EP0031078A2 - Fibres et filaments synthétiques de titre très fin et procédé de filage à sec pour leur fabrication - Google Patents
Fibres et filaments synthétiques de titre très fin et procédé de filage à sec pour leur fabrication Download PDFInfo
- Publication number
- EP0031078A2 EP0031078A2 EP80107777A EP80107777A EP0031078A2 EP 0031078 A2 EP0031078 A2 EP 0031078A2 EP 80107777 A EP80107777 A EP 80107777A EP 80107777 A EP80107777 A EP 80107777A EP 0031078 A2 EP0031078 A2 EP 0031078A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- spinning
- fibers
- threads
- dtex
- spun
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000578 dry spinning Methods 0.000 title claims abstract description 16
- 229920002994 synthetic fiber Polymers 0.000 title claims abstract description 9
- 238000000034 method Methods 0.000 title claims description 42
- 238000004519 manufacturing process Methods 0.000 title claims description 5
- 238000009987 spinning Methods 0.000 claims abstract description 124
- 239000012209 synthetic fiber Substances 0.000 claims abstract description 8
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 claims description 132
- 239000000835 fiber Substances 0.000 claims description 58
- 239000002904 solvent Substances 0.000 claims description 16
- 239000000463 material Substances 0.000 claims description 13
- 229920000642 polymer Polymers 0.000 claims description 11
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical group C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 claims description 5
- 229920002239 polyacrylonitrile Polymers 0.000 claims description 5
- 229920001059 synthetic polymer Polymers 0.000 claims description 3
- 238000001704 evaporation Methods 0.000 description 21
- 230000008020 evaporation Effects 0.000 description 21
- 239000013557 residual solvent Substances 0.000 description 8
- 239000007787 solid Substances 0.000 description 7
- 229920002972 Acrylic fiber Polymers 0.000 description 6
- 238000009835 boiling Methods 0.000 description 5
- 229920001577 copolymer Polymers 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 239000004744 fabric Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 3
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 2
- 230000001934 delay Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 229920002959 polymer blend Polymers 0.000 description 2
- 238000009997 thermal pre-treatment Methods 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- WZCQRUWWHSTZEM-UHFFFAOYSA-N 1,3-phenylenediamine Chemical compound NC1=CC=CC(N)=C1 WZCQRUWWHSTZEM-UHFFFAOYSA-N 0.000 description 1
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 1
- 235000010627 Phaseolus vulgaris Nutrition 0.000 description 1
- 244000046052 Phaseolus vulgaris Species 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- 125000003785 benzimidazolyl group Chemical class N1=C(NC2=C1C=CC=C2)* 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 210000001520 comb Anatomy 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 125000000623 heterocyclic group Chemical group 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 239000010985 leather Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229940018564 m-phenylenediamine Drugs 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012821 model calculation Methods 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
- 150000002916 oxazoles Chemical class 0.000 description 1
- 239000003495 polar organic solvent Substances 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- SZHIIIPPJJXYRY-UHFFFAOYSA-M sodium;2-methylprop-2-ene-1-sulfonate Chemical compound [Na+].CC(=C)CS([O-])(=O)=O SZHIIIPPJJXYRY-UHFFFAOYSA-M 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000000935 solvent evaporation Methods 0.000 description 1
- 238000007669 thermal treatment Methods 0.000 description 1
- 150000003557 thiazoles Chemical class 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Images
Classifications
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D5/00—Formation of filaments, threads, or the like
- D01D5/08—Melt spinning methods
- D01D5/098—Melt spinning methods with simultaneous stretching
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D5/00—Formation of filaments, threads, or the like
- D01D5/04—Dry spinning methods
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F6/00—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
- D01F6/02—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
- D01F6/18—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polymers of unsaturated nitriles, e.g. polyacrylonitrile, polyvinylidene cyanide
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/29—Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
- Y10T428/2913—Rod, strand, filament or fiber
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/29—Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
- Y10T428/2913—Rod, strand, filament or fiber
- Y10T428/2973—Particular cross section
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/29—Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
- Y10T428/2913—Rod, strand, filament or fiber
- Y10T428/2973—Particular cross section
- Y10T428/2978—Surface characteristic
Definitions
- Such fine-titer fibers which usually have a final fiber titer between 0.4-0.8 dtex, have compared to conventional synthetic fibers, e.g. Acrylic fibers, which are in the titre range from 1.3 dtex, have a number of advantages such as: high gloss, appealing chandelier, elegance in the fabric, soft feel, high flexibility and pliability as well as high fiber strength, due to the high number of fine fibers in the yarn cross-section.
- fine-titer synthetic fibers can mainly be produced by apparatus changes in the spinning process, such as, for example, by flash and blow spinning by shear, coagulation, impact or centrifugal force methods.
- apparatus changes in the spinning process such as, for example, by flash and blow spinning by shear, coagulation, impact or centrifugal force methods.
- spinning process such as, for example, by flash and blow spinning by shear, coagulation, impact or centrifugal force methods.
- spinning of mutually incompatible polymer mixtures into polymer blend fibers with a matrix / fibril structure has gained importance. Removal of the polymer matrix results in fine titre fibril fibers, which are mainly used as synthetic upper leather.
- the object of the present invention was to produce fine-titer synthetic fibers, primarily acrylic fibers, using a dry spinning process.
- the spinning solution in the spinning shaft must be subjected to a high degree of warpage.
- the warping (V) during spinning is defined as the ratio of the take-off speed to the ejection speed
- the present invention therefore relates to a process for the production of synthetic fibers and filaments with single spinning titers of 3 dtex and below from thread-forming synthetic polymers after a dry spinning process, which is characterized in that viscosity-stable spinning solutions are spun under such thermal conditions that a delay of at least 20 , preferably 30-500, and allow the spun material thus obtained to be further processed in a manner known per se to produce filaments or fibers.
- This process can be used to produce threads and fibers of the titre fineness mentioned which do not have the dumbbell-shaped cross sections customary in dry spinning.
- the invention also relates to such threads.
- the process according to the invention is in principle a dry spinning process which can be carried out with the same equipment as a process by which coarser titers are spun.
- the spinning solutions used are also the usual ones in this technology and have solids contents of about 25 to 35%.
- the spinning solutions With average K values of the polymers of about 80, the spinning solutions thus have viscosities of about 20 to 100 falling ball seconds at 80 ° C. (for the falling ball method see K. Jost, Rheologica Acta (1958) Vol. 1, No. 2-3, page 303).
- viscosity-stable spinning solutions must be used, ie spinning solutions whose viscosity (measured in falling ball seconds) changes during the spinning time, ie usually for a maximum of 5%, preferably less than 1%, but ideally not at all.
- Such solutions have proven to be particularly highly deformable during spinning Solutions whose viscosity is not constant tend to break the thread at high warpage (see Example 2).
- a viscosity-stable spinning solution can be prepared by keeping the solution at a certain minimum temperature for a certain time before spinning.
- acrylonitrile polymers are preferably spun, in particular those which consist of at least 40% by weight, preferably of at least 85% by weight, of acrylonitrile units.
- the known polar organic solvents are suitable as spinning solvents, in particular dimethylacetamide, dimethyl sulfoxide, ethylene carbonate, N-methylpyrrolidone, but preferably dimethylformamide.
- the above-mentioned thermal pretreatment when using dimethylformamide (DMF) as solvent is at least about 4 minutes at at least about 140 ° C.
- DMF dimethylformamide
- Acrylonitrile polymers containing comonomers can be pretreated at somewhat lower temperatures of approx. 125-130 ° C for the stated period of time in order to achieve the desired viscosity stability of the solution.
- Viscosity stability recommended if not required.
- the spinning solution should not have a temperature of more than 150 ° C, the spinning shaft temperature should not exceed 200 ° C and the temperature of the spinning air is at most about 400 ° C should.
- W hat was found for the dope temperature, applies equally to the shaft and air temperature in the inventive dry spinning fine (st) titriger fibers.
- Low temperatures allow spinning with high warpage due to weak solvent evaporation (e.g. DMF) in the spinning shaft and thus the production of extremely fine titers.
- DMF weak solvent evaporation
- the spinning temperatures should be increased due to the increased polymer throughput in order to avoid sticking and thread breaks.
- a non-dumbbell-shaped cross-sectional shape of the fine-titer fibers is always obtained by the process according to the invention if the spinning conditions are chosen to be as mild as possible and the work is carried out with high delays.
- the spinning solution for example, is cooled to temperatures of about 20 ° C. to about 100 ° C. after the viscosity-stabilizing thermal treatment and before spinning, and at the same time the spinning shaft temperature to a value between about 30 ° C. and preferably below set half the boiling point of the solvent used and worked with spinning air to about 300 ° C.
- the fiber cross section also has an intermediate shape, for example a bean or kidney shape.
- the DMF evaporation rate per capillary in (mg / sec) in combination with the residence time of the threads in the spinning shaft have proven to be suitable variables for describing the cross-sectional shape that has arisen. As emerged from numerous spinning tests, the DMF evaporation rate with a residence time of one second in the spinning shaft may be the value of
- dumbbell-shaped cross-sectional shapes do not exceed if dumbbell-shaped cross-sectional shapes are to be obtained.
- the evaporation rate must be lower and with shorter dwell times correspondingly higher.
- a bb. 1 shows the curve obtained when the DMF evaporation rate in plots as ordinate against the dwell time (in seconds) in the spinning shaft as the abscissa. It is almost a hyperbola, which divides the area into dumbbell and non-dumbbell-shaped fiber cross-sectional structures.
- Non-dumbbell-shaped fiber cross-sectional profiles are understood to mean both bean-shaped as well as kidney-shaped and round cross-sectional shapes and transitions between the individual profiles. As can be seen in Fig.
- the values of the ordinate in the form of the DMF evaporation rate represent a measure of the thermal spinning conditions such as shaft, air and spinning solution temperature
- the values of the abscissa in the form of the dwell time of the threads in the spinning shaft represent a measure of the mechanical spinning conditions, such as take-off speed and Shaft length, mean.
- Each point on the curve in Fig. 1 represents a certain amount of DMF, the DMF content in the thread may vary depending on the titer. In other words, the course of the curve is independent of the spin titer.
- the curve also shows that a certain amount of DMF must be evaporated in order to change the cross-sectional structure. This is significantly greater with low dwell times than with longer dwell times in the spinning shaft.
- dumbbell-shaped cross sections are never reached below a certain evaporation rate, regardless of the residence time.
- the DMF evaporation rate per capillary in (mg / sec.) Can be determined from the difference between the amount of spinning solvent per capillary (mg / sec.) And the residual solvent amount per capillary (mg / sec.). This should be shown on a model calculation for example 1. The following applies:
- the DMF evaporation rate R 1 for a spinning solution concentration other than 70.5% by weight DMF, at which the cross-sectional shape changes is calculated as follows: at 1.16 seconds dwell time in the spinning shaft.
- the fine-titer fibers according to the invention in contrast to conventionally dry-spun acrylic fibers, have no barky, fibrillated surface with grooves of limited length at varying angles to the fiber axis.
- the fine-titer fibers have smooth surfaces and grooves and striations that run parallel to the fiber axis and are not interrupted, so that the light is reflected in a directed manner becomes.
- fine-titer fibers for example in interlock fabrics, made from 3-cylinder yarns have a very soft feel compared to conventional acrylic fabrics made from 1.6 dtex fibers. This is particularly useful for articles worn close to the skin and of high utility value.
- fine-tinned spinning material In the case of the aftertreatment of fine-tinned spinning material, it has proven to be extremely advantageous to heat the spinning material to about 79-80 ° C. by passing through troughs with warm washing liquid, preferably water, before the stretching process, in order to achieve a more uniform drawing.
- the fine titre spun material can be post-treated in the usual way by washing-stretching-preparing-drying-crimping-cutting to produce finished acrylic fibers. Because of the large titer fineness of the threads, especially in the case of spinning titer less than 1 dtex, it is also advantageous to draw in stages.
- the method according to the invention is not limited to the production of the finest titers from acrylic fibers.
- Linear, aromatic polyamides which may also be heterocyclic ring systems, such as e.g. Benzimidazoles, oxazoles, thiazoles, etc., and which can be produced by a dry spinning process, such as the polyamide from m-phenylenediamine and isophthalic acid, spin to the finest titers by the process according to the invention.
- the titer determination according to the gravimetric method is very imprecise for fine titers ( ⁇ 0.5 dtex).
- the titer was therefore determined by the microscopic method by determining the thread diameter "d" with the eyepiece micrometer according to DIN 53 811 according to the formula:
- the spinning solution had a viscosity of 30 ball falling seconds measured at 80 ° C. This value remained unchanged after 1, 3 and 5 hours.
- the S pinnate was then cooled to 35 ° C and dry spun from a 720 hole nozzle with nozzle hole diameter of 0.2 mm.
- the shaft temperature was 50 ° C, the air temperature 200 ° C and the air volume 40 m 3 / h.
- the take-off speed was 400 m / min.
- the dwell time of the threads in the spinning shaft was 0.87 seconds. 19.8 ccm / min were conveyed from the spinning pump.
- the Automatspinntiter was 144 dtex and the residual solvent content of the spinning g utes to DMF was 9.9 wt .-%, based on polymer solids.
- the DMF evaporation rate is then calculated to be 0.305 mg of the [second capillary]
- Single spin titer was 0.2 dtex.
- the delay V was 457.
- the threads were wetted with oil-containing preparation at the shaft exit, wound up on bobbins, folded into a cable, stretched 1: 3.6 times in boiling water and aftertreated in the usual way to give fibers with a final titre of 0.07 dtex.
- the fiber capillaries were embedded in methyl methacrylate and cross-cut.
- the light microscopic images produced in the differential interference contrast method showed that the sample cross sections are completely uniform and round.
- the mean thread diameter was determined with the fiber measuring eyepiece.
- the fibers had an extremely high gloss. When examined in a scanning electron microscope, the fibers showed smooth surfaces with longitudinal stripes. The striations were completely parallel to the fiber axis and, unlike those with conventional acrylic fibers, were not interrupted.
- Example 1 Part of the batch from Example 1 was dissolved in the heating device at 80 ° C. instead of 135 ° C. and the viscosity of the spinning solution was determined after the Filtraticn at 80 ° C.
- the spinning solution had a viscosity of 76 ball falling seconds. In reproduction measurements, the viscosity was 72 seconds after 1 hour, 67 after 3 hours and 64 seconds after 5 hours. The spinning solution thus had a decreasing viscosity.
- the spinning solution was cooled again to 35'C and from a 720-hole nozzle, as in Example 1 wrote, dry spun into threads. Thread breaks repeatedly occurred in the nozzle area. As light microscopic cross-sectional images showed, there were also numerous titre fluctuations.
- An acrylonitrile copolymer having the chemical composition of Example 1 was as described therein, dissolved in D M F, filtered and cooled, the spinning solution upstream of the nozzle at 40 ° C. Then, dry spinning was carried out from a 720-hole nozzle with a hole diameter of 0.2 mm.
- the shaft temperature was 50 ° C
- the take-off speed was 250 m / min and the dwell time of the threads in the spinning shaft was 1.39 seconds. 52.8 ccm / min were conveyed from the spinning pump.
- the total spin titer was 648 dtex.
- the residual solvent content in the spun material was 10.8%.
- the DMF evaporation rate was 0.856 .
- the single spin titer was 0.9 dtex.
- the warpage was 107.
- the threads were again wetted with oil-containing preparation at the shaft exit, wound up on bobbins, folded into a cable, stretched 1: 3.6 times in boiling water and aftertreated in the usual way to give fibers with a final titer of 0.3 dtex.
- the fiber cross sections were again completely uniform and circular.
- the fibers also had a very high gloss again and showed a smooth surface in the scanning electron microscope with striations that were longitudinally striped parallel to the fiber axis.
- An acrylonitrile copolymer with the chemical composition from Example 1 was dissolved in DMF as described there.
- the spinning solution was then filtered, cooled to 90 ° C. and dry-spun from a 720-hole nozzle with a nozzle hole diameter of 0.2 mm.
- the shaft temperature was 150 ° C, the air temperature 200 ° C and the air volume 40 m 3 / h.
- the take-off speed was 180 m / min. It was spun on a shorter-sized spinning shaft, so that there was a dwell time of 1.66 seconds. From the spinning pump 82.8 ccm / min. promoted.
- the total spin titer was 1304 dtex.
- the residual solvent content in the spinning material was 13.5%.
- the DMF evaporation rate was 1.225
- the single spin titer was 1.8 dtex.
- the warpage was 48.
- the threads were post-treated with 1: 4.0-fold stretching to fibers with a final titer of 0.6 dtex.
- the fibers had a round to slightly bean-shaped cross-sectional profile. Her sheen was again extraordinarily high. In the scanning electron microscope, striations and striations running on the surface parallel to the fiber axis were again observed, which showed no interruptions.
- the table below shows the dependence of the cross-sectional shape on the DMF evaporation rate in demonstrated.
- the energy ratios in the spinning shaft have to be increased with increasing spinning titer, since with increasing Solution throughput must evaporate more spinning solvent in order to obtain a thread solidification.
- the spinning material was stretched 1: 3.6 times in boiling water and post-treated as usual.
- the single-spin and single-end titers were again determined using the light microscopic method and the cross-sectional shapes were determined using light microscopic images using the differential interference contrast method.
- the different dwell times in the spinning shaft were achieved in addition to different take-off speeds by other shaft lengths.
- cross-sectional shapes deviating from the dumbbell shape arise primarily with spin titers less than 3 dtex.
- the warping was 80.
- the threads were again wetted with oil-containing preparation at the shaft exit, collected on bobbins, folded into a cable, stretched 1: 4.0-facin in boiling water and post-treated into fibers in the usual way.
- the final fiber titer was 0.56 dtex.
- the fibers show the typical dumbbell shape.
- part of the batch from Example 5a was cooled to 40 ° C. in front of the nozzle and dry-spun from a 1050-hole nozzle with a nozzle hole diameter of 0.25 mm.
- the shaft temperature was 190 ° C, the air temperature 380 ° C and the air volume 40 m 3 / h.
- the deduction area speed was 250 m / min and the dwell time of the threads in the spinning shaft was 2.11 seconds. 161 ccm / min were conveyed from the spinning pump.
- the total spin titer was 1891 dtex.
- the residual solvent content in the spinning material was 8.8%.
- the DMF evaporation rate was 1.727
- the single spin titer was 1.80 dtex.
- the warpage was 80.
- the threads were post-treated as described in Example 5a.
- the final fiber titer was 0.58 dtex.
- the fibers in turn show the typical dumbbell shape.
- Example 5 Part of the batch from Example 5 was dissolved in the heating device at 80 ° C. instead of 135 ° C., filtered and the spinning solution in front of the nozzle was again kept at 112 ° C. Then spinning was carried out as described in Example 5a. The threads could not be put on. There were constant tears below the nozzle.
- the single spin titer was 3.86 dtex.
- the warpage was 60.
- the threads were post-treated with 1: 4.0 times stretching to fibers with a final titer of 1.2 dtex.
- the fibers have a dumbbell-shaped cross-sectional profile. While strength 70.5% S p innatesskonzentration the transition of the cross-sectional shape from round to dumbbell shape at 1.16 sec. Residence time in the spinning shaft according to Fig. 1 only at an evaporation rate of 3.05
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Mechanical Engineering (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Artificial Filaments (AREA)
- Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
- Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT80107777T ATE20909T1 (de) | 1979-12-21 | 1980-12-10 | Feinsttitrige synthesefasern und -faeden und trockenspinnverfahren zu ihrer herstellung. |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE2951803 | 1979-12-21 | ||
DE19792951803 DE2951803A1 (de) | 1979-12-21 | 1979-12-21 | Feinsttitrige synthesefasern und -faeden und trockenspinnverfahren zu ihrer herstellung |
Publications (4)
Publication Number | Publication Date |
---|---|
EP0031078A2 true EP0031078A2 (fr) | 1981-07-01 |
EP0031078A3 EP0031078A3 (en) | 1983-05-25 |
EP0031078B1 EP0031078B1 (fr) | 1986-07-23 |
EP0031078B2 EP0031078B2 (fr) | 1992-06-03 |
Family
ID=6089296
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP80107777A Expired - Lifetime EP0031078B2 (fr) | 1979-12-21 | 1980-12-10 | Fibres et filaments synthétiques de titre très fin et procédé de filage à sec pour leur fabrication |
Country Status (6)
Country | Link |
---|---|
US (2) | US4400339A (fr) |
EP (1) | EP0031078B2 (fr) |
JP (1) | JPS56101909A (fr) |
AT (1) | ATE20909T1 (fr) |
DE (2) | DE2951803A1 (fr) |
IE (1) | IE52101B1 (fr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6492021B1 (en) | 1998-06-30 | 2002-12-10 | Bayer Faser Gmbh | Elastane fiber |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3225266A1 (de) * | 1982-07-06 | 1984-01-12 | Bayer Ag, 5090 Leverkusen | Kontinuierliches trockenspinnverfahren fuer acrylnitrilfaeden und - fasern |
DE3225267A1 (de) * | 1982-07-06 | 1984-01-12 | Bayer Ag, 5090 Leverkusen | Herstellung loesungsmittelarmer polyacrylnitril-spinnfaeden |
JPS616160A (ja) * | 1984-06-19 | 1986-01-11 | 東レ株式会社 | 繊維補強水硬性物質 |
DE3424343A1 (de) * | 1984-07-03 | 1986-01-16 | Bayer Ag, 5090 Leverkusen | Verfahren und vorrichtung zum trockenspinnen |
RU2096537C1 (ru) * | 1989-06-28 | 1997-11-20 | Мишлэн Решерш Э Текник | Монофиламент из ароматического полиамида и способ его получения |
US5715804A (en) * | 1994-07-29 | 1998-02-10 | Yamaha Corporation | Hybrid bow string formed from strands of polyethylene resin and polyparabenzamide/polybenzobisoxazole resin |
JPH0842995A (ja) * | 1994-07-29 | 1996-02-16 | Yamaha Corp | 洋弓用弦 |
EP1314808B1 (fr) * | 1995-11-30 | 2006-01-04 | Kimberly-Clark Worldwide, Inc. | Multicouche à base de microfibres très fines |
US7175903B1 (en) * | 2000-11-17 | 2007-02-13 | Pliant Corporation | Heat sealable polyvinyl chloride films |
CN109629027B (zh) * | 2017-10-09 | 2021-10-22 | 中国石油化工股份有限公司 | 一种干法腈纶1.33dtex短纤维的生产方法 |
US11180867B2 (en) | 2019-03-20 | 2021-11-23 | University Of Kentucky Research Foundation | Continuous wet-spinning process for the fabrication of PEDOT:PSS fibers with high electrical conductivity, thermal conductivity and Young's modulus |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1056293A (fr) * | 1951-10-09 | 1954-02-25 | Phrix Werke Ag | Procédé de préparation d'articles conformés à base de polymérisats ou de polymérisats mixtes de l'acrylonitrile |
FR1262916A (fr) * | 1959-07-18 | 1961-06-05 | Hoechst Ag | Préparation d'objets façonnés à partir de polymères d'acroléine |
DE2658916A1 (de) * | 1976-12-24 | 1978-07-06 | Bayer Ag | Polyacrylnitril-filamentgarne |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE364509A (fr) * | 1928-10-29 | |||
US1950026A (en) * | 1929-07-02 | 1934-03-06 | Celanese Corp | Manufacture of artificial filaments or threads |
US2072100A (en) * | 1929-11-27 | 1937-03-02 | Celanese Corp | Spinning of artificial filaments |
US3097415A (en) * | 1959-02-20 | 1963-07-16 | Acrylonitrile fiber and process for | |
US3531368A (en) * | 1966-01-07 | 1970-09-29 | Toray Industries | Synthetic filaments and the like |
JPS4711254U (fr) * | 1971-03-03 | 1972-10-11 | ||
SE403141B (sv) * | 1973-02-05 | 1978-07-31 | American Cyanamid Co | Smeltspinningsforfarande for framstellning av en akrylnitrilpolymerfiber |
JPS539301A (en) * | 1976-07-12 | 1978-01-27 | Mitsubishi Rayon Co | Production of leather like sheet structre |
DE2657144C2 (de) * | 1976-12-16 | 1982-12-02 | Bayer Ag, 5090 Leverkusen | Verfahren zur Herstellung hydrophiler Fasern |
JPS5394625A (en) * | 1977-01-20 | 1978-08-18 | Asahi Chem Ind Co Ltd | Production of acrylic fiber |
JPS53147818A (en) * | 1977-05-26 | 1978-12-22 | Asahi Chem Ind Co Ltd | Production of acrylic fiber |
JPS602405B2 (ja) * | 1977-09-22 | 1985-01-21 | 三菱レイヨン株式会社 | アクリロニトリル系異繊度単糸混合連続フイラメント糸の製造法 |
US4205039A (en) * | 1977-11-17 | 1980-05-27 | American Cyanamid Company | Process for melt-spinning acrylonitrile polymer fiber |
US4219523A (en) * | 1978-08-30 | 1980-08-26 | American Cyanamid Company | Melt-spinning acrylonitrile polymer fiber from low molecular weight polymers |
JPS56377A (en) * | 1979-06-15 | 1981-01-06 | Teijin Ltd | Production of suede like raised fabric |
-
1979
- 1979-12-21 DE DE19792951803 patent/DE2951803A1/de active Granted
-
1980
- 1980-12-04 US US06/213,531 patent/US4400339A/en not_active Expired - Lifetime
- 1980-12-10 AT AT80107777T patent/ATE20909T1/de not_active IP Right Cessation
- 1980-12-10 DE DE8080107777T patent/DE3071670D1/de not_active Expired
- 1980-12-10 EP EP80107777A patent/EP0031078B2/fr not_active Expired - Lifetime
- 1980-12-19 IE IE2680/80A patent/IE52101B1/en unknown
- 1980-12-22 JP JP18057680A patent/JPS56101909A/ja active Granted
-
1983
- 1983-02-22 US US06/468,620 patent/US4497868A/en not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1056293A (fr) * | 1951-10-09 | 1954-02-25 | Phrix Werke Ag | Procédé de préparation d'articles conformés à base de polymérisats ou de polymérisats mixtes de l'acrylonitrile |
FR1262916A (fr) * | 1959-07-18 | 1961-06-05 | Hoechst Ag | Préparation d'objets façonnés à partir de polymères d'acroléine |
DE2658916A1 (de) * | 1976-12-24 | 1978-07-06 | Bayer Ag | Polyacrylnitril-filamentgarne |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6492021B1 (en) | 1998-06-30 | 2002-12-10 | Bayer Faser Gmbh | Elastane fiber |
US6699414B2 (en) | 1998-06-30 | 2004-03-02 | Bayer Faser Gmbh | Method of producing elastane fiber by wet spinning |
Also Published As
Publication number | Publication date |
---|---|
EP0031078B2 (fr) | 1992-06-03 |
IE52101B1 (en) | 1987-06-24 |
IE802680L (en) | 1981-06-21 |
DE3071670D1 (en) | 1986-08-28 |
US4497868A (en) | 1985-02-05 |
US4400339A (en) | 1983-08-23 |
JPS56101909A (en) | 1981-08-14 |
DE2951803A1 (de) | 1981-07-02 |
DE2951803C2 (fr) | 1989-03-16 |
JPH0128125B2 (fr) | 1989-06-01 |
ATE20909T1 (de) | 1986-08-15 |
EP0031078A3 (en) | 1983-05-25 |
EP0031078B1 (fr) | 1986-07-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69723582T2 (de) | Fasern aus regenerierte zellulose und verfahren zu ihrer herstellung | |
EP0494852B1 (fr) | Procédé pour la fabrication d'objets cellulosiques | |
DE2948298C2 (fr) | ||
DE69025789T2 (de) | Polyvinylalkoholfaser und Verfahren zu deren Herstellung | |
CH650807A5 (de) | Verfahren zur herstellung von filamenten. | |
EP0044534B1 (fr) | Filaments et fibres à haut module, en polyacrylonitrile, et leur procédé de fabrication | |
DE2403947A1 (de) | Schmelzspinnverfahren zur herstellung von geformten gegenstaenden aus acrylnitrilpolymerisaten | |
EP0031078B1 (fr) | Fibres et filaments synthétiques de titre très fin et procédé de filage à sec pour leur fabrication | |
EP1208255B1 (fr) | Fils en polyester a resistance elevee et procede de fabrication desdites fibres | |
DE69721791T2 (de) | Verwendung von linearen syntethischen polymeren zur verbesserung der eigenschaften von cellulosischen formkörpern hergestellt nach dem tertiären-aminoxid-verfahren | |
EP0987353B1 (fr) | Fibres et filaments en polyester et procédé pour les produire | |
EP0051189B1 (fr) | Procédé pour la fabrication des filaments et fibres en polyacrylonitrile, à section profilée filés à sec | |
DE69715867T2 (de) | Ultra-orientierte kristalline filamente und verfahren eu ihrer herstellung | |
DE69126914T2 (de) | Verfahren zum Spinnen von synthetischen Fasern mit hoher Festigkeit, hohem Modul und niedrigem Schrumpf | |
DE3036683C2 (de) | Verfahren zum Schmelzspinnen von synthetischen Polymeren | |
DE2736302C3 (de) | Verfahren zur Herstellung von Polypyrrolidonfäden | |
EP1208253B1 (fr) | Fils a haut module et faible retrait en polyester et procede d'etirage de filaments pour leur production | |
DE69610894T2 (de) | Orientierte Polyamidfasern und Verfahren zu ihrer Herstellung | |
DE3838053A1 (de) | Spinnrohr-nassspinnverfahren | |
DE2657144A1 (de) | Verfahren zur herstellung hydrophiler fasern | |
EP0029949A1 (fr) | Procédé de fabrication suivant un procédé de filage à sec de fibres et filaments hygroscopiques, à gaine et âme, ayant une section transversale stable | |
AT341070B (de) | Schmelzspinnverfahren zur herstellung von geformten gegenstanden aus einem acrylnitrilpolymerisat | |
DE1760989A1 (de) | Verbesserte Polypivalolactonfasern und Verfahren zu ihrer Herstellung | |
DE19935145A1 (de) | Polyesterfasern und -filamente sowie Verfahren zu deren Herstellung | |
DE2737404A1 (de) | Hydrophile fasern und faeden aus synthetischen polymeren |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19801210 |
|
AK | Designated contracting states |
Designated state(s): AT BE DE FR GB IT |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Designated state(s): AT BE DE FR GB IT |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE DE FR GB IT |
|
REF | Corresponds to: |
Ref document number: 20909 Country of ref document: AT Date of ref document: 19860815 Kind code of ref document: T |
|
ITF | It: translation for a ep patent filed | ||
REF | Corresponds to: |
Ref document number: 3071670 Country of ref document: DE Date of ref document: 19860828 |
|
ET | Fr: translation filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 19861202 Year of fee payment: 7 |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
26 | Opposition filed |
Opponent name: HOECHST AKTIENGESELLSCHAFT, FRANKFURT Effective date: 19870422 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Effective date: 19871210 |
|
ITTA | It: last paid annual fee | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19911128 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19911129 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 19911231 Year of fee payment: 12 |
|
PUAH | Patent maintained in amended form |
Free format text: ORIGINAL CODE: 0009272 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: PATENT MAINTAINED AS AMENDED |
|
27A | Patent maintained in amended form |
Effective date: 19920603 |
|
AK | Designated contracting states |
Kind code of ref document: B2 Designated state(s): AT BE DE FR GB IT |
|
ITF | It: translation for a ep patent filed | ||
ET3 | Fr: translation filed ** decision concerning opposition | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Effective date: 19921210 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Effective date: 19921231 |
|
BERE | Be: lapsed |
Owner name: BAYER A.G. Effective date: 19921231 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 19921210 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Effective date: 19930831 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19961112 Year of fee payment: 17 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19980901 |
|
APAH | Appeal reference modified |
Free format text: ORIGINAL CODE: EPIDOSCREFNO |