EP0030919B1 - Verfahren zum Veredeln, insbesondere zum Färben, optisch Aufhellen oder Ausrüsten von textilen Fasermaterialien - Google Patents

Verfahren zum Veredeln, insbesondere zum Färben, optisch Aufhellen oder Ausrüsten von textilen Fasermaterialien Download PDF

Info

Publication number
EP0030919B1
EP0030919B1 EP80810380A EP80810380A EP0030919B1 EP 0030919 B1 EP0030919 B1 EP 0030919B1 EP 80810380 A EP80810380 A EP 80810380A EP 80810380 A EP80810380 A EP 80810380A EP 0030919 B1 EP0030919 B1 EP 0030919B1
Authority
EP
European Patent Office
Prior art keywords
foam
carbon atoms
ethylene oxide
fatty acid
mole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP80810380A
Other languages
English (en)
French (fr)
Other versions
EP0030919A1 (de
Inventor
Christian Guth
Jörg Binz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Novartis AG
Original Assignee
Ciba Geigy AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=25694281&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0030919(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Ciba Geigy AG filed Critical Ciba Geigy AG
Priority to AT80810380T priority Critical patent/ATE4466T1/de
Publication of EP0030919A1 publication Critical patent/EP0030919A1/de
Application granted granted Critical
Publication of EP0030919B1 publication Critical patent/EP0030919B1/de
Expired legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P1/00General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed
    • D06P1/96Dyeing characterised by a short bath ratio
    • D06P1/965Foam dyeing
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06LDRY-CLEANING, WASHING OR BLEACHING FIBRES, FILAMENTS, THREADS, YARNS, FABRICS, FEATHERS OR MADE-UP FIBROUS GOODS; BLEACHING LEATHER OR FURS
    • D06L4/00Bleaching fibres, filaments, threads, yarns, fabrics, feathers or made-up fibrous goods; Bleaching leather or furs
    • D06L4/60Optical bleaching or brightening
    • D06L4/664Preparations of optical brighteners; Optical brighteners in aerosol form; Physical treatment of optical brighteners
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M23/00Treatment of fibres, threads, yarns, fabrics or fibrous goods made from such materials, characterised by the process
    • D06M23/04Processes in which the treating agent is applied in the form of a foam

Definitions

  • the present invention relates to the finishing, in particular the dyeing and / or finishing, of textile fiber materials with a pronounced three-dimensional character (pile or pile materials), in particular carpets, with specific, foamed aqueous preparations.
  • DE-A-2 722 083 discloses a process for the continuous treatment of textiles or paper with the aid of foam, in which the foam is combined with a combination of 0.2 to 5% by weight of a foaming agent and 0.001 to 5% by weight. -% of a wetting agent can be generated.
  • Specific nonionic surface-active compounds such as ethylene oxide adducts of 10 to 50 mol of ethylene oxide with C, o-C'6 fatty alcohols or alkylphenols or also fatty acid alkanolamides and specific anionic compounds such as sulfosuccinate ester salts are described as foaming agents.
  • Ethoxylated fatty alcohols with a degree of ethoxylation of at least 6 or else silicone wetting agents can be used as wetting agents.
  • a method for textile treatment with finishing agents for. B. dyes, according to which a foam is applied as a layer to textiles, the foam contains 0.5 to 8% of a foam stabilizer and the degree of foaming is 2: 1 to 20: 1.
  • the textiles treated in this way are then dried and subjected to a steam treatment in order to fix the finishing agent.
  • Foam stabilizers are generally metal salts of fatty acids, e.g. As potassium stearate or ammonium stearate used, mostly in combination with a thickener such as acrylic polymers. Additional foam stabilizers are u. a. Dodecyl and fatty acids.
  • silicone surfactants and thus the foam agent combination according to the present invention are not disclosed in DE-A-2 715 862.
  • the substrates to be treated according to the invention can be made of all conventional natural and / or synthetic fiber materials, such as. B. from cotton, regenerated cellulose, polyester, polyacrylonitrile, polyamide (6 or 6.6), wool or mixtures thereof.
  • Pile materials and especially carpets e.g. loop or velor carpets with a carpet weight of up to 2500 g / m 2 ) made of polyacrylonitrile, wool or in particular of polyamide are preferred.
  • optical brighteners such as. B. those of the styryl or stilbene series in question.
  • finishing agents are suitable as finishing agents which can be applied according to the invention.
  • finishing agents which can be applied according to the invention.
  • antistatic, antisoil or soil releasing agents can be applied.
  • Components (a) and (b) of the preparations used according to the invention are the actual foaming agents (foam stabilizers, foam moderator).
  • the weight ratio of components (a) and (b) to one another is (2 to 40): 1.
  • Anionic or nonionic compounds with surface-active properties are generally suitable as foam stabilizers [component (a)].
  • the anionic surfactants of component (a) are preferably alkylene oxide adducts, such as. B. acidic, ether groups or preferably ester groups of inorganic or organic acids containing addition products of alkylene oxides, especially ethylene oxide and / or propylene oxide or also styrene oxide onto aliphatic hydrocarbon radicals with a total of at least 2 carbon atoms having organic hydroxyl, carboxyl, amino and / or amido compounds or mixtures of these substances.
  • These acidic ethers or esters can be used as free acids or as salts, e.g. B. alkali metal, alkaline earth metal, ammonium or amine salts.
  • anionic surfactants are prepared by known methods by adding at least 1 mol, preferably more than 1 mol, for. B. 2 to 60 moles of ethylene oxide or propylene oxide or alternately in any order ethylene oxide and propylene oxide and then etherified or esterified the addition products and optionally converted the ether or ester into their salts.
  • the base materials are higher fatty alcohols, i.e. H.
  • Alkanols or alkenols each with 8 to 22 carbon atoms, di- to hexavalent aliphatic alcohols with 2 to 9 carbon atoms, alicyclic alcohols, phenylphenols, benzylphenols, alkylphenols with one or more alkyl substituents, which together have at least 4 carbon atoms, fatty acids with 8 up to 22 carbon atoms, amines which have aliphatic and / or cycloaliphatic hydrocarbon radicals of at least 8 carbon atoms, in particular fatty amines containing such radicals, hydroxyalkylamines, hydroxyalkylamides and aminoalkyl esters of fatty acids or dicarboxylic acids and higher alkylated aryloxycarboxylic acids.
  • Component (1) of the preferred foam stabilizers mentioned can, for. B. by the formula or the formula in which R is alkyl or alkenyl each having 8 to 22 carbon atoms, X is the acid residue of an inorganic, oxygen-containing acid or the rest of an organic acid, p 4 to 12 and z 2 to 12.
  • the alkyl radicals on the benzene ring of formula (1) can be butyl, hexyl, n-octyl, n-nonyl, p-tert-octyl, p-tert-nonyl, decyl or dodecyl.
  • the acid residue X is derived for example from low molecular weight dicarboxylic acids, such as. B. from Maleic acid, malonic acid, succinic acid or sulfosuccinic acid, and is connected to the ethyleneoxy part of the molecule via an ester bridge.
  • X is derived from inorganic polybasic acids, such as orthophosphoric acid and especially sulfuric acid.
  • the acid residue X is preferably in salt form, ie, for example, as an alkali metal, ammonium or amine salt. Examples of such salts are lithium, sodium, potassium, ammonium, trimethylamine, ethanolamine, diethanolamine or triethanolamine salts.
  • the fatty alcohols for the preparation of component (1) of formula (2) are, for. B. those having 8 to 22, especially 8 to 18 carbon atoms, such as octyl, decyl, lauryl, tridecyl, myristyl, cetyl, stearyl, oleyl, arachidyl or behenyl alcohol.
  • a preferred compound among the foam stabilizers of formula (2) is the sodium salt of lauryl triglycol ether sulfonic acid.
  • the alkylphenyl sulfonates of component (2) are generally alkali metal salts of the corresponding monosulfonic acids having 8 to 18 carbon atoms in the alkyl part which is straight-chain or branched, saturated or unsaturated.
  • alkyl radicals come e.g. B. n-octyl, tert-octyl, n-nonyl, tert-nonyl, n-decyl, n-dodecyl, tridecyl, myristyl, cetyl, stearyl or oleyl in question.
  • Alkyl radicals having 8 to 12 carbon atoms are preferred, with dodecylbenzenesulfonate (sodium salt) being particularly suitable.
  • Component (3) is a sulfonated l-benzyi-2-aikyibenzimidazo) with 8 to 12 carbon atoms in the alkyl part.
  • the alkyl radicals are derived from the acid esters mentioned above.
  • sulfonated benzimidazole derivatives which can be obtained by condensing o-phenylenediamine with saturated or unsaturated fatty acids having 12 to 18, preferably 16 to 18 carbon atoms (palmitic, stearic, oleic acid), those having 2 sulfonic acid groups are preferred.
  • the disodium salt of 1-benzyl-2-heptadecylbenzimidazole disulfonic acid may be mentioned as the preferred compound.
  • Components (1) to (3) can be used alone or as mixtures with one another as foam stabilizers.
  • the nonionic surfactant according to component (a) is advantageously a nonionic alkylene oxide addition product of 1 to 100 moles of alkylene oxide, e.g. B. ethylene oxide and / or propylene oxide, on 1 mole of an aliphatic monoalcohol with at least 4 carbon atoms, a 3- to 6-valent aliphatic alcohol, an optionally substituted by alkyl or phenyl or a fatty acid with 8 to 22 carbon atoms.
  • alkylene oxide e.g. B. ethylene oxide and / or propylene oxide
  • the aliphatic monoalcohols for the production of the nonionic surfactants are e.g. B. water-insoluble monoalcohols having at least 4 carbon atoms, preferably 8 to 22 carbon atoms. These alcohols can be saturated or unsaturated and branched or straight-chain and can be used alone or in a mixture. Natural alcohols, such as. B. myristyl alcohol, cetyl alcohol, stearyl alcohol or oleyl alcohol, or synthetic alcohols, such as in particular 2-ethylhexanol, also trimethylhexanol, trimethylnonyl alcohol, hexadecyl alcohol or the abovementioned alfoles can be reacted with the alkylene oxide.
  • B. water-insoluble monoalcohols having at least 4 carbon atoms, preferably 8 to 22 carbon atoms. These alcohols can be saturated or unsaturated and branched or straight-chain and can be used alone or in a mixture. Natural alcohols, such
  • alkylene oxides that can be reacted with alkylene oxide are 3- to 6-valent alkanols. These contain 3 to 6 carbon atoms and are in particular glycerol, trimethylolpropane, erythritol, mannitol, pentaerythritol and sorbitol.
  • the 3- to 6-valent alcohols are preferably reacted with propylene oxide or ethylene oxide or mixtures of these alkylene oxides.
  • Suitable optionally substituted phenols are, for example, phenol, o-phenylphenol or alkylphenols, the alkyl radical of which has 1 to 16, preferably 4 to 12, carbon atoms.
  • alkylphenols are p-cresol, butylphenol, tributylphenol, octylphenol and especially nonylphenol.
  • the fatty acids preferably have 8 to 12 carbon atoms and can be saturated or unsaturated, such as. B. the capric, lauric, myristic, palmitic or stearic acid or the decenic, dodecenic, tetradecenic, hexadecenic, oleic, linoleic, linolenic or preferably ricinoleic acid.
  • Suitable components (4) of the foam stabilizers are advantageously octyl or preferably nonylphenol-ethylene oxide adducts with 2 to 12 ethylene oxide units, in particular by the formula can be represented, wherein n is 8 or 9 and z is 2 to 12.
  • the alkyl substituents on the phenol ring can be straight-chain or branched.
  • octyl and nonylphenol reaction products may be mentioned in particular: p-nonylphenol / 9 mol of ethylene oxide, p-octylphenol / 2 mol of ethylene oxide, p-nonylphenol / 10 mol of ethylene oxide, p-nonylphenol / 11 mol of ethylene oxide.
  • alkylphenol-ethylene oxide adducts can be found e.g. B. derived from butylphenol or tributylphenol.
  • Component (4) can expediently also be an adduct of 2 to 15 mol, preferably 7 to 15 mol, of ethylene oxide with 1 mol of an aliphatic monoalcohol having 8 to 22 carbon atoms.
  • the aliphatic monoalcohols can be saturated or unsaturated and can be used alone or as mixtures.
  • Natural alcohols such as. B. lauryl alcohol, myristyl alcohol, cetyl alcohol, stearyl alcohol, oleyl alcohol, or synthetic alcohols, such as in particular 2-ethylhexanol, also trimethylhexanol, trimethylnonyl alcohol, hexadecyl alcohol or the C 12 -C 22 -alcohols can be reacted with ethylene oxide.
  • Ethylene oxide addition products of 2 to 15 moles of ethylene oxide and 1 mole of fatty acid can also be used as component (4).
  • the fatty acids preferably have 10 to 20 carbon atoms and can be saturated or unsaturated, such as. B. the capric, lauric, myristic, palmitic or stearic acid or the decenic, dodecenic, tetradecenic, hexadecenic, oleic, linoleic or ricinoleic acid.
  • Component (5) is, by definition, an optionally ethoxylated fatty alcohol, the HLB value of which is expediently from 0.1 to 10, in particular from 0.5 to 10.
  • Components (5) with HLB values in the range from 0.1 to 7.0 have proven to be particularly advantageous.
  • the HLB value is a measure of the “hydrophilic-lipophilic balance” in a molecule.
  • HLB values can be determined or calculated experimentally according to W.C. Griffin, ISCC 5, 249 (1954) or J. T. Davis, Tenside Detergens 11 (1974), No. 3, p. 133.
  • the fatty alcohols which can be considered as component (5) can be saturated or unsaturated. They preferably contain 12 to 18 carbon atoms.
  • Examples of alcohols for component (5) are lauryl, myristyl, cetyl, stearyl, oleyl, arachidyl, behenyl alcohol or C 12 -C 22 alfols.
  • These fatty alcohols can advantageously be mono-, di- or tri-ethoxylated.
  • the fatty acid-alkanolamine reaction products of component (6) are, for. B. to products which are made of fatty acids with 8 to 22, preferably 8 to 18 carbon atoms and alkanolamines with 2 to 6 carbon atoms, such as ethanolamine, diethanolamine, isopropanolamine or di-isopropanolamine, diethanolamine being preferred.
  • Fatty acid diethanolamides having 8 to 18 carbon atoms are particularly preferred.
  • Suitable fatty acids are e.g. As caprylic, capric, lauric, myristic, palmitic, stearic, arachic, behenic, oleic, linoleic, linolenic, arachidonic or coconut fatty acid.
  • reaction products are coconut fatty acid diethanolamide and lauric acid or stearic acid diethanolamide.
  • nonionic surfactants are alkylene oxide reaction products of the formula wherein R 'is hydrogen, alkyl or alkenyl with at most 18 carbon atoms, preferably 8 to 16 carbon atoms, o-phenylphenyl or alkylphenyl with 4 to 12 carbon atoms in the alkyl part, of Z 1 and Z 2 of a hydrogen and the other is methyl, y1 to 15 and the sum of n 1 , + n 2 is 3 to 15.
  • nonionic surfactants are fatty alcohol polyglycol mixed ethers, in particular Addition products of 3 to 10 moles of ethylene oxide and 3 to 10 moles of propylene oxide with aliphatic monoalcohols of 8 to 16 carbon atoms.
  • Preferred foam stabilizers for component (a) are combinations of components (1), (2), (4), (5) and (6) and optionally also of component (3).
  • Components (1), (2), (4), (5) and (6) can advantageously also be used alone as foam stabilizers.
  • Preferred individual components are the reaction product from 1 mol of nonylphenol and 2 mol of ethylene oxide, the ammonium salt of the acidic sulfuric acid ester of the reaction product from 1 mol of nonylphenol and 2 mol of ethylene oxide, sodium dodecylphenylsulfonate or a fatty acid diethyl ethylenol amide with 8-fatty acid diethyl ether amide ).
  • the foam components or foam stabilizers (a) are very good foaming agents, i.e. that is, on the one hand they can form the foam in sufficient quantity with a very small amount of use and on the other hand they can also stabilize the foam formed.
  • siloxaneoxyalkylene copolymers used as foam moderators are, for. B. reaction products from halogen-substituted organopolysiloxanes and alkali metal salts of polyoxyalkylene, for. B. polyethylene or polypropylene glycols.
