenpaaren 25, die über hinsichtlich des übertragbaren Moments einstellbare Rutschkupplungen 20 mit einem zugeordneten Antriebselement 29 gekuppelt sind. Da im Bereich der Zubringeinrichtung 127 und der Abzugseinrichtung 28 jeweils lediglich eine Giessform samt Palette zu beschleunigen ist, können die jeweils zugeordneten Rutschkupplungen 20 auf ein verhältnismässig kleines Übertragungsmoment eingestellt werden, so dass die zugeordneten Antriebselemente 29 bereits beim Auftreten eines leichten Widerstands leer durchdrehen, womit einer Beanspruchung der zugeordneten Giessform entgegengewirkt wird. Eine im Bereich der Zubringeinrichtung 127 wirksame Vorschubkraft in der Grösse von 100 N hat sich als besonders zweckmässig erwiesen. Die Zubringeinrichtung 127 und die Abzugseinrichtung 28 laufen zur Bewerkstelligung einer wirksamen Zustellung bzw. eines wirksamen Abzugs mit jeweils einer die Transportgeschwindigkeit des zugeordneten Formenstrangs leicht übersteigenden Geschwindigkeit und die Geschwindigkeitsdifferenz im Bereich der Zubringeinrichtung 127 ist dabei vorzugsweise so gewählt, dass die hieraus resultierende kinetische Energie beim Auflauf der anzustellenden Giessform auf das hintere Ende des Formenstrangs im plastischen Bereich des Formsandes aufnehmbar ist und zum Versetzen des Formoberteils gegenüber dem zugehörigen Formunterteil nicht ausreicht. Eine Geschwindigkeitsdifferenz in der Grössenordnung von 5 cm/s hat sich als besonders zweckmässig erwiesen. Die Übersetzaggregate 10 sind im dargestellten Ausführungsbeispiel in die Zubringeinrichtung 127 bzw. die Abzugseinrichtung 28 integriert. Sofern, wie im dargestellten Ausführungsbeispiel, über jeweils ein Antriebselement und eine diesem jeweils nachgeordnete Rutschkupplung 20 jeweils mehrere Rollen bzw. Rollenpaare angetrieben werden, sind diese selbstverständlich durch Ketten, Zahnräder oder dergleichen drehschlüssig miteinander verbunden.
  • Den Fig. 5 und 6 liegt eine Transportvorrichtung für einen ebenfalls mit 15 bezeichneten Formenstrang zugrunde, der aus mit lotrechter Teilfuge aneinandergereihten Giessformen 7 besteht. Hierbei kann es sich um jeweils gleiche Monoblockformen handeln, wie im Falle der Fig. 5, oder um sogenannte Doppelblockformen, die jeweils aus einem Oberteil und einem Unterteil bestehen und nach Fertigstellung um 90° gekippt werden, gemäss Fig.6. Der Transport des Formenstrangs 15 erfolgt dabei schrittweise entsprechend dem Nachschub neuer Giessformen aus der hier nicht dargestellten Formstation. Während der Bewegungsphase ruht der gesamte, aus lückenlos aneinandergereihten Giessformen 7 bestehende Strang 15 auf mehreren, hintereinander angeordneten Transporteinheiten. Die Transporteinheiten sind dabei als schrittweise vor- und zurückbewegbare Förderroste 34 ausgebildet, die aus mehreren, mit Abstand nebeneinander angeordneten Schienen bestehen und mit einem über die gesamte Länge des zugeordneten Formenstrangs 15 sich erstreckenden Standrost 35 kämmen, der ebenfalls aus mehreren mit Abstand nebeneinander angeordneten Schienen besteht, die zwischen die Schienen der die Transporteinheiten bildenden Förderroste 34 mit ausreichend Laufspiel eingreifen. Der Standrost 35 ist stationär angeordnet. Die Förderroste 34 werden auf einem ebenfalls mit 6 bezeichneten Rollengang aufgenommen, dessen Aufbau und Funktionsweise dem Rollengang 6 gemäss Fig. 2 und 3 im wesentlichen entspricht. Für gleiche Teile finden daher gleiche Bezugszeichen Verwendung. Der Rollengang 6 besteht demnach auch im vorliegenden Ausführungsbeispiel aus dem Bereich seines hinteren Endes angeordneten Treibrollen 25 zur Bildung einer Antriebsstation, aus im Bereich seines vorderen Endes angeordneten Bremsrollen 26 zur Bildung einer Bremsstation und zwischen Antriebs- und Bremsstation angeordneten unangetriebenen Stützrollen 27. Die Treibrollen 25 und Bremsrollen 26 sollen auch im vorliegenden Ausführungsbeispiel unter Zwischenschaltung einer jeweils zugeordneten Rutschkupplung, deren Übertragungsmoment einstellbar ist, mit einem Elektro-Getriebemotor als Antriebselement verbunden sein, wobei der den Bremsrollen 26 zugeordnete Elektro-Getriebemotor wie im obigen Beispiel gemäss Fig. 2 und 3 mit einer Blockierbremse der in Fig. 3 bei 31 angedeuteten Art versehen sein soll und wobei ebenfalls im kinematischen Antriebskettenzug ein Freilauf der in Fig. bei 32 angedeuteten-Art vorgesehen sein soll. Der Betriebsablauf während der Beschleunigungs-, Bewegungs- und Bremsphase ist derselbe wie weiter oben anhand der Fig. 2 und 3 geschildert. Die Förderroste 34 nehmen im dargestellten Ausführungsbeispiel jeweils mehrere hintereinander angeordnete Giessformen 7 auf. Die Länge der Förderroste 34 ist jedoch so bemessen, dass die hierauf aufgenommenen Giessformen 7 zusammen eine etwas grössere Gesamtlänge aufweisen. Bei mittiger Anordnung ergibt sich somit eine entsprechende Auskragung nach vorne und hinten, so dass der Kraftfluss während der Bewegung der Förderroste 34 innerhalb des Formenstrangs 15 verläuft, wodurch der Formenstrang 15 auch während der Bewegungsphasen zusammengehalten wird und die inneren Wärmedehnungskräfte eingedämmt werden. Das mit der den Treibrollen 25 zugeordneten Rutschkupplung übertragbare Drehmoment ist dabei auf einen solchen Wert eingestellt, dass die benötigte Vorschubkraft zur Beschleunigung des Formenstrangs 15 gerade übertragen werden kann. Die den Bremsrollen 26 zugeordnete Rutschkupplung kann dabei zweckmässig auf einen etwas kleineren Wert eingestellt werden.
  • In den etwa durch fehlenden Nachschub von flüssigem Metall verursachten Ruhepausen kann der Formenstrang 15 auf den Förderrosten 34 aufgenommen werden, wobei die zugeordneten Treibrollen 25 und Bremsrollen 26 zur Eindämmung einer Wärmedehnung des Formenstrangs 15 entgegen der bzw. in Förderrichtung blockiert sind, ebenfalls wie bei der Ausführung nach Fig. 2 und 3. Hierzu kann ebenfalls ein Rücklaufgesperre bzw. eine Blockierbremse vorgesehen sein. Die der Wärmedehnungskraft entgegenwirkende Kraft entspricht der aus dem an den Kupplungen 20 eingestellten Übertragungsmoment resultierenden Kraft, die zur vollständigen Unterbindung von Wärmedehnung zweckmässig über der Wärmeausdehnungskraft liegt. Sofern der Formenstrang 15 in den Ruhepausen auf dem Standrost 35 aufliegt, wird die Wärmeausdehnung durch die Reibungskraft im Bereich der Strangauflage eingedämmt.
  • Der Standrost 35 und die als Transporteinheiten dienenden Förderroste 34 sind in Vertikalrichtung alternativ gegeneinander so verstellbar, dass der Formenstrang 15 entweder auf den Förderrosten 34 aufliegt, wie in Fig. 5 angedeutet ist, oder auf dem Standrost 35, wie in Fig. 6 angedeutet ist. Der auf den Förderrosten 34 abgesetzte Formenstrang 15 wird dabei von diesen jeweils um die Länge einer Giessform nach vorne bewegt und am Ende der zugeordneten Bewegungsstrecke auf dem Standrost 35 abgesetzt. Anschliessend werden die freigegebenen Förderroste 34 in ihre Ausgangsstellung zurückgeholt. Dies lässt sich beispielsweise durch Umsteuern der Treibrollen 25 bewerkstelligen. Dabei ist der Abstand zwischen den einzelnen Förderrosten durch geeignete Mitnehmer auf ein konstantes Mass fixiert. Diese Fixierung löst sich, sobald die Förderroste zum Eingriff mit dem Strang gebrachtwerden.
  • Zwischen dem in Transportrichtung hintersten Förderrost 34 und der nicht dargestellten Formstation ist eine Zubringeinrichtung 127 vorgesehen. Diese besteht aus einem auf Treibrollen 25 abgesetzten Aufschubwagen 36, der im selben Masse wie die Förderroste 34 voneinander distanzierte Schienen aufweist, die zwischen die Schienen des Standrostes 35 eingreifen können. Der Aufschubwagen 36 ist mit dem benachbarten Förderrost 34 über Führungsstifte 37 verbunden, die eine exakte Zentrierung gewährleisten. Zur Positionierung der auf den Aufschubwagen 36 mit Hilfe eines Stempels 38 aufschiebbaren Giessform sind verstellbare Schilde 39 vorgesehen, von denen einer gegen einen einstellbaren Anschlag am Wagenrahmen feststellbar ist und der andere mittels eines Zylinder-Kolbenaggregats verstellbar ist. Hiermit wird die zwischen die Schilde 39 eingeschobene Giessform an den feststellbaren Schild angedrückt und damit genau ausgerichtet. Für Doppelblockformen, die aus einem Oberteil 11 und einem Unterteil 12 bestehen, findet ein Wagen mit winkelförmig ausgebildetem Rost Verwendung, der, wie Fig. 6 zeigt, um eine Drehachse 40 um 90° kippbar ist, so dass sich anschliessend lotrecht zur Transportebene ausgerichtete Teilf ugen 41 ergeben.
  • Die der Zubringeinrichtung 127 zugeordneten Treibrollen 25 sind ebenfalls über eine krafteinstellbare Rutschkupplung mit einem zugeordneten Antriebsmotor verbunden. Das von dieser Rutschkupplung übertragbare Moment ist dabei so einzustellen, dass die hieraus resultierende Vorschubkraft etwa 100 N ergibt. Sobald der Widerstand beim Auftreffen der anzustellenden Giessform auf das hintere Ende des Formenstrangs 15 diese Kraft erreicht, dreht die Kupplung durch, so dass eine Deformation bzw. Beschädigung der Giessform mit Sicherheit vermieden wird. Die Geschwindigkeit der der Zubringeinrichtung 127 zugeordneten Treibrollen 25 ist so eingestellt, dass sich ein Geschwindigkeitsüberschuss der anzustellenden Giessform gegenüber dem bewegten Formenstrang 15 um etwa 5 cm/s ergibt. Die beim Auftreffen der Giessform auf das hintere Ende des Formenstrangs freiwerdende kinetische Energie wird dabei im plastischen Bereich des Formmaterials aufgenommen, so dass auch von dieser Seite her stossartige Belastungen und damit Deformationen und Beschädigungen unterbleiben. Der Anschluss einer neuen Giessform an das in Transportrichtung hintere Ende des Formenstrangs 15 erfolgt zweckmässig während der durch die Förderroste 34 bewerkstelligten Vorwärtsbewegung bei abgesenktem Standrost 35. Bei der Rückwärtsbewegung wird die jeweils letzte Giessform 7 auf eine zu einer nicht näher dargestellten Auspackstation führende Transporteinrichtung 42 abgestossen. Die Rückwärtsbewegung des Aufschubwagens 36 in seine Ausgangsstellung kann zweckmässig ebenfalls durch Umsteuerung der zugeordneten Treibrollen 25 bewerkstelligt werden. Es wäre aber auch denkbar, die Förderroste hierbei ohne eigenen Antrieb zu lassen und an den Aufschubwagen anzuhängen, etwa mittels einer mit den Förderrosten 34 und dem Aufschubwagen 36 in Eingriff kommenden Transportkette.
  • Die erfindungsgemäss zum Einsatz kommenden Rutschkupplungen 20 sind zweckmässig als berührungslose elektrostatische Hysteresekupplungen ausgebildet, was eine vollkommene Verschleissfreiheit gewährleistet.

Claims (16)

1. Verfahren zum Transport kastenloser Giessformen (7) über eine zumindest einen geradlinigen Ast aufweisende Vorrats-, Giess- und Kühlstrecke (3) einer Giessanlage, wobei die lotrecht zur Transportebene ausgerichtete Stirn- und Seitenflächen (13 bzw. 14) aufweisenden Giessformen (7) zu einem lückenlosen Formenstrang (15) zusammengestellt werden, an den im Bereich seines hinteren Endes laufend neue Giessformen angestellt und im Bereich seines vorderen Endes im selben Masse laufend Giessformen abgenommen werden und wobei die zum Beschleunigen des zu transportierenden Formenstrangs erforderlichen Kräfte in jeweils einstellbarer Grösse am in Transportrichtung hinteren Ende des Formenstrangs in diesen eingeleitet werden, dadurch gekennzeichnet, dass die Beschleunigung des Formenstrangs (15) unabhängig von der Beschleunigung der an das hintere Ende des Formenstrangs (15) jeweils anzustellenden neuen Giessform (7) erfolgt und dass die zur Beschleunigung bzw. zum Abbremsen des gesamten Formenstrangs (15) zwischen der der hieran anzustellenden neuen Giessform (7) nachgeordneten, hintersten Giessform (7) und der der hiervon abzunehmenden Giessform (7) vorgeordneten, vordersten Giessform (7) erforderlichen Kräfte bzw. die zum Zusammenhalten des gesamten Formenstrangs (15) erforderlichen, der Wärmeausdehnung entgegenwirkenden Kräfte in das hintere, der anzustellenden Giessform (7) nachgeordnete Ende des Formenstrangs (15) bzw. das vordere, der abzunehmenden Giessform (7) vorgeordnete Ende des Formenstrangs (15) eingeleitet und auf der gesamten Länge des Formenstrangs (15) zwischen der der hieran anzustellenden Giessform (7) nachgeordneten hintersten Giessform (7) und der der hiervon abzunehmenden Giessform (7) vorgeordneten, vordersten Giessform (7), ausschliesslich durch die Giessformen (7) selbst von einer Giessform (7) zur nächsten gleichförmig übertragen werden.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Formenstrang (15) ausserhalb der Beschleunigungsphasen, insbesondere innerhalb der Ruhepausen, mit einer einstellbaren, der Wärmeausdehnungskraft entgegenwirkenden Kraft zusammengehalten wird.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass die den Formenstrang (15) zusammenhaltende Kraft grösser als die zur vollständigen Unterbindung einer Wärmeausdehnung innerhalb des Formenstrangs (15) benötigte Kraft ist.
4. Verfahren nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass die den Formenstrang (15) zusammenhaltende Kraft kleiner als die zum Verschieben der jeweils ersten abgegossenen Giessform (7) benachbarten Giessform bzw. deren Teile (11, 12) auf ihrer jeweiligen Unterlage benötigte Kraft ist.
5. Verfahren nach wenigstens einem der vorhergehenden Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die zum Verschieben der jeweils ersten abgegossenen Giessform (7) benachbarten Giessform (7) bzw. deren Teile (11, 12) auf ihrer jeweiligen Unterlage benötigte Kraft grösser als die aufgrund der Wärmeausdehnung innerhalb des Formenstrangs (15) entstehende Kraft ist.
6. Vorrichtung zum Transport eines aus kastenlosen Giessformen (7) zusammengestellten Formenstrangs (15) mit einem zwischen der Formstation (1) und einer Auspackstation (2) angeordneten, zumindest einen geradlinigen Ast aufweisenden, durch stationäre Rollen (25, 26, 27) gebildeten Rollengang (6), auf dem jeweils eine oder mehrere Giessformen (7) tragende Transporteinheiten (Paletten 8, Förderroste 34) bewegbar sind, dadurch gekennzeichnet, dass die Länge der Transporteinheiten (8, 34) in Transportrichtung kleiner als die Länge der hierauf jeweils aufnehmbaren Giessform (7) bzw. Giessformen (7) ist, die auf der jeweils zugeordneten Transporteinheit (8, 34) in Transportrichtung nach vorne und hinten auskragend angeordnet sind, und dass die innerhalb eines Astes des Formenstrangs (15) in Transportrichtung jeweils hinterste und vorderste Transporteinheit (8, 34) unter Zwischenschaltung jeweils mindestens einer Rutschkupplung (20), deren Übertragungsmoment einstellbar ist, im Eingriff mit einer Antriebsstation (16) bzw. Bremsstation (17) ist.
7. Vorrichtung nach Anspruch 6, dadurch gekennzeichnet, dass die Antriebsstation (16) aus mindestens einer unter Zwischenschaltung der zugeordneten Rutschkupplung (20) mit einem zumindest entgegen der Transportrichtung blokkierbaren Antriebselement (18) verbundenen Treibrolle (25) und die Bremsstation (17) aus mindestens einer unter Zwischenschaltung der zugeordneten Rutschkupplung (20) mit einem zumindest in Transportrichtung blockierbaren Bremselement (19, 31) verbundenen Bremsrolle (26) bestehen, dass die Treib- bzw. Bremsrollen (16 bzw. 17) reibschlüssig an den hierauf jeweils ruhenden Transporteinheiten (8, bzw. 34) angreifen, wobei die von den Treib- bzw. Bremsrollen (25 bzw. 26) übertragbare Kraft grösser als die aus dem an der jeweils zugeordneten Rutschkupplung maximal einstellbaren Übertragungsmoment resultierende Kraft ist, und dass die zwischen der Antriebsstation (16) und der Bremsstation (17) angeordneten Rollen als unangetriebene Stützrollen (27) ausgebildet sind.
8. Vorrichtung nach Anspruch 6 oder 7, dadurch gekennzeichnet, dass jeder Ast des Rollengangs (6) in Förderrichtung so geneigt ist, dass die auf seine Rollen (25, 26, 27) wirkenden Widerstände durch den Hangabtrieb des Formenstrangs (15) zumindest nahezu vollständig egalisiert sind.
9. Vorrichtung nach wenigstens einem der vorhergehenden Ansprüche 6 bis 8, dadurch gekennzeichnet, dass das der Antriebsstation (16) zugeordnete Antriebselement (18) und das der Bremsstation (17) zugeordnete Bremselement (19) zumindest während der Beschleunigungsphasen und des hieran sich anschliessenden Vorschubs des Formenstrangs (15) gemeinsam in Transportrichtung angetrieben sind, wobei die Ausgangsdrehzahl im Bereich der Bremsstation kleiner als im Bereich der Antriebsstation ist, und dass das von der Rutschkupplung (20) der Bremsstation (17) übertragbare Moment kleiner als das von der Rutschkupplung (20) der Antriebsstation (16) übertragbare Moment ist.
10. Vorrichtung nach Anspruch 9, dadurch gekennzeichnet, dass das Antriebselement (18) und das Bremselement (19) jeweils einen Elektromotor enthalten, wobei der Elektromotor des Bremselements (19) zum Bremsen des Formenstrangs (15) als Generator betreibbar ist, der mit dem Elektromotor des Antriebselements (18) steuerungsmässig rückgekoppelt ist, und dass zwischen dem Elektromotor des Bremselements (19) und der jeweils zugeordneten Bremsrolle bzw. den jeweils zugeordneten Bremsrollen (26) der Bremsstation (17) ein eine Überholkupplung bildender Freilauf (32) vorgesehen ist, der als Übertragungselement wirkt, sobald die vom Formenstrang (15) mitgenommenen Bremsrollen (26) den Elektromotor des zugeordneten Bremselements (19) überholen.
11. Vorrichtung nach wenigstens einem der vorhergehenden Ansprüche 6 bis 10, dadurch gekennzeichnet, dass der Rollengang (6) einer der Antriebsstation (16) vorgeordnete Zubringeinrichtung (127) aufweist, die mindestens eine über eine einstellbare Rutschkupplung (20) mit einem zugeordneten Antriebselement (29) verbundene Treibrolle (25) aufweist, die geringfügig schneller antreibbar ist, als die Treibrollen (25) der Antriebsstation (16).
12. Vorrichtung nach wenigstens einem der vorhergehenden Ansprüche 6 bis 11, insbesondere zum Transport von Giessformen mit vertikaler Teilfuge, dadurch gekennzeichnet, dass die Transporteinheiten als auf dem Rollengang (6) jeweils um die Breite mindestens einer Giessform (7) schubweise vor- und zurückbewegbare Förderroste (34) ausgebildet sind, die mit einem in Transportrichtung stationären, über die Länge des Formenstrangs (15) durchgehenden Standrost (35) kämmen, der mit seiner Auflageebene zur Übernahme des Formenstrangs (15) über die Auflageebene der Förderroste (34) anhebbar und zur Übergabe des Formenstrangs (15) an die Förderroste (34) darunter absenkbar ist, dass die Förderroste (34) nach erfolgtem Vorschub und bei auf dem Standrost (35) ruhendem Formenstrang (15) in ihre Ausgangslage zurückfahrbar sind, und dass die Zubringeinrichtung (127) einen zwischen der Formstation und der hintersten Transporteinheit bewegbaren, durch mindestens eine zugeordnete Treibrolle (25) antreibbaren Aufschubwagen (36) aufweist, auf den jeweils die aus der Formstation ausgestossene Giessform (7) aufschiebbar ist und der mit Positioniereinrichtungen (Schilde 39) zum genauen Positionieren der jeweils aufgeschobenen Giessform versehen und durch Führungsmittel (Führungsstifte 37) mit der jeweils benachbarten Transporteinheit verbunden ist.
13. Vorrichtung nach Anspruch 12, dadurch gekennzeichnet, dass der Aufschubwagen (36) zum Aufstellen von in der Formstation mit horizontaler Teilfuge geformten Giessformen (7) einen um eine quer zur Förderrichtung verlaufende, horizontale Achse (40) um 90° schwenkbaren Winkelrost aufweist.
14. Vorrichtung nach wenigstens einem der vorhergehenden Ansprüche 6 bis 12, insbesondere zum Transport von Giessformen mit horizontaler Teilfuge, dadurch gekennzeichnet, dass die Transporteinheiten als auf dem mindestens einen Vorlaufast und einen Rücklaufast aufweisenden Rollengang (6) umlaufende Paletten (8) ausgebildet sind, die am in Transportrichtung vorderen Ende jedes Astes mittels eines Übersetzaggregats (10) auf den jeweils nachfolgenden Ast des Rollengangs (6) umsetzbar sind, und dass die Paletten (8) dem Übersetzaggregat (10) mittels einer der Bremsstation (17) nachgeordneten Abzugseinrichtung (28) zuführbar sind, die mindestens eine über eine einstellbare Rutschkupplung (20) mit einem zugeordneten Antriebselement (29) verbundene Treibrolle (25) aufweist, die geringfügig schneller als die Treibrolle bzw. Treibrollen (25) der Antriebsstation (16) antreibbar ist.
15. Vorrichtung nach wenigstens einem der vorhergehenden Ansprüche 6 bis 14, dadurch gekennzeichnet, dass die einstellbaren Rutschkupplungen (20) als berührungslose Magnetkupplungen, vorzugsweise magnetostatische Hysteresekupplungen ausgebildet sind.
16. Vorrichtung nach wenigstens einem der vorhergehenden Ansprüche 6 bis 15, dadurch gekennzeichnet, dass die in Transportrichtung sich erstreckenden Seitenflächen (14) der den Formenstrang (15) bildenden Giessformen durch Klemmplatten (21) armierbar sind, die mittels selbsthemmend verriegelbarer Hebel (22) an einem auf die Formen (7) auflegbaren Lasteisen (23) gelagert sind, das am Ende des Rollengangs von der der Auspackstation (2) zugeführten Giessform (7) abnehmbar ist.
EP81900652A 1980-03-24 1981-03-09 Verfahren und vorrichtung zum transport eines aus kastenlosen-giessformen zusammengestellten formenstrangs Expired EP0048248B1 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE3011265 1980-03-24
DE19803011265 DE3011265C2 (de) 1980-03-24 1980-03-24 Verfahren und Vorrichtung zum Transportieren von kastenlosen Sandgießformen
DE3020349 1980-05-29
DE19803020349 DE3020349C1 (de) 1980-05-29 1980-05-29 Verfahren und Vorrichtung zum Transportieren von zu einem Strang zusammengefuegten senkrecht geteilten Sandblock-Giessformen

Publications (2)

Publication Number Publication Date
EP0048248A1 EP0048248A1 (de) 1982-03-31
EP0048248B1 true EP0048248B1 (de) 1985-02-06

Family

ID=25784511

Family Applications (1)

Application Number Title Priority Date Filing Date
EP81900652A Expired EP0048248B1 (de) 1980-03-24 1981-03-09 Verfahren und vorrichtung zum transport eines aus kastenlosen-giessformen zusammengestellten formenstrangs

Country Status (5)

Country Link
US (1) US4438801A (de)
EP (1) EP0048248B1 (de)
JP (1) JPS6323870B2 (de)
DE (1) DE3168715D1 (de)
WO (1) WO1981002698A1 (de)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4588014A (en) * 1982-07-23 1986-05-13 Osborn Manufacturing Corporation Foundry molding apparatus and method
US4655752A (en) * 1983-10-24 1987-04-07 Acufex Microsurgical, Inc. Surgical cannula
DE3437702C1 (de) * 1984-10-15 1985-06-13 Eugen Dipl.-Ing. 8877 Burtenbach Bühler Verfahren und Formanlage zur Herstellung von horizontal geteilten kastenlosen Sandblock-Gießformen
DE3610119A1 (de) * 1986-03-26 1987-10-01 Glama Maschinenbau Gmbh Giessanlage
US4880792A (en) * 1986-11-06 1989-11-14 Mazda Motor Corporation Molding installation using die
JPH01144768A (ja) * 1987-11-30 1989-06-07 Plus Kk 電子式黒板装置
CH677330A5 (de) * 1988-09-01 1991-05-15 Fischer Ag Georg
US5063987A (en) * 1988-09-01 1991-11-12 George Fischer Ag Apparatus for cooling molds
DK95689A (da) * 1989-02-28 1990-08-29 Dansk Ind Syndikat Apparat til vaegtning og sideafstoetning af kasseloese sandformparter med vandret skilleflade
JPH02284743A (ja) * 1989-04-27 1990-11-22 Aisin Takaoka Ltd 鋳型造型機の金型交換装置
DK34595A (da) * 1995-03-30 1996-10-01 Dansk Ind Syndikat Fremgangsmåde ved fremføring af støbeforme og et anlæg til brug ved udøvelse af fremgangsmåden
EP0849019A1 (de) * 1996-12-19 1998-06-24 Inversiones Iglor, S.L. Transportsystem für kastenlose Formen und Formen mit Kasten
US5901774A (en) * 1997-01-15 1999-05-11 Hunter Automated Machinery Corporation Linear mold handling system with double-deck pouring and cooling lines
US6145577A (en) * 1997-01-15 2000-11-14 Hunter Automated Machinery Corporation Linear mold handling system
US6571860B2 (en) 1997-01-15 2003-06-03 Hunter Automated Machinery Corporation Two tiered linear mold handling systems
CN105798243B (zh) * 2014-12-31 2019-03-22 保定维尔铸造机械股份有限公司 一种用于制备球墨铸铁的垂直分型射压造型机

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1783120C (de) *
DE2417197B2 (de) * 1974-04-09 1976-02-19 Gustav Zimmermann Maschinenfabrik GmbH, 4000 Düsseldorf Vorrichtung zum herstellen von kastenlosen sandformen

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1965945A1 (de) * 1968-08-19 1971-03-11 Buehler Eugen Verfahren und Einrichtung zum Transport von in horizontaler Richtung aus einer kastenlosen Formmaschine ausgeschobenen,auf mindestens einer Horizontalfoerderstrecke einen zusammenhaengenden Formstrang bildenden und seitlich in Laengsrichtung abgestuetzten Sandformen
DK123914B (da) * 1971-03-04 1972-08-21 Dansk Ind Syndikat Maskine til fremstilling af støbeforme bestående af med hinanden samlede, ens formparter.
DE2138578A1 (de) * 1971-08-02 1973-02-22 Bangor Punta Operations Inc Foerderbahn fuer giessformen
US3800935A (en) * 1971-09-30 1974-04-02 Fauver J Inc Conveyor drive control system
DK141012B (da) * 1976-06-04 1979-12-24 Dansk Ind Syndikat Støbeanlæg med trinvis fremforing af en støbeform bestående af tæt sammenstillede, ens formparter med lodret skilleflade på en vandret transportbane.
US4112999A (en) * 1977-03-07 1978-09-12 Roberts Corporation Conveyor control system
US4180156A (en) * 1977-06-20 1979-12-25 Grubman Viktor G Device for handling flaskless moulds

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1783120C (de) *
DE1583526C (de) * 1967-08-18 1971-09-02 Buhler, Dipl Ing Eugen, 8871 Burtenbach Verfahren und Fromanlage zum Her stellen waagrecht geteilter kastenloser Sandformen mittels doppelseitiger hon zontaler Modellplatte, Formrahmen und vertikal beweglichem Preßstempel
DE2417197B2 (de) * 1974-04-09 1976-02-19 Gustav Zimmermann Maschinenfabrik GmbH, 4000 Düsseldorf Vorrichtung zum herstellen von kastenlosen sandformen

Also Published As

Publication number Publication date
DE3168715D1 (en) 1985-03-21
WO1981002698A1 (en) 1981-10-01
EP0048248A1 (de) 1982-03-31
US4438801A (en) 1984-03-27
JPS6323870B2 (de) 1988-05-18
JPS57500462A (de) 1982-03-18

Similar Documents

Publication Publication Date Title
EP0048248B1 (de) Verfahren und vorrichtung zum transport eines aus kastenlosen-giessformen zusammengestellten formenstrangs
DE1272695B (de) Maschine zum Giessen von Suesswaren in Formen mit Puderfuellung
EP2689664B1 (de) Verfahren und Anlage zur zeitlich begrenzten Aufnahme von Backgutträgern
DE3020349C1 (de) Verfahren und Vorrichtung zum Transportieren von zu einem Strang zusammengefuegten senkrecht geteilten Sandblock-Giessformen
DE3011265B1 (de) Verfahren und Vorrichtung zum Transportieren von kastenlosen Sandgiessformen
DE3300441C2 (de) Speicheranlage für auf Unterlagen, wie Paletten, angeordnete Beton- oder Keramikformlinge
EP0068400A2 (de) Vorrichtung zum Querfördern von Strangabschnitten in einer Mehrstranggiessanlage
DE2648296B2 (de) Rahmenlose Halte- und Tragevorrichtung für die Gießbleche einer Schokoladengießanlage
EP0015415B1 (de) Werkstücktransporteinrichtung
DE2839984A1 (de) Verfahren und vorrichtung zum transportieren von spaltplatten in eine umsetzstellung
DE2541620A1 (de) Verfahren und einrichtung zum handhaben bzw. laden von behaeltern
DE2620908C2 (de) Vorrichtung zum Palettieren von stehenden Fässern
AT254014B (de) Vorrichtung zum gleichzeitigen Be- und Entladen ein- oder mehrflächiger Gestelle
DE3416019C2 (de) Vorrichtung zum Transportieren von horizontal geteilten, kastenlosen Sandgießformen für Gießereizwecke
DE2617255A1 (de) Verfahren und anlage zum handhaben von gussformen
DE2138578A1 (de) Foerderbahn fuer giessformen
EP0565062B1 (de) Gerät für das Umsetzen eines zu umreifenden Gutes
DE2200205A1 (de) Verfahren und vorrichtung zur behandlung von ziegelformlingen fuer das mechanische setzen von stapeln, insbesondere auf ofenwagen
DE2042779C3 (de) Vorrichtung zum Herstellen von Gegenständen aus geschäumtem thermoplastischen Kunststoff
DE530976C (de) Toepfereimaschine mit Drehtellern und einem darueber angeordneten Formtisch
DE2432146A1 (de) Vorrichtung zum beladen von paletten mit stueckguetern
DE2303855C3 (de) Vorrichtung zum Verschieben schwerer Bauteile, insbesondere zum Verschieben von Sektionen eines Schiffes
DE2322240C3 (de) Anlage zum Stapeln von Metallbarren (Gußblöcken) zu einem Paket
DE2501240C3 (de) Verfahren und Vorrichtung zum Abstechen von Abschnitten von einer Schicht aus Bitumen oder einem ähnlichen Produkt
DE1506946C (de) Vorrichtung zum Beladen von Paletten

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): DE FR GB

17P Request for examination filed

Effective date: 19820319

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BUEHLER, EUGEN, DIPL.-ING.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE FR GB

REF Corresponds to:

Ref document number: 3168715

Country of ref document: DE

Date of ref document: 19850321

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19980206

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19980209

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19990225

Year of fee payment: 19

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990309

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19990309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991130

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010103