EP0043514A1 - Sprühventilanordnung - Google Patents

Sprühventilanordnung Download PDF

Info

Publication number
EP0043514A1
EP0043514A1 EP19810104955 EP81104955A EP0043514A1 EP 0043514 A1 EP0043514 A1 EP 0043514A1 EP 19810104955 EP19810104955 EP 19810104955 EP 81104955 A EP81104955 A EP 81104955A EP 0043514 A1 EP0043514 A1 EP 0043514A1
Authority
EP
European Patent Office
Prior art keywords
valve
auxiliary valve
auxiliary
housing
arrangement according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP19810104955
Other languages
English (en)
French (fr)
Other versions
EP0043514B1 (de
Inventor
Herbert Dr. Meuresch
Louis Pericard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Deutsche Prazisions-Ventil GmbH
Deutsche Prazisions Ventil GmbH
Original Assignee
Deutsche Prazisions-Ventil GmbH
Deutsche Prazisions Ventil GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deutsche Prazisions-Ventil GmbH, Deutsche Prazisions Ventil GmbH filed Critical Deutsche Prazisions-Ventil GmbH
Publication of EP0043514A1 publication Critical patent/EP0043514A1/de
Application granted granted Critical
Publication of EP0043514B1 publication Critical patent/EP0043514B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D83/00Containers or packages with special means for dispensing contents
    • B65D83/14Containers or packages with special means for dispensing contents for delivery of liquid or semi-liquid contents by internal gaseous pressure, i.e. aerosol containers comprising propellant for a product delivered by a propellant
    • B65D83/36Containers or packages with special means for dispensing contents for delivery of liquid or semi-liquid contents by internal gaseous pressure, i.e. aerosol containers comprising propellant for a product delivered by a propellant allowing operation in any orientation, e.g. discharge in inverted position
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/0753Control by change of position or inertia of system

Definitions

  • the invention relates to a spray valve assembly for an aerosol can, with a one-piece valve housing made of plastic, which can be used with its upper end in the upper part of the can sealingly, limits a main channel for the passage of the contents of the can and a main valve with a valve stem which can be actuated manually against the force of a spring the main channel, an immersion tube that extends the main channel, a secondary channel connecting the can space to the main channel for the passage of the can contents above the maximum can fill level, and a valve seat of an auxiliary valve formed at the junction of the main and secondary channels with a metal valve ball in one of an outer Has valve housing part surrounding the auxiliary valve chamber, the auxiliary valve seat is below the ball, so that the ball in the normal position of the can does not hinder the main channel and blocks the secondary channel, on the other hand releases the secondary channel in the upside-down position of the can, and where in the main duct is passed to the side of the auxiliary valve.
  • the auxiliary valve chamber is concentric with the valve housing.
  • the section of the main channel which is guided past the auxiliary valve therefore inevitably has a very small, flow-unfavorable passage cross section over its entire length due to the predetermined outer valve dimensions. Since the dimensions of the valve housing must also be kept as small as possible in view of the lowest possible material expenditure in the case of such cans produced in large quantities, the flow resistance in this main channel section is relatively high. This leads to a pressure drop that undesirably affects the spraying effect of the valve arrangement.
  • the upper opening of the auxiliary valve chamber provided for installing the auxiliary valve ball is closed by a second ball which is under the pressure of the return spring of the main valve stem.
  • the auxiliary valve ball is therefore pressed down on its valve seat by the propellant or compressed gas standing above the liquid level in the can, which penetrates into the auxiliary valve chamber via the secondary channel, so that the connection between secondary and main channel in the normal position of the can is interrupted and the compressed gas cannot flow out of the head space of the can.
  • the auxiliary valve ball falls down, so that the secondary channel is now connected to the main channel and the liquid can be dispensed via the secondary channel to the main channel and through it. Without special measures, however, the compressed gas can also flow out via the main channel. In the normal position, there is then no longer a sufficient outlet pressure for the residual liquid in the can.
  • the invention has for its object to provide a spray valve assembly of the generic type, the structure of which meets the requirements of mass production and, above all, ensures lower output pressure losses.
  • this object is achieved in that the auxiliary valve is formed eccentrically in the outer valve housing part surrounding the auxiliary valve chamber and in that the major part of the cross section of the main channel section running next to the auxiliary valve on the side facing the valve housing axis of a side perpendicular to a common axial plane of the valve housing and auxiliary valve chamber standing auxiliary valve axial plane.
  • the difference between the outer diameter of the auxiliary valve chamber and the inner diameter of the outer valve housing part is smaller than the diameter of the ball of the auxiliary valve. This makes it easier to assemble the ball of the auxiliary valve. It only needs to be thrown into the valve housing, which is open at the upper end, and yet aligns itself automatically over the insertion opening of the auxiliary valve chamber, without first holding it in the desired installation position with the same eccentricity as that of the auxiliary valve chamber.
  • the junction of the secondary duct in the auxiliary valve chamber can lie below the ball. If a possible escape of the compressed gas is accepted when the main valve is actuated in the upside-down position of the can, then a shut-off ball or the like for the ball insertion opening of the auxiliary valve chamber can be omitted. Since aerosol cans are manufactured in large numbers, the elimination of a single part compared to the previously known construction ultimately means a considerable saving in terms of material and assembly costs. For a safe interruption of the connection between the secondary and secondary channels when the main valve is actuated in the normal position of the aerosol can, the weight of the ball of the auxiliary valve is sufficient - provided the valve is sized accordingly.
  • the secondary duct opening ends at the lowest point of the auxiliary valve seat.
  • the ball closes in the vertical normal position of the aerosol can not only with one component of it Weight force, but with its full weight the auxiliary valve against the gas pressure.
  • the lock can release an assembly passage for the ball from the main valve housing space to the auxiliary valve chamber.
  • the passage is axially parallel and the barrier is formed by at least one flexible projection protruding radially inward on the passage, the ball can be simply pushed over the projections into the auxiliary valve chamber during assembly.
  • a housing insert delimiting the chamber can be provided, which preferably has control or control openings for the flow course outside the chamber, which can be kept larger or smaller depending on the intended use of the spray valve .
  • the valve housing preferably has an annular circumferential projection on its inner wall, via which the housing insert can be pushed away during assembly and can be snapped behind it for axial securing.
  • the spring used to reset the main valve stem is supported on the housing insert. To this way, the tight contact of the housing insert on the upper wall of the chamber of the auxiliary valve is additionally ensured.
  • the cross section of the narrowest part of the secondary channel is larger than that of the narrowest part of that main channel section that connects to the secondary channel in the flow direction within the valve housing. In this way, any gas loss from the container is ensured even when the container is upside down, since more and more liquid flows into the main channel through the secondary channel than can flow into the main channel below the mouth of the secondary channel.
  • the housing insert in an arrangement with a housing insert delimiting the auxiliary valve chamber, can have a second auxiliary valve seat above the ball and surround an opening of the main channel into the auxiliary valve chamber. It is now also ensured in the upside-down position of the can that the same ball, due to its own weight, blocks the mouth of the main channel into the auxiliary valve chamber so that the compressed gas cannot flow out before the liquid level (or liquid level) of the container in the upside down -Did not at least sink into the valve housing below the inlet opening of the secondary duct.
  • the flow pressure of the liquid flowing out via the auxiliary valve chamber when the main valve is open acts against the lifting of the ball from the valve seat by the gas pressure and this independently whether the aerosol can is held in the normal vertical position or vice versa (upside down).
  • the mouth of the secondary channel in the first auxiliary valve seat and the mouth of the main channel in the second auxiliary valve seat are coaxial with one another in the changeover valve.
  • the liquid flow pressure at the outlet acts exactly opposite to the gas pressure on the valve ball, so that the liquid flow pressure is fully effective as a closing pressure against gas leakage.
  • the ball only needs to be thrown into the upper opening of the valve housing, in order to bring it exactly into the installed position in the center of the lower valve seat of the auxiliary valve before inserting the housing insert.
  • the valve housing preferably has a transverse slot and an axial bore which form the secondary channel.
  • a single plate-shaped slide for the transverse slot and a cylindrical round mandrel for the axial bore at the core of the mold are therefore sufficient.
  • the mandrel can rest with its end face over a large area on the board, in contrast to the formation of two at an angle to each other upright cylindrical bores, in which a corresponding cylindrical slide required laundri E, which come with a flat end surface of the core mandrel only linearly in contact, so that this end face would have to be designed to be correspondingly cylindrical in a complex manner in order to form a large cross-sectional area between the two bores.
  • auxiliary valves are axially offset and radially overlap. In this way, the passage cross section for the main channel is maintained even with a small outer diameter of the valve housing and two auxiliary valves.
  • the ratio of the inner diameter of the outer valve housing part to the diameter of the first valve ball can be in the range from 1.5 to 2, preferably 1.75. Based on the maximum diameter of the valve housing, this results in a relatively large ball with a correspondingly high weight, which ensures a secure closure.
  • a configuration of the arrangement in which the inlet opening of the secondary channel is in the immediate vicinity of the upper part of the can is particularly favorable. In this case, practically all of the liquid can be dispensed from the can in the upside-down position of the can, because the inlet opening of the secondary channel occupies the lowest point in the can (in the upside-down position).
  • This deep position of the inlet opening of the secondary channel can be achieved, for example, by designing the entrance of the secondary channel into the auxiliary valve chamber as an axial bore in the outer wall of the valve housing.
  • a simpler design can, however, consist in that an initial section of the secondary duct is through an in the outside of the valve Housing-formed groove is formed, which begins on the inside of the upper part of the can and is covered up to the vicinity of the upper part of the can by the dip tube pushed over the valve housing.
  • a groove in a plastic housing is easier to make than a hole.
  • auxiliary valve chamber or both auxiliary valve chambers can or can be partially limited by two housing inserts. This not only simplifies the manufacture of the valve housing, but in the case of two auxiliary valve chambers also facilitates the introduction of the valve balls only from one opening side of the valve housing.
  • an open valve with an actuating valve stem 2 partially shown in section a closure piece 3 in the form of an elastic washer and a plastic valve housing is used.
  • the valve housing 4 has an upper valve housing part 5 and a lower valve housing part 6, which are connected in one piece.
  • the upper valve housing part 5 is tightly crimped in the upper part 1 of the can.
  • the lower valve housing part 6 has a connecting nipple 7 for a dip tube, only partially shown, which projects into the can contents into the vicinity of the can base and is open at the bottom.
  • valve stem 2 is guided with its lower, thicker end, which has vertical ribs on the outside, in the upper valve housing part 5 and is seated with its upper end in a main valve actuating head 9, which has a spray opening.
  • valve stem 2 The lower end of the valve stem 2 is supported by a spring 10 for resetting the valve stem 2 in a housing insert 11 and presses it tightly against an inner shoulder 12 of the lower valve housing part 6.
  • the secondary channel 17 is designed as a transverse or horizontal slot 19 which merges into a vertical bore 20.
  • the course of the main channel 21 for the passage of the can contents is shown as a dashed line.
  • a part 22 of the main channel 21 extends laterally next to the auxiliary valve through an axial channel 23 in the lower valve housing part 6, an axial groove 24, a radial bore 25 and an axial bore 26 in the housing insert 11 up to a mouth 27 lying coaxially to the mouth 18 Above the ball 14 in the upper valve seat 16.
  • the main channel continues via a radial recess 28 in the form of a groove in the wall of the housing insert 11 and an axial groove 29, which is also formed in the housing insert 11.
  • the grooves 28, 29 form a direct passage from the auxiliary valve chamber 13 to the main valve housing space 33.
  • an axial projection on the underside of the housing insert 11 can be made in a recess on the Engage the top of shoulder 12.
  • the upper part of the housing insert 11 has the shape of a pot in which the spring 10 engages.
  • the auxiliary valve chamber 13 is formed eccentrically to the outer part of the valve housing 4 or to the valve housing part 6.
  • the eccentricity is about the same Difference of the inner radii of the auxiliary valve chamber 13 and the valve housing part 6, so that the outer wall of the valve housing part 6 simultaneously forms part (the left part in FIG. 1) of the wall of the auxiliary valve chamber 13.
  • the axial grooves 24 and 29 are separated by a wall 43 which, with its radially outer edge, lies tightly against the inside of the valve housing upper part 5.
  • the groove 29 is open at the top, while the N ut 24 upwardly through the cross wall 44 of the insert 11 is closed.
  • the eccentricity of the auxiliary valve chamber 13 results in a larger passage cross section for the main channel section 22 than in the case of a concentric arrangement of the auxiliary valve chamber 13 and the valve housing 4. Furthermore, the material expenditure for the valve housing 4 is less in comparison to a concentric arrangement.
  • the difference between the outer diameter of the auxiliary valve chamber 13 and the inner diameter of the valve housing 6 at the level of the auxiliary valve chamber is smaller than the diameter of the ball 14, so that the ball is simply thrown into the valve housing 4 from above into the valve housing 4 before installation of the housing insert 11 and despite the eccentricity of auxiliary valve chamber 13 easily, without special guidance, can be pressed into the auxiliary valve chamber 13, for example by means of a pressure stamp.
  • the ball 14 blocks the secondary duct against the gas pressure due to its weight, so that the gas cannot escape. In contrast, it releases the main channel 21 at the mouth 27, so that the liquid contained in the can can escape under the gas pressure via the main channel, provided that the main valve, as shown, has been opened by depressing the head 9.
  • the can is turned upside down when opening the main valve 9, i.e. is held with the head 9 down, so that the secondary channel 17 is immersed in the liquid, the inlet opening of the dip tube 8, however, is above the liquid level in the can, then the ball 14 rolls against the valve seat 16, so that this too Position only the liquid through the secondary channel 17, the auxiliary valve chamber 13 and the grooves 28, 29 can escape, but not the compressed gas.
  • the exemplary embodiment according to FIG. 2 differs from that according to FIG. 1 essentially in that the auxiliary valve acts only in one direction and a wider straight passage 34 is left free from the auxiliary valve chamber 13 to the main valve housing space 33.
  • the inside diameter of the passage 34 at the upper opening edge of the auxiliary vein chamber 13, inwardly projecting annular bead 35 is somewhat smaller than the diameter of the valve ball 14, so that the annular bead acts as a lock, which prevents the ball 14 from under the pressure of the over In addition to the caral 17, fluid pushing against the ball emerges from the auxiliary valve chamber 13.
  • the contained in the can tightens Liquid under the pressure of the gas above it from the immersion pipe through the main channel 21 when the main valve 2, 3 is opened, while the valve ball 14 keeps the auxiliary valve blocked by its own weight, so that the compressed gas cannot escape through the secondary channel 17.
  • the liquid can escape through the secondary duct 17 when the main valve is open, since the ball 14 is now lifted off the valve seat 15.
  • the liquid pressed into the auxiliary valve chamber 13 via the secondary channel 17 emerges through side slots 36 in the wall of the auxiliary valve chamber 13 into the main valve housing part 33.
  • the compressed gas can also partially escape through the main channel 21 in the upside-down position of the can, but this embodiment is simpler due to the lack of a housing insert 11 in terms of manufacture, assembly and assembly.
  • the installation of a second auxiliary valve with a second ball 37 in the main channel section 22 also prevents the compressed gas from escaping from the can via the main channel 21 in the upside-down position of the can.
  • the nipple 7 is provided at the lower end with slots 38 extending downwards, the wall sections of the second auxiliary valve chamber 39 delimiting the slots 38 at the lower opening edge projecting projections 40 as a barrier have for the outlet of the valve ball 37.
  • the dip tube 8 pushed over the nipple 7 blocks the slots 38 to the outside.
  • the wall of the auxiliary valve chamber 13 is not provided with radial slots 36, but with axial ribs 41, which extend axially to the upper opening edge the auxiliary valve camera 13 limit continuous grooves 42 between them.
  • Both auxiliary valve chambers 13 and 39 are arranged diametrically opposite one another, just like the only auxiliary valve chamber 13 of the exemplary embodiment according to FIG. 2, eccentrically.
  • the slot 19 is completely eliminated because of the eccentric design of the nipple.
  • the auxiliary valve chambers are axially offset, overlapping in the radial direction.
  • the embodiment according to FIG. 4 differs from that according to FIG. 3 only as follows: the lower valve housing part 6 and thus the nipple 7 has a larger diameter than in the embodiment according to FIG. 3, so that the immersion tube 8 is inserted into the nipple 7 can, and the second auxiliary valve chamber is partially surrounded by the valve housing part 6.
  • FIG. 5 differs from that of FIG. 2 in that instead of the lock 35, an insert 11 is provided with a through groove 29 delimiting the main channel, which blocks the auxiliary valve chamber 13 under the pressure of the spring 10.
  • the auxiliary duct 17 opens into the auxiliary valve chamber 13 above the valve ball 14.
  • the housing insert simultaneously ensures that the auxiliary valve chamber 13 is sealed in the normal position shown, in which the compressed gas penetrates into the auxiliary valve chamber 13 via the auxiliary duct 17 and the ball 14 in addition to it Dead weight presses against the valve seat 15.
  • the housing insert 11 ensures that the ball 14 maintains its installation position during assembly.
  • FIG. 6 differs from that according to FIG. 5 by the use of a second auxiliary valve 16, 37, which is designed in a similar manner to the second auxiliary valve according to FIG. 4. In this respect, it therefore has the same function as the exemplary embodiment according to FIG. 4.
  • FIG. 7 differs from that of FIG. 6 in principle only in that a second housing insert 47 forms an inner valve housing part which partly delimits the first valve chamber 13 and the second valve chamber 39 and the main channel 22.
  • a second housing insert 47 forms an inner valve housing part which partly delimits the first valve chamber 13 and the second valve chamber 39 and the main channel 22.
  • the lower lock 40 corresponds here to a middle holding piece 48 which is connected to the wall of the nipple 7 by radial webs 49.
  • the slits 38 are formed by spaces between axial ribs.
  • FIG. 8 shows a modification of the exemplary embodiment according to FIG. 5, in which an axial groove 45 is formed in the outside of the valve housing 4, which forms an initial section of the secondary channel 17 and begins on the inside of the upper part of the can.
  • the groove 45 is covered up to the vicinity of the upper part 1 of the can by the dip tube 8, so that an inlet opening 46 remains free.
  • the nipple 7 can be omitted.
  • the walls of the auxiliary valve chambers according to FIGS. 3 and 4 can be designed in the same way as those of the auxiliary valve chamber 13 according to FIG. 2, and vice versa.
  • the walls of the auxiliary valve chamber 13 according to FIGS. 2 to 4 can also 3 like the wall of the auxiliary valve chamber 39 according to FIG. 3 with slots 38, and vice versa.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Containers And Packaging Bodies Having A Special Means To Remove Contents (AREA)
  • Nozzles (AREA)

Abstract

Bei einer Sprühventilanordnung für eine Aerosoldose ist ein Ventilgehäuse (4) im Dosenoberteil (1) dicht einsetzbar. Es begrenzt einen Hauptkanal (21) und weist ein Hauptventil (2, 3) mit einem gegen Federkraft betätigbaren Ventilschaft (2) im Hauptkanal, einen den Dosenraum mit dem Hauptkanal verbindenden Nebenkanal (17) oberhalb des maximalen Dosenfüllstands und einen Ventilsitz (15) eines an der Verbindungsstelle von Haupt- und Nebenkanal ausgebildeten Hilfsventils (14, 15) mit einer Ventilkugel (14) aus Metall in einer von einem äußeren Ventilgehäuseteil (6) umgebenden Hilfsventilkammer (13) auf. Der Hilfsventilsitz (15) liegt unterhalb der Ventilkugel (14), so daß diese in der Normallage der Dose den Hauptkanal (21) nicht behindert und den Nebenkanal (17) sperrt, dagegen in der Kopfüber-Lage der Dose den Nebenkanal (17) freigibt. Der Hauptkanal (21) ist seitlich am Hilfsventil (14, 15) vorbeigeführt. Um hinsichtlich des Aufbaus den Erfordernissen einer Massenproduktion gerecht zu werden und geringere Ausgabedruckverluste sicherzustellen, ist das Hilfsventil (14, 15) exzentrisch in dem äußeren Ventilgehäuseteil (6) ausgebildet und der überwiegende Querschnittsteil des neben dem Hilfsventil verlaufenden Hauptkanalabschnitts (22) auf der der Ventilgehäuseachse zugekehrten Seite einer senkrecht zu einer gemeinsamen Axialebene von Ventilgehäuse (4) und Hilfsventilkammer stehenden Hilfsventil-Axialebene angeordnet.

Description

  • Die Erfindung betrifft eine Sprühventilanordnung für eine Aerosoldose, mit einem einteiligen Ventilgehäuse aus Kunststoff, das mit seinem oberen Ende im Dosenoberteil abdichtend fest einsetzbar ist, einen Hauptkanal für den Durchtritt des Doseninhalts begrenzt und ein Hauptventil mit einem manuell gegen die Kraft einer Feder betätigbaren Ventilschaft in dem Hauptkanal, ein den Hauptkanal verlängerndes Tauchrohr, einen den Dosenraum mit dem Hauptkanal verbindenden Nebenkanal für den Durchtritt des Doseninhalts oberhalb des maximalen Dosenfüllstandes und einen Ventilsitz eines an der Verbindungsstelle von Haupt- und Nebenkanal ausgebildeten Hilfsventils mit einer Ventilkugel aus Metall in einer von einem äußeren Ventilgehäuseteil umgebenen Hilfsventilkammer aufweist, wobei der Hilfsventilsitz unterhalb der Kugel liegt, so daß die Kugel in der Normallage der Dose den Hauptkanal nicht behindert und den Nebenkanal sperrt, dagegen in der Kopfüber-Lage der Dose den Nebenkanal freigibt, und wobei der Hauptkanal seitlich am Hilfsventil vorbeigeführt ist.
  • Bei einer bekannten Sprühventilanordnung dieser Art (US-PS 3 447 551), liegt die Hilfsventilkammer konzentrisch zum Ventilgehäuse. Der seitlich am Hilfsventil vorbeigeführte Abschnitt des Hauptkanals hat daher aufgrund der vorgegebenen äußeren Ventilabmessungen zwangsläufig über seine ganze Länge einen sehr kleinen, strömungsungünstigen Durchtrittsquerschnitt. Da die Abmessungen des Ventilgehäuses auch im Hinblick auf einen möglichst geringen Materialaufwand bei derartigen, in hohen Stückzahlen hergestellten Dosen möglichst klein gehalten werden müssen, ist der Strömungswiderstand in diesem Hauptkanalabschnitt verhältnismäßig hoch. Dies führt zu einem Druckabfall, der die Sprühwirkung der Ventilanordnung unerwünscht beeinträchtigt. Die zum Einbauen der Hilfsventil-Kugel vorgesehene obere Öffnung der Hilfsventilkammer ist durch eine zweite Kugel, die unter dem Druck der Rückstellfeder des Hauptventilschafts steht, verschlossen. Die Hilfsventil-Kugel wird daher durch das über dem Flüssigkeitsspiegel in der Dose stehende Treib- oder Druckgas, das über den Nebenkanal in die Hilfsventilkammer eindringt, nach unten auf ihren Ventilsitz gedrückt, so daß die Verbindung zwischen Neben- und Hauptkanal in der Normallage der Dose unterbrochen ist und das Druckgas nicht aus dem Kopfraum der Dose ausströmen kann. In der Kopfüber-Lage der Dose fällt die Hilfsventil-Kugel dagegen nach unten, so daß der Nebenkanal nunmehr mit dem Hauptkanal verbunden ist und die Flüssigkeit über den Nebenkanal zum Hauptkanal und über diesen ausgegeben werden kann. Ohne besondere Maßnahmen gleichzeitig kann jedoch das Druckgas ebenfalls über den Hauptkanal ausströmen. Für die in der Dose befindliche Restflüssigkeit steht dann in der Normallage kein hinreichender Ausgabedruck mehr zur Verfügung.
  • Der Erfindung liegt die Aufgabe zugrunde, eine Sprühventilanordnung der gattungsgemäßen Art anzugeben, deren Aufbau den Erfordernissen der Massenproduktion gerecht wird und vor allem geringere Ausgabedruckverluste sicherstellt.
  • Erfindungsgemäß ist diese Aufgabe dadurch gelöst, daß das Hilfsventil exzentrisch in dem äußeren, die Hilfsventilkammer umgebenden Ventilgehäuseteil ausgebildet ist und daß der überwiegende Teil des Querschnitts des neben dem Hilfsventil verlaufenden Hauptkanalabschnitts auf der der Ventilgehäuseachse zugekehrten Seite einer senkrecht zu einer gemeinsamen Axialebene von Ventilgehäuse und Hilfsventilkammer stehenden Hilfsventil-Axialebene liegt.
  • Diese Ausbildung stellt sicher, daß sich der auf den Gehäuseaußendurchmesser bezogene Durchtrittsquerschnitt des Hauptkanals in dem verhältnismäßig langen Abschnitt der am Hilfsventil vorbeiführt, vergrößert. In diesem Abschnitt sind daher im Vergleich zu einer konzentrischen Anordnung mit ansonsten gleichem Gehäuse-Außendurchmesser der Strömungswiderstand und damit die Strömungsveiuste geringer. Die Flüssigkeit kann folglich bei gleichem Druck mit höherer Geschwindigkeit und dem - zufolge in feiner zerstäubter Form ausgegeben werden. Dennoch ist gewährleistet, daß die Hilfsventilkugel, deren Durchmesser nur geringfügig kleiner als der Innendurchmesser der Hilfsventilkammer ist, bei der Montage nicht in den Hauptkanal neben der Hilfsventilkammer eingeführt werden kann. Sodann ist es günstig, wenn die Exzentrizität etwa gleich der Differenz der Innenradien des äußeren Ventilgehäuseteils und der Hilfsventilkammer ist. Hierbei bildet die Außenwand des äußeren Ventilgehäuseteils gleichzeitig einen Teil der Wand der Hilfsventilkammer. Dies ist nicht nur deutlich materialsparend, sondern verringert die Druckverluste noch weiter.
  • Vorzugsweise ist dafür gesorgt, daß die Differenz von Außendurchmesser der Hilfsventilkammer und Innendurchmesser des äußeren Ventilgehäuseteils kleiner als der Durchmesser der Kugel des Hilfsventils ist. Dies erleichtert das Montieren der Kugel des Hilfsventils. Sie braucht lediglich in das am oberen Ende offene Ventilgehäuse eingeworfen zu werden und richtet sich dennoch, ohne sie vorher mit gleicher Exzentrizität wie die der Hilfsventilkammer in der gewünschten Einbaulage zu halten, selbsttätig über der Einführungsöffnung der Hilfsventilkammer aus.
  • Die Einmündung des Nebenkanals in die Hilfsventilkammer kann unterhalb der Kugel liegen. Wird hierbei ein mögliches Entweichen des Druckgases bei Betätigung des Hauptventils in Kopfüber-Lage der Dose in Kauf genommen, dann kann eine Absperrkugel o. dgl. für die Kugel-Einführungsöffnung der Hilfsventilkammer entfallen. Da Aerosoldosen in großen Stückzahlen hergestellt werden, bedeutet der Wegfall eines einzigen Teils gegenüber der vorbekannten Konstruktion schließlich eine erhebliche Einsparung hinsichtlich des Material- und Montageaufwands. Für ein sicheres Unterbrechen der Verbindung von Neben- und Haqtkanal bei Betätigung des Hauptventils in der Normallage der Aerosoldose genügt - bei entsprechender Ventilbemessung - das Eigengewicht der Kugel des Hilfsventils.
  • Obwohl es grundsätzlich möglich ist, den Nebenkanal in der konischen Fläche des HilfsventilsitzB münden zu lassen, ist es günstiger, wenn die Mündung des Nebenkanals an der tiefsten Stelle des Hilfsventilsitzes endet. Dabei schließt die Kugel in der vertikalen Normallage der Aerosoldose nicht nur mit einer Komponente ihrer Gewichtskraft, sondern mit ihrem vollen Gewicht das Hilfsventil gegen den Gasdruck.
  • Wenn die Kugel in der Hilfsventilkammer durch eine oberhalb der Kugel liegende Sperre zurückgehalten ist, so daß die Kugel in der Kopfüber-Lage nicht aus der Ventilkammer herausfallen kann, kann die Sperre einen Montagedurchgang für die Kugel vom Hauptventilgehäuseraum zur Hilfsventilkammer freigeben. Hier kommt man ohne zusätzliches Bauteil für die Sperre aus. Dennoch ist sichergestellt, daß nicht nur die Kugel bei der Montage leicht in die Hilfskammer eingeführt werden kann, sondern auch die Flüssigkeit bei Betätigung des Hauptventils in Kopfüber-Lage der Dose durch die Hilfsventilkammer hindurch über einen verhältnismäßig großen Durchtrittsquerschnitt ausgegeben werden kann. Wenn der Durchgang achsparallel und die Sperre durch wenigstens einen radial nach innen am Durchgang vorstehenden nachgiebigen Vorsprung gebildet ist, kann die Kugel bei der Montage einfach über die Vorsprünge hinweg in die Hilfsventilkammer gedrückt werden.
  • Statt die Kugel durch die genannte Sperre in der Hilfsventilkammer zu sichern, kann ein die Kammer begrenzender Gehäuse-Einsatz vorgesehen werden, der vorzugsweise Kontroll- oder Steueröffnungen für den Strömungsverlauf außerhalb der Kammer aufweist, die je nach Verwendungszweck des Sprühventils größer oder kleiner gehalten werden können.
  • Vorzugsweise weist das Ventilgehäuse einen ringförmig an seiner Innenwand umlaufenden Vorsprung auf, über den der Gehäuse-Einsatz bei der Montage hinwegschiebbar und dahinter zur Axialsicherung einrastbar ist. Die der Zurückstellung des Hauptventilschafts dienende Feder stützt sich am Gehäuse-Einsatz ab. Auf diese Weise wird noch zusätzlich die dichte Anlage des Gehäuse-Einsatzes auf der oberen Wandung der Kammer des Hilfsventils sichergestellt.
  • Vorteilhaft ist ferner, wenn der Querschnitt des engsten Teils des Nebenkanals größer ist als der des engsten Teils desjenigen Hauptkanalabschnitts, der sich innerhalb des Ventilgehäuses an den Nebenkanal in Strömungsrichtung anschließt. Auf diese Weise ist auch in Kopfüber-Lage des Behälters jeglicher Gasverlust aus dem Behälter sichergestellt, da über den Nebenkanal stets mehr Flüssigkeit in den Hauptkanal nachströmen als unterhalb der Mündung des Nebenkanals in den Hauptkanal abfließen kann.
  • In einer weiteren Ausgestaltung kann sodann bei einer Anordnung mit einem die Hilfsventilkammer begrenzenden Gehäuse-Einsatz der Gehäuse-Einsatz einen zweiten Hilfsventilsitz oberhalb der Kugel aufweisen und eine Mündung des Hauptkanals in die Hilfsventilkammer umgeben. Hierbei ist nun auch noch in der Kopfüber-Lage der Dose sichergestellt, daß dieselbe Kugel durch ihr Eigengewicht die Mündung des Hauptkanals in die Hilfsventilkammer sperrt, so daß das Druckgas nicht ausströmen kann, bevor der Flüssigkeitsstand (bzw. Flüssigkeitsspiegel) des Behälters in der Kopfüber-Lage nicht wenigstens bis unter die Eintrittsöffnung des Nebenkanals in das Ventilgehäuse abgesunken ist. Wenn der Nebenkanal in der Normallage von unten und der Hauptkanal von oben in die Hilfsventilkammer mündet, wirkt der Strömungsdruck, der bei geöffnetem Hauptventil über die Hilfsventilkammer ausströmenden Flüssigkeit zusammen mit dem Eigengewicht der Kugel gegen ein Abheben der Kugel vom Ventilsitz durch den Gasdruck und dies unabhängig davon, ob die Aerosoldose in der normalen vertikalen Lage oder umgekehrt (kopfüber) gehalten wird.
  • Ferner ist es günstig, wenn beim Umschaltventil die Mündung des Nebenkanals im ersten Hilfsventilsitz und die Mündung des Hauptkanals im zweiten Hilfsventilsitz koaxial zueinander sind. Auf diese Weise wirkt der Flüssigkeits-Strömungsdruck bei der Ausgbe genau entgegengesetzt zum Gasdruck auf die Ventilkugel, so daß der Flüssigkeits-Strömungsdruck voll als Schließdruck gegen einen Gasaustritt wirksam ist. Gleichzeitig ist sichergestellt, daß die Kugel lediglich in die obere Öffnung des Ventilgehäuses eingeworfen zu werden braucht, um sie dennoch genau zentrisch auf dem unteren Ventilsitz des Hilfsventils vor dem Einsetzen des Gehäuse- Einsatzes in die Einbaulage zu bringen.
  • Vorzugsweise weist das Ventilgehäuse einen quer verlaufenden Schlitz und eine axiale Bohrung auf, die den Nebenkanal bilden. Bei der Herstellung des aus Kunststoff bestehenden Ventilgehäuses kommt man daher mit einem einfach plattenförmigen Schieber für den Querschlitz und einem zylindrischen Runddorn für die axiale Bohrung am Kern der Form aus. Der Dorn kann mit seiner Stirnfläche großflächig an der Platte anliegen, im Gegensatz zur Ausbildung zweier im Winkel zueinander stehender zylindrischer Bohrungen, bei denen ein entsprechend zylindrischer Schieber erforderlich wäE, der mit einer ebenen Stirnfläche des Kern-Dorns lediglich linienförmig in Berührung käme, so daß diese Stirnfläche in aufwendiger Weise entsprehend zylindrisch ausgebildet sein müßte, um einen großflächigen Durchtrittsquerschnitt zwischen den beiden Bohrungen auszubilden.
  • Sodann ist vorzugsweise dafür gesorgt, daß der Hauptkanal unterhalb der Verbindungsstelle von Haupt- und Nebenkanal ein zweites exzentrisches Ventil mit einer zweiten Ventilkugel aus Metall und einem zweiten Hilfsventilsitz oberhalb der zweiten Kugel aufweist. Auf diese Weise wird ein Gasaustritt licht nur in der Normallage, sondern auch in der Kopfüber-Lage der Dose durch die erste oder zweite Ventilkugel verhindert. Ein Gehäuse-Einsatz kann hierbei jedoch entfallen.
  • Hierbei ist es günstig, wenn die Hilfsventile axial versetzt sind und sich radial überlappen. Auf diese Weise wird der Durchtrittsquerschnitt für den Hauptkanal auch bei geringem Außendurchmesser des Ventilgehäuses und zwei Hilfsventilen beibehalten .
  • Das Verhältnis von Innendurchmesser des äußren Ventilgehäuseteils zum Durchmesser der ersten Ventilkugel kann im Bereich von 1,5 bis 2, vorzugsweise bei 1,75, liegen. Dies ergibt, bezogen auf den maximalen Durchmesser des Ventilgehäuses, eine verhältnismäßig große Kugel mit entsprechend hohem Gewicht, das für einen sicheren Verschluß sorgt.
  • Besonders günstig ist eine Ausbildung der Anordnung, bei der die Eintrittsöffnung des Nebenkanals in unmittelbarer Nähe des Dosenoberteils liegt. Hierbei kann in der Kopfüber-Lage der Dose praktisch die gesamte Flüssigkeit ohne Rest aus der Dose ausgegeben werden, weil die Eintrittsöffnung des Nebenkanals die tiefste Stelle in der Dose (bei Kopfüber-Lage) einnimmt.
  • Diese tiefe Lage der Eintrittsöffnung des Nebenkanals läßt sich beispielsweise dadurch erreichen, daß der Eingang des Nebenkanals in die Hilfsventilkammer als axiale Bohrung in der Außenwand des Ventilgehäuses ausgebildet wird. Eine einfachere Ausbildung kann jedoch darin bestehen, daß ein Anfangsabschnitt des Nebenkanals durch eine in der Außenseite des Ventilgehäuses ausgebildete Nut gebildet ist, die an der Innenseite des Dosenoberteils beginnt und bis in die Nähe des Dosenoberteils von dem über das Ventilgehäuse geschobenen Tauchrohr abgedeckt ist. Eine Nut ist in einem Kunststoffgehäuse leichter als eine Bohrung herzustellen.
  • Die Hilfsventilkammer oder beide Hilfsventilkammern kann bzw. können teilweise von zwei Gehäuse-Einsätzen begrenzt seh. Dies vereinfacht nicht nur die Herstellung des Ventilgehäuses, sondern erleichtert im Falle zweier Hilfsventilkammern auch die Einführung der Ventilkugeln nur von der einen Öffnungsseite des Ventilgehäuses her.
  • Die Erfindung und ihre Weiterbildungen werden nachstehend anhand der Zeichnung bevorzugter Ausführungsbeispiele näher beschrieben. Es zeigen:
    • Fig. 1 ein erstes Ausführungsbeispiel einer erfindungsgemäßen Sprühventilanordnung mit einem exzentrischen Hilfsventil, das nur eine Ventilkugel aufweist und als Umschaltventil mit zwei Ventilfunktionen wirkt, in der normalen Vertikallage im Axialschnitt B-B nach Fig. 1 a,
    • Fig. 1a den Schnitt A-A der Fig. 1,
    • Fig. 2 einen Teil eins zweiten Ausführungsbeispiels einer erfindungsgemäßen Sprühventilanordnung mtt einem exzentrischen Hilfsventil, das nur eine Ventilfunktion aufweist, in der normalen Vertikallage im Axialschnitt,
    • Fig. 3 einen Teil eines dritten Ausführungsbeispiels einer erfindungsgemäßen Sprühventilanordnung mit zwei exzentrischen Hilfsventilen in der normalen Vertikallage im Axialschnitt,
    • Fig. 4 einen Teil eines vierten Ausführungsbeispiels einer erfindungsgemäßen Sprühventilanordnung mit zwei exzentrischen Hilfsventilen in der normalen Vertikallage im Axialschnitt,
    • Fig. 5 ein fünftes Ausführungsbeispiel einer erfindungsgemäßen Sprühventilanordnung mit nur einem exzentrischen Hilfsventil in der normalen Vertikallage im Axialschnitt,
    • Fig.6 einen Teil eines sechsten Ausführungsbeispiels einer erfindungsgemäßen Sprühventilanordnung mit zwei exzentrischen Hilfsventilen in der normalen Vertikallage im Axialschnitt,
    • Fig. 7 einen Teil eines siebten Ausführungsbeispiels einer erfindungsgemäßen Sprühventilanordnung mit zwei exzentrischen Hilfsventilen in der normalen Vertikallage im Axialschnitt und
    • Fig. 8 einen Teil eines achten Ausführungsbeispiels einer erfindungsgemäßen Sprühventilanordnung mit nur einem exzentrischen Hilfsventil in der normalen Vertikallage im Axialschnitt.
  • Bei dem Ausführungsbeispiel nach den Fig. 1 und 1a ist in einem nur teilweise dargestellten Oberteil 1 einer Aerosoldose ein geöffnet dargestelltes Ventil mit einem teilweise im Schnitt dargestellten Betätigungs-Ventilschaft 2, einem Verschlußstück 3 in Form einer elastischen Ringscheibe und einem Ventilgehäuse aus Kunststoff eingesetzt.
  • Das Ventilgehäuse 4 hat einen oberen Ventilgehäuseteil 5 und einen unteren Ventilgehäuseteil 6, die einteilig verbunden sind.
  • Der obere Ventilgehäuseteil 5 ist im Dosenoberteil 1 dicht eingebördelt. Der untere Ventilgehäuseteil 6 hat einen Anschlußnippel 7 für ein nur teilweise dargestelltes Tauchrohr, das bis in die Nähe des Dosenbodens in den Doseninhalt ragt und unten offen ist.
  • Der Ventilschaft 2 ist mit seinem unteren dickeren Ende, das außen vertikale Rippen aufweist, im oberen Ventilgehäuseteil 5 geführt und sitzt mit seinem oberen Ende in einem Hauptventil-Betätigungskopf 9, der eine Sprühöffnung aufweist.
  • Das untere Ende des Ventilschafts 2 stützt sich über eine Feder 10 zur Rückstellung des Ventilschafts 2 in einem Gehäuseeinsatz 11 ab und drückt diesen dicht gegen eine innere Schulter 12 des unteren Ventilgehäuseteils 6.
  • Der Gehäuseeinsatz 11 begrenzt2usammen mit dem unteren Ventilgehäuseteil 6 eine Hilfsventilkammer 13 eines als Umschaltventil wirkenden Hilfsventils, das eine Ventilkugel 14 aus Metall, vorzugsweise Stahl, einen ersten kegelstumpfförmigen Ventilsitz 15 unterhalb der Kugel 14 im unteren Ventilgehäuseteil 6 und einen zweiten kegelstumpfförmigen Ventilsitz 16 oberhalb der Kugel 14 im Gehäuseeinsatz 11 aufweist.
  • Ein Nebenkanal 17, der in der dargestellten Vertikallage der Ventilanordnung oberhalb des maximalen Füllstandes der Dose liegt, verbindet in dieser Lage den mit Druckgas gefüllten Bereich des Innenraums der Dose mit dem unteren Ventilsitz 15, wobei seine Mündung 18 an der tiefsten Stelle des Ventilsitzes unterhalb der Kugel 14 liegt. Am Anfang ist der Nebenkanal 17 als querlaufender bzw. horizontaler Schlitz 19 ausgebildet, der in eine vertikale Bohrung 20 übergeht.
  • Der Verlauf des Hauptkanals 21 für den Durchtritt des Doseninhalts ist als gestrichelte Linie dargestellt. Ein Teil 22 des Hauptkanals 21 verläuft seitlich neben dem Hilfsventil durch einen axialen Kanal 23 im unteren Ventilgehäuseteil 6, eine axiale Nut 24, eine radiale Bohrung 25 und eine axiale Bohrung 26 im Gehäuse-Einsatz 11 bis zu einer koaxial zur Mündung 18 liegenden Mündung 27 oberhalb der Kugel 14 im oberen Ventilsitz 16. Der Hauptkanal setzt sich fort über eine radiale Ausnehmung 28 in Form einer Nut in der Wand des Gehäuse-Einsatzes 11 und eine axiale Nut 29, die ebenfalls im Gehäuse-Einsatz 11 ausgebildet ist. Die Nuten 28, 29 bilden einen direkten Durchgang von der Hilfsventilkammer 13 zum Hauptventilgehäuseraum 33. Um beim Zusammenbau sicherzustellen, daß der Kanal 23 und die Nut 24 miteinander fluchten, kann ein axialer Vorsprung an der Unterseite des Gehäuse-Einsatzes 11 in eine Ausnehmung an der Oberseite der Schulter 12 eingreifen.
  • Der obere Teil des Gehäuse-Einsatzes 11 hat die Form eines Topfes, in den die Feder 10 eingreift.
  • Ein radialer Rastvorsprung 31 an der einen und der diametral gegenüberliegenden Innenseite des oberen Ventilgehäuseteils 5, der auch als umlaufender Ringvorsprung ausgebildet sein kann, greift zur Axiallage - sicherung des Gehäuse-Einsatzes 11 unmittelbar über den oberen Rand des Gehäuse-Einsatzes 11 und läßt sich beim Einsetzten des Gehäuse-Einsatzes 11 durch diesen so weit radial nach außen zusammendrücken, daß der Gehäuse- Einsatz 11 über den Rastvorsprung 31 hinweggeführt werden kann.
  • Die Hilfsventilkammer 13 ist exzentrisch zum äußeren Teil des Ventilgehäuses 4 bzw. zum Ventilgehäuseteil 6 ausgebildet. Die Exzentrizität ist etwa gleich der Differenz der Innenradien der Hilfsventilkammer 13 und des Ventilgehäuseteils 6, so daß die Außenwand des Ventilgehäuseteils 6 gleichzeitig einen Teil (den in Fig. 1 linken Teil) der Wand der Hilfsventilkammer 13 bildet.
  • Die axialen Nuten 24 und 29 sind durch eine Wand 43 getrennt, die mit ihrem radial äußeren Rand dicht an der Innenseite des Ventilgehäuseoberteils 5 anliegt. Die Nut 29 ist nach oben offen, während die Nut 24 nach oben durch die Querwand 44 des Einsatzes 11 verschlossen ist.
  • Aufgrund der Exzentrizität der Hilfsventilkammer 13 ergibt sich für den Hauptkanalabschnitt 22 ein größerer Durchtrittsquerschnitt als bei konzentrischer Anordnung von Hilfsventilkammer 13 und Ventilgehäuse 4. Ferner ist der Materialaufwand für das Ventilgehäuse 4 im Vergleich zu einer konzentrischen Anordnung geringer.
  • Sodann ist die Differenz von Außendurchmesser der Hilfsventilkammer 13 und Innendurchmesser des Ventilgehäuses 6 in Höhe der Hilfsventilkammer kleiner als der Durchmesser der Kugel 14, so daß die Kugel beider Montage vor dem Einsetzen des Gehäuseeinsatzes 11 einfach von oben in das Ventilgehäuse 4 geworfen und trotz der Exzentrizität von Hilfsventilkammer 13 leicht, ohne besondere Führung, in die Hilfsventilkammer 13 gedrückt werden kann, z.B. mittels eines Druckstempels.
  • In der dargestellten normalen Vertikallage der Aerosoldose bzw. der Ventilanordnung sperrt die Kugel 14 aufgrund ihres Gewichts den Nebenkanal gegen den Gasdruck, so daß das Gas nicht entweichen kann. Dagegen gibt sie den Hauptkanal 21 an der Mündung 27 frei, so daß die in der Dose enthaltene Flüssigkeit unter dem Gasdruck über den Hauptkanal austreten kann, sofern das Hauptventl, wie dargestellt, durch Niederdrücken des Kopfes 9 geöffnet worden ist.
  • Wenn die Dose dagegen beim Öffnen des Hauptventils 9 in Kopfüber-Lage, d.h. mit dem Kopf 9 nach unten, gehalten wird, so daß der Nebenkanal 17 in die Flüssigkeit eingetaucht ist, die Eintrittsöffnung des Tauchrohrs 8 dagegen oberhalb des Flüssigkeitsspiegels in der Dose liegt, dann rollt die Kugel 14 gegen den Ventilsitz 16, so daß auch in dieser Lage nur die Flüssigkeit über den Nebenkanal 17, die Hilfsventilkammer 13 und die Nuten 28, 29 austreten kann, nicht aber das Druckgas.
  • Bei dem in Fig. 2 dargestellten Ausführungsbeispiel der erfindungsgemäßen Sprühanordnung und allen folgenden ist der in Fig. 1 dargestellte Hauptventil-Betätigungskopf 9 zur Vereinfachung der Darstellung weggelassen. Soweit die Teile denen nach Fig. 1 entsprechen, sind ihnen gleiche Bezugszahlen zugeordnet.
  • Das Ausführungsbeispiel nach Fig. 2 unterscheidet sich von dem nach Fig. 1 im wesentlichen dadurch, daß das Hilfsvent'l nur in einer Richtung wirkt und ein breiterer gerader Durchgang 34 von der Hilfsventilkammer 13 zum Haqtventilgehäuseraum 33 freigelassen ist.
  • Der Innendurchmesser eines den Durchgang 34 am oberen Öffnungsrand der Hilfsvenülkammer 13 begrenzenden, nach innen vorstehenden Ringwulstes 35 ist etwas kleiner als der Durchmesser der Ventilkugel 14, so daß der Ringwulst als Sperre wirkt, die verhindert, daß die Kugel 14 unter dem Druck des über den Nebenkaral 17 gegen die Kugel drückenden Fluids aus der Hilfsventilkammer 13 austritt.
  • In der dargestellten Normallage der Sprühventilanordnung nach Fig. 4 strämt die in der Dose enthaltene Flüssigkeit unter dem Druck des darüber stehenden Gases über das Tauchrohr durch den Hauptkanal 21 aus, wenn das Hauptventil 2, 3 geöffnet wird, während die Ventilkugel 14 durch ihr Eigengewicht das Hilfsventil gesperrt hält, so daß das Druckgas nicht über den Nebenkanal 17 entweichen kann. In Kopfüber-Lage der Dose kann die Flüssigkeit dagegen bei geöffnetem Hauptventil über den Nebenkanal 17 austreten, da nunmehr die Kugel 14 vom Ventilsitz 15 abgehoben ist. Die über den Nebenkanal 17 in die Hilfsventilkammer 13 gedrückte Flüssigkeit tritt dabei über seitliche Schlitze 36 in der Wand der Hilfsventilkammer 13 in den Hauptventilgehäuseteil 33 aus. Zwar kann bei dem Ausführungsbeispiel nach Fig. 2 in der Kopfüber-Lage der Dose das Druckgas teilweise ebenfallsüber den Hauptkanal 21 entweichen, doch ist dieses Ausführungsbeispiel wegen des fehlenden Gehäuse-Einsatzes 11 hinsichtlich HerstellungXMontage einfacher.
  • Bei dem Ausführungsbeispiel nach Fig. 3 wird dagegen durch den Einbau eines zweiten Hilfsventils mit einer zweiten Kugel 37 im Hauptkanalabschnitt 22 ebenfalls verhindert, daß das Druckgas in der Kopfüber-Lage der Dose aus dieser über den Hauptkanal 21 austritt. Um den Austritt der Flüssigkeit in der dargestellten Normallage zu ermöglichen, ist der Nippel 7 am unteren Ende mit bis nach unten durchgehenden Schlitzen 38 versehen, wobei die die Schlitze 38 begrenzenden Wandabschnitte der zweiten Hilfsventilkammer 39 am unteren Öffnungsrand radial nach innen ragende Vorsprünge 40 als Sperre für den Austritt der Ventilkugel 37 aufweisen. Das über den Nippel 7 geschobene Tauchrohr 8 versperrt die Schlitze 38 nach außen.
  • In Abwandlung des Ausführungsbeispiels nach Fig. 2 ist die Wand der Hilfsventilkammer 13 nicht mit radialen Schlitzen 36, sondern mit axialen Rippen 41 versehen, die axial bis zum oberen Öffnungsrand der Hilfsventilkamer 13 durchgehende Nuten 42 zwischen sich begrenzen. Beide Hilfsventilkammern 13 und 39 sind sich diametral gegenüberliegend ebenfalls wie die einzige Hilfsventilkammer 13 des Ausführungsbeispiels nach Fig. 2 exzentrisch angeordnet. Der Schlitz 19 ist wegen der exzentrischen Ausbildung des Nippels völlig entfallen. Sodann sind die Hilfsvetilkammern axial versetzt, wobei sie sich in Radialrichtung überlappen.
  • Das Ausführungsbeispiel nach Fig. 4 unterscheidet sich von dem nach Fig. 3 lediglich wie folgt: Der untere Ventilgehäuseteil 6 und damit der Nippel 7 hat einen größeren Durchmesser als im Ausführungsbeispiel nach Fig. 3, so daß das Tauchrohr 8 in den Nippel 7 eingeführt werden kann, und die zweite Hilfsventilkammer ist teilweise vom Ventilgehäuseteil 6 umgeben.
  • Das Ausführungsbeispiel nach Fig. 5 unterscheidet sich von dem nach Fig. 2 dadurch, daß anstelle der Sperre 35 ein Einsatz 11 mit einer den Hauptkanal begrenzenden Durchgangsnut 29 vorgesehen ist, der die Hilfsventilkammer 13 unter dem Druck der Feder 10 versperrt. Der Nebenkanal 17 mündet oberhalb der Ventilkugel 14 in die Hilfsventilkammer 13. Der Gehäuse-Einsatz sorgt gleichzeitig für eine Abdichtung der Hilfsventilkammer 13 in der dargestellten Normallage, in der das Druckgas über den Nebenkanal 17 in die Hilfsventilkammer 13 eindringt und die Kugel 14 zusätzlich zu ihrem Eigengewicht gegen den Ventilsitz 15 drückt. Gleichzeitig sorgt der Gehäuse-Einsatz 11 dafür, daß die Kugel 14 ihre Einbaulage während der Montage beibehält.
  • Das Ausführungsbeispiel nach Fig. 6 unterscheidet sich von dem nach Fig. 5 durch die Verwendung eines zweiten Hilfsventils 16, 37, das in ähnlicher Weise wie das zweite Hilfsventil nach Fig. 4 ausgebildet ist. Es hat daher insoweit die gleiche Funktion wie das Ausführungsbeispiel nach Fig. 4.
  • Das Ausführungsbeispiel nach Fig. 7 unterscheidet sich von dem nach Fig. 6 im Prinzip nur dadurch, daß einzweiter Gehäuse-Einsatz 47 einen inneren Ventilgehäuseteil bildet, der die erste Ventilkammer 13 und die zweite Ventilkammer 39 zum Teil und den Hauptkanal 22 begrenzt. Dies vereinfacht die Herstellung des Ventilgehäuses 4 aus Kunststoff und erleichtert die Einführung der zweiten Kugel 37 von oben her, d.h. die Einführung in der gleichen Richtung wie die der ersten Kugel 14, so daß das Ventilgehäuse 4 bei dem Zusammenbau nicht gewendet zu werden braucht. Der unteren Sperre 40 entspricht hier ein mittleres Haltestück 48, das durch radiale Stege 49 mit der Wand des Nippels 7 verbunden ist. Die Scflitze 38 sind durch Zwischnräume zwischen axialen Rippen gebildet.
  • Fig. 8 stellt eine Abwandlung des Ausführungsbeispiels nach Fig. 5 dar, bei der eine axiale Nut 45 in der Außenseite des Ventilgehäuses 4 ausgebildet ist, die einen Anfangsabschnitt des Nebenkanals 17 bildet und an der Innenseite des Dosenoberteils beginnt.
  • Die Nut 45 ist bis in die Nähe des Dosenoberteils 1 durch das Tauchrohr 8 verdeckt, so daß eine Eintrittsöffnung 46 frei bleibt. Wenn die Dose in der Kopfüber-Lage gehalten wird, kann bei diesem Ausführungsbeispiel praktisch die gesamte Flüssigkeit aus der Dose über den Nebenkanal 17 ausgegeben werden, ohne daß ein nennenswerter Restin der Dose verbleibt, da die Eintrittsöffnung 46 in der Kopfüber-Lage der Dose praktisch an der tiefsten Stelle liegt. Ein weiterer Vorteil dieses Ausführungsbeispiels gegenüber dem nach Fig. 5 besteht darin, daß der Nippel 7 entfallen kann.
  • Wenn bei den Ventilanordnungen nach Fig. 2, 5 und 8 sehr hohe Sprühmengen pro Zeiteinheit ausgebracht werden müssen ohne einen Verlust von Druckgas bei Überkopfhaltung des Behälters, dann empfiehlt sich die Anwendung der bereits beschriebenen Anordnungen nach Fig. 1, 3, 4, 6, 7. Kann man jedoch auch mit niedriger Sprührate ausreichende Effekte erzielen, so ist es möglich, auf diese aufwendigeren Angdngungen zu verzichten. Auch mit den Ausführungen nach Fig. 2, 5 und 8 kann ohne Verlust von Druckgas bei Überkopfhaltung des Behälters gesprüht werden, wenn im Strömungsbereich des Hilfsventils der engste Teil der Kanäle 17, 20, 36 (Fig. 2) oder 45, 17, 17a (Fig. 5, 8) mit einem größeren Querschnitt versehen wird als der engste Teil des in Strömungsrichtung-anschließenden Hauptkanalbereichs 22a (Fig. 2) oder 22a, 22, 29 (Fig. 5, 8).
  • Folgende Abmessungen werden bei dem dargestellten Ausführungsbeispiel bevorzugt:
    • Durchmesser D der Kugel 14, 37: 3 - 4,5 mm, vorzugsweise 3,5 mm;
    • Innendurchmesser der äußeren Gehäuseteile 5, 6: 6 - 9 mm, vorzugsweise 6,9 mm bei D = 3,5 mm;
    • Mindestweite des Hauptkanals 21: 1,5 mm;
    • Innendurchmesser der Hilfsventilkammer 13, 39: 3,75 mm bei D = 3,5 mm;
    • Stärke der nicht mit dem äußeren Gehäuseteil 6 zusammenfallenden Wand der Hilfsventilkammern 13, 39: 0,7 - 0,8 mm bei D = 3,5 mm;
    • Radiale Tiefe der Nuten 23, 24, 29 in Fig. 1: 0,8 mm bei D = 3,5 mm.
  • Abwandlungen der dargestellten Ausführungsbeispiele liegen im Rahmen der Erfindung. So können die Wände der Hilfsventilkammern nach den Fig. 3 und 4 ebenso ausgebildet sein, wie die der Hilfsventilkammer 13 nach Fig. 2, und umgekehrt. Ferner können die Wände der Hilfsventilkammer 13 nach den Fig. 2 bis 4 auch so wie die Wand der Hilfsventilkammer 39 nach Fig. 3 mit Schlitzen 38 ausgebildet sein, und umgekehrt.

Claims (21)

1. Sprühventilanordnung für eine Aerosoldose, mit einem einteiligen Ventilgehäuse aus Kunststoff, das mit einem oberen Ende im Dosenoberteil abdichtend fest einsetzbar ist, einen Hauptkanal für den Durchtritt des Doseninhalts begrenzt und ein Hauptventil mit einem manuell gegen die Kraft einer Feder betätigbaren Ventilschaft in dem Hauptkanal, einen den Dosenraum mit dem Hauptkanal verbindenden Nebenkanal für den Durchtritt des Doseninhalts oberhalb des maximalen Dosenfüllstandes und einen Ventilsitz eines an der Verbindungsstelle von Haupt-und Nebenkanal ausgebildeten Hilfsventils mit einer Ventilkugel aus Metall in einer von einem äußeren Ventilgehäuseteil umgebenen Hilfsventilkammer aufweist, wobei der Hilfsventilsitz unterhalb der Ventilkugel liegt, so daß die Ventilkugel in der Normallage der Dose den Hauptkanal nicht behindert und den Nebenkanal sperrt, dagegen in der Kopfüber-Lage der Dose den Nebenkanal freigibt, und wobei der Hauptkanal seitlich am Hilfsventil vorbeigeführt ist, dadurch gekennzeichnet, daß das Hilfsventil (14, 15) exzentrisch in dem äußeren, die Hilfsventilkammer (13) umgebenden Ventilgehäuseteil (6) ausgebildet ist und daß der überwiegende Teil des Querschnitts des neben dem Hilfsventil verlaufenden
Hauptkanalabschnitts (22) auf der der Ventilgehäuseachse zugekehrten Seite einer senkrecht zu einer gemeinsamen Axialebene von Ventilgehäuse (4) und Hilfsventilkammer stehenden Hilfsventil-Axialebene liegt.
2. Anordnung nach Anspruch 1, dadurch gekennzeichnet, daß die Exzentrizität etwa gleich der Differenz der Innenradien des äußeren Ventilgehäuseteils (6) und der Hilfsventilkammer (13) ist.
3. Anordnung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Differenz von Außendurchmesser der Hilfsventilkammer (13) und Innendurchmesser des äußeren Ventilgehäuseteils (6) kleiner als der Durchmesser der Ventilkugel (14) des Hilfsventils ist.
4. Anordnung nach Anspruch 3, dadurch gekennzeichnet, daß die Einlaßöffnung (18) des Nebenkanis (17) in die Hilfsventilkammer (13) unterhalb der Ventilkugel (14) liegt.
5. Anordnung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß das Ventilgehäuse (4) einen querlaufenden Schlitz (19) und eine axiale Bohrung (20) aufweist, die den Nebenkanal (17) bilden.
6. Anordnung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Auslaßöffnung (17a) des Nebenkanals (17) aus der tiefsten Stelle des Hilfsventilsitzes (15) in den unterhalb der Ventilkugel (14) liegenden Gehäuseraum (21a) des Hauptkanals mündet.
7. Anordnung nach einem der Ansprüche 1 bis 5, bei der die Ventilkugel in der Hilfsventilkammer durch eine oberhalb der Ventilkugel liegende Sperre zurückgehalten ist, dadurch gekennzeichnet, daß die Sperre (35) einen Montagedurchgang (34) für die Ventilkugel (14) vom Hauptventilgehäuseraum (33) zur Hilfsvedilkammer (13) freigibt.
8. Anordnung nach Anspruch 7, dadurch gekennzeichnet, daß der Durchgang (34) achsparallel ist und die Sperre (35) durch wenigstens einen radial nach innen am Durchgang (34) vorstehenden nachgiebigen Vorsprung (35) gebildet ist.
9. Anordnung nach einem der Ansprüche 1 bis 6 mit einem die Hilfsventilkammer begrenzenden Gehäuse-Einsatz, dadurch gekennzeichnet, daß der Einsatz (11) gleichzeitig Kontroll- oder Steueröffnungen (28/29) für den Verlauf der Strömung außerhalb der Hilfsventilkammer aufweist.
10. Anordnung nach Anspruch 9, dadurch gekennzeichnet, daß das Ventilgehäuse (4) an seiner Innenwand einen Vorsprung (31) aufweist, hinter dem der Gehäuseeinsatz einrastbar ist.
11. Anordnung nach einem der Ansprüche 9 oder 10, dadurch gekennzeichnet, daß sich die Feder (10) am Gehäuse-Einsatz (11) abstützt.
12. Anordnung nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, daß der Querschnitt des engstens Teils des Nebenkanals größer ist als der des engsten Teils desjenigen Hauptkanalabschnitts, der sich innerhalb des Ventilgehäuses an den Nebenkanal in Strömungsrichtung anschließt.
13. Anordnung nach einem der Ansprüche 9 bis 11, dadurch gekennzeichnet, daß der Gehäuse-Einsatz (11) einen zweiten Hilfsventilsitz (16) oberhalb der Kugel (14) aufweist und eine Mündung(27) des Hauptkanals (21) in die Hilfsventilkammer (13) umgibt.
14. Anordnung nach Anspruch 13, dadurch gekennzeichnet, daß die Mündung (18) des Nebenkanals (17) im ersten Hilfsventilsitz (15) und die Mündung (27) des Haupt kanals (21) im zweiten Hilfsventilsitz (16) koaxial zueinander sind.
15. Anordnung nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, daß der Hauptkanal (21) unterhalb der Verbindungsstelle von Haupt- und Nebenkanal (21, 17) ein zweites exzentrisches Hilfsventil (16, 37) mit einer zweiten Ventilkugel (37) aus Metall und einem zweiten Hilfsventilsitz (16) oberhalbcbr zweiten Kugel (37) aufweist.
16. Anordnung nach Anspruch 15, dadurch gekennzeichnet, daß die Hilfsventile axial versetzt sind und sich radial überlappen.
17. Anordnung nach einem der Ansprüche 1 bis 16, dadurch gekennzeichnet, daß das Verhältnis von Innendurchmesser des äußeren Ventilgehäuseteils (6) zum Durchmesser der ersten Ventilkugel (14) im Bereich von etwa 1,5 bis 2, vorzugsweise bei 1,75, liegt.
18. Anordnung nach einem der Ansprüche 1 bis 17, dadurch gekennzeichnet, daß die Eintrittsöffnung (46) des Nebenkanals (17) in unmittelbarer Nähe des Dosenoberteils (1) liegt.
19. Anordnung nach Anspruch 18, dadurch gekennzeichnet, daß ein Anfangsabschnitt des Nebenkanals (17) durch eine in der Außenseite des Ventilgehäuses (4) ausgebildete Nut (45) gebildet ist, die an der Innenseite des Dosenoberteils (1) beginnt und bis in die Nähe des Dosenoberteils (1) von einem über das Ventilgehäuse (4) geschobenen Tauchrohr (8) abgedeckt ist.
20. Anordnung nach einem der Ansprüche 1 bis 19, dadurch gekennzeichnet, daß die Hilfsventilkammer(n) (13, 39) teilweise von zwei Gehäuse-Einsätzen (11, 47) begrenzt sind (ist).
EP81104955A 1980-07-08 1981-06-26 Sprühventilanordnung Expired EP0043514B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3025725A DE3025725C2 (de) 1980-07-08 1980-07-08 Sprühventilanordnung
DE3025725 1980-07-08

Publications (2)

Publication Number Publication Date
EP0043514A1 true EP0043514A1 (de) 1982-01-13
EP0043514B1 EP0043514B1 (de) 1984-09-05

Family

ID=6106603

Family Applications (1)

Application Number Title Priority Date Filing Date
EP81104955A Expired EP0043514B1 (de) 1980-07-08 1981-06-26 Sprühventilanordnung

Country Status (8)

Country Link
US (1) US4723692A (de)
EP (1) EP0043514B1 (de)
JP (2) JPS5775168A (de)
AU (1) AU555968B2 (de)
DE (1) DE3025725C2 (de)
ES (1) ES503733A0 (de)
MX (1) MX154060A (de)
ZA (1) ZA814298B (de)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2551828A1 (fr) * 1983-09-12 1985-03-15 Valvole Aerosol Res Italia Valve retournable pour la distribution de liquide conditionne sous pression
EP0325519A1 (de) * 1988-01-22 1989-07-26 VALOIS Société Anonyme dite: Auslassventil, wirkend in jede Richtung
EP0335457A2 (de) * 1988-03-28 1989-10-04 Mobacc B.V. Ventilvorrichtung für Druckbehälter
EP0380743A2 (de) * 1989-02-02 1990-08-08 Emson Research Incorporated 360-Grad-Ventil für einen Pumpzerstäuber
EP0440855A1 (de) * 1990-02-08 1991-08-14 Deutsche Präzisions-Ventil GmbH Sprühventilanordnung
US5127579A (en) * 1990-11-06 1992-07-07 Mobacc B. V. Low propellant aerosol spray head
WO2001094237A1 (de) * 2000-06-05 2001-12-13 Seaquist Perfect Dispensing Gmbh Adapter für eine handbetätigte abgabevorrichtung für flüssigkeitsbehälter

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3517558A1 (de) * 1985-05-15 1986-11-20 Ing. Erich Pfeiffer GmbH & Co KG, 7760 Radolfzell Handbetaetigte ausgabeeinrichtung fuer medien
JP2506040Y2 (ja) * 1991-05-17 1996-08-07 誠一 北林 正倒立両用バルブ
JPH07121752B2 (ja) * 1992-11-17 1995-12-25 誠一 北林 正立使用、倒立使用の両使用可能な流体噴出弁装置
JP2691840B2 (ja) * 1992-12-01 1997-12-17 誠一 北林 正立使用、倒立使用の両使用可能な高速充填用エアゾールバルブ
KR950009345B1 (ko) * 1992-12-24 1995-08-21 정상현 액상저장용기의 유출로 개폐변환밸브
JPH07121753B2 (ja) * 1993-01-22 1995-12-25 誠一 北林 正立使用、倒立使用の両使用可能な流体噴出弁装置
US5350088A (en) * 1993-09-13 1994-09-27 Summit Packaging Systems, Inc. Invertible aerosol valve
US5803319A (en) * 1996-01-19 1998-09-08 Summit Packaging Systems, Inc. Invertible spray valve and container containing same
JP5288410B2 (ja) * 2009-04-27 2013-09-11 株式会社三谷バルブ 正倒立バルブ機構および正倒立バルブ機構を備えたエアゾール式製品
CN105650307A (zh) * 2016-04-01 2016-06-08 中山市美捷时包装制品有限公司 一种一体式万向阀
CN109476413B (zh) * 2016-07-15 2020-01-03 三谷阀门有限公司 喷雾式正立/倒立阀机构和具有该正立/倒立阀机构的喷雾式产品
US10618152B2 (en) 2017-08-09 2020-04-14 Black & Decker Inc. All-direction valve and handheld power tool having same
US11685592B2 (en) * 2021-05-18 2023-06-27 Motedo Co., Ltd. High-pressure spray can and valve mechanism for high-pressure spray can

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3315693A (en) * 1964-04-10 1967-04-25 Seaquist Valve Co Anyside-up type aerosol valve
US3447551A (en) * 1967-06-14 1969-06-03 Arthur R Braun Upside-downside aerosol dispensing valve
DE1955397A1 (de) * 1968-10-31 1970-07-02 S C Johnsen & Son Inc Spruehdose
DE2817393A1 (de) * 1978-04-20 1979-10-25 Perfect Ventil Gmbh Spruehventil fuer aerosoldosen

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5112013B2 (de) * 1972-03-15 1976-04-15
DE7924419U1 (de) * 1979-08-28 1980-01-10 Perfect Ventil Gmbh Aerosoldose

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3315693A (en) * 1964-04-10 1967-04-25 Seaquist Valve Co Anyside-up type aerosol valve
US3447551A (en) * 1967-06-14 1969-06-03 Arthur R Braun Upside-downside aerosol dispensing valve
DE1955397A1 (de) * 1968-10-31 1970-07-02 S C Johnsen & Son Inc Spruehdose
DE2817393A1 (de) * 1978-04-20 1979-10-25 Perfect Ventil Gmbh Spruehventil fuer aerosoldosen

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3433496A1 (de) * 1983-09-12 1985-03-28 Società per Azioni Valvole Aerosol Research Italiana V.A.R.I., Olginate, Como In umgedrehter position betreibbares ventil fuer die verteilung einer unter druck stehenden fluessigkeit
FR2551828A1 (fr) * 1983-09-12 1985-03-15 Valvole Aerosol Res Italia Valve retournable pour la distribution de liquide conditionne sous pression
EP0325519A1 (de) * 1988-01-22 1989-07-26 VALOIS Société Anonyme dite: Auslassventil, wirkend in jede Richtung
FR2626198A1 (fr) * 1988-01-22 1989-07-28 Valois Sa Dispositif pour permettre le fonctionnement dans n'importe quelle position d'une valve de vaporisateur
US5005738A (en) * 1988-03-28 1991-04-09 Mobacc B. V. Aerosol valve device
EP0335457A2 (de) * 1988-03-28 1989-10-04 Mobacc B.V. Ventilvorrichtung für Druckbehälter
EP0335457A3 (en) * 1988-03-28 1990-01-10 Mobacc Bv Aerosol valve device
EP0380743A2 (de) * 1989-02-02 1990-08-08 Emson Research Incorporated 360-Grad-Ventil für einen Pumpzerstäuber
EP0380743A3 (de) * 1989-02-02 1991-04-03 Emson Research Incorporated 360-Grad-Ventil für einen Pumpzerstäuber
EP0440855A1 (de) * 1990-02-08 1991-08-14 Deutsche Präzisions-Ventil GmbH Sprühventilanordnung
US5127579A (en) * 1990-11-06 1992-07-07 Mobacc B. V. Low propellant aerosol spray head
WO2001094237A1 (de) * 2000-06-05 2001-12-13 Seaquist Perfect Dispensing Gmbh Adapter für eine handbetätigte abgabevorrichtung für flüssigkeitsbehälter
US6974055B2 (en) 2000-06-05 2005-12-13 Seaquist Perfect Dispensing Gmbh Adapter for a manually operated dispensing device of containers of liquid

Also Published As

Publication number Publication date
ES8204381A1 (es) 1982-05-16
ZA814298B (en) 1982-11-24
DE3025725C2 (de) 1985-11-07
AU7267581A (en) 1982-01-14
AU555968B2 (en) 1986-10-16
JPS5775168A (en) 1982-05-11
ES503733A0 (es) 1982-05-16
US4723692A (en) 1988-02-09
EP0043514B1 (de) 1984-09-05
JPH02108759U (de) 1990-08-29
DE3025725A1 (de) 1982-01-21
JPH0337731Y2 (de) 1991-08-09
MX154060A (es) 1987-04-20

Similar Documents

Publication Publication Date Title
EP0043514B1 (de) Sprühventilanordnung
DE3425478C2 (de)
DE69418673T2 (de) Abgabevorrichtung mit gesteuertem Luftansaugung
DE2542851B2 (de) Handbetätigter Miniaturzerstäuber
WO1992006019A1 (de) Einweg-druckbehälter, insbesondere als nachfüllbehälter für kälte- und klimaanlagen
DE3844854C2 (de) Dosierpumpe für niederviskose, insbesondere pastöse Stoffe
DE19727356B4 (de) Spender für Medien
DE128585T1 (de) Handbetaetigter fluessigkeitszerstaeuber.
EP0447675B1 (de) Längenverstellbare Gasfeder
DE2215605A1 (de) Austeiler ventil für Aerosolbehälter
EP0053350B1 (de) Vorrichtung zum Versprühen einer Flüssigkeit aus einem Behälter
DE3834091C2 (de)
DE2141626C3 (de) Ventilvorrichtung für Aerosolbehälter
DE2143082A1 (de) Ventil-Anordnung mit Sprühkopf für eine Sprühdose
DE2900601C2 (de) Absperrventil für ein Fluid
EP2442916A1 (de) Mehrkomponentenkartusche zur einmaligen verwendung
DE69406367T2 (de) Gaszylinder
DE60015681T2 (de) Pumpe für einen Behälter
DE2440909A1 (de) Aerosol-spruehkopf
CH658111A5 (de) Entlueftungs- und entgasungsventil fuer fluessigkeitsgefuellte systeme.
DE4428365A1 (de) Ventil für die Abgabe von unter Druck stehenden Fluiden
DE4128653C2 (de) Ventileinheit
EP0245319B1 (de) Vorrichtung zum fördern von viskosen materialien, wie flüssigkeiten, creme, pasten oder dergleichen aus einem vorratsbehälter
DE19960065B4 (de) Dampfumformventil in Durchgangsform
DE20019540U1 (de) Dosierpumpe aus Kunststoff für pastenartige Medien

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE FR GB IT NL

17P Request for examination filed

Effective date: 19811107

ITF It: translation for a ep patent filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): BE FR GB IT NL

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
BERE Be: lapsed

Owner name: DEUTSCHE PRAZISIONS-VENTIL G.M.B.H.

Effective date: 19870630

ITTA It: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19890630

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19890630

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19910101

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20000601

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20000602

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20010625

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Effective date: 20010625