  • Such compounds which have a polydimethylsiloxane skeleton can be represented by the formula are represented, in which q 3 to 50, advantageously 3 to 25, r 2 or 3, s 0 to 15, t 1 to 25, x 3 to 15, preferably 3 to 10, and R, alkyl having 1 to 6 carbon atoms, preferably Is methyl
  • Such connections are e.g. B. described in DE-AS 1 719 328.
  • siloxaneoxyalkylene copolymers of the formula (5) can be described by the following formulas:
  • polyether siloxanes which can be used as foam moderators in accordance with component (b) correspond to the formula wherein R 2 and R 3 are each alkyl with 1 to 4 carbon atoms, preferably methyl, a 1 to 20, b 2 to 20, c 2 to 50, d 1 or 2 and m 2 to 5.
  • siloxane compounds are described in DE-AS 1 795 557.
  • siloxane-polyalkylene oxide polymers are:
  • Preferred polyether siloxanes used as foam moderators in accordance with component (b) have a cloud point of about 20 to 70 ° C., preferably 25 to 50 ° C.
  • the glycol content, consisting of oxyethylene groups or oxyethylene and oxypropylene groups, is advantageously from 35 to 80, preferably from 40 to 70 percent by weight, based on the total weight of the polyether siloxane.
  • Component (b) does not interfere with the production of the foam, but has the property of destroying the foam when exposed to moisture and heat, i.e. H. to disintegrate. This effect is based on the property of these components to have a cloud point, in particular at 40-50 ° C., in aqueous solution, ie. that is, these products have an anti-foaming effect in heat.
  • the foams to be used according to the invention may also contain further additives, such as acids, alkalis, catalysts, urea, oxidizing agents, solvents or emulsifiers.
  • the acids and the alkalis serve primarily to adjust the pH of the liquor used according to the invention, which is generally 4 to 10, depending on the substrate to be treated.
  • foams are sufficiently stable even without a thickener, i.e. H.
  • Foam half-lives can have up to 60 minutes. Their penetration properties are good; wetting and easy penetration of the foam is guaranteed.
  • the procedure is expediently such that the foaming components (a) and (b) are first dissolved separately and then mixed with one another and thus lead to aqueous solutions of 0.1 to 0.5 percent by weight of foaming components.
  • the foams are preferably produced mechanically using high-speed stirrers, mixers or special foam pumps, the latter also being able to produce the foams continuously. It has proven to be expedient to predissolve or predisperse the individual components before they are fed to the foaming apparatus.
  • degrees of foaming i. H. Volume ratios of unfoamed to foamed preparation from 1: 6 to 1:20, preferably 1: 8 to 1:12, have been found to be suitable.
  • the foams used according to the invention are notable for the fact that they are stable over a long period of time and do not immediately disintegrate (drain) when applied to the substrate.
  • the foams used according to the invention preferably have half-lives of 5 to 30 minutes.
  • the bubble diameters in the foams are approximately 1 to 100 ⁇ .
  • the foams are generally applied at room temperature, i. H. about 15 to 30 ° C.
  • a treatment liquor is foamed and the foam from a foam container (with an adjustable squeegee for setting the desired foam layer thickness) is applied to the pile using an application roller with a squeegee .
  • the substrates do not necessarily have to be pretreated, but can also be prewetted at room temperature (with aqueous liquors of conventional wetting agents, e.g. 1 g / l liquor of an alkylphenol-ethylene oxide adduct) or prewashed at temperatures up to 80 ° C (with conventional detergents ) and be pre-bagged.
  • a vacuum to the back of the substrates approximately 10 to 70% of the original height. This distributes the foam evenly from the pile tips to almost the pile foot.
  • a second foam layer can then optionally be applied using a doctor blade.
  • the total liquor application, based on the weight of the dry carpet is advantageously between 70 and 250%, preferably 70 to 200 and in particular 120 to 170%. This process also makes it possible to dye polyamide carpet pile material that can be dyed differently and to obtain a good differential dyeing effect.
  • the vacuum to be selected essentially depends on the weight per square meter of the carpet, the construction of the backing material, the density of the carpet, the length of the pile material and also on the degree of foaming of the foam. In the range of> 0-1 bar vacuum, the foam blanket can be partially sucked into the carpet by drainage. It is important that the foam layer remaining on the pile side remains as thick as possible. Excessive vacuuming leads to loss of liquor and can lead to uneven dyeing or dyeing with a frosting effect (gray haze).
  • the foam must be completely destroyed after ⁇ 20 seconds in order to achieve good surface levelness.
  • the substrate Before the foam is applied, the substrate can advantageously be pre-fouled with a padding liquor which preferably contains foaming agents, in particular components (a) and (b).
  • the impregnation is preferably carried out with a liquor absorption of 40 to 100 percent by weight.
  • the subsequent foam application is usually 50 to 180 percent by weight, preferably 50 to 150 percent by weight.
  • the dyes and finishing agents are fixed by steaming the substrate, e.g. B. at temperatures of 95 to 180 ° C, preferably by steaming at 98 to 102 ° C, z. B. with saturated steam or superheated steam.
  • the method according to the invention offers very significant advantages over known methods.
  • 500 m 2 of a polyamide (6.6) cut pile carpet (velor with polypropylene tape back) with a square meter weight of 535 g are continuously pre-wetted in a liquor which contains 1 g of the reaction product of 1 mol of nonylphenol and 9 mol of ethylene oxide per liter and then on a liquor absorption aspirated from 40 weight percent.
  • a color foam is produced from the following aqueous liquor, the degree of foaming of which is 1:10:
  • This foam is then applied from a foam container, which has an adjustable doctor blade for setting the desired foam thickness, via an applicator roller by means of a slide to the pole side of the carpet running through the dyeing system (running speed 9 m / minute).
  • the layer height of the foam is 8 mm.
  • the color foam application is 135%.
  • the carpet then goes through a vacuum passage, in which the foam layer is partially sucked into the carpet from the back (negative pressure of '-0.1 bar), which reduces the height of the foam layer somewhat.
  • the carpet then runs over a transport roller into a damper (102 ° C, saturated steam), where a slight foaming takes place and then the foam is destroyed.
  • the carpet is then sprayed with water at about 80 ° C., then suctioned off and dried at 100 to 30 ° C. on a sieve drum dryer.
  • the carpet material obtained is irrelevant, dyed in a beige color, shows excellent through-coloring, the softness and bulkiness of the material is positively influenced by the foam coloring.
  • foam stabilizer mixtures which can also be used with good success are those composed of dodecylbenzenesulfonate, coconut fatty acid ethanolamide, lauryl triglycol ether sulfate sodium and the disodium salt of 1-benzyl-2-stearylbenzimidazole disulfonic acid (0.5 / 1/1/1); a mixture of lauric acid diethanolamide and lauryl triglycol ether sulfate sodium (1/1) and the compounds dodecylbenzenesulfonate (sodium salt), coconut fatty acid diethanolamide, lauryl triglycol ether sulfate sodium, the adduct of 1 mole of nonylphenol and 9 moles of ethylene oxide and the non-phenylene oxide of the ammonium oxide of the non-phenylene oxide of the adduct of 2 moles of ethylene oxide and the moles of ethylene oxide of the non-ammonium oxide of the ammonium oxide or the mole of ethylene
  • the compounds of the formulas (7) to (15) or mixtures thereof can also be used as the foam moderator.
  • a polyamide (6) carpet with a square meter weight of 2000 g is impregnated on a foulard with the following liquor with a liquor absorption of 70%: and a sodium hydroxide solution (30 ° Be) to adjust the liquor to a pH of 8.
  • the degree of foaming is 1: 8.
  • This foam is applied to the pile side of the carpet which has already been impregnated, the foam application being 70%, based on the weight of the dry carpet.
  • the carpet is then treated in a horizontal steamer at 98 ° C. with saturated steam for 4 minutes, then rinsed and dried. A beige coloration is obtained with excellent light and wet fastness properties.
  • a polyamide (6.6) cut pile carpet with a weight of 610 g per square meter is continuously pre-wetted in a liquor which contains 1 g of the adduct of 9 mol of ethylene oxide with 1 mol of nonylphenol per liter and is suctioned off to a liquor absorption of 50% by weight.
  • a colored foam is produced from the following aqueous liquor, the degree of foaming of which is 1: 9:
  • This foam is then applied to the pile side of the carpet in the same manner as described in Example 1, the foam application being 160%, based on the weight of the dry carpet. Then, the carpet is treated in a horizontal steamer at 98 ° C with saturated steam for 4 1/2 minutes, then rinsed and dried.
  • a streak-free, level, green color is obtained with excellent light and wet fastness properties.
  • a polyamide (6.6) cut pile carpet with a weight of 2300 g is impregnated on a foulard with the following liquor with a liquor absorption of 100%:
  • the degree of foaming is 1: 8.
  • This foam is applied to the pile side of the carpet which has already been impregnated, the foam application being 100%, based on the weight of the dry carpet.
  • the carpet is then treated in a steamer at 98-100 ° C. with saturated steam for 6 minutes, the foam on the surface of the carpet disintegrating after only 12 seconds. After rinsing and drying you get a level, streak-free, golden yellow color with excellent light and wet fastness properties.
  • a polyamide (6.6) cut pile carpet with a square meter weight of 1750 g is impregnated on a foulard with the following liquor with a liquor absorption of 100%:
  • the degree of foaming is 1: 8.
  • This foam is applied to the pile side of the carpet which has already been impregnated, the foam application being 100%, based on the weight of the dry carpet. Then, the carpet is treated in a steamer at 100 ° C with saturated steam for 5 1/2 minutes, then rinsed and dried. You get a level, streak-free, green color with excellent light and wet fastness.
  • the degree of foaming is 1: 9.
  • This foam is applied to the pile side of the carpet which has already been impregnated, the foam application being 80%, based on the weight of the dry carpet.
  • the carpet is then treated in a steamer at 98-100 ° C. with saturated steam for 6 minutes, then rinsed and dried. You get a level, brown color with excellent light and wet fastness.
  • a polyamide (6.6) cut pile carpet with a square meter weight of 580 g is impregnated on a foulard with the following liquor with a liquor absorption of 100%:
  • the degree of foaming is 1: 8.
  • This foam is applied to the pile side of the carpet which has already been impregnated, the foam application being 140%, based on the weight of the dry carpet. Then, the carpet is treated in a steamer at 100 ° C with saturated steam for 5 1/2 minutes, then rinsed and dried. You get a level, brown color with excellent light and wet fastness.
  • a polyamide (6.6) cut pile carpet with a weight of 720 g per square meter is continuously pre-wetted in a liquor which contains 1 g of the adduct of 9 mol of ethylene oxide with 1 mol of nonylphenol per liter and is suctioned off to a liquor absorption of 50% by weight.
  • a colored foam is produced from the following aqueous liquor, the degree of foaming of which is 1: 9:
  • This foam is then applied to the pile side of the carpet in the same manner as described in Example 1, the foam application being 160%, based on the weight of the dry carpet.
  • the carpet is then treated in a horizontal steamer at 100 ° C. with saturated steam for 4 minutes, then rinsed and dried.
  • a streak-free, level, golden yellow color is obtained with excellent light and wet fastness properties.
  • a polyamide (6.6) cut pile carpet with a square meter weight of 600 g is continuously pre-wetted in a liquor which contains 1 g of the adduct of 9 mol of ethylene oxide with 1 mol of nonylphenol per liter and is suctioned off to a liquor absorption of 50% by weight.
  • a colored foam is produced from the following aqueous liquor, the degree of foaming of which is 1: 8:
  • This foam is then applied to the pile side of the carpet in the same manner as described in Example 1, the foam application being 180%, based on the weight of the dry carpet.
  • the carpet is then treated in a horizontal steamer at 100 ° C. with saturated steam for 4 minutes, then rinsed and dried.
  • a polyamide (6.6) cut pile carpet with a weight of 720 g per square meter is continuously pre-wetted in a liquor which contains 1 g of the adduct of 9 mol of ethylene oxide with 1 mol of nonylphenol per liter and is suctioned off to a liquor absorption of 50% by weight.
  • a colored foam is produced from the following aqueous liquor, the degree of foaming of which is 1: 8:
  • This foam is then applied to the pile side of the carpet in the same manner as described in Example 1, the foam application being 150%, based on the weight of the dry carpet. Then, the carpet is treated in a horizontal steamer at 100 ° C with saturated steam for 4 1/2 min followed by rinsing and drying.
  • a streak-free, level, green color is obtained with excellent light and wet fastness properties.
  • polyether siloxanes of the formulas (7) to (15) can also be used as foam moderators.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)
  • Coloring (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Description

  • Die vorliegende Erfindung betrifft die Veredlung, insbesondere das Färben und/oder Ausrüsten von textilen Fasermaterialien mit ausgeprägt dreidimensionalem Charakter (Pol- oder Flormaterialien), insbesondere Teppichen, mit spezifischen, verschäumten wässerigen Zubereitungen.
  • Aus der DE-A-2 722 083 ist ein Verfahren zum kontinuierlichen Behandeln von Textilien oder Papier mit Hilfe von Schaum bekannt, bei dem der Schaum mit einer Kombination aus 0,2 bis 5 Gew.-% eines Verschäumungsmittels und 0,001 bis 5 Gew.-% eines Netzmittels erzeugt werden kann. Als Verschäumungsmittel werden spezifische nichtionische oberflächenaktive Verbindungen wie Äthylenoxid-Addukte von 10 bis 50 Mol Äthylenoxid an C,o-C'6-Fettalkohole oder Alkylphenole oder auch Fettsäurealkanolamide sowie spezifische anionaktive Verbindungen wie Sulfosuccinatestersalze beschrieben. Als Netzmittel können äthoxylierte Fettalkohole mit einem Äthoxylierungsgrad von mindestens 6 oder auch Siliconnetzmittel verwendet werden.
  • Aus der DE-A-2 715 862 ist ferner ein Verfahren zur Textilbehandlung mit Veredlungsmitteln, z. B. Farbstoffen, bekannt, gemäß dem ein Schaum als Schicht auf Textilien aufgebracht wird, der Schaum 0,5 bis 8% eines Schaumstabilisators enthält und der Verschäumungsgrad 2 : 1 bis 20 : 1 beträgt. Die so behandelten Textilien werden dann getrocknet und zur Fixierung des Veredlungsmittels einer Dampfbehandlung unterworfen. Als Schaumstabilisatoren werden in der Regel Metallsalze von Fettsäuren, z. B. Kaliumstearat oder Ammoniumstearat, eingesetzt, meistens in Kombination mit einem Verdicker wie Acrylpolymerisaten. Zusätzliche Schaumstabilisatoren sind u. a. Dodecyl und Fettsäuren. Silikontenside und somit die Schaummittelkombination gemäß der vorliegenden Erfindung werden jedoch in der DE-A-2 715 862 nicht offenbart.
  • Es wurde nun gefunden, daß man unter Verwendung einer spezifischen Verschäumerkombination, bestehend aus einem anionischen oder nichtionogenen Tensid als Schaumstabilisator und einem Schaummoderator in Form eines Siloxanoxyalkylen-Copolymerisats, welches sich insbesondere durch eine Antischaumwirkung in der Wärme auszeichnet und einen Trübungspunkt von 20 bis 70° C hat, egale Färbungen mit verbesserter Penetration der Farbstoffe und auch eine verbesserte Penetration der Textilchemikalien bei der Polausrüstung erzielen kann.
  • Gegenstand der vorliegenden Erfindung ist demnach ein Verfahren zum Veredeln, insbesondere zum Färben, optischen Aufhellen und/oder Ausrüsten von textilen Fasermaterialien, insbesondere Teppichen, mit einer wässerigen Zubereitung in Schaumform, die neben Farbstoff oder optischem Aufheller oder Ausrüstmittel einen Schaumstabilisator, einen Schaummoderator und gegebenenfalls weitere Hilfsmittel enthält, dadurch gekennzeichnet, daß man aus der wässerigen Zubereitung, die
    • (a) als Schaumstabilisator 1 bis 4 g/I eines anionischen oder nichtionogenen Tensides oder einer Mischung dieser Tenside und
    • (b) als Schaummoderator 0,1 bis 1 g/I eines Siloxanoxyalkylen-Copolymerisats, welches einen Trübungspunkt von 20 bis 70° C und eine Antischaumwirkung in der Wärme hat,

    enthält, einen Schaum herstellt, wobei der Verschäumungsgrad 1 : (6 bis 20) beträgt, diesen Schaum auf die textilen Fasermaterialien kontinuierlich in Form mindestens einer Schicht aufbringt, die Schaumschicht gegebenenfalls, vorzugsweise jedoch teilweise, in die Fasermaterialien einsaugt und diese anschließend einer Dampfbehandlung unterwirft.
  • Die erfindungsgemäß zu behandelnden Substrate können aus allen üblichen natürlichen und/oder synthetischen Fasermaterialien, wie z. B. aus Baumwolle, regenerierter Cellulose, Polyester, Polyacrylnitril, Polyamid (6 oder 6,6), Wolle oder deren Mischungen, hergestellt sein. Flormaterialien und vor allem Teppiche (z. B. Schlingen- oder Velourteppiche mit einem Teppichgewicht bis zu 2500 g/m2) aus Polyacrylnitril, Wolle oder insbesondere aus Polyamid sind bevorzugt.
  • Für das erfindungsgemäße Färben kommen alle üblichen Farbstoffklassen in Betracht, z. B. Dispersions-, Küpen-, Reaktiv-, Substantiv-, Säure-, basische oder MetaHkomptexfarbstoffe sowie entsprechende, in der Praxis übliche Mischungen solcher Farbstoffe. Beispiele für Farbstoffe sind in Colour Index, 3. Auflage 1971, Band 4, beschrieben.
  • Werden textile Substrate nach dem erfindungsgemäßen Verfahren optisch aufgehellt, so kommen als optische Aufheller z. B. solche der Styryl- oder Stilbenreihe in Frage.
  • Als Ausrüstmittel, welche erfindungsgemäß appliziert werden können, kommen alle für den Einsatz in der Teppichindustrie geeigneten Chemikalien, wie Veredlungs- und Schutzmittel, in Frage. Beispielsweise kann man griffgebende Antistatisch-, Antisoil- oder Soilreleasemittel applizieren.
  • Die Komponenten (a) und (b) der erfindungsgemäß verwendeten Zubereitungen sind die eigentlichen Schaumbildner (Schaumstabilisatoren, Schaummoderator).
  • Das Gewichtsverhältnis der Komponenten (a) und (b) zueinander beträgt (2 bis40) : 1.
  • Als Schaumstabilisatoren [Komponente (a)] eignen sich in der Regel anionische oder nichtionische Verbindungen mit oberflächenaktiven Eigenschaften.
  • Die anionischen Tenside der Komponente (a) sind vorzugsweise Alkylenoxydaddukte, wie z. B. saure, Äthergruppen oder vorzugsweise Estergruppen von anorganischen oder organischen Säuren enthaltende Anlagerungsprodukte von Alkylenoxyden, besonders Äthylenoxyd und/oder Propylenoxyd oder auch Styroloxyd an aliphatische Kohlenwasserstoffreste mit insgesamt mindestens 2 Kohlenstoffatomen aufweisende organische Hydroxyl-, Carboxyl-, Amino- und/oder Amidoverbindungen bzw. Mischungen dieser Stoffe. Diese sauren Äther oder Ester können als freie Säuren oder als Salze, z. B. Alkalimetall-, Erdalkalimetall-, Ammonium- oder Aminsalze, vorliegen.
  • Die Herstellung dieser anionischen Tenside erfolgt nach bekannten Methoden, indem man an die genannten organischen Verbindungen mindestens 1 Mol, vorzugsweise mehr als 1 Mol, z. B. 2 bis 60 Mol Äthylenoxyd oder Propylenoxyd oder alternierend in beliebiger Reihenfolge Äthylenoxyd und Propylenoxyd anlagert und anschließend die Anlagerungsprodukte veräthert bzw. verestert und gegebenenfalls die Äther bzw. die Ester in ihre Salze überführt. Als Grundstoffe kommen höhere Fettalkohole, d. h. Alkanole oder Alkenole, je mit 8 bis 22 Kohlenstoffatomen, zwei- bis sechswertige aliphatische Alkohole von 2 bis 9 Kohlenstoffatomen, alicyclische Alkohole, Phenylphenole, Benzylphenole, Alkylphenole mit einem oder mehreren Alkylsubstituenten, der bzw. die zusammen mindestens 4 Kohlenstoffatome aufweisen, Fettsäuren mit 8 bis 22 Kohlenstoffatomen, Amine, die aliphatische und/oder cycloaliphatische Kohlenwasserstoffreste von mindestens 8 Kohlenstoffatomen aufweisen, besonders derartige Reste aufweisende Fettamine, Hydroxyalkylamine, Hydroxyalkylamide und Aminoalkylester von Fettsäuren oder Dicarbonsäuren und höher alkylierter Aryloxycarbonsäuren in Betracht.
  • Beispielsweise kommen als anionische Tenside in Frage:
    • - sulfatierte aliphatische Alkohole, deren Alkylkette 8 bis 18 Kohlenstoffatome aufweist, z. B. sulfatierter Laurylalkohol;
    • - sulfatierte ungesättigte Fettsäuren oder Fettsäureniederalkylester, die im Fettrest 8 bis 20 Kohlenstoffatome aufweisen, z. B. Rizinolsäure und solche Fettsäuren enthaltende Öle, z. B. Rizinusöl;
    • - Alkylsulfonate, deren Alkylkette 8 bis 20 Kohlenstoffatome enthält, z. B. Dodecylsulfonat;
    • - Alkylarylsulfonate mit geradkettiger oder verzweigter Alkylkette mit mindestens 6 Kohlenstoffatomen, z. B. Dodecylbenzolsulfonate oder 3,7-Diisobutyl-naphthalinsulfonate;
    • - Sulfonate von Polycarbonsäureestern, z. B. Dioctylsulfosuccinate oder Sulfosuccinamide;
    • - die als Seifen bezeichneten Alkalimetall-, Ammonium- oder Aminsalze von Fettsäuren mit 10 bis 20 Kohlenstoffatomen, z. B. Kolophoniumsalze;
    • - Ester von Polyalkoholen, insbesondere Mono- oder Diglyceride von Fettsäuren mit 12 bis 18 Kohlenstoffatomen, z. B. Monoglyceride der Laurin-, Stearin- oder Ölsäure, und
    • - die mit einer organischen Dicarbonsäure, wie z. B. Maleinsäure, Malonsäure oder Sulfobernsteinsäure, vorzugsweise jedoch mit einer anorganischen mehrbasischen Säure, wie o-Phosphorsäure oder insbesondere Schwefelsäure, in einen sauren Ester übergeführten Anlagerungsprodukte von 1 bis 60 Äthylenoxyd und/oder Propylenoxyd an Fettamine, Fettsäuren oder Fettalkohole, je mit 8 bis 22 Kohlenstoffatomen, an Alkylphenole mit 4 bis 16 Kohlenstoffatomen in der Alkylkette oder an drei- bis sechswertige Alkanole mit 3 bis 6 Kohlenstoffatomen.
  • Gut geeignete anionische Tenside als Schaumstabilisator der Komponente (a) sind
    • (1) saure Ester oder deren Salze eines Polyadduktes von 2 bis 15 Moi Äthylenoxyd an 1 Mol Fettalkohol mit 8 bis 22 Kohlenstoffatomen oder an 1 Mol Alkylphenol mit 4 bis 12 Kohlenstoffatomen im Alkylteil,
    • (2) Alkylphenylsulfonate mit 8 bis 18 Kohlenstoffatomen im Alkylrest,
    • (3) sulfonierte 1-Benzyl-2-alkylbenzimidazole mit 8 bis 22 Kohlenstoffatomen im Alkylrest,

    wobei die Komponenten (1), (2) und (3) einzeln oder als Gemisch verwendet werden können.
  • Die Komponente (1) der genannten bevorzugten Schaumstabilisatoren kann z. B. durch die Formel
    Figure imgb0001
    oder die Formel
    Figure imgb0002
    dargestellt werden, worin R Alkyl oder Alkenyl mit je 8 bis 22 Kohlenstoffatomen, X der Säurerest einer anorganischen, Sauerstoff-enthaltenden Säure oder der Rest einer organischen Säure, p 4 bis 12 und z 2 bis 12 sind.
  • Die Alkylreste am Benzolring der Formel (1) können Butyl, Hexyl, n-Octyl, n-Nonyl, p-tert.-Octyl, p-tert.-Nonyl, Decyl oder Dodecyl sein. Bevorzugt sind die Alkylreste mit 8 bis 12 Kohlenstoffatomen, insbesondere die Octyl- und Nonylreste.
  • Der Säurerest X leitet sich beispielsweise von niedermolekularen Dicarbonsäuren ab, wie z. B. von Maleinsäure, Malonsäure, Bernsteinsäure oder Sulfobernsteinsäure, und ist über eine Esterbrücke mit dem Äthylenoxyteil des Moleküls verbunden. Insbesondere leitet sich X jedoch von anorganischen mehrbasischen Säuren, wie Orthophosphorsäure und insbesondere Schwefelsäure, ab. Der Säurerest X liegt vorzugsweise in Salzform, d. h. zum Beispiel als Alkalimetall-, Ammonium- oder Aminsalz, vor. Beispiele für solche Salze sind Lithium-, Natrium-, Kalium-, Ammonium-, Trimethylamin-, Äthanolamin-, Diäthanolamin- oder Triäthanolaminsalze.
  • Die Fettalkohole zur Herstellung der Komponente (1) der Formel (2) sind z. B. solche mit 8 bis 22, insbesondere mit 8 bis 18 Kohlenstoffatomen, wie Octyl-, Decyl-, Lauryl-, Tridecyl-, Myristyl-, Cetyl-, Stearyl-, Oleyl-, Arachidyl- oder Behenylalkohol.
  • Die Esterbildung erfolgt in der Regel mit den gleichen Säuren, die für die Verbindungen der Formel (1) genannt sind. Eine bevorzugte Verbindung unter den Schaumstabilisatoren der Formel (2) ist das Natriumsalz der Lauryltriglykoläthersulfosäure.
  • Für die Komponenten (1) der Formeln (1) und (2) werden insbesondere folgende Verbindungen genannt:
    • 1. Ammoniumsalz des sauren Schwefelsäureesters des Anlagerungsproduktes von 2 Mol Äthylenoxyd an 1 Mol p-tert.-Nonylphenol;
    • 2. Natriumsalz des sauren Maleinsäureesters des Anlagerungsproduktes von 2 Mol Äthylenoxyd an 1 Mol p-Nonylphenol;
    • 3. Ammoniumsalz des sauren Schwefelsäureesters des Anlagerungsproduktes von 3 Mol Äthylenoxyd an 1 Mol p-Butylphenol;
    • 4. Ammoniumsalz des sauren Phosphorsäureesters des Anlagerungsproduktes von 2 Mol Äthylenoxyd an 1 Mol p-Nonylphenol;
    • 5. Natriumsalz des Disulfobernsteinsäureesters des Anlagerungsproduktes von 4 Mol Äthylenoxyd an 1 Mol n-Octylphenol;
    • 6. Ammoniumsalz des sauren Schwefelsäureesters des Anlagerungsproduktes von 9 Mol Äthylenoxyd an 1 Mol p-Nonylphenol;
    • 7. Ammoniumsalz des sauren Schwefelsäureesters des Anlagerungsproduktes von 6 Mol Äthylenoxyd an 1 Mol p-Nonylphenol;
    • 8. Natriumsalz des Monosulfobernsteinsäureesters des Anlagerungsproduktes von 2 Mol Äthylenoxyd an 1 Mol p-Nonylphenol;
    • 9. Ammoniumsalz des sauren Schwefelsäureesters des Anlagerungsproduktes von 6 Mol Äthylenoxyd an 1 Mol Dodecylphenol;
    • 10. Ammoniumsalz des sauren Schwefelsäureesters des Anlagerungsproduktes von 2 Mol Äthylenoxyd an 1 Mol Octylphenol;
    • 11. Ammoniumsalz des sauren Schwefelsäureesters des Anlagerungsproduktes von 2 Mol Äthylenoxyd an 1 Mol Alfol (1014);
    • 12. Ammoniumsalz des sauren Schwefelsäureesters des Anlagerungsproduktes von 2 Mol Äthylenoxyd an 1 Mol Stearylalkohol;
    • 13. Ammoniumsalz des sauren Schwefelsäureesters des Anlagerungsproduktes von 3 Mol Äthylenoxyd an 1 Mol 2-Äthyl-hexanol;
    • 14. Ammoniumsalz des sauren Schwefelsäureesters des Anlagerungsproduktes von 15 Mol Äthylenoxyd an 1 Mol Stearylalkohol;
    • 15. Ammoniumsalz des sauren Schwefelsäureesters des Anlagerungsproduktes von 3 Mol Äthylenoxyd an 1 Mol Tridecylalkohol;
    • 16. Ammoniumsalz des sauren Schwefelsäureesters des Anlagerungsproduktes von 4 Mol Äthylenoxyd an 1 Mol Hydroabietylalkohol;
    • 17. Ammoniumsalz des sauren Schwefelsäureesters des Anlagerungsproduktes von 3 Mol Äthylenoxyd an 1 Mol Alfol (2022);
    • 18. Ammoniumsalz des sauren Schwefelsäureesters des Anlagerungsproduktes von 3 Mol Äthylenoxyd an 1 Mol Laurylalkohol;
    • 19. Di-(ß-hydroxy-äthyl-)aminsalz des sauren Schwefelsäureesters des Anlagerungsproduktes von 3 Mol Äthylenoxyd an 1 Mol Laurylalkohol;
    • 20. Natriumsalz des sauren Schwefelsäureesters des Anlagerungsproduktes von 2 Mol Äthylenoxyd an 1 Mol Laurylalkohol;
    • 21. Natriumsalz des sauren Schwefelsäureesters des Anlagerungsproduktes von 3 Mol Äthylenoxyd an 1 Mol Laurylalkohol;
    • 22. Saurer Phosphorsäureester des Anlagerungsproduktes von 5 Mol Äthylenoxyd an 1 Mol 2-Äthyl-n-hexanol;
    • 23. Ammoniumsalz des sauren Schwefelsäureesters des Anlagerungsproduktes von 3 Mol Äthylenoxyd an 1 Mol eines Alkoholgemisches mit 20 bis 22 Kohlenstoffatomen;
    • 24. Diphosphorsäureester des Anlagerungsproduktes von 8 Mol Äthylenoxyd an 1 Mol Dodecylamin;
    • 25. Ammoniumsalz des sauren Phosphorsäureesters des Anlagerungsproduktes von 8 Mol Äthylenoxyd an 1 Mol Talgfettamin.
  • Die Alkylphenylsulfonate der Komponente (2) sind in der Regel Alkalimetallsalze der entsprechenden Monosulfonsäuren mit 8 bis 18 Kohlenstoffatomen im Alkylteil, der geradkettig oder verzweigt, gesättigt oder ungesättigt ist. Als Alkylreste kommen z. B. n-Octyl, tert.-Octyl, n-Nonyl, tert.-Nonyl, n-Decyl, n-Dodecyl, Tridecyl, Myristyl, Cetyl, Stearyl oder Oleyl in Frage. Bevorzugt sind Alkylreste mit 8 bis 12 Kohlenstoffatomen, wobei Dodecylbenzolsulfonat (Natriumsalz) besonders geeignet ist.
  • Die Komponente (3) ist ein sulfoniertes l-Benzyi-2-aikyibenzimidazo) mit 8 bis 12 Kohlenstoffatomen im Alkylteil. Die Alkylreste leiten sich von den zuvor bereits genannten Säureestern ab.
  • Von den sulfonierten Benzimidazolderivaten, die durch Kondensation von o-Phenylendiamin mit gesättigten oder ungesättigten Fettsäuren mit 12 bis 18, vorzugsweise 16 bis 18 Kohlenstoffatomen (Palmitin-, Stearin-, Ölsäure) erhalten werden können, sind solche mit 2 Sulfonsäuregruppen bevorzugt.
  • Als bevorzugte Verbindung sei das Dinatriumsalz der 1-Benzyl-2-heptadecylbenzimidazoldisulfon- säure genannt.
  • Die Komponenten (1) bis (3) können allein oder auch als Mischungen untereinander als Schaumstabilisatoren verwendet werden.
  • Das nichtionogene Tensid gemäß der Komponente (a) ist vorteilhafterweise ein nichtionogenes Alkylenoxydanlagerungsprodukt von 1 bis 100 Mol Alkylenoxyd, z. B. Äthylenoxyd und/oder Propylenoxyd, an 1 Mol eines aliphatischen Monoalkohols mit mindestens 4 Kohlenstoffatomen, eines 3- bis 6-wertigen aliphatischen Alkohols, eines gegebenenfalls durch Alkyl oder Phenyl substituierten Phenols oder einer Fettsäure mit 8 bis 22 Kohlenstoffatomen.
  • Bei den aliphatischen Monoalkoholen zur Herstellung der nichtionogenen Tenside handelt es sich z. B. um wasserunlösliche Monoalkohole mit mindestens 4 Kohlenstoffatomen, vorzugsweise 8 bis 22 Kohlenstoffatomen. Diese Alkohole können gesättigt oder ungesättigt und verzweigt oder geradkettig sein und können allein oder im Gemisch eingesetzt werden. Es können natürliche Alkohole, wie z. B. Myristylalkohöl, Cetylalkohol, Stearylalkohol oder Oleylalkohol, oder synthetische Alkohole, wie insbesondere 2-Äthylhexanol, ferner Trimethylhexanol, Trimethylnonylalkohol, Hexadecylalkohol oder die obengenannten Alfole mit dem Alkylenoxyd umgesetzt werden.
  • Weitere aliphatische Alkohole, die mit Alkylenoxyd umgesetzt werden können, sind 3- bis 6wertige Alkanole. Diese enthalten 3 bis 6 Kohlenstoffatome und sind insbesondere Glycerin, Trimethylolpropan, Erythrit, Mannit, Pentaerythrit und Sorbit. Die 3- bis 6wertigen Alkohole werden vorzugsweise mit Propylenoxyd oder Äthylenoxyd oder Gemischen dieser Alkylenoxyde umgesetzt.
  • Als gegebenenfalls substituierte Phenole eignen sich beispielsweise Phenol, o-Phenylphenol oder Alkylphenole, deren Alkylrest 1 bis 16, vorzugsweise 4 bis 12 Kohlenstoffatome aufweist. Beispiele dieser Alkylphenole sind p-Kresol, Butylphenol, Tributylphenol, Octylphenol und besonders Nonylphenol.
  • Die Fettsäuren weisen vorzugsweise 8 bis 12 Kohlenstoffatome auf und können gesättigt oder ungesättigt sein, wie z. B. die Caprin-, Laurin-, Myristin-, Palmitin- oder Stearinsäure bzw. die Decen-, Dodecen-, Tetradecen-, Hexadecen-, Öl-, Linol-, Linolen- oder vorzugsweise Rizinolsäure.
  • Als nichtionogene Tenside seien beispielsweise genannt:
    • - Anlagerungsprodukte von vorzugsweise 5 bis 80 Mol Alkylenoxyden, insbesondere Äthylenoxyd, wobei einzelne Äthylenoxydeinheiten durch substituierte Epoxyde, wie Styroloxyd und/oder Propylenoxyd, ersetzt sein können, an höhere ungesättigte oder gesättigte Fettalkohole, Fettsäuren, Fettamine oder Fettamide mit 8 bis 22 Kohlenstoffatomen oder an Phenylphenol oder Alkylphenole, deren Alkylreste mindestens 4 Kohlenstoffatome aufweisen;
    • - Alkylenoxyd-, insbesondere Äthylenoxyd- und/oder Propylenoxyd-Kondensationsprodukte;
    • - Umsetzungsprodukte aus einer 8 bis 22 Kohlenstoffatome aufweisenden Fettsäure und einem primären oder sekundären, mindestens eine Hydroxyniederalkyl- oder Niederalkoxyniederalkylgruppe aufweisenden Amin oder Alkylenoxyd-Anlagerungsprodukte dieser hydroxyalkylgruppenhaltigen Umsetzungsprodukte, wobei die Umsetzung so erfolgt, daß das molekulare Mengenverhältnis zwischen Hydroxyalkylamin und Fettsäure 1 : 1 und größer als 1, z. B. 1,1 : 1 bis 2 : 1, sein kann, und
    • - Anlagerungsprodukte von Propylenoxyd an einen drei- bis sechswertigen aliphatischen Alkohol von 3 bis 6 Kohlenstoffatomen, z. B. Glycerin oder Pentaerythrit, wobei die Polypropylenoxydaddukte ein durchschnittliches Molekulargewicht von 250 bis 1800, vorzugsweise 400 bis 900, aufweisen.
  • Gut geeignete nichtionogene Tenside als Schaumstabilisatoren der Komponente (a) sind
    • (4) Anlagerungsprodukte von 2 bis 15 Mol Äthylenoxyd an 1 Mol Fettalkohol oder Fettsäure mit jeweils 8 bis 22 Kohlenstoffatomen oder an 1 Mol Alkylphenol mit insgesamt 4 bis 12 Kohlenstoffatomen im Alkylteil,
    • (5) gegebenenfalls mono-, di- oder triäthoxylierte Fettalkohole mit 8 bis 22 Kohlenstoffatomen im Fettalkoholrest oder
    (6) Fettsäuredialkanolamide mit 8 bis 22 Kohlenstoffatomen im Fettsäurerest.
  • Als Komponente (4) der Schaumstabilisatoren kommen vorteilhafterweise Octyl- oder vorzugsweise Nonylphenol-Äthylenoxydaddukte mit 2 bis 12 Äthylenoxydeinheiten in Betracht, die insbesondere durch die Formel
    Figure imgb0003
    dargestellt werden können, worin n 8 oder 9 und z 2 bis 12 ist. Die Alkylsubstituenten am Phenolring können geradkettig oder verzweigt sein.
  • Im einzelnen seien die folgenden Octyl- und Nonylphenolumsetzungsprodukte genannt: p-Nonylphenol/9 Mol Äthylenoxyd, p-Octylphenol/2 Mol Äthylenoxyd, p-Nonylphenol/10 0 Mol Athylenoxyd, p-Nonylphenol/11 Mol Äthylenoxyd.
  • Weitere Alkylphenol-Äthylenoxydaddukte lassen sich z. B. von Butylphenol oder Tributylphenol ableiten.
  • Die Komponente (4) kann zweckmäßigerweise auch ein Anlagerungsprodukt von 2 bis 15 Mol, vorzugsweise 7 bis 15 Mol Äthylenoxyd an 1 Mol eines aliphatischen Monoalkohols mit 8 bis 22 Kohlenstoffatomen sein.
  • Die aliphatischen Monoalkohole können gesättigt oder ungesättigt sein und können allein oder als Gemische eingesetzt werden. Es können natürliche Alkohole, wie z. B. Laurylalkohol, Myristylalkohol, Cetylalkohol, Stearylalkohol, Oleylalkohol, oder synthetische Alkohole, wie insbesondere 2-Äthylhexanol, ferner Trimethylhexanol, Trimethylnonylalkohol, Hexadecylalkohol oder die C12-C22-Alfole mit Äthylenoxyd umgesetzt werden.
  • Es können auch Äthylenoxydanlagerungsprodukte von 2 bis 15 Mol Äthylenoxyd an 1 Mol Fettsäure als Komponente (4) eingesetzt werden. Die Fettsäuren weisen vorzugsweise 10 bis 20 Kohlenstoffatome auf und können gesättigt oder ungesättigt sein, wie z. B. die Caprin-, Laurin-, Myristin-, Palmitin- oder Stearinsäure bzw. die Decen-, Dodecen-, Tetradecen-, Hexadecen-, ÖI-, Linol- oder Ricinolsäure.
  • Bei der Komponente (5) handelt es sich um einen definitionsgemäß gegebenenfalls äthoxylierten Fettalkohol, dessen HLB-Wert zweckmäßigerweise 0,1 bis 10, insbesondere 0,5 bis 10, beträgt. Komponenten (5) mit HLB-Werten im Bereich von 0,1 bis 7,0 haben sich als besonders vorteilhaft erwiesen. Der HLB-Wert ist ein Maß für die »Hydrophilic-Lipophilic-Balance« in einem Molekül.
  • Die HLB-Werte können gemäß W. C. Griffin, ISCC 5, 249 (1954), oder J. T. Davis, Tenside Detergens 11 (1974), Nr. 3, S. 133, experimentell bestimmt oder berechnet werden.
  • Die als Komponente (5) in Betracht kommenden Fettalkohole können gesättigt oder ungesättigt sein. Vorzugsweise enthalten sie 12 bis 18 Kohlenstoffatome. Als Beispiele von Alkoholen für die Komponente (5) seien Lauryl-, Myristyl-, Cetyl-, Stearyl-, Oleyl-, Arachidyl-, Behenylalkohol oder C12-C22-Alfole genannt.
  • Diese Fettalkohole können vorteilhafterweise mono-, di- odertriäthoxyliert sein.
  • Bevorzugte Komponenten (5) sind Cetylalkohol oder Diäthylenglykolcetyläther (= Polyoxyäthylen-(2)-cetyläther) der Formel
    Figure imgb0004
  • Bei den Fettsäure-Alkanolamin-Umsetzungsprodukten der Komponente (6) handelt es sich z. B. um Produkte, welche aus Fettsäuren mit 8 bis 22, vorzugsweise 8 bis 18 Kohlenstoffatomen und Alkanolaminen mit 2 bis 6 Kohlenstoffatomen, wie Äthanolamin, Diäthanolamin, Isopropanolamin oder Di-isopropanolamin hergestellt werden, wobei Diäthanolamin bevorzugt ist. Besonders bevorzugt sind Fettsäurediäthanolamide mit 8 bis 18 Kohlenstoffatomen.
  • Geeignete Fettsäuren sind z. B. Capryl-, Caprin-, Laurin-, Myristin-, Palmitin-, Stearin-, Arachin-, Behen-, Olein-, Linol-, Linolen-, Arachidonsäure oder Kokosfettsäure.
  • Bevorzugte Beispiele derartiger Umsetzungsprodukte sind das Kokosfettsäurediäthanolamid sowie das Laurinsäure- oder Stearinsäurediäthanolamid.
  • Weitere gut geeignete nichtionogene Tenside sind Alkylenoxyd-Umsetzungsprodukte der Formel
    Figure imgb0005
    worin R' Wasserstoff, Alkyl oder Alkenyl mit höchstens 18 Kohlenstoffatomen, vorzugsweise 8 bis 16 Kohlenstoffatomen, o-Phenylphenyl oder Alkylphenyl mit 4 bis 12 Kohlenstoffatomen im Alkylteil, von Z1 und Z2 eines Wasserstoff und das andere Methyl, y1 bis 15 bedeuten und die Summe von n1, + n2 3 bis 15 beträgt.
  • Besonders vorteilhafte nichtionogene Tenside sind Fettalkoholpolyglykolmischäther, insbesondere Anlagerungsprodukte von 3 bis 10 Mol Äthylenoxyd und 3 bis 10 Mol Propylenoxyd an aliphatische Monoalkohole von 8 bis 16 Kohlenstoffatomen.
  • Die folgenden Anlagerungsprodukte sind Beispiele für die Alkylenoxyd-Umsetzungsprodukte der Formel (4):
    • 1. Anlagerungsprodukt von 12 Mol Äthylenoxyd und 12 Mol Propylenoxyd an 1 Mol eines C4-C18-Fettalkohols,
    • 2. Anlagerungsprodukt von 5 Mol Äthylenoxyd und 5 Mol Propylenoxyd an 1 Mol Alfol (12 -14),
    • 3. Anlagerungsprodukt von 9 Mol Äthylenoxyd und 7 Mol Propylenoxyd an 1 Mol C16-C18-Fettalkohol,
    • 4. Anlagerungsprodukt von 9,5 Mol Äthylenoxyd und 9,5 Mol Propylenoxyd an 1 Mol Nonylphenol.
  • Bevorzugte Schaumstabilisatoren für die Komponente (a) sind Kombinationen aus den Komponenten (1), (2), (4), (5) und (6) und gegebenenfalls auch aus der Komponente (3). Komponenten (1), (2), (4), (5) und (6) können vorteilhafterweise auch allein als Schaumstabilisatoren eingesetzt werden.
  • Als Einzelkomponenten bevorzugt sind das Umsetzungsprodukt aus 1 Mol Nonylphenol und 2 Mol Äthylenoxyd, das Ammoniumsalz des sauren Schwefelsäureesters des Umsetzungsproduktes aus 1 Mol Nonylphenol und 2 Mol Äthylenoxyd, Lauryltriglykoläthersulfat-Natrium, Dodecylphenylsulfonat-Natrium oder ein Fettsäurediäthanolamid mit 8 bis 18 Kohlenstoffatomen im Fettsäurerest (Kokosfettsäurediäthanolamid).
  • Bevorzugte Gemische von Schaumstabilisatoren sind z. B. solche aus
    • (1) Nonylphenol-Äthylenoxydaddukten mit 10 bis 12 Äthylenoxydeinheiten, Natriumsalzen von Schwefelsäureestern von Fettalkohol-Äthylenaddukten mit 10 bis 12 Kohlenstoffatomen im Alkoholteil und 2 bis 4 Alkylenoxydeinheiten und Kokosfettsäurediäthanolamid,
    • (2) Umsetzungsprodukte von 7 bis 15 Mol Äthylenoxyd an 1 Mol Stearylalkohol, Kokosfettsäurediäthanolamid und Cetylalkohol oder diäthoxyliertem Cetylalkohol,
    • (3) Dodecylbenzolsulfonat, Lauryltriglykoläthersulfat-NatFium, Kokosfettsäurediäthanolamid und dem Dinatriumsalz der 1-Benzyl-2-stearyl-benzimidazoldisulfonsäure oder
    • (4) Lauryltriglykoläthersulfat-Natrium und Fettsäurediäthanolamide mit 8 bis 18 Kohlenstoffatomen im Fettsäurerest.
  • Die Schaumkomponenten bzw. Schaumstabilisatoren (a) sind sehr gute Verschäumer, d. h., sie können einerseits mit sehr geringer Einsatzmenge den Schaum in ausreichender Menge bilden und andererseits den gebildeten Schaum auch stabilisieren.
  • Bei den Siloxanoxyalkylen-Copolymerisaten, die als Schaum-Moderatoren [Komponente (b)] verwendet werden, handelt es sich z. B. um Umsetzungsprodukte aus halogensubstituierten Organopolysiloxanen und Alkalimetallsalzen von Polyoxyalkylen, z. B. Polyäthylen- oder Polypropylenglykolen.
  • Solche Verbindungen, die ein Polydimethylsiloxangerüst aufweisen, können durch die Formel
    Figure imgb0006
    dargestellt werden, worin q 3 bis 50, zweckmäßigerweise 3 bis 25, r 2 oder 3, s 0 bis 15, t 1 bis 25, x 3 bis 15, vorzugsweise 3 bis 10, und R, Alkyl mit 1 bis 6 Kohlenstoffatomen, vorzugsweise Methyl, ist
  • Derartige Verbindungen sind z. B. in der DE-AS 1 719 328 beschrieben.
  • Vertreter der Siloxanoxyalkylen-Copolymerisate der Formel (5) können durch die folgenden Formeln beschrieben werden:
    Figure imgb0007
    Figure imgb0008
    Figure imgb0009
    Figure imgb0010
    Figure imgb0011
    Figure imgb0012
    Figure imgb0013
  • Weitere Polyäthersiloxane, welche als Schaummoderatoren gemäß der Komponente (b) verwendet werden können, entsprechen der Formel
    Figure imgb0014
    worin R2 und R3 je Alkyl mit 1 bis 4 Kohlenstoffatomen, vorzugsweise Methyl, a 1 bis 20, b 2 bis 20, c 2 bis 50, d 1 oder 2 und m 2 bis 5 bedeuten.
  • Derartige Siloxanverbindungen sind in der DE-AS 1 795 557 beschrieben.
  • Typische Vertreter dieser Siloxan-Polyalkylenoxyd-Polymere sind:
    Figure imgb0015
    Figure imgb0016
  • Bevorzugte als Schaummoderