EP0031078A2 - Feinsttitrige Synthesefasern und -fäden und Trockenspinnverfahren zu ihrer Herstellung - Google Patents

Feinsttitrige Synthesefasern und -fäden und Trockenspinnverfahren zu ihrer Herstellung Download PDF

Info

Publication number
EP0031078A2
EP0031078A2 EP80107777A EP80107777A EP0031078A2 EP 0031078 A2 EP0031078 A2 EP 0031078A2 EP 80107777 A EP80107777 A EP 80107777A EP 80107777 A EP80107777 A EP 80107777A EP 0031078 A2 EP0031078 A2 EP 0031078A2
Authority
EP
European Patent Office
Prior art keywords
spinning
fibers
threads
dtex
spun
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP80107777A
Other languages
English (en)
French (fr)
Other versions
EP0031078A3 (en
EP0031078B1 (de
EP0031078B2 (de
Inventor
Ulrich Dr. Reinehr
Toni Herbertz
Hermann Josef Jungverdorben
Joachim Dross
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer AG
Original Assignee
Bayer AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6089296&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0031078(A2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Bayer AG filed Critical Bayer AG
Priority to AT80107777T priority Critical patent/ATE20909T1/de
Publication of EP0031078A2 publication Critical patent/EP0031078A2/de
Publication of EP0031078A3 publication Critical patent/EP0031078A3/de
Publication of EP0031078B1 publication Critical patent/EP0031078B1/de
Application granted granted Critical
Publication of EP0031078B2 publication Critical patent/EP0031078B2/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • D01D5/098Melt spinning methods with simultaneous stretching
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/04Dry spinning methods
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/02Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/18Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polymers of unsaturated nitriles, e.g. polyacrylonitrile, polyvinylidene cyanide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2973Particular cross section
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2973Particular cross section
    • Y10T428/2978Surface characteristic

Definitions

  • Such fine-titer fibers which usually have a final fiber titer between 0.4-0.8 dtex, have compared to conventional synthetic fibers, e.g. Acrylic fibers, which are in the titre range from 1.3 dtex, have a number of advantages such as: high gloss, appealing chandelier, elegance in the fabric, soft feel, high flexibility and pliability as well as high fiber strength, due to the high number of fine fibers in the yarn cross-section.
  • fine-titer synthetic fibers can mainly be produced by apparatus changes in the spinning process, such as, for example, by flash and blow spinning by shear, coagulation, impact or centrifugal force methods.
  • apparatus changes in the spinning process such as, for example, by flash and blow spinning by shear, coagulation, impact or centrifugal force methods.
  • spinning process such as, for example, by flash and blow spinning by shear, coagulation, impact or centrifugal force methods.
  • spinning of mutually incompatible polymer mixtures into polymer blend fibers with a matrix / fibril structure has gained importance. Removal of the polymer matrix results in fine titre fibril fibers, which are mainly used as synthetic upper leather.
  • the object of the present invention was to produce fine-titer synthetic fibers, primarily acrylic fibers, using a dry spinning process.
  • the spinning solution in the spinning shaft must be subjected to a high degree of warpage.
  • the warping (V) during spinning is defined as the ratio of the take-off speed to the ejection speed
  • the present invention therefore relates to a process for the production of synthetic fibers and filaments with single spinning titers of 3 dtex and below from thread-forming synthetic polymers after a dry spinning process, which is characterized in that viscosity-stable spinning solutions are spun under such thermal conditions that a delay of at least 20 , preferably 30-500, and allow the spun material thus obtained to be further processed in a manner known per se to produce filaments or fibers.
  • This process can be used to produce threads and fibers of the titre fineness mentioned which do not have the dumbbell-shaped cross sections customary in dry spinning.
  • the invention also relates to such threads.
  • the process according to the invention is in principle a dry spinning process which can be carried out with the same equipment as a process by which coarser titers are spun.
  • the spinning solutions used are also the usual ones in this technology and have solids contents of about 25 to 35%.
  • the spinning solutions With average K values of the polymers of about 80, the spinning solutions thus have viscosities of about 20 to 100 falling ball seconds at 80 ° C. (for the falling ball method see K. Jost, Rheologica Acta (1958) Vol. 1, No. 2-3, page 303).
  • viscosity-stable spinning solutions must be used, ie spinning solutions whose viscosity (measured in falling ball seconds) changes during the spinning time, ie usually for a maximum of 5%, preferably less than 1%, but ideally not at all.
  • Such solutions have proven to be particularly highly deformable during spinning Solutions whose viscosity is not constant tend to break the thread at high warpage (see Example 2).
  • a viscosity-stable spinning solution can be prepared by keeping the solution at a certain minimum temperature for a certain time before spinning.
  • acrylonitrile polymers are preferably spun, in particular those which consist of at least 40% by weight, preferably of at least 85% by weight, of acrylonitrile units.
  • the known polar organic solvents are suitable as spinning solvents, in particular dimethylacetamide, dimethyl sulfoxide, ethylene carbonate, N-methylpyrrolidone, but preferably dimethylformamide.
  • the above-mentioned thermal pretreatment when using dimethylformamide (DMF) as solvent is at least about 4 minutes at at least about 140 ° C.
  • DMF dimethylformamide
  • Acrylonitrile polymers containing comonomers can be pretreated at somewhat lower temperatures of approx. 125-130 ° C for the stated period of time in order to achieve the desired viscosity stability of the solution.
  • Viscosity stability recommended if not required.
  • the spinning solution should not have a temperature of more than 150 ° C, the spinning shaft temperature should not exceed 200 ° C and the temperature of the spinning air is at most about 400 ° C should.
  • W hat was found for the dope temperature, applies equally to the shaft and air temperature in the inventive dry spinning fine (st) titriger fibers.
  • Low temperatures allow spinning with high warpage due to weak solvent evaporation (e.g. DMF) in the spinning shaft and thus the production of extremely fine titers.
  • DMF weak solvent evaporation
  • the spinning temperatures should be increased due to the increased polymer throughput in order to avoid sticking and thread breaks.
  • a non-dumbbell-shaped cross-sectional shape of the fine-titer fibers is always obtained by the process according to the invention if the spinning conditions are chosen to be as mild as possible and the work is carried out with high delays.
  • the spinning solution for example, is cooled to temperatures of about 20 ° C. to about 100 ° C. after the viscosity-stabilizing thermal treatment and before spinning, and at the same time the spinning shaft temperature to a value between about 30 ° C. and preferably below set half the boiling point of the solvent used and worked with spinning air to about 300 ° C.
  • the fiber cross section also has an intermediate shape, for example a bean or kidney shape.
  • the DMF evaporation rate per capillary in (mg / sec) in combination with the residence time of the threads in the spinning shaft have proven to be suitable variables for describing the cross-sectional shape that has arisen. As emerged from numerous spinning tests, the DMF evaporation rate with a residence time of one second in the spinning shaft may be the value of
  • dumbbell-shaped cross-sectional shapes do not exceed if dumbbell-shaped cross-sectional shapes are to be obtained.
  • the evaporation rate must be lower and with shorter dwell times correspondingly higher.
  • a bb. 1 shows the curve obtained when the DMF evaporation rate in plots as ordinate against the dwell time (in seconds) in the spinning shaft as the abscissa. It is almost a hyperbola, which divides the area into dumbbell and non-dumbbell-shaped fiber cross-sectional structures.
  • Non-dumbbell-shaped fiber cross-sectional profiles are understood to mean both bean-shaped as well as kidney-shaped and round cross-sectional shapes and transitions between the individual profiles. As can be seen in Fig.
  • the values of the ordinate in the form of the DMF evaporation rate represent a measure of the thermal spinning conditions such as shaft, air and spinning solution temperature
  • the values of the abscissa in the form of the dwell time of the threads in the spinning shaft represent a measure of the mechanical spinning conditions, such as take-off speed and Shaft length, mean.
  • Each point on the curve in Fig. 1 represents a certain amount of DMF, the DMF content in the thread may vary depending on the titer. In other words, the course of the curve is independent of the spin titer.
  • the curve also shows that a certain amount of DMF must be evaporated in order to change the cross-sectional structure. This is significantly greater with low dwell times than with longer dwell times in the spinning shaft.
  • dumbbell-shaped cross sections are never reached below a certain evaporation rate, regardless of the residence time.
  • the DMF evaporation rate per capillary in (mg / sec.) Can be determined from the difference between the amount of spinning solvent per capillary (mg / sec.) And the residual solvent amount per capillary (mg / sec.). This should be shown on a model calculation for example 1. The following applies:
  • the DMF evaporation rate R 1 for a spinning solution concentration other than 70.5% by weight DMF, at which the cross-sectional shape changes is calculated as follows: at 1.16 seconds dwell time in the spinning shaft.
  • the fine-titer fibers according to the invention in contrast to conventionally dry-spun acrylic fibers, have no barky, fibrillated surface with grooves of limited length at varying angles to the fiber axis.
  • the fine-titer fibers have smooth surfaces and grooves and striations that run parallel to the fiber axis and are not interrupted, so that the light is reflected in a directed manner becomes.
  • fine-titer fibers for example in interlock fabrics, made from 3-cylinder yarns have a very soft feel compared to conventional acrylic fabrics made from 1.6 dtex fibers. This is particularly useful for articles worn close to the skin and of high utility value.
  • fine-tinned spinning material In the case of the aftertreatment of fine-tinned spinning material, it has proven to be extremely advantageous to heat the spinning material to about 79-80 ° C. by passing through troughs with warm washing liquid, preferably water, before the stretching process, in order to achieve a more uniform drawing.
  • the fine titre spun material can be post-treated in the usual way by washing-stretching-preparing-drying-crimping-cutting to produce finished acrylic fibers. Because of the large titer fineness of the threads, especially in the case of spinning titer less than 1 dtex, it is also advantageous to draw in stages.
  • the method according to the invention is not limited to the production of the finest titers from acrylic fibers.
  • Linear, aromatic polyamides which may also be heterocyclic ring systems, such as e.g. Benzimidazoles, oxazoles, thiazoles, etc., and which can be produced by a dry spinning process, such as the polyamide from m-phenylenediamine and isophthalic acid, spin to the finest titers by the process according to the invention.
  • the titer determination according to the gravimetric method is very imprecise for fine titers ( ⁇ 0.5 dtex).
  • the titer was therefore determined by the microscopic method by determining the thread diameter "d" with the eyepiece micrometer according to DIN 53 811 according to the formula:
  • the spinning solution had a viscosity of 30 ball falling seconds measured at 80 ° C. This value remained unchanged after 1, 3 and 5 hours.
  • the S pinnate was then cooled to 35 ° C and dry spun from a 720 hole nozzle with nozzle hole diameter of 0.2 mm.
  • the shaft temperature was 50 ° C, the air temperature 200 ° C and the air volume 40 m 3 / h.
  • the take-off speed was 400 m / min.
  • the dwell time of the threads in the spinning shaft was 0.87 seconds. 19.8 ccm / min were conveyed from the spinning pump.
  • the Automatspinntiter was 144 dtex and the residual solvent content of the spinning g utes to DMF was 9.9 wt .-%, based on polymer solids.
  • the DMF evaporation rate is then calculated to be 0.305 mg of the [second capillary]
  • Single spin titer was 0.2 dtex.
  • the delay V was 457.
  • the threads were wetted with oil-containing preparation at the shaft exit, wound up on bobbins, folded into a cable, stretched 1: 3.6 times in boiling water and aftertreated in the usual way to give fibers with a final titre of 0.07 dtex.
  • the fiber capillaries were embedded in methyl methacrylate and cross-cut.
  • the light microscopic images produced in the differential interference contrast method showed that the sample cross sections are completely uniform and round.
  • the mean thread diameter was determined with the fiber measuring eyepiece.
  • the fibers had an extremely high gloss. When examined in a scanning electron microscope, the fibers showed smooth surfaces with longitudinal stripes. The striations were completely parallel to the fiber axis and, unlike those with conventional acrylic fibers, were not interrupted.
  • Example 1 Part of the batch from Example 1 was dissolved in the heating device at 80 ° C. instead of 135 ° C. and the viscosity of the spinning solution was determined after the Filtraticn at 80 ° C.
  • the spinning solution had a viscosity of 76 ball falling seconds. In reproduction measurements, the viscosity was 72 seconds after 1 hour, 67 after 3 hours and 64 seconds after 5 hours. The spinning solution thus had a decreasing viscosity.
  • the spinning solution was cooled again to 35'C and from a 720-hole nozzle, as in Example 1 wrote, dry spun into threads. Thread breaks repeatedly occurred in the nozzle area. As light microscopic cross-sectional images showed, there were also numerous titre fluctuations.
  • An acrylonitrile copolymer having the chemical composition of Example 1 was as described therein, dissolved in D M F, filtered and cooled, the spinning solution upstream of the nozzle at 40 ° C. Then, dry spinning was carried out from a 720-hole nozzle with a hole diameter of 0.2 mm.
  • the shaft temperature was 50 ° C
  • the take-off speed was 250 m / min and the dwell time of the threads in the spinning shaft was 1.39 seconds. 52.8 ccm / min were conveyed from the spinning pump.
  • the total spin titer was 648 dtex.
  • the residual solvent content in the spun material was 10.8%.
  • the DMF evaporation rate was 0.856 .
  • the single spin titer was 0.9 dtex.
  • the warpage was 107.
  • the threads were again wetted with oil-containing preparation at the shaft exit, wound up on bobbins, folded into a cable, stretched 1: 3.6 times in boiling water and aftertreated in the usual way to give fibers with a final titer of 0.3 dtex.
  • the fiber cross sections were again completely uniform and circular.
  • the fibers also had a very high gloss again and showed a smooth surface in the scanning electron microscope with striations that were longitudinally striped parallel to the fiber axis.
  • An acrylonitrile copolymer with the chemical composition from Example 1 was dissolved in DMF as described there.
  • the spinning solution was then filtered, cooled to 90 ° C. and dry-spun from a 720-hole nozzle with a nozzle hole diameter of 0.2 mm.
  • the shaft temperature was 150 ° C, the air temperature 200 ° C and the air volume 40 m 3 / h.
  • the take-off speed was 180 m / min. It was spun on a shorter-sized spinning shaft, so that there was a dwell time of 1.66 seconds. From the spinning pump 82.8 ccm / min. promoted.
  • the total spin titer was 1304 dtex.
  • the residual solvent content in the spinning material was 13.5%.
  • the DMF evaporation rate was 1.225
  • the single spin titer was 1.8 dtex.
  • the warpage was 48.
  • the threads were post-treated with 1: 4.0-fold stretching to fibers with a final titer of 0.6 dtex.
  • the fibers had a round to slightly bean-shaped cross-sectional profile. Her sheen was again extraordinarily high. In the scanning electron microscope, striations and striations running on the surface parallel to the fiber axis were again observed, which showed no interruptions.
  • the table below shows the dependence of the cross-sectional shape on the DMF evaporation rate in demonstrated.
  • the energy ratios in the spinning shaft have to be increased with increasing spinning titer, since with increasing Solution throughput must evaporate more spinning solvent in order to obtain a thread solidification.
  • the spinning material was stretched 1: 3.6 times in boiling water and post-treated as usual.
  • the single-spin and single-end titers were again determined using the light microscopic method and the cross-sectional shapes were determined using light microscopic images using the differential interference contrast method.
  • the different dwell times in the spinning shaft were achieved in addition to different take-off speeds by other shaft lengths.
  • cross-sectional shapes deviating from the dumbbell shape arise primarily with spin titers less than 3 dtex.
  • the warping was 80.
  • the threads were again wetted with oil-containing preparation at the shaft exit, collected on bobbins, folded into a cable, stretched 1: 4.0-facin in boiling water and post-treated into fibers in the usual way.
  • the final fiber titer was 0.56 dtex.
  • the fibers show the typical dumbbell shape.
  • part of the batch from Example 5a was cooled to 40 ° C. in front of the nozzle and dry-spun from a 1050-hole nozzle with a nozzle hole diameter of 0.25 mm.
  • the shaft temperature was 190 ° C, the air temperature 380 ° C and the air volume 40 m 3 / h.
  • the deduction area speed was 250 m / min and the dwell time of the threads in the spinning shaft was 2.11 seconds. 161 ccm / min were conveyed from the spinning pump.
  • the total spin titer was 1891 dtex.
  • the residual solvent content in the spinning material was 8.8%.
  • the DMF evaporation rate was 1.727
  • the single spin titer was 1.80 dtex.
  • the warpage was 80.
  • the threads were post-treated as described in Example 5a.
  • the final fiber titer was 0.58 dtex.
  • the fibers in turn show the typical dumbbell shape.
  • Example 5 Part of the batch from Example 5 was dissolved in the heating device at 80 ° C. instead of 135 ° C., filtered and the spinning solution in front of the nozzle was again kept at 112 ° C. Then spinning was carried out as described in Example 5a. The threads could not be put on. There were constant tears below the nozzle.
  • the single spin titer was 3.86 dtex.
  • the warpage was 60.
  • the threads were post-treated with 1: 4.0 times stretching to fibers with a final titer of 1.2 dtex.
  • the fibers have a dumbbell-shaped cross-sectional profile. While strength 70.5% S p innatesskonzentration the transition of the cross-sectional shape from round to dumbbell shape at 1.16 sec. Residence time in the spinning shaft according to Fig. 1 only at an evaporation rate of 3.05

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Artificial Filaments (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)

Abstract

Trockengesponnene Synthesefasern und - fäden mit einem Spinneinzeltiter von höchstens 3 dtex werden erstmals erhalten, wenn man viskositätsstabile Spinnlösungen nach dem Trockenspinnprozeß mit einem Verzug von mindestens 20 verspinnt.

Description

  • In jüngster Zeit werden in der Chemiefaserindustrie verstärkt Antrengungen unternommen, Synthesefasern mit besonders feinen Titern herzustellen. Derartige feintitrige Fasern, die in der Regel einen Faserendtiter zwischen 0,4 - 0,8 dtex aufweisen, besitzen gegenüber herkömmlichen Synthesefasern, z.B. Acrylfasern, die im Titerbereich ab 1,3 dtex liegen, eine Reihe von Vorteilen wie: hoher Glanz, ansprechender Lüster, Eleganz im Flächengebilde, weicher Griff, hohe Flexibilität und Schmiegsamkeit sowie hohe Faserfestigkeit, bedingt durch die hohe Anzahl feiner Fasern im Garnquerschnitt.
  • M. Okamato hat in Chemiefasern/Textilindustrie (1979), Heft 1, Seiten 30 - 34 und Heft 3, Seiten 175 - 178, alle bisher literaturbekannten Verfahren zusammengefaßt. Wie man dieser Übersicht entnehmen kann, lassen sich feinsttitrige Synthesefasern hauptsächlich durch apparative Änderungen im Spinnprozeß, wie z.B. durch Flash- und Blasspinnen durch Scher-, Koagulations-, Schlag- oder Zentrifugalkraftmethoden herstellen. Bei den konventionellen Spinnmethoden hat nur das Verspinnen von miteinander unverträglichen Polymermischungen zu Polymerblendfasern mit Matrix/Fibrillen-Struktur Bedeutung erlangt. Durch Entfernung der Polymermatrix erhält man feinsttitrige Fibrillenfasern, die hauptsächlich als Syntheseoberleder Verwendung finden.
  • Der vorliegenden Erfindung lag die Aufgabe zugrunde, nach einem Trockenspinnverfahren feinsttitrige Synthesefasern, vornehmlich Acrylfasern, herzustellen.
  • Um zu sehr feintitrigen Fasern nach einem solchen Verfahren zu gelangen, muß die Spinnlösung im Spinnschacht einem hohen Verzug ausgesetzt werden. Der Verzug (V) beim Spinnen ist definiert als Verhältnis von Abzugsgeschwindigkeit zur Ausspritzgeschwindigkeit
    Figure imgb0001
  • Die Ausspritzgeschwindigkeit (S) ergibt sich zu
    Figure imgb0002
    • = = Fördermenge in ccm/Min.
    • Z = Anzahl der Düsenlöcher
    • d2 = Düsenlochdurchmesser in cm
  • Beim herkömmlichen Trockenspinnverfahren von beispielsweise Acrylfäden wird auf die Spinnlösungen ein Verzug von etwa dem 10- bis 20-fachen ausgeübt. Versucht man derartige Spinnlösungen unter den angewandten üblichen Spinnbedingungen höher zu verziehen. so treten Fadenabrisse auf, bis schließlich das Spinnbild im Düsenbereich zusammenbricht. Somit ist der Erhalt feinsttitriger Fäden und Fasern durch einfache Erhöhung des Verzugs bei einem Trockenspinnverfahren nicht möglich.
  • Es wurde nun überraschend gefunden, daß man auch bei einem Trockenspinnverfahren die zur Erzeugung von feinen und feinsten Titern erforderlichen hohen Verzüge dennoch ausüben kann, wenn man zum einen viskositätsstabile Spinnlösungen verspinnt und zum anderen milde thermische Bedingungen im Spinnschacht wählt, die eine langsamere Verdampfung des Spinnlösungsmittels bedingen, als in einem herkömmlichen Trockenspinnprozeß üblich.
  • Die vorliegende Erfindung betrifft daher ein Verfahren zur Herstellung von Synthesefasern und -fäden mit Spinneinzeltitern von 3 dtex und darunter aus fadenbildenden synthetischen Polymeren nach einem Trockenspinnprozeß, das dadurch gekennzeichnet ist, daß viskositätsstabile Spinnlösungen unter solchen thermischen Bedingungen versponnen werden, die einen Verzug von mindestens 20, vorzugsweise 30-500, ermöglichen und das so erhaltene Spinngut in an sich bekannter Weise zu fertigen Fäder oder Fasern weiterbehandelt.
  • Nach diesem Verfahren lassen sich Fäden und Fasern der genannten Titerfeinheit erzeugen, die nicht die beim Trockenspinnen übliche hantelförmigen Querschnitte aufweisen. Die Erfindung betrifft ebenfalls solche Fäden.
  • Das erfindungsgemäße Verfahren ist im Prinzip ein Trockenspinnverfahren, das mit derselben apparativen Ausstattung durchgeführt werden kann, wie ein Verfahren, nach dem gröbere Titer gesponnen werden. So kann z.B. mit den üblichen Spinndüsen mit Lochdurchmessern von ca. 0,15 bis 0,8 mm, vorzugsweise 0,2 bis 0,4 mm, und in üblichen Spinnschächten gearbeitet werden. Auch die zum Einsatz kommenden Spinnlösungen sind die in dieser Technik üblichen und weisen Feststoffgehalte von etwa 25 bis 35 % auf. Bei mittleren K-Werten der Polymerisate von etwa 80 haben die Spinnlösungen damit Viskositäten von etwa 20 bis 100 Kugelfallsekunden bei 80°C (zur Kugelfallmethode s. K. Jost, Rheologica Acta (1958) Bd. 1, Nr. 2-3, Seite 303).
  • Damit nach dem erfindungsgemäßen Verfahren der hohe Verzug, der vorzugsweise 30 bis 500 beträgt, jedoch auch noch darüber liegen kann, ausgeübt werden kann, ist - in Abhängigkeit von dem gewünschten Produkt - auf die Einhaltung gewisser Randbedingungen zu achten. So müssen beispielsweise viskositätsstabile Spinnlösungen eingesetzt werden, d.h. Spinnlösungen, deren Viskosität (gemessen in Kugelfallsekunden) sich während der Abspinnzeit, d.h. üblicherweise über Stunden hinweg maximal um 5 %, vorzugsweise um weniger als 1 %, am besten aber überhaupt nicht ändert. Solche Lösungen haben sich als besonders hoch verzugsfähig erwiesen, während Spinnlösungen, deren Viskosität nicht konstant ist, bei hohen Verzügen verstärkt zu Fadenabrissen neigen (vgl. Beispiel 2). Eine viskositätsstabile Spinnlösung läßt sich herstellen, indem die Lösung vor dem Verspinnen für eine gewisse Zeit auf einer gewissen Mindesttemperatur gehalten wird.
  • Es ist offensichtlich, daß die Zubereitung einer solchen viskositätsstabilen Lösung von der Natur des verwendeten Polymerisats und der des ausgewählten Lösungsmittels abhängig ist. Erfindungsgemäß werden vorzugsweise Acrylnitrilpolymerisate versponnen, insbesondere solche, die aus mindestens 40 Gew.-%, vorzugsweise aus mindestens 85 Gew.-% Acrylnitrileinheiten bestehen. Als Spinnlösungsmittel kommen die bekannten polaren organischen Lösungsmittel in Betracht, insbesondere Dimethylacetamid, Dimethylsulfoxid, Ethylencarbonat, N-Methylpyrrolidon, bevorzugt jedoch Dimethylformamid. Im Falle von Polymerisaten aus 100 % Acrylnitril und bei üblichen K-Werten von z.B. 80 beträgt die obengenannte thermische Vorbehandlung bei Verwendung von Dimethylformamid (DMF) als Lösungsmittel mindestens etwa 4 Minuten bei mindestens etwa 140°C. Acrylnitrilpolymerisate mit einem Gehalt an Comonomeren, wie sie in dieser Technik üblich sind, können bei etwas niedrigeren Temperaturen von ca. 125-130°C für die genannte Zeitdauer vorbehandelt werden, um die gewünschte Viskositätsstabilität der Lösung zu erzielen. Je nach Wahl des Polymerisats und des Lösungsmittels sind einige Vor versuche zur Ermittlung der optimalen Bedingungen für die thermische Vorbehandlung zur Erzielung der Viskositätsstabilität empfehlenswert, wenn nicht erforderlich.
  • Die oben erwähnte Abhängigkeit der Verfahrensprodukte von den nachstehend erläuterten Randbedingungen versteht sich wie folgt: Es hat sich gezeigt, daß nach dem erfindungsgemäßen Verfahren völlig überraschend nicht nur die beim Trockenspinnen üblicherweise erhaltenen hantelförmigen Faserquerschnitte erhalten werden können, sondern auch kreisrunde, runde und bohnen- bis nierenförmige, je nachdem, wie die thermischen Bedingungen im Spinnschacht gewählt werden.
  • Was die thermischen Bedingungen im Spinnschacht anbetrifft, so lassen sich hierzu, wie für den Fachmann offenkundig, nur sehr schwierig absolute Angaben machen, da diese thermischen Bedingungen z.B. von den physikalischen Daten des gewählten Spinnlösungsmittels abhängig sind.
  • Wird beispielsweise Dimethylformamid alsLösungsmittel verwendet, so kann zu diesen thermischen Bedingungen im Spinnschacht ganz allgemein gesagt werden, daß die Spinnlösung eine Temperatur von nicht über 150°C haben sollte, die Spinnschachttemperatur 200°C nicht übersteigen sollte und die Spinnlufttemperatur höchstens etwa 400°C betragen sollte.
  • Bei niedrigen Spinnlösungstemperaturen lassen sich extrem hohe Verzüge erreichen und somit sehr feine Titer spinnen. Ganz allgemein kann hierzu wieder gesagt werden, daß, je niedriger die Spinnlösungstemperatur ist, um so höher der Verzug gewählt werden kann. Niedrige Spinnlösungstemperaturen setzen jedoch viskositätsstabile Spinnlösungen voraus, da nur so eine Kältegelierung der Spinnlösung verhindert werden kann. So konnte beispielsweise aus einer viskositätsstabilen Acrylspinnlösung von 35°C mit einem Verzug von 457 ein Einzelspinntiter von 0,2 dtex erhalten werden, was nach einer 3,6-fachen Verstreckung zu Fäden vom Endtiter 0,07 dtex führte (Beispiel 1).
  • Was für die Spinnlösungstemperatur festgestellt wurde, gilt im gleichen Maße für die Schacht- und Lufttemperatur beim erfindungsgemäßen Trockenspinnen fein(st)titriger Fasern. Niedrige Temperaturen erlauben das Spinnen mit hohen Verzügen infolge schwacher Lösungsmittelausdampfung (z.B. DMF) im Spinnschacht und somit die Herstellung extrem feiner Titer. Mit steigendem Spinntiter ab ca. 1 dtex sollten jedoch, wegen des erhöhten Polymer-Durchsatzes die Spinntemperaturen angehoben werden, um Verklebungen und Fadenabrisse zu vermeiden.
  • Im speziellen wird nach dem erfindungsgemäßen Verfahren immer dann eine nicht hantelförmige Querschnittsform der feintitrigen Fasern erhalten, wenn man die Spinnbedingungen möglichst milde wählt, und mit hohen Verzügen arbeitet. Hierzu wird beispielsweise die Spinnlösung nach der viskositätsstabilisierenden thermischen Behandlung und vor dem Verspinnen auf Temperaturen von etwa 20°C bis etwa 100°C gekühlt, gleichzeitig die Spinnschachttesperatur auf einen Wert zwischen etwa 30°C und vorzugsweise unterhalb des Siedepunktes des verwendeten Lösungsmittels eingestellt und mit Spinnluft bis etwa 300°C gearbeitet. Mit anderen Worten wird dafür Sorge getragen, daß das Lösungsmittel aus dem aus der Düse austretenden Lösungsstrom nicht schlagartig oder zumindest verhältnismäßig rasch zur Ausdampfung gebracht wird, sondern ganz allmählich und möglichst gleichmäßig über die gesamte Schachtlänge. Dadurch ergeben sich die für trockengesponnene Fäden und Fasern völlig ungewöhnlichen kreisrunden bis runden Querschnittsformen. Verlagert man dagegen die thermischen Spinnbedingungen in die zuvor genannten oberen Bereiche, d.h. verspinnt man z.B. eine Acrylnitrilpolymerisat/DMF-Spinnlösung, die eine Temperatur von etwa 90-150°C hat, bei Schachttemperaturen von z.B. 150-200°C und Lufttemperaturen von 300°C und mehr, so verdampft das Lösungsmittel zügiger, war zur Folge hat, daß der Verzug nicht so hoch gewählt werden kann wie im vorigen Fall, so daß die Faserquerschnitte die bekannte Hantelform zeigen. Werden die Spinnbedingungen auf Werte eingestellt, die sich im wesentlichen zwischen den zuvor aufgezeigten befinden, so weist auch der Faserquerschnitt eine Zwischenform auf, z.B. eine Bohnen- oder Nierenform.
  • Bei alledem ist selbstverständlich darauf zu achten, daß die Fäden am Schachtausgang genügend verfestigt sind.
  • Diese Erläuterungen zeigen, daß es nach dem erfindungsgemäßen Verfahren möglich ist, die Feinheit und die Querschnittsform der erhaltenen Fäden zu variieren. Eine solche Festlegung des Faserquerschnitts kann für den einen oder anderen Einsatzzweck für die Fasern erwünscht sein.
  • Als geeignete Größen zur Beschreibung der entstandenen Querschnittsform haben sich die DMF-Verdampfungsgeschwindigkeit pro Kapillare in (mg/Sek.) in Verbindung mit der Verweilzeit der Fäden im Spinnschacht erwiesen. Wie aus zahlreichen Spinnversuchen hervorging, darf die DMF-Verdampfungsgeschwindigkeit bei einer Sekunde Verweilzeit im Spinnschacht den Wert von
    Figure imgb0003
  • nicht überschreiten, wenn noch nicht hantelformige Querschnittsformen erhalten werden sollen. Bei längeren Verweilzeiten im Spinnschacht, beispielsweise 2 Sekunden, muß die Verdampfungsgeschwindigkeit geringer und bei kürzeren Verweilzeiten entsprechend höher sein.
  • Abb. 1 zeigt die Kurve, die man erhält, wenn man die DMF-Verdampfungsgeschwindigkeit in
    Figure imgb0004
    als Ordinate gegen die Verweilzeit (in Sekunden) im Spinnschacht als Abszisse aufträgt. Sie ist annähernd eine Hyperbel, welche das Gebiet in hantel- und nichthantelförmige Faserquerschnittsstrukturen aufteilt. Unter nichthantelförmigen Faserquerschnittsprofilen werden dabei sowohl bohnen- als auch nierenförmige und runde Querschnittsformen sowie Übergänge zwischen den einzelnen Profilen verstanden. Wie aus Abb. 1 hervorgeht, stellen die Werte der Ordinate in Form der DMF-Verdampfungsgeschwindigkeit ein Maß für die thermischen Spinnbedingungen wie Schacht-, Luft- und Spinnlösungstemperatur dar, während die Werte der Abszisse in Form der Verweilzeit der Fäden im Spinnschacht ein Maß für die mechanischen Spinnbedingungen, wie Abzugsgeschwindigkeit und Schachtlänge, bedeuten. Jeder Punkt auf der Kurve der Abb. 1 stellt eine bestimmte DMF-Menge dar, wobei der DMF-Gehalt im Faden je nach Titer unterschiedlich sein kann. Das heißt mit anderen Worten, der Verlauf der Kurve ist vom Spinntiter unabhängig. Dem Kurvenverlauf ist ferner zu entnehmen, daß jeweils eine bestimmte DMF-Menge verdampft werden muß, um die Querschnittsstruktur zu ändern. Diese ist bei niedrigen Verweilzeiten bedeutend größer als bei längeren Verweilzeiten im Spinnschacht. Andererseits werden unterhalb einer bestimmten Verdampfungsgeschwindigkeit unabhängig von der Verweilzeit nie hantelförmige Querschnitte erreicht.
  • Die DMF-Verdampfungsgeschwindigkeit pro Kapillare in (mg/Sek.) läßt sich aus der Differenz zwischen durchgesetzter Spinnlösungsmittelmenge pro Kapillare (mg/Sek.) und Restlösungsmittelmenge pro Kapillare (mg/Sek.) ermitteln. Dies soll an einer Modellberechnung für das Beispiel 1 gezeigt werden. Hierbei gilt:
  • Durchgesetzte Menge an Polymerfeststoff in (g/min): Gesamtspinntiter (dtex) x Abzugsgeschwindigkeit (m/min) 10 000
  • Figure imgb0005
    Durchgesetzte Menge an Spinnlosungsmittel (g/min):
  • Polymerfeststoff (g/min) x Soinnlösungskonzentration Feststoffkonzentration
  • Figure imgb0006
    Restlösungsmittelmenge im Spinngut (g/min):
    • Nach dem Spinnprozeß wurden 9,9 % an Restlösungsmittel DMF bezogen auf Feststoff gefunden. Es gilt:
      Figure imgb0007
      Figure imgb0008
    • x = 0,570 g DMF verbleiben im Spinngut.
    • DMF-Verdampfungsgeschwindigkeit (g/min) = 13,765 - 0,570 = 13, 195 ;
      Figure imgb0009
    • Bei der Durchführung des erfindungsgemäßen Verfahrens wurde in der Regel mit DMF-Spinnlösungen mit einem Gehalt von 29,5 Gew.-% Polymerisat gearbeitet. Bei höheren Konzentrationen ist wie aus Beispiel 6 hervorgeht eine niedrigere Verdampfungsgeschwindigkeit R1 nötig, um nicht hantelförmige Querschnitte zu erhalten. Die Werte folgen der empirischen Formel:
      Figure imgb0010
    • wobei
    • C1 DMF = die eingesetzte Konzentration an Spinnlösungsmittel,
    • C2 DMF = 70,5 Gew.-% DMF und
    • R2 = die DMF-Verdampfungsgeschwindigkeit
    • (mg ) für die Spinnlösungskonzentration C2 Sek. Kapillare bedeuten. Den Wert für R2kann man direkt aus der Kurve der Abb. 1 für die entsprechende Verweilzeit im Spinnschacht (in Sek.) entnehmen. Dabei errechnet sich die Verweilzeit (in Sekunden) der Fäden im Spinnschacht aus der Beziehung
      Figure imgb0011
  • Für Beispiel 6 errechnet sich demnach die DMF-Verdampfungsgeschwindigkeit R1 für eine von 70,5 Gew.-% DMF verschiedene Spinnlösungskonzentration, bei der eine Änderung der Querschnittsform eintritt, wie folgt:
    Figure imgb0012
    Figure imgb0013
    bei 1,16 Sek. Verweilzeit im Spinnschacht.
  • Neben der veränderten Faserquerschnittsform feintitriger Fasern, die nach dem erfindungsgemäßen Verfahren hergestellt worden sind, weisen derartige Fasern mit nicht hantelförmigen Querschnittsprofilen noch einen außerordentlich hohen Glanz auf. Dies führt zu einer hohen Eleganz im Flächengebilde von Gebrauchsartikeln. Wie oberflächenmorphologische Untersuchungen mit dem Rasterelektronenmikroskop zeigen, besitzen die erfindungsgemäßen feintitrigen Fasern im Gegensatz zu herkömmlich trocken gesponnenen Acrylfasern keine borkige, fibrillierte Oberfläche mit Riefen begrenzter Länge unter wechselndem Winkel zur Faserachse. Die feintitrigen Fasern besitzen glatte Oberflächen und parallel zur Faserachse verlaufende Riefen und Streifungen, die nicht unterbrochen sind, so daß das Licht gerichtet reflektiert wird. Infolge der größeren Garnfeinheit (Nm 100/1) zeigen feintitrige Fasern, z.B. bei Interlockware, aus 3-Zylindergarnen einen sehr weichen Griff gegenüber herkömmlicher Acrylware aus 1,6 dtex Fasern. Dies ist besonders für hautnah getragene Artikel von hohem Gebrauchswert.
  • Im Falle der Nachbehandlung von feintitrigem Spinngut hat es sich als äußerst günstig erwiesen, das Spinngut vor dem Streckprczeß durch Hindurchleiten durch Wannen mit warmer Waschflüssigkeit, vorzugsweise Wasser, auf ca. 79-80°C aufzuwärmen, um eine gleichmäßigere Verstreckung zu erzielen. Das feintitrige Spinngut läßt sich auf übliche Weise durch Waschen-Strecken-Präparieren-Trocknen-Kräuseln-Schneiden zu fertigen Acrylfasern nachbehandeln. Wegen der großen Titerfeinheit der Fäden, besonders bei Spinntiter kleiner 1 dtex, ist es ferner vorteilhaft, die Verstreckung in Stufen vorzunehmen.
  • Das erfindungsgemäße Verfahren ist nicht allein auf die Herstellung feinster Titer aus Acrylfasern beschränkt. Ebenso lassen sich lineare, aromatische Polyamide, die gegebenenfalls noch heterocyclische Ringsysteme, wie z.B. Benzimidazole, Oxazole, Thiazole usw., aufweisen und die nach einem Trockenspinnverfahren herstellbar sind, wie beispielsweise das Polyamid aus m-Phenylendiamin und Isophthalsäure, nach dem erfindungsgemäßen Verfahren zu feinsten Titern verspinnen.
  • Mit dem erfindungsgemäßen Verfahren ist es erstmals möglich, Fasern mit extrem feinen Endtitern von z.B. 0,1 dtex auch in größerem Tonnen-Maßstab herzustellen.
  • Die Titerbestimmung nach der gravimetrischen Methode ist bei feinen Titern ( < 0,5 dtex) sehr ungenau. Die Titerbestimmung erfolgte deshalb nach der mikroskopischen Methode durch Ermittlung des Fadendurchmessers "d" mit dem Okularmikrometer nach DIN 53 811 gemäß der Formel:
    Figure imgb0014
  • Literatur: Chemiefasern (1975), Heft 7. Seite 593.
  • Die folgenden Beispiele dienen der näheren Erläuterung der Erfindung. Teil- und-Prozentangaben beziehen sich, wenn nicht anders vermerkt, auf das Gewicht.
  • Beispiel 1
  • 70,5 kg Dimethylformamid (DMF) wurden mit 29,5 kg eines Acrylnitrilcopolymerisates aus 93,6 % Acrylnitril, 5,7 % Acrylsäuremethylester und 0,7 % Natriummethallylsulfonat vom K-Wert 81 unter Rühren vermischt und in einem 60 cm langen, doppelwandigen Rohr von 8 cm innerem Durchmesser mit Dampf von 3,2 bar Druck erhitzt. Die Temperatur der Lösung, welche eine Feststoffkonzentration vcn 29,5 Gew.-% aufwies, betrug am Rohrausgang 135°C. Im Rohr befanden sich mehrere Mischkämme zur Homogenisierung der Spinnlösung. Die Spinnlösung wurde nach Verlassen der Aufheizvorrichtung filtriert und dem Spinnschacht zugeführt. Die Verweilzeit von der Aufheizvorrichtung bis zur Spinndüse betrug 8 Min. Die Spinnlösung besaß eine Viskosität von 30 Kugelfallsekunden gemessen bei 80°C. Dieser Wert blieb bei Messungen nach 1, 3 und 5 Stunden unverändert. Die Spinnlösung wurde anschließend auf 35°C abgekühlt und aus einer 720 Lochdüse mit Düsenlochdurchmessern von 0,2 mm trockenversponnen. Die Schachttemperatur betrug 50°C, die Lufttemperatur 200°C und die Luftmenge 40 m3/h. Die Abzugsgeschwindigkeit war 400 m/min. Die Verweilzeit der Fäden im Spinnschacht betrug 0,87 Sekunden. Aus der Spinnpumpe wurden 19,8 ccm/min gefördert. Der Gesamtspinntiter betrug 144 dtex und der Restlösungsmittelgehalt des Spinngutes an DMF lag bei 9,9 Gew.-% bezogen auf Polymerfeststoff. Die DMF-Verdampfungsgeschwindigkeit berechnet sich hiernach zu 0,305 mg Der [Sek.Kapillare]
  • Einzelspinntiter lag bei 0,2 dtex. Der Verzug V betrug 457. Die Fäden wurden am Schachtausgang mit ölhaltiger Präparation benetzt, auf Spulen aufgewickelt, zu einem Kabel gefacht, in kochendem Wasser 1:3,6-fach verstreckt und auf übliche Weise zu Fasern vom Einzelendtiter 0,07 dtex nachbehandelt.
  • Zur mikroskopischen Beurteilung der Querschnittsgeometrie wurden die Faserkapillaren in Methacrylsäuremethylester eingebettet und quergeschnitten. Die im differentiellen Interferenzkontrastverfahren hergestellten lichtmikroskopischen Aufnahmen zeigten, daß die Probenquerschnitte vollkommen gleichmäßig und rund sind. Der Titerwert wurde aus dem Fadendurchmesser d = 2,8 µm mit der vorgegebenen Dichte = 1,17 g/cm3 errechnet. Der mittlere Fadendurchmesser wurde mit dem Fasermeßokular bestimmt. Die Fasern besaßen einen außerordentlich hohen Glanz. Bei Untersuchungen im Rasterelektronenmikroskop zeigten die Fasern glatte Oberflächen mit längsgestreiften Riefen. Die Streifungen wiesen einen vollkommen parallelen Verlauf zur Faserachse auf und waren im Gegensatz zu denen bei herkömmlichen Acrylfasern nicht unterbrochen.
  • Beispiel 2 (Vergleich)
  • Ein Teil des Ansatzes aus Beispiel 1 wurde in der Aufheizvorrichtung bei 80°C anstatt bei 135°C gelöst und die Viskosität der Spinnlösung nach der Filtraticn bei 80°C bestimmt. Die Spinnlösung hatte eine Viskosität von 76 Kugelfallsekunden. Bei Reproduktionsmessungen betrug die Viskosität nach 1 Stde. 72, nach 3 Stdn. 67 und nach 5 Stdn. 64 Kugelfallsekunden. Die Spinnlösung wies somit eine abnehmende Viskosität auf. Die Spinnlösung wurde nach der Filtration wieder auf 35'C abgekühlt und aus einer 720-Lochdüse, wie in Beispiel 1 beschrieben, zu Fäden trockenversponnen. Es traten wiederholt Fadenabrisse im Düsenbereich auf. Wie lichtmikroskopische Querschnittsaufnahmen zeigten, lagen auch zahlreiche Titerschwankungen vor.
  • Beispiel 3
  • Ein Acrylnitrilcopolymerisat, mit der chemischen Zusammensetzung von Beispiel 1, wurde, wie dort beschrieben, in DMF gelöst, filtriert und die Spinnlösung vor der Düse auf 40°C abgekühlt. Dann wurde aus einer 720-Lochdüse mit Düsenlochdurchmesser von 0,2 mm trockenversponnen. Die Schachttemperatur betrug 50°C, die Lufttemperatur 200°C und die Luftmenge 40 m3/h. Die Abzugsgeschwindigkeit war 250 m/min und die Verweilzeit der Fäden im Spinnschacht betrug 1,39 Sekunden. Aus der Spinnpumpe wurden 52,8 ccm/ min gefördert. Der Gesamtspinntiter war 648 dtex. Der Restlösungsmittelgehalt im Spinngut betrug 10,8 %. Die DMF-Verdampfungsgeschwindigkeit lag bei 0,856
    Figure imgb0015
    . Der Einzelspinntiter lag bei 0,9 dtex.
  • Der Verzug betrug 107. Die Fäden wurden am Schachtausgang wiederum mit ölhaltiger Präparation benetzt, auf Spulen aufgewickelt, zu einem Kabel gefacht, in kochendem Wasser 1:3,6-fach verstreckt und auf übliche Weise zu Fasern vom Endtiter 0,3 dtex nachbehandelt. Die Faserquerschnitte waren wiederum vollkommen gleichmäßig und kreisrund. Die Fasern besaßen ebenfalls wieder einen sehr hohen Glanz und zeigten im Rasterelektronenmikroskop eine glatte Oberfläche mit parallel zur Faserachse längsgestreiften Riefen.
  • Beispiel 4
  • Ein Acrylnitrilcopolymerisat mit der chemischen Zusammensetzung aus Beispiel 1 wurde wie dort beschrieben in DMF gelöst. Die Spinnlösung wurde anschließend filtriert, auf 90°C abgekühlt und aus einer 720-Lochdüse mit Düsenlochdurchmesser von 0,2 mm trockenversponnen. Die Schachttemperatur betrug 150°C, die Lufttemperatur 200°C und die Luftmenge 40 m3/h. Die Abzugsgeschwindigkeit war 180 m/min. Es wurde an einem kürzer dimensionierten Spinnschacht gesponnen, so daß sich eine Verweilzeit von 1,66 Sek. ergab. Aus der Spinnpumpe wurden 82,8 ccm/Min. gefördert. Der Gesamtspinntiter war 1304 dtex. Der Restlösungsmittelgehalt im Spinngut lag bei 13,5 %. Die DMF-Verdampfungsgeschwindigkeit betrug 1,225
    Figure imgb0016
  • Der Einzelspinntiter lag bei 1,8 dtex. Der Verzug betrug 48. Die Fäden wurden unter 1:4,0-facher Verstreckung zu Fasern vom Endtiter 0,6 dtex nachbehandelt. Die Fasern besaßen ein rundes bis schwach bohnenförmiges Querschnittsprofil. Ihr Glanz war wiederum außerordentlich hoch. Im Rasterelektronenmikroskop konnten wieder an der Oberfläche parallel zur Faserachse verlaufende Riefen und Streifungen beobachtet werden, die keine Unterbrechungen aufwiesen.
  • In der folgenden Tabelle wird durch Spinnversuche die Abhängigkeit der Querschnittsform von der DMF-Verdampfungsgeschwindigkeit in
    Figure imgb0017
    demonstriert. Mit steigendem Spinntiter müssen die Energieverhältnisse im Spinnschacht angehoben werden, da mit steigendem Lösungsdurchsatz mehr Spinnlösungsmittel verdampfen muß, um eine Fadenverfestigung zu erhalten. Das Spinngut wurde jeweils 1:3,6-fach in kochendem Wasser verstreckt und wie üblich nachbehandelt. Die Einzelspinn- und Einzelendtiter wurden wiederum nach der lichtmikroskopischen Methode ermittelt und die Querschnittsformen anhand lichtmikroskopischer Aufnahmen nach dem differentiellen Interferenzkontrastverfahren bestimmt. Die unterschiedlichen Verweilzeiten im Spinnschacht wurden neben unterschiedlichen Abzugsgeschwindigkeiten auch durch andere Schachtlängen erzielt. Wie man der Tabelle entnehmen kann, entstehen von der Hantelform abweichende Querschnittsformen vornehmlich bei Spinntitern kleiner 3 dtex. Wie die Beispiele 12 und 17 zeigen, lassen sich jedoch auch bei Spinntitern ab 3,0 dtex und feiner hantelförmige Faserquerschnitte herstellen, wenn man nur die DMF-Verdampfungsgeschwindigkeit in
    Figure imgb0018
    hoch genug wählt. Man hat daher mit dieser Meßgröße, wie bereits erwähnt, einen geeigneten Parameter in der Hand, die Querschnittsform festzulegen.
  • Figure imgb0019
    Figure imgb0020
  • Beispiel 5
  • a) Ein Acrylnitrilcopolymerisat mit der chemischen Zusammensetzung von Beispiel 1 wurde wie dort beschrieben in DMF gelöst, filtriert und die Spinnlösung vor der Düse auf 112°C gehalten. Dann wurde aus einer 1050-Lochdüse mit Düsenlochdurchmesser von 0,25 mm trockenversponnen. Die Schachttemperatur betrug 150°C, die Lufttemperatur 260°C und die Luftmenge 40 m3/h. Die Abzugsgeschwindigkeit war 300 m/min und die Verweilzeit der Fäden im Spinnschacht betrug 1,76 Sekunden. Aus der Spinnpumpe wurden 193,2 ccm/ min gefördert. Der Gesamtspinntiter war 1903 dtex. Der Restlösungsmittelgehalt im Spinngut betrug 8,3 %. Die DMF-Verdampfungsgeschwindigkeit lag bei 2,090
    Figure imgb0021
    Der Einzelspinntiter lag bei 1,81 dtex.
  • Der Verzug betrug 80. Die Fäden wurden am Schachtausgang wiederum mit ölhaltiger Präparation benetzt, auf Spulen gesammelt, zu einem Kabel gefacht, in kochendem Wasser 1:4,0-facin verstreckt und auf übliche Weise zu Fasern nachbehandelt. Der Faserendtiter lag bei 0,56 dtex. Die Fasern zeigen die typische Hantelform.
  • b) Ein Teil des Ansatzes aus Beispiel 5a wurde nach dem Löse- und Filtrationsvorgang vor der Düse auf 40°C abgekühlt und aus einer 1050-Lochdüse mit Düsenlochdurchmesser von 0,25 mm trockenversponnen. Die Schachttemperatur betrug 190°C, die Lufttemperatur 380°C und die Luftmenge 40 m3/h. Die Abzugsgeschwindigkeit war 250 m/min und die Verweilzeit der Fäden im Spinnschacht betrug 2,11 Sekunden. Aus der Spinnpumpe wurden 161 ccm/min gefördert. Der Gesamtspinntiter war 1891 dtex. Der Restlösungsmittelgehalt im Spinngut war 8,8 %. Die DMF-Verdampfungsgeschwindigkeit lag bei 1,727
    Figure imgb0022
    Der Einzelspinn- titer lag bei 1,80 dtex. Der Verzug war 80. Die Fäden wurden wie in Beispiel 5a beschrieben nachbehandelt. Der Faserendtiter lag bei 0,58 dtex. Die Fasern zeigen wiederum die typische Hantelform.
  • c) Ein Teil des Ansatzes aus Beispiel 5 wurde in der Aufheizvorrichtung bei 80°C anstatt bei 135°C gelöst, filtriert und die Spinnlösung vor der Düse wieder auf 112°C gehalten. Dann wurde wie in Beispiel 5a beschrieben versponnen. Die Fäden ließen sich nicht anlegen. Es kam ständig zu Abrissen unterhalb der Düse.
  • d) Ein weiterer Teil des Ansatzes wurde in der Aufheizvorrichtung bei 80°C anstatt bei 135°C gelöst, filtriert und die Spinnlösung auf 40°C abgekühlt. Die Lösung hatte bei 50°C eine Viskosität von 235 Kugelfallsekunden. Bei 40°C stieg die Viskosität auf 356 Kugelfallsekunden an, und die Lösung wurde trübe. Beim Versuch, eine derartige Lösung wie in Beispiel 5a beschrieben zu verspinnen, konnten keine Fäden erhalten werden. Es kam ständig zu Abrissen unterhalb der Düse.
  • Beispiel 6
  • 35 kg eines Acrylnitrilcopolymerisates mit der chemischen Zusammensetzung aus Beispiel 1 wurden wie dort beschrieben in 65 kg DMF gelöst. Die Spinnlösung wurde anschließend filtriert, auf 35°C abgekühlt und aus einer 360-Lochdüse mit Düsenlochdurchmesser von 0,3 mm trockenversponnen. Die Schachttemperatur betrug 50°C, die Lufttemperatur 200°C und die Luftmenge 40 m3/h. Die Abzugsgeschwindigkeit war 300 m/min. Die Verweilzeit im Spinnschacht betrug 1,16 Sekunden. Aus der Spinnpumpe wurden 126,8 ccm/ min gefördert. Der Gesamttiter war 1391 dtex. Der Restlösungsmittelgehalt im Spinngut lag bei 35,5 %. Die DMF-Verdampfungsgeschwindigkeit betrug 2,902
    Figure imgb0023
    . Der Einzelspinntiter lag bei 3,86 dtex. Der Verzug betrug 60. Die Fäden wurden unter 1:4,0-facher Verstreckung zu Fasern vom Endtiter 1,2 dtex nachbehandelt. Die Fasern besitzen ein hantelförmiges Querschnittsprofil. Während bei 70,5 %iger Spinnlösungskonzentration der Übergang der Querschnittsform von runder zur Hantelform bei 1,16 Sek. Verweilzeit im Spinnschacht nach Abb. 1 erst bei einer Verdampfungsgeschwindigkeit von 3,05
    Figure imgb0024
  • zu erwarten ist, erfolgt somit der Übergang der Querschnittsform von rund nach hantelförmig bei einer 65 %igen Spinnlösungskonzentration gemäß
    Figure imgb0025
    bereits viel früher.

Claims (9)

1. Verfahren zur Herstellung von Synthesefasern und -fäden mit Spinneinzeltitern von 3 dtex und darunter aus fadenbildenden synthetischen Polymeren nach einem Trockenspinnprozeß und unter Weiterbehandlung des Spinngutes in an sich bekannter Weise zu fertigen Fasern oder Fäden, dadurch gekennzeichnet, daß viskositätsstabile Spinnlösungen unter solchen thermischen Bedingungen versponnen werden, die einen Verzug von mindestens 20 ermöglichen.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß als Polymeres ein Acrylnitrilpolymerisat mit mindestens 40 Gew.-% Acrylnitrileinheiten versponnen wird.
3. Verfahren nach den Ansprüchen 1 und 2, dadurch gekennzeichnet, daß als Spinnlösungsmittel Dimethylformamid verwendet wird.
4. Verfahren nach den Ansprüchen 1 bis 3, dadurch gekennzeichnet, daß die Spinnlösung mit einem Verzug von 30-500 versponnen wird.
5. Verfahren nach den Ansprüchen 1 bis 4, dadurch gekennzeichnet, daß Fäden mit runden bis bohnenförmigen Querschnitten unter Verfahrensbedingungen nach Maßgabe der Abb. 1 hergestellt werden.
6. Trockengesponnene Synthesefasern und -fäden aus fadenbildenden synthetischen Polymeren, dadurch gekennzeichnet, daß sie einen Spinneinzeltiter von höchstens 3 dtex aufweisen.
7. Fäden und Fasern nach Anspruch 6, dadurch gekennzeichnet, daß sie aus Acrylnitrilpolymerisaten mit mindestens 40 Gew.-% an Acrylnitrileinheiten bestehen.
8. Fäden und Fasern nach den Ansprüchen 6 und 7, dadurch gekennzeichnet, daß sie runde bis bohnenförmige Querschnitte aufweisen.
9. Fäden und Fasern nach den Ansprüchen 6 bis 8, dadurch gekennzeichnet, daß sie eine glatte Oberfläche besitzen und hohen Glanz aufweisen, wobei die Oberfläche Längsstreifungen und Riefen parallel zur Faserachse aufweisen.
EP80107777A 1979-12-21 1980-12-10 Feinsttitrige Synthesefasern und -fäden und Trockenspinnverfahren zu ihrer Herstellung Expired - Lifetime EP0031078B2 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT80107777T ATE20909T1 (de) 1979-12-21 1980-12-10 Feinsttitrige synthesefasern und -faeden und trockenspinnverfahren zu ihrer herstellung.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19792951803 DE2951803A1 (de) 1979-12-21 1979-12-21 Feinsttitrige synthesefasern und -faeden und trockenspinnverfahren zu ihrer herstellung
DE2951803 1979-12-21

Publications (4)

Publication Number Publication Date
EP0031078A2 true EP0031078A2 (de) 1981-07-01
EP0031078A3 EP0031078A3 (en) 1983-05-25
EP0031078B1 EP0031078B1 (de) 1986-07-23
EP0031078B2 EP0031078B2 (de) 1992-06-03

Family

ID=6089296

Family Applications (1)

Application Number Title Priority Date Filing Date
EP80107777A Expired - Lifetime EP0031078B2 (de) 1979-12-21 1980-12-10 Feinsttitrige Synthesefasern und -fäden und Trockenspinnverfahren zu ihrer Herstellung

Country Status (6)

Country Link
US (2) US4400339A (de)
EP (1) EP0031078B2 (de)
JP (1) JPS56101909A (de)
AT (1) ATE20909T1 (de)
DE (2) DE2951803A1 (de)
IE (1) IE52101B1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6492021B1 (en) 1998-06-30 2002-12-10 Bayer Faser Gmbh Elastane fiber

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3225266A1 (de) * 1982-07-06 1984-01-12 Bayer Ag, 5090 Leverkusen Kontinuierliches trockenspinnverfahren fuer acrylnitrilfaeden und - fasern
DE3225267A1 (de) * 1982-07-06 1984-01-12 Bayer Ag, 5090 Leverkusen Herstellung loesungsmittelarmer polyacrylnitril-spinnfaeden
JPS616160A (ja) * 1984-06-19 1986-01-11 東レ株式会社 繊維補強水硬性物質
DE3424343A1 (de) * 1984-07-03 1986-01-16 Bayer Ag, 5090 Leverkusen Verfahren und vorrichtung zum trockenspinnen
HU213944B (en) * 1989-06-28 1997-11-28 Michelin Rech Tech Aramide monofilament and method for producing same, and a reinforced system containing aramide monofilament and reinforced product with aramide monofilament and containing a reinforced system
US5715804A (en) * 1994-07-29 1998-02-10 Yamaha Corporation Hybrid bow string formed from strands of polyethylene resin and polyparabenzamide/polybenzobisoxazole resin
JPH0842995A (ja) * 1994-07-29 1996-02-16 Yamaha Corp 洋弓用弦
DE69635691T2 (de) * 1995-11-30 2006-09-14 Kimberly-Clark Worldwide, Inc., Neenah Vliesbahn aus superfeinen Mikrofasern
US7175903B1 (en) * 2000-11-17 2007-02-13 Pliant Corporation Heat sealable polyvinyl chloride films
CN109629027B (zh) * 2017-10-09 2021-10-22 中国石油化工股份有限公司 一种干法腈纶1.33dtex短纤维的生产方法
US11180867B2 (en) 2019-03-20 2021-11-23 University Of Kentucky Research Foundation Continuous wet-spinning process for the fabrication of PEDOT:PSS fibers with high electrical conductivity, thermal conductivity and Young's modulus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1056293A (fr) * 1951-10-09 1954-02-25 Phrix Werke Ag Procédé de préparation d'articles conformés à base de polymérisats ou de polymérisats mixtes de l'acrylonitrile
FR1262916A (fr) * 1959-07-18 1961-06-05 Hoechst Ag Préparation d'objets façonnés à partir de polymères d'acroléine
DE2658916A1 (de) * 1976-12-24 1978-07-06 Bayer Ag Polyacrylnitril-filamentgarne

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE364509A (de) * 1928-10-29
US1950026A (en) * 1929-07-02 1934-03-06 Celanese Corp Manufacture of artificial filaments or threads
US2072100A (en) * 1929-11-27 1937-03-02 Celanese Corp Spinning of artificial filaments
NL248550A (de) * 1959-02-20
US3531368A (en) * 1966-01-07 1970-09-29 Toray Industries Synthetic filaments and the like
JPS4711254U (de) * 1971-03-03 1972-10-11
SE403141B (sv) * 1973-02-05 1978-07-31 American Cyanamid Co Smeltspinningsforfarande for framstellning av en akrylnitrilpolymerfiber
JPS539301A (en) * 1976-07-12 1978-01-27 Mitsubishi Rayon Co Production of leather like sheet structre
DE2657144C2 (de) * 1976-12-16 1982-12-02 Bayer Ag, 5090 Leverkusen Verfahren zur Herstellung hydrophiler Fasern
JPS5394625A (en) * 1977-01-20 1978-08-18 Asahi Chem Ind Co Ltd Production of acrylic fiber
JPS53147818A (en) * 1977-05-26 1978-12-22 Asahi Chem Ind Co Ltd Production of acrylic fiber
JPS602405B2 (ja) * 1977-09-22 1985-01-21 三菱レイヨン株式会社 アクリロニトリル系異繊度単糸混合連続フイラメント糸の製造法
US4205039A (en) * 1977-11-17 1980-05-27 American Cyanamid Company Process for melt-spinning acrylonitrile polymer fiber
US4219523A (en) * 1978-08-30 1980-08-26 American Cyanamid Company Melt-spinning acrylonitrile polymer fiber from low molecular weight polymers
JPS56377A (en) * 1979-06-15 1981-01-06 Teijin Ltd Production of suede like raised fabric

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1056293A (fr) * 1951-10-09 1954-02-25 Phrix Werke Ag Procédé de préparation d'articles conformés à base de polymérisats ou de polymérisats mixtes de l'acrylonitrile
FR1262916A (fr) * 1959-07-18 1961-06-05 Hoechst Ag Préparation d'objets façonnés à partir de polymères d'acroléine
DE2658916A1 (de) * 1976-12-24 1978-07-06 Bayer Ag Polyacrylnitril-filamentgarne

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6492021B1 (en) 1998-06-30 2002-12-10 Bayer Faser Gmbh Elastane fiber
US6699414B2 (en) 1998-06-30 2004-03-02 Bayer Faser Gmbh Method of producing elastane fiber by wet spinning

Also Published As

Publication number Publication date
JPS56101909A (en) 1981-08-14
US4400339A (en) 1983-08-23
EP0031078A3 (en) 1983-05-25
EP0031078B1 (de) 1986-07-23
US4497868A (en) 1985-02-05
EP0031078B2 (de) 1992-06-03
DE2951803A1 (de) 1981-07-02
IE52101B1 (en) 1987-06-24
ATE20909T1 (de) 1986-08-15
DE2951803C2 (de) 1989-03-16
IE802680L (en) 1981-06-21
DE3071670D1 (en) 1986-08-28
JPH0128125B2 (de) 1989-06-01

Similar Documents

Publication Publication Date Title
DE69723582T2 (de) Fasern aus regenerierte zellulose und verfahren zu ihrer herstellung
EP0494852B1 (de) Verfahren zur Herstellung eines cellulosischen Formkörpers
DE2948298C2 (de)
DE69025789T2 (de) Polyvinylalkoholfaser und Verfahren zu deren Herstellung
CH650807A5 (de) Verfahren zur herstellung von filamenten.
EP0044534B1 (de) Hochmodul-Polyacrylnitrilfäden und -fasern sowie Verfahren zu ihrer Herstellung
DE2403947A1 (de) Schmelzspinnverfahren zur herstellung von geformten gegenstaenden aus acrylnitrilpolymerisaten
EP0031078B1 (de) Feinsttitrige Synthesefasern und -fäden und Trockenspinnverfahren zu ihrer Herstellung
EP1208255B1 (de) Hochfeste polyesterfäden und verfahren zu deren herstellung
DE69721791T2 (de) Verwendung von linearen syntethischen polymeren zur verbesserung der eigenschaften von cellulosischen formkörpern hergestellt nach dem tertiären-aminoxid-verfahren
EP0987353B1 (de) Polyesterfasern und -filamente sowie Verfahren zu deren Herstellung
EP0051189B1 (de) Verfahren zur Herstellung von trockengesponnenen Polyacrylnitril-Profilfasern und -fäden
DE69715867T2 (de) Ultra-orientierte kristalline filamente und verfahren eu ihrer herstellung
DE69126914T2 (de) Verfahren zum Spinnen von synthetischen Fasern mit hoher Festigkeit, hohem Modul und niedrigem Schrumpf
DE3036683C2 (de) Verfahren zum Schmelzspinnen von synthetischen Polymeren
DE2736302C3 (de) Verfahren zur Herstellung von Polypyrrolidonfäden
EP1208253B1 (de) Hmls-fäden aus polyester und spinnstreckverfahren zu deren herstellung
DE69610894T2 (de) Orientierte Polyamidfasern und Verfahren zu ihrer Herstellung
DE3838053A1 (de) Spinnrohr-nassspinnverfahren
DE2657144A1 (de) Verfahren zur herstellung hydrophiler fasern
EP0029949A1 (de) Verfahren zur Herstellung von querschnittstabilen, hygroskopischen Kern/Mantelstruktur aufweisenden Fasern und Fäden nach einem Trockenspinnprozess
AT341070B (de) Schmelzspinnverfahren zur herstellung von geformten gegenstanden aus einem acrylnitrilpolymerisat
DE1760989A1 (de) Verbesserte Polypivalolactonfasern und Verfahren zu ihrer Herstellung
DE19935145A1 (de) Polyesterfasern und -filamente sowie Verfahren zu deren Herstellung
DE2737404A1 (de) Hydrophile fasern und faeden aus synthetischen polymeren

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19801210

AK Designated contracting states

Designated state(s): AT BE DE FR GB IT

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): AT BE DE FR GB IT

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE DE FR GB IT

REF Corresponds to:

Ref document number: 20909

Country of ref document: AT

Date of ref document: 19860815

Kind code of ref document: T

ITF It: translation for a ep patent filed
REF Corresponds to:

Ref document number: 3071670

Country of ref document: DE

Date of ref document: 19860828

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19861202

Year of fee payment: 7

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: HOECHST AKTIENGESELLSCHAFT, FRANKFURT

Effective date: 19870422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19871210

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19911128

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19911129

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19911231

Year of fee payment: 12

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 19920603

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AT BE DE FR GB IT

ITF It: translation for a ep patent filed
ET3 Fr: translation filed ** decision concerning opposition
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19921210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19921231

BERE Be: lapsed

Owner name: BAYER A.G.

Effective date: 19921231

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19921210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19930831

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19961112

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980901

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO