EP0040776B1 - Verfahren zur Konjugierung mehrfach ungesättigter Fettsäuren oder Fettsäuregemische - Google Patents

Verfahren zur Konjugierung mehrfach ungesättigter Fettsäuren oder Fettsäuregemische Download PDF

Info

Publication number
EP0040776B1
EP0040776B1 EP81103767A EP81103767A EP0040776B1 EP 0040776 B1 EP0040776 B1 EP 0040776B1 EP 81103767 A EP81103767 A EP 81103767A EP 81103767 A EP81103767 A EP 81103767A EP 0040776 B1 EP0040776 B1 EP 0040776B1
Authority
EP
European Patent Office
Prior art keywords
fatty acid
fatty acids
weight
water
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP81103767A
Other languages
English (en)
French (fr)
Other versions
EP0040776A1 (de
Inventor
Alfred Dr. Struve
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henkel AG and Co KGaA
Original Assignee
Henkel AG and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel AG and Co KGaA filed Critical Henkel AG and Co KGaA
Priority to AT81103767T priority Critical patent/ATE9489T1/de
Publication of EP0040776A1 publication Critical patent/EP0040776A1/de
Application granted granted Critical
Publication of EP0040776B1 publication Critical patent/EP0040776B1/de
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11CFATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
    • C11C3/00Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom
    • C11C3/14Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom by isomerisation

Definitions

  • fatty acid mixtures are obtained from the splitting of more unsaturated fats, for example from soybean oil, sunflower oil, linseed oil, tall oil and the like. These fatty acid mixtures contain, as conjugatable compounds, above all the double unsaturated linoleic acid and the triple unsaturated linolenic acid. The double bonds of these acids are separated from each other by methylene groups.
  • conjugated fatty acids brings them into a more chemically reactive form. In conjugated form, they have been proven to be of great advantage in their main field of application, namely in the drying oils. Conjugated double bonds can enter into the Diels-Alder reaction. In general, there is an expanded field of application for the conjugated fatty acids.
  • S0 2 gaseous S0 2 can be used for conjugation.
  • S0 2 alone provides demonstrably poor degrees of conjugation in addition to a relatively large amount of polymer fatty acid.
  • a fatty acid mixture from sunflower oil with a content of approx. 60% linoleic acid is converted into a product with only 10% fatty acids with conjugated double bonds and 12% polymer fatty acids by passing S0 2 at 225 "'C for 4 hours.
  • US-A-3 257 377 describes the production of emulsifiers from tall oil for the polymerization of unsaturated compounds.
  • tall oil with sulfur dioxide is first used in the temperature range of about 200 ° C to 320 ° C to disproportionate the rosin resin acids and conjugate unsaturated fatty acids and then in the presence of an alkaline compound at 250 ° C to 330 ° C for further disproportionation and dimerization of the conjugated fatty acids treated.
  • the alkaline compound can also be added in the first stage of the treatment with sulfur dioxide.
  • the use of 2 to 5% by weight of the alkaline compound, for example alkali metal hydroxide, carbonate or sulfide, is proposed.
  • the S0 2 is passed in the gaseous state through the tall oil heated to high temperatures. The rework shows that even with the omission of the dimerization step, only small amounts of distillable monomeric fatty acids with conjugated double bonds are formed.
  • the invention aims to provide a method which enables the conjugation of polyunsaturated fatty acids or fatty acid mixtures with SO 2 in a reproducible manner and with high yields of conjugated polyunsaturated fatty acids, but works with only limited amounts of base.
  • the process of the invention described below makes it possible, for example, to use almost all of the available linoleic acid in a period of 4 hours at 225 ° C. in the presence of only 0.2 to 0.3% by weight of alkali, based on the fatty acid mixture used The conditions of process duration and temperature have hitherto also been necessary for the sufficient conjugation of the fully saponified fatty acid.
  • the invention accordingly relates to a process for conjugating polyunsaturated fatty acids or fatty acid mixtures by treatment with S0 2 at elevated temperatures in the presence of substoichiometric amounts of soap-forming bases, this process being characterized in that the treatment of the fatty acid starting material in a reaction vessel in the presence of 0. 05-2% by weight, preferably 0.05 to 1.5% by weight of water, based on the fatty acid starting material, in the temperature range from 170 to 260 ° C.
  • the process according to the invention enables the perfect reproduction of high reaction yields of conjugated polyunsaturated fatty acids. Compared to the prior art, there is an important and unforeseeable improvement. If, for example, one works in an open reaction vessel without observing certain precautionary measures, which will be described in the following, then according to the experience on which the invention is based, reproducible results with regard to the yield of conjugated fatty acids cannot be set. When working in a closed reaction vessel and in the specified temperature range, however, the desired high yields of fatty acids with conjugated double bonds are set repeatedly. The participation of water or water is highly likely to assume traces in the reaction, which is ensured by the measures of the invention and will be discussed in detail. The water content in the reaction mixture is accordingly at least about 0.05% by weight, based on the fatty acid starting material.
  • the water content of the reaction zone is preferably not more than 1.5% by weight and in particular not more than 1% by weight. Areas of water content of 0.1 to 1% by weight are particularly suitable. In general, at least about 0.2% by weight of water should be present in the reaction mixture, so that the range from 0.2 to 1% by weight is particularly suitable in practice. All these percentages by weight relate to the starting material containing the unsaturated fatty acids.
  • the water in the S0 2 stream can be discharged in the shortest possible way.
  • the content of fatty acids with conjugated double bonds in the reaction product can then, for example after 4 hours at 225 ° C., be below 10%.
  • the desired water can be added, batchwise and / or continuously supplemented or - in particular by means of reflux cooling - recycled.
  • these measures enable working in the open reaction container.
  • it can be particularly preferred to carry out the conjugation in a closed reaction container, in which case the reaction mixture is preferably operated under autogenous pressure. In this way, the maintenance of the desired concentration of water in the reaction mixture can be ensured in a particularly simple manner.
  • An important further parameter of the process according to the invention is the amount of the soap-forming base which is added to the reaction mixture.
  • the amount of base, based on the fatty acids introduced, is usually in the range from 0.5 to 25 mol%, preferably in the range from 1 to 12.5 mol%. Working with amounts of 1.5 to 10 mol% is particularly suitable.
  • Corresponding alkali and / or alkaline earth metal compounds are particularly preferred as soap-forming bases, the alkali metal compounds being the more important representatives. Any soap-forming components from the groups mentioned can be used.
  • the hydroxides or oxides are particularly suitable. Preferred representatives of these reactants are therefore the hydroxides of sodium, potassium or lithium and the oxides or hydroxides of barium or magnesium. NaOH is a particularly suitable representative of this group. It can be used in amounts of 0.1 to 5% by weight, preferably in amounts of 0.2 to less than 2% by weight, based on the fatty acids used.
  • S0 2 can be added to the reaction mixture in gaseous form or, if desired, can be passed through the reaction mixture at least during a period of the reaction. In this last case in particular, however, it must be ensured, as described above, that the water content of the reaction mixture does not drop below the required minimum levels.
  • the amount of SO 2 dissolved in the fatty acid is preferably at least about 0.2% by weight, in particular at least about 0.3% by weight.
  • Particularly preferred ranges for the SO 2 - expressed in mol% and based on the starting material presented - are the following: 0.5 to 25 mol%, preferably 1 to 12.5 mol% and in particular 1.5 to 8 mol% % SO 2 .
  • salts which split off S0 2 under the reaction conditions For example, sodium sulfite, sodium disulfite or even sodium dithionite are suitable. In these cases, however, at least as much of the salt must always be used that sufficient S0 2 is released.
  • the amount of metal cations present for the saponification of fatty acids is normally higher than is absolutely necessary.
  • Isolated certain polyunsaturated fatty acids or corresponding fatty acid mixtures can be used as the starting material.
  • a preferred starting material are natural fatty acid mixtures, such as those obtained when splitting more unsaturated fats, in particular vegetable fats, for example corresponding fatty acid mixtures from splitting soybean oil, sunflower oil, safflower oil, linseed oil, tall oil and the like.
  • the content of polyunsaturated fatty acids is usually at least 30% by weight, often at least 40% by weight.
  • the content of polyunsaturated components in such fatty acid mixtures is frequently from 35 to 75% by weight, the process according to the invention can be particularly expedient for those feedstocks of natural origin which are depleted in saturated components and correspondingly more than 50% by weight. have unsaturated components.
  • the process temperature for the conjugation under the conditions according to the invention is between 170 ° C and 260 "C, preferably between 180" and 240 ° C.
  • the duration of the process is usually between 1 and 10 hours, the process period of 1 to 6 hours being particularly important.
  • the conjugation according to the invention is always accompanied by a restricted oligomerization of the fatty acids. It is possible to keep the formation of dimer fatty acids below 15%, even below 10%. These dimer fatty acids can in turn be used in a variety of ways.
  • the monomeric conjuene fatty acids and oligomerization products formed can be separated from one another by distillation. However, this separation is not required for some applications.
  • the formation of the dimer fatty acids is a result of the special constitution of the conjuene fatty acids formed in the process according to the invention.
  • the products of the invention are distinguished by a comparatively high trans-trans content of the fatty acids with conjugated double bonds.
  • the trans-trans constitution is characterized by the increased ability to form diesters adducts.
  • GB-A-1 141 690 describes a process according to which corresponding trans-trans-conjugated acids can be produced from cis-trans-conjugated fatty acids in an additional second process step.
  • the conjugation of the fully saponified fatty acids according to the prior art predominantly yields cis-trans fatty acid and only approximately one tenth of the fatty acid with conjugated double bonds in the trans-trans form.
  • the method of the invention provides about six tenths of the fatty acids with conjugated double bonds in the trans-trans form, about one third in the cis-trans form and less than one tenth in the cis-cis form.
  • This ratio of cis-trans to trans-trans is not far from the equilibrium of 29:71 (J.R. Chipault et al .: J. Am. Oil Chem. 37, 176 ff (1960)).
  • the previously described formation of a maximum of 10 to 15% dimer fatty acid is a side effect that can hardly be suppressed in the production of a predominantly trans-trans-conjugated fatty acid in one step from linoleic acid in the temperature range from approx. 200 "C. to 250" C.
  • the% data are% by weight, unless stated otherwise.
  • the analysis for determining the conjugation in percent is carried out using conventional ultraviolet techniques.
  • Example 2 corresponding tests are carried out with various catalysts.
  • the work is carried out in 100 g batches without pressure.
  • the reaction mixture is heated to 225 ° C. for 4 hours with the possibility of reflux (reflux condenser without cooling liquid; water dripped back into the reaction vessel over the entire heating period).
  • the reaction product is distilled without prior washing.
  • the yields of fatty acids with conjugated double bonds and residue obtained are summarized in the following Table 1 - here, as in the previous examples, the percentages are percentages by weight.
  • Gaseous SO 2 is passed in an amount of 0.7% / hour for 2 hours at 265 ° C. through the fatty acid mixture according to Example 1, in which 1.0% by weight of NaOH had been dissolved. It works without reflux cooling and return of water. (Reflux cooler without cooling liquid; at 265 ° C., all of the water was largely discharged through the SO 2. )
  • the process product is washed with dilute sulfuric acid and with water and then distilled. A distillate with only 6.7% by weight of fatty acids with conjugated double bonds is obtained. The distillation residue is 10.5%.
  • the sulfur dioxide is passed through the fatty acid mixture (with a content of 1.0% by weight of NaOH) in an amount of 0.63% by weight / hour for 4 hours at 225 ° C., then the distillate contains only 18.3% by weight of fatty acids with conjugated double bonds with a distillation residue of 8.5% by weight.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Fats And Perfumes (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Description

  • Die Konjugierung mehrfach ungesättigter Fettsäuren, wie sie beispielsweise in natürlichen Fettsäuregemischen anfallen bzw. vorliegen, spielt technisch eine bedeutende Rolle. Solche Fettsäuregemische werden bei der Spaltung von stärker ungesättigten Fetten erhalten, beispielsweise aus Sojaöl, Sonnenblumenöl, Leinöl, Tallöl und dergleichen. Diese Fettsäuregemische enthalten als konjugierbare Verbindungen vor allem die doppelt ungesättigte Linolsäure und die dreifach ungesättigte Linolensäure. Die Doppelbindungen dieser Säuren sind jeweils durch Methylengruppen voneinander getrennt.
  • Durch die Konjugierung dieser mehrfach ungesättigten Fettsäuren werden diese in eine chemisch stärker reaktionsfähige Form gebracht. In konjugierter Form sind sie erwiesenermaßen auf ihrem Hauptanwendungsgebiet, nämlich in den trocknenden Ölen, von großem Vorteil. Konjugierte Doppelbindungen können die Diels-Alder-Reaktion eingehen. Für die konjugierten Fettsäuren ergibt sich damit allgemein ein erweitertes Einsatzfeld.
  • Die bisher bekannten und in der Technik eingesetzten Verfahren zur Konjugierung von Fettsäuren sind relativ aufwendig, sie erfordern kostspielige Katalysatoren oder sind wenig umweltfreundlich. Beispielsweise werden Jod- oder Nickelkatalysatoren vorgeschlagen. Nach der DE-A-2 261 517 kommen komplizierte organische Schwefelverbindungen zum Einsatz. Die US-A-2 350 583 beschreibt die Konjugierung unter Verwendung der Fettsäure-Natriumsalze. Bei diesem großtechnisch benutzten Verfahren muß in einem zweiten Schritt die konjugierte Fettsäure mit Mineralsäure aus ihrem Natriumsalz freigesetzt werden, wobei ein volles Äquivalent eines anorganischen Salzes als Nebenprodukt anfällt.
  • Gelegentlich finden sich in der Literatur auch Hinweise, daß gasförmiges S02 zur Konjugierung einsetzbar ist. S02 alleine liefert aber nachweisbar schlechte Konjugierungsgrade neben relativ viel Polymerfettsäure. So wird beispielsweise ein Fettsäuregemisch aus Sonnenblumenöl mit einem Gehalt von ca. 60% Linolsäure durch 4stündiges Durchleiten von S02 bei 225"'C in ein Produkt mit nur 10% Fettsäuren mit konjugierten Doppelbindungen und 12% Polymerfettsäuren umgewandelt.
  • Die US-A-3 257 377 schildert die Herstellung von Emulgatoren aus Tallöl für die Polymerisation ungesättigter Verbindungen. Hierzu wird Tallöl mit Schwefeldioxid zunächst im Temperaturbereich von etwa 200°C bis 320°C zur Disproportionierung der Kolophonium-Harzsäuren und Konjugierung ungesättigter Fettsäuren und anschließend in Gegenwart einer alkalischen Verbindung bei 250°C bis 330° C zur weiteren Disproportionierung und Dimerisierung der konjugierten Fettsäuren behandelt. Die alkalische Verbindung kann auch schon in der ersten Verfahrensstufe der Behandlung mit Schwefeldioxid zugesetzt werden. Vorgeschlagen ist die Mitverwendung von 2 bis 5 Gew.-% der alkalischen Verbindung, beispielsweise Alkalimetallhydroxyd, -carbonat oder -sulfid. Das S02 wird in gasförmigem Zustand durch das auf hohe Temperaturen erhitzte Tallöl geleitet. Die Nacharbeitung zeigt, daß auf diese Weise auch unter Auslassung des Dimerisierungsschritts nur geringe Mengen an destillierbaren monomeren Fettsäuren mit konjugierten Doppelbindungen gebildet werden.
  • Aus der US-A-2 418 454 ist ein Verfahren zur Konjugierung von mehrfach ungesättigten Fettsäuren und Fettsäureestern bekannt, bei dem man das Ausgan,gsmaterial mit unterstöchiometrischen Mengen Alkali in Gegenwart von Schwefeldioxid auf 150 bis 350"C erhitzt, wobei im wesentlichen unter Ausschluß von Wasser gearbeitet wird.
  • Die Erfindung will ein Verfahren zur Verfügung stellen, das die Konjugierung mehrfach ungesättigter Fettsäuren bzw. Fettsäuregemische mit S02 in reproduzierbarer Weise und mit hohen Ausbeuten an konjugierten mehrfach ungesättigten Fettsäuren ermöglicht, dabei aber mit nur beschränkten Mengen an Base arbeitet. Das im folgenden geschilderte Verfahren der Erfindung macht es beispielsweise möglich, in einem Zeitraum von 4 Stunden bei 225" C in Gegenwart von nur 0,2 bis 0,3 Gew.-% Alkali - bezogen auf eingesetztes Fettsäuregemisch - fast die ganze verfügbare Linolsäure eines natürlichen Fettsäuregemisches zu konjugieren. Diese Bedingungen von Verfahrensdauer und -temperatur sind aber bisher auch für die ausreichende Konjugierung der vollverseiften Fettsäure erforderlich.
  • Gegenstand der Erfindung ist dementsprechend ein Verfahren zur Konjugierung mehrfach ungesättigter Fettsäuren oder Fettsäuregemische durch Behandlung mit S02 bei erhöhten Temperaturen in Gegenwart unterstöchiometrischer Mengen seifenbildender Basen, wobei dieses Verfahren dadurch gekennzeichnet ist, daß man die Behandlung des Fettsäureausgangsmaterials in einem Reaktionsgefäß in Gegenwart von 0,05-2 Gew.-%, vorzugsweise 0,05 bis 1,5 Gew.-% Wasser, bezogen auf das Fettsäureausgangsmaterial, im Temperaturbereich von 170 bis 260" C vornimmt.
  • Das erfindungsgemäße Verfahren ermöglicht die einwandfreie Reproduzierung hoher Reaktionsausbeuten an konjugierten mehrfach ungesättigten Fettsäuren. Gegenüber dem Stand der Technik liegt hier eine wichtige und nicht vorherzusehende Verbesserung vor. Arbeitet man beispielsweise im offenen Reaktionsgefäß ohne Einhaltung bestimmter Vorsichtsmaßnahmen, die noch im folgenden geschildert werden, so sind nach den der Erfindung zugrunde liegenden Erfahrungen sicher reproduzierbare Ergebnisse bezüglich der Ausbeute an konjugierten Fettsäuren nicht einzustellen. Beim Arbeiten im geschlossenen Reaktionsgefäß und im angegebenen Temperaturbereich werden jedoch in stets wiederholbarer Weise die angestrebten hohen Ausbeuten an Fettsäuren mit konjugierten Doppelbindungen eingestellt. Mit hoher Wahrscheinlichkeit ist die Mitwirkung von Wasser bzw. Wasserspuren bei der Reaktion anzunehmen, die durch die Maßnahmen der Erfindung sichergestellt wird und auf die noch im einzelnen eingegangen wird. Der Wassergehalt im Reaktionsgemisch beträgt dementsprechend wenigstens etwa 0,05 Gew.-%, bezogen auf das Fettsäureausgangsmaterial.
  • Vorzugsweise liegt der Wassergehalt der Reaktionszone nicht über 1,5 Gew.-% und insbesondere nicht über 1 Gew.-%. Besonders geeignet sind Bereiche des Wassergehalts von 0,1 bis 1 Gew.-%. Im allgemeinen sollen im Reaktionsgemisch wenigstens etwa 0,2 Gew.-% Wasser vorliegen, so daß der Bereich von 0,2 bis 1 Gew.-% in der Praxis besonders geeignet ist. Alle diese Gew.-%-Zahlenwerte beziehen sich auf das die ungesättigten Fettsäuren enthaltende Ausgangsmaterial.
  • Es hat sich überraschenderweise gezeigt, daß offenbar die Gegenwart schon geringer Mengen an Wasser im Reaktionsgemisch einen entscheidenden Einfluß auf die gewünschte Bildung der Fettsäuren mit konjugierten Doppelbindungen nimmt. Für die Durchführung des erfindungsgemäßen Verfahrens ist dabei zu berücksichtigen, daß an sich zunächst geringe Wassermengen im Reaktionsgemisch vorliegen bzw. sich darin bilden. So wird durch das Fettsäuregemisch ein sehr geringer Wassergehalt (<0,1%) eingeschleppt, Reaktionswasser entsteht insbesondere durch Salzbildung und gegebenenfalls eine beschränkte Anhydridbildung. Zu berücksichtigen ist weiterhin aber, daß das erfindungsgemäße Verfahren im Temperaturbereich weit oberhalb der Siedetemperatur des Wassers arbeitet und die Mischbarkeit des Reaktionsgutes bei diesen hohen Temperaturen mit Wasser äußerst gering ist. Wird also beispielsweise S02 durch den heißen Ansatz ohne besondere Vorsichtsmaßnahmen geleitet, so kann das Wasser im S02-Strom auf kürzestem Wege ausgetragen werden. Der Gehalt des Reaktionsproduktes an Fettsäuren mit konjugierten Doppelbindungen kann dann beispielsweise nach 4 Stunden bei 225°C unter 10% liegen.
  • Erfindungsgemäß wird demgegenüber dafür Sorge getragen, daß der vorgeschriebene Wasserbetrag während des gesamten Zeitraums der Konjugierung im Reaktionsgemisch vorliegt. Dabei kann das gewünschte Wasser zugeführt, absatzweise und/oder fortlaufend ergänzt oder - insbesondere mittels Rückflußkühlung - rückgeführt werden. Diese Maßnahmen ermöglichen in einer weiteren Ausführungsform der Erfindung das Arbeiten im offenen Reaktionsbehälter. Erfindungsgemäß kann es aber insbesondere bevorzugt sein, die Konjugierung im geschlossenen Reaktionsbehälter vorzunehmen, wobei hier bevorzugt unter Eigendruck des Reaktionsgemisches gearbeitet wird. Auf diese Weise ist die Aufrechterhaltung der gewünschten Konzentration des Wassers im Reaktionsgemisch in besonders einfacher Weise sicherzustellen.
  • Im allgemeinen kann es ausreichen, ohne Zusatz von Fremdwasser zu arbeiten und lediglich die Wassermengen zur Förderung der angestrebten Konjugierung einzusetzen, die sich im Verlaufe der Reaktion bilden und/oder durch die Reaktanten in die Reaktionsmischung eingetragen werden. Es hat sich gezeigt, daß in der Praxis auf diese Weise Wassergehalte im Bereich von mindestens 0,1 Gew.-%, bezogen auf Fettsäuregemisch, eingestellt werden. Mit diesen Wassermengen gelingt - unter Berücksichtigung der im folgenden geschilderten weiteren Verfahrensparameter - die technische Lösung der erfindungsgemäß gestellten Aufgabe.
  • Wichtiger weiterer Parameter des erfindungsgemäßen Verfahrens ist die Menge der seifenbildenden Base, die dem Reaktionsgemisch zugesetzt wird. Die Basenmenge liegt - bezogen auf vorgelegte Fettsäuren - üblicherweise im Bereich von 0,5 bis 25 Mol%, bevorzugt im Bereich von 1 bis 12,5 Mol-%. Besonders geeignet ist das Arbeiten mit Mengen von 1,5 bis 10 Mol-%. Als seifenbildende Basen sind entsprechende Alkali- und/oder Erdalkaliverbindungen besonders bevorzugt, wobei die Alkaliverbindungen die wichtigeren Vertreter sind. Es können beliebige seifenbildende Komponenten der genannten Gruppen eingesetzt werden. Besonders geeignet sind die Hydroxyde bzw. Oxyde. Bevorzugte Vertreter dieser Reaktanten sind damit die Hydroxyde von Natrium, Kalium oder Lithium und die Oxyde bzw. Hydroxyde von Barium bzw. Magnesium. NaOH ist besonders geeigneter Vertreter dieser Gruppe. Es kann in Mengen von 0,1 bis 5 Gew.-%, vorzugsweise in Mengen von 0,2 bis weniger als 2 Gew.-%, bezogen auf eingesetzte Fettsäuren, zur Verwendung kommen.
  • S02 kann gasförmig dem Reaktionsgemisch zugesetzt oder auch gewünschtenfalls wenigstens während eines Zeitraumes der Umsetzung durch das Reaktionsgemisch geleitet werden. Insbesondere in diesem letzten Fall ist aber, wie zuvor dargestellt, darauf zu achten, daß der Wassergehalt der Reaktionsmischung nicht unter die geforderten Mindestgehalte absinkt.
  • Die in der Fettsäure gelöste SO2-Menge beträgt vorzugsweise wenigstens etwa 0,2 Gew.-%, insbesondere wenigstens etwa 0,3 Gew.-%. Üblicherweise werden nicht mehr als 7,5 Gew.-% SO2 und vorzugsweise nicht mehr als 3 Gew.-% S02 - jeweils bezogen auf vorgelegtes Fettsäuregemisch - zum Einsatz gebracht. Besonders bevorzugte Bereiche für das SO2 - ausgedrückt in Mol-% und bezogen auf vorgelegtes Ausgangsmaterial - sind die folgenden: 0,5 bis 25 Mol-%, vorzugsweise 1 bis 12,5 Mol-% und insbesondere 1,5 bis 8 Mol-% SO2.
  • Neben oder anstelle des freien S02 können auch solche Salze zum Einsatz kommen, die unter den Reaktionsbedingungen S02 abspalten. Geeignet sind beispielsweise Natriumsulfit, Natriumdisulfit oder sogar Natriumdithionit. In diesen Fällen ist aber stets mindestens so viel des Salzes einzusetzen, daß ausreichend S02 freigesetzt wird. Die dann zur Fettsäureverseifung vorhandene Menge an Metalkationen liegt normalerweise höher als unbedingt erforderlich.
  • Schon bei Normaldruck im offenen Gefäß stellt sich bei Einleiten von S02 und/oder bei Zugabe von S02 abspaltenden Salzen üblicherweise eine ausreichende SOz-Konzentration ein. Es bietet sich allerdings auch aus diesem Gesichtspunkt des flüchtigen S02 das Arbeiten im geschlossenen Gefäß an, um unnötige SO2-Verluste zu verhindern. Dabei baut sich beispielsweise unter Einsatz von 0,5% SO2 oder 1,5% Na2S03 ein Druck von ca. 3 bar auf, womit das erfindungsgemäße Verfahren in normalen technischen Metallrührgefäßen durchgeführt werden kann. Auf diese Weise werden auch die kleinen freigesetzten Mengen Wasser unter Kontrolle bzw. im Ansatz zurückgehalten.
  • Als Ausgangsmaterial können isolierte bestimmte mehrfach ungesättigte Fettsäuren oder entsprechende Fettsäuregemische eingesetzt werden. Ein bevorzugtes Ausgangsmaterial sind natürliche Fettsäuregemische, wie sie bei der Spaltung von stärker ungesättigten Fetten, insbesondere pflanzlichen Fetten, erhalten werden, beispielsweise also entsprechende Fettsäuregemische aus der Spaltung von Sojaöl, Sonnenblumenöl, Saffloröl, Leinöl, Tallöl u. dgl. Der Gehalt an mehrfach ungesättigten Fettsäuren liegt üblicherweise wenigstens bei 30 Gew.-%, häufig bei wenigstens 40 Gew.-%. In der Praxis liegt der Gehalt solcher Fettsäuregemische an mehrfach ungesättigten Komponenten häufig bei 35 bis 75 Gew.-%, das erfindungsgemäße Verfahren kann besonders zweckmäßig für solche Einsatzmaterialien natürlichen Ursprungs sein, die an gesättigten Komponenten verarmt sind und dementsprechend mehr als 50 Gew.-% ungesättigte Komponenten aufweisen.
  • Die Verfahrenstemperatur für die Konjugierung unter den erfindungsgemäßen Bedingungen liegt zwischen 170°C und 260"C, vorzugsweise zwischen 180" und 240°C. Die Verfahrensdauer liegt üblicherweise zwischen 1 und 10 Stunden, wobei der Verfahrenszeitraum von 1 bis 6 Stunden besondere Bedeutung haben kann. Durch Variation der Verfahrensparameter ist es möglich, einerseits eine rasche und vollständige Konjugierung zu gewährleisten, andererseits aber die Bildung von polymeren Reaktionsprodukten weitgehend zurückzudrängen.
  • Auch die erfindungsgemäße Konjugierung ist allerdings stets von einer beschränkten Oligomerisierung der Fettsäuren begleitet. Dabei ist es möglich, die Bildung von Dimerfettsäuren unter 15%, ja auch unter 10% zu halten. Diese Dimerfettsäuren können ihrerseits in vielfältiger Weise Verwendung finden. Die gebildeten monomeren Konjuenfettsäuren und Oligomerisierungsprodukte können durch Destillation voneinander getrennt werden. Für manche Anwendungszwecke ist diese Abtrennung jedoch nicht erforderlich. Die Bildung der Dimerfettsäuren ist eine Folge der besonderen Konstitution der im erfindungsgemäßen Verfahren entstehenden Konjuenfettsäuren.
  • Die Produkte der Erfindung zeichnen sich durch einen vergleichsweise hohen trans-trans-Gehalt der Fettsäuren mit konjugierten Doppelbindungen aus. Hier liegt ein besonderer Vorteil des erfindungsgemäßen Verfahrens. Die trans-trans-Konstitution zeichnet sich durch die erhöhte Fähigkeit aus, Dies-AIder-Addukte zu bilden. So wird beispielsweise in der GB-A-1 141 690 ein Verfahren beschrieben, nach dem in einem zusätzlichen zweiten Verfahrensschritt aus cis-trans-konjugierten Fettsäuren entsprechende trans-trans-konjugierte Säuren hergestellt werden können. Die Konjugierung der vollständig verseiften Fettsäuren nach dem Stand der Technik liefert überwiegend cis-trans-Fettsäure und nur ungefähr ein Zehntel der Fettsäure mit konjugierten Doppelbindungen in der trans-trans-Form. Das Verfahren der Erfindung liefert demgegenüber ca. sechs Zehntel der Fettsäuren mit konjugierten Doppelbindungen in der trans-trans-Form, ca. ein Drittel in der cis-trans-Form und weniger als ein Zehntel in der cis-cis-Form. Dieses Verhältnis von cis-trans zu trans-trans liegt unweit des Gleichgewichts von 29 : 71 (J. R. Chipault et al.: J. Am. Oil Chem. 37, 176 ff (1960)). Die zuvor geschilderte Bildung von maximal 10 bis 15% Dimerfettsäure ist eine kaum zu unterdrückende Begleiterscheinung bei der Herstellung einer vorwiegend trans-trans-konjugierten Fettsäure in einem Schritt aus Linolsäure im Temperaturbereich von ca. 200" C bis 250" C.
  • In den folgenden Beispielen wird ein Fettsäuregemisch aus Sonnenblumenöl eingesetzt, das nach dem Umnetzverfahren Sonnenblumenöl-Fettsäure bei 5"C abgetrennt worden war, siehe hierzu Ullmann, Encyclopädie der technischen Chemie, 4. Auflage (1976), Band 11, Seite 537. Die gesättigten Anteile des Produkts sind teilweise abgetrennt:
    • 64% Linolsäure
    • 27% Ölsäure
    • 2% Stearinsäure
    • 5% Palmitinsäure
    • 1%Arachinsäure
    • 1 % Myristinsäure
  • Hier und im folgenden sind die %-Angaben Gewichts-%, sofern nichts anderes angegeben ist. Die Analyse zur Bestimmung der Konjugation in Prozent erfolgt mittels üblicher Ultraviolett-Techniken.
  • Beispiel 1
  • Zu 1000 g Fettsäure, 64%iger Linolsäure, wurden 10 g Natriumhydroxyd gegeben. Der Ansatz wurde in einem Dreihalskolben mit Rückflußkühler, Thermometer und Gaseinleitungsrohr unter Rühren und SO2-Einleiten (ca. 50 g/Std.) auf 225° C aufgeheizt. Diese Temperatur wurde 4 Stunden lang gehalten, die SO2-Zufuhr wurde aber schon nach 0,5 Stunden/225"C beendet. Im Reaktionsraum stellt sich ein Wassergehalt von ca. 0,5 Gew.-% ein, der durch Rückflußkühlung und frühzeitigen Abbruch des SO2-Stromes während des gesamten Zeitraumes im Reaktionsraum gehalten wird. Das Produkt wurde mit 150 ml 10%iger Schwefelsäure versetzt und darauf mit Wasser annähernd neutral gewaschen. Die Hochvakuumdestillation bei ca. 0,1 mbar (über Claisenaufsatz) lieferte bis zur Sumpftemperatur 230°C 84% Destillat und 16% Rückstand. Der Gehalt an Fettsäuren mit konjugierten Doppelbindungen im Destillat betrug 47%. Die Farbmessung im Lovibondtintometer® 5 ¼"-Küvette zeigte: Gelb 3, Rot 0,5.
  • Beispiel 2a
  • 1000 g Fettsäure, 64%iger Linolsäure, wurden mit 17 g Natriumsulfit in einem Autoklaven 4 Stunden auf 225°C erhitzt. Der Wassergehalt des Reaktionsgemisches beträgt etwa 0,3%. Das Produkt wurde nach Zugabe von 150 ml 10%iger Schwefelsäure mit Wasser annähernd neutral gewaschen und destilliert. Es wurden 83% Destillat und 17% Rückstand erhalten.
  • Destillatanalyse:
  • 53% Fettsäuren mit konjugierten Doppelbindungen davon
    Figure imgb0001
  • Rückstandsanalyse:
  • Figure imgb0002
  • Beispiel 2b
  • Statt Na2SO3 werden 0,5% SO2 und 0,6% NaOH eingesetzt und statt 225°C werden 200°C gewählt. Erhalten wurden jetzt 91,6% Destillat, 41,5%ige Fettsäuren mit konjugierten Doppelbindungen und 8,4% Rückstand.
  • Beispiel 3
  • Gemäß Beispiel 2 werden entsprechende Versuche mit verschiedenen Katalysatoren durchgeführt. Dabei wird in jeweils 100-g-Ansätzen drucklos gearbeitet. Das Reaktionsgemisch wird 4 Stunden auf 225°C mit Möglichkeit zum Rückfluß (Rückflußkühler ohne Kühlflüssigkeit; über die gesamte Erhitzungsdauer tropfte Wasser in das Rektionsgefäß zurück) erwärmt. Die Destillation des Reaktionsproduktes erfolgt ohne vorherige Wäsche. In der folgenden Tabelle 1 sind die dabei erhaltenen Ausbeuten an Fettsäuren mit konjugierten Doppelbindungen und Rückstand zusammengefaßt - hier wie in den vorherigen Beispielen sind die Prozentangaben jeweils Gewichtsprozent.
    Figure imgb0003
  • In einem Parallelversuch wird mit 1,0 Gew.-% NaOH als Katalysator und gasförmig eingeleitetem SO2 (ca. 10 I/Std.) gearbeitet. Es werden 47,9%ige Fettsäuren mit konjugierten Doppelbindungen bei 26,7% Rückstand erhalten. Wird derselbe Versuch jedoch ohne Zusatz von NaOH wiederholt, so fallen lediglich 10,5% Fettsäuren mit konjugierten Doppelbindungen bei 11,8% Rückstand an.
  • In einem weiteren Parallelversuch wird mit 0,2% statt 1,0% NaOH als Katalysator gearbeitet. Es werden 42,5% Fettsäuren mit konjugierten Doppelbindungen und 16,7% Rückstand erhalten. Wird derselbe Versuch jedoch in einem offenen Kolben ohne Kondensationsmöglichkeit für das freigesetzte Wasser wiederholt, so fallen lediglich 6,1% Fettsäuren mit konjugierten Doppelbindungen und 12,7% Rückstand an.
  • Vergleichsbeispiel
  • Gasförmiges SO2 wird in einer Menge von 0,7%/Stunde während 2 Stunden bei 265°C durch das Fettsäuregemisch gemäß Beispiel 1 geleitet, in dem 1,0 Gew.-% NaOH aufgelöst worden waren. Es wird ohne Rückflußkühlung und Rückführung von Wasser gearbeitet. (Rückflußkühler ohne Kühlflüssigkeit; bei 265°C wurde weitgehend alles Wasser durch das S02 ausgetragen.) Das Verfahrensprodukt wird mit verdünnter Schwefelsäure und mit Wasser gewaschen und anschließend destilliert. Erhalten wird ein Destillat mit nur 6,7 Gew.-% Fettsäuren mit konjugierten Doppelbindungen. Der Destillationsrückstand beträgt 10,5%.
  • Wird unter sonst gleichen Bedingungen das Schwefeldioxid in einer Menge von 0,63 Gew.-%/Stunde während 4 Stunden bei 225°C durch das Fettsäuregemisch (mit einem Gehalt von 1,0 Gew.-% NaOH) geleitet, dann enthält das Destillat nur 18,3 Gew.-% Fettsäuren mit konjugierten Doppelbindungen bei einem Destillationsrückstand von 8,5 Gew.-%.

Claims (6)

1. Verfahren zur Konjugierung mehrfach ungesättigter Fettsäuren oder Fettsäuregemische durch Behandlung mit S02 bei erhöhten Temperaturen in Gegenwart unterstöchiometrischer Mengen seifenbildender Basen, dadurch gekennzeichnet, daß man die Behandlung des Fettsäureausgangsmaterials in einem Reaktionsgefäß in Gegenwart von 0,05 bis 2 Gew.-%, vorzugsweise 0,05 bis 1,5 Gew.-%, Wasser, bezogen auf das Fettsäureausgangsmaterial, im Temperaturbereich von 170 bis 260°C vornimmt.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man in Gegenwart von 0,5 bis 25 Mol-%, vorzugsweise 1,0 bis 12,5 Mol-%, SO2, 0,5 bis 25 Mol-%, vorzugsweise 1,0 bis 12,5 Mol-% seifenbildender Alkali- und/oder Erdalkaliverbindungen - jeweils bezogen auf das Fettsäureausgangsmaterial - arbeitet.
3. Verfahren nach den Ansprüchen 1 und 2, dadurch gekennzeichnet, daß man in Gegenwart von 1,5 bis 8 Mol-% SO2,1,5 bis 10 Mol-% seifenbildender Alkaliverbindungen und 0,2 bis 1 Gew.-% Wasser - jeweils bezogen auf das Fettsäureausgangsmaterial bei Temperaturen von 180 bis 240°C und einer Behandlungsdauer von 1 bis 6 Stunden arbeitet.
4. Verfahren nach den Ansprüchen 1 bis 3, dadurch gekennzeichnet, daß man neben oder anstelle gasförmig im Reaktionsraum zugeführten SO2 bei Reaktionstemperatur SO2 abspaltende Salze, insbesondere entsprechende Alkalisalze, einsetzt.
5. Verfahren nach den Ansprüchen 1 bis 4, dadurch gekennzeichnet, daß man ein Fettsäuregemisch mit einem Gehalt von wenigstens 30 Gew.-%, vorzugsweise 40 Gew.-% und mehr, an mehrfach ungesättigten Fettsäuren einsetzt, wobei insbesondere natürliche Fettsäuregemische dem Verfahren unterworfen werden.
6. Verfahren nach den Ansprüchen 1 bis 5, dadurch gekennzeichnet, daß man beim Arbeiten in einem offenen Reaktionsgefäß während der Umsetzung einen Wassergehalt von wenigstens 0,05 Gew.-% im Reaktionsgemisch aufrechterhält.
EP81103767A 1980-05-24 1981-05-16 Verfahren zur Konjugierung mehrfach ungesättigter Fettsäuren oder Fettsäuregemische Expired EP0040776B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT81103767T ATE9489T1 (de) 1980-05-24 1981-05-16 Verfahren zur konjugierung mehrfach ungesaettigter fettsaeuren oder fettsaeuregemische.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3019963 1980-05-24
DE19803019963 DE3019963A1 (de) 1980-05-24 1980-05-24 Verfahren zur konjugierung mehrfach ungesaettigter fettsaeuren und fettsaeuregemische

Publications (2)

Publication Number Publication Date
EP0040776A1 EP0040776A1 (de) 1981-12-02
EP0040776B1 true EP0040776B1 (de) 1984-09-19

Family

ID=6103255

Family Applications (1)

Application Number Title Priority Date Filing Date
EP81103767A Expired EP0040776B1 (de) 1980-05-24 1981-05-16 Verfahren zur Konjugierung mehrfach ungesättigter Fettsäuren oder Fettsäuregemische

Country Status (5)

Country Link
US (1) US4381264A (de)
EP (1) EP0040776B1 (de)
JP (1) JPS5721338A (de)
AT (1) ATE9489T1 (de)
DE (2) DE3019963A1 (de)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6042869A (en) * 1998-02-20 2000-03-28 Natural Nutrition Ltd. Bulk animal feeds containing conjugated linoleic acid
JP2000516480A (ja) 1998-03-17 2000-12-12 コンリンコ,インコーポレイテッド 共役リノール酸組成物
US7078051B1 (en) 1998-08-11 2006-07-18 Natural Asa Conjugated linoleic acid alkyl esters in feedstuffs and food
US6015833A (en) * 1998-03-17 2000-01-18 Conlinco., Inc. Conjugated linoleic acid compositions
US7776353B1 (en) 1998-03-17 2010-08-17 Aker Biomarine Asa Conjugated linoleic acid compositions
US7101914B2 (en) * 1998-05-04 2006-09-05 Natural Asa Isomer enriched conjugated linoleic acid compositions
US6696584B2 (en) 1998-05-04 2004-02-24 Natural Asa Isomer enriched conjugated linoleic acid compositions
US6060514A (en) 1998-05-04 2000-05-09 Conlin Co., Inc. Isomer enriched conjugated linoleic acid compositions
US6214372B1 (en) 1998-05-04 2001-04-10 Con Lin Co., Inc. Method of using isomer enriched conjugated linoleic acid compositions
US6316645B1 (en) 1998-10-20 2001-11-13 Wisconsin Alumni Research Foundation Synthesis of conjugated polyunsaturated fatty acids
US6426367B1 (en) * 1999-09-09 2002-07-30 Efa Sciences Llc Methods for selectively occluding blood supplies to neoplasias
US6420577B1 (en) 1999-12-01 2002-07-16 Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of Agriculture Method for commercial preparation of conjugated linoleic acid
US6432469B1 (en) 2000-02-17 2002-08-13 Natural Corporation Bulk animal feeds containing conjugated linoleic acid
AU2001251449B2 (en) * 2000-04-06 2005-04-07 Conlinco, Inc. Conjugated linoleic acid compositions
US20030149288A1 (en) * 2000-04-18 2003-08-07 Natural Asa Conjugated linoleic acid powder
JP5258134B2 (ja) 2000-04-18 2013-08-07 エイカー バイオマリン アーエスアー 共役リノール酸粉末
US6380409B1 (en) * 2000-04-24 2002-04-30 Conlin Co., Inc. Methods for preparing CLA isomers
US6479683B1 (en) 2001-03-06 2002-11-12 Ag Processing Inc Process for conjugating fatty acid esters
US6677470B2 (en) 2001-11-20 2004-01-13 Natural Asa Functional acylglycerides
US6414171B1 (en) * 2001-11-27 2002-07-02 Her Majesty In Right Of Canada, As Represented By The Minister Of Agriculture & Agri-Food Canada Method for commercial preparation of conjugated linoleic acid from by-products of vegetable oil refining
US6409649B1 (en) 2001-11-27 2002-06-25 Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of Agriculture & Agri-Food Canada Method for commercial preparation of conjugated linoleic acid using recycled alkali transesterification catalyst
US6743931B2 (en) 2002-09-24 2004-06-01 Natural Asa Conjugated linoleic acid compositions
CA2436650A1 (en) * 2003-08-06 2005-02-06 Naturia Inc. Conjugated linolenic acid (clnatm) compositions: synthesis, purification and uses
DK1749099T3 (en) * 2004-01-29 2016-11-28 Stepan Co Process for Enzymatic Production of Triglyceride

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1896467A (en) * 1933-02-07 Johannes scheibek
US2437925A (en) * 1942-04-18 1948-03-16 Ridbo Lab Inc Process for making rubber extenders
DE894559C (de) * 1944-11-07 1953-10-26 Ver Oelfabriken Hubbe & Farenh Verfahren zur Elaidinierung von ungesaettigten Fettsaeuren
US2418454A (en) * 1945-08-17 1947-04-08 Auer Laszlo Isomerized fatty acid esters
NL288902A (de) * 1962-02-13
US4164505A (en) * 1977-07-08 1979-08-14 Sylvachem Corporation Flow process for conjugating unconjugated unsaturation of fatty acids

Also Published As

Publication number Publication date
JPS5721338A (en) 1982-02-04
DE3166130D1 (en) 1984-10-25
US4381264A (en) 1983-04-26
EP0040776A1 (de) 1981-12-02
ATE9489T1 (de) 1984-10-15
DE3019963A1 (de) 1981-12-03

Similar Documents

Publication Publication Date Title
EP0040776B1 (de) Verfahren zur Konjugierung mehrfach ungesättigter Fettsäuren oder Fettsäuregemische
DE1280852C2 (de) Verfahren zum Dimerisieren ungestaettigter Fettsaeuren
DE818427C (de) Verfahren zur Herstellung von Oxydationsprodukten aus festen oder halbfesten hochmolekularen AEthylenpolymerisaten
DE882987C (de) Verfahren zur Herstellung von tert.-Alkylbenzolcarbonsaeuren
DE1134666B (de) Verfahren zur Herstellung von zweibasischen ungesaettigten Fettsaeuren durch Dimerisieren von mehrfach ungesaettigten Fettsaeuren
DE2937130C2 (de) Verfahren zur Herstellung von Dibenzylidensorbit
EP0070492B1 (de) Verfahren zur Herstellung von Fettsäurealkylestern mit verbesserter Verarbeitbarkeit
DE2838529C2 (de)
DE2235907C2 (de) Verfahren zur Verringerung der Äthylenbindungen von mehrfach ungesättigten aliphatischen oder zweifach ungesättigten cycloaliphatischen Carbonsäuren bei erhöhter Temperatur in Gegenwart von Jod als Disproportionierungskatalysator
DE2348699A1 (de) Verfahren zur herstellung einer loeslichen trockenoelmischung
DE1814075A1 (de) Verfahren zur Herstellung von Chloropren
DE871147C (de) Verfahren zur Herstellung von ª‡-Neopentylacrylsaeure
EP0035703B1 (de) Verfahren zur Herstellung von Terpineol
DE2424026A1 (de) Polykarbonsaeure-seifen
DE2253930A1 (de) Verfahren zur herstellung von dicarbonsaeuren
EP0021433B1 (de) Verfahren zur Reinigung von Fettsäure- oder Fettsäureestergemischen
DE2118702C3 (de) Verfahren zur Di- und Trimerisierung von ungesättigten Fettsäuren
DE1011411B (de) Verfahren zur Gewinnung reiner tert. Butylbenzoesaeuren
DE1961861A1 (de) Verfahren zur Herstellung von hellen fabstabilen Fettsaeuren
DE2530901A1 (de) Verfahren zur herstellung von beta-isopropylnaphthalinhydroperoxid
DE767911C (de) Verfahren zur Herstellung von Gemischen aliphatischer Carbonsaeuren
DE287660C (de)
DE686476C (de) Verfahren zur Verbesserung der Eigenschaften von Kolophonium
DE810628C (de) Verfahren zur Herstellung von 3, 7-Dimethyl-1-(2&#39;, 6&#39;, 6&#39;-trimethyl-cyclohex-1&#39;-enyl)-nona-3, 5, 7-trien-1-in-9-ol
DE879096C (de) Verfahren zur Herstellung von Vinylestern chemisch stabilisierter Harzsaeuren

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LU NL SE

17P Request for examination filed

Effective date: 19820521

ITF It: translation for a ep patent filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 9489

Country of ref document: AT

Date of ref document: 19841015

Kind code of ref document: T

RBV Designated contracting states (corrected)

Designated state(s): BE DE FR GB IT NL

REF Corresponds to:

Ref document number: 3166130

Country of ref document: DE

Date of ref document: 19841025

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19870531

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19880516

BERE Be: lapsed

Owner name: HENKEL K.G.A.A.

Effective date: 19880531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19881201

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19890131

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19890201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19890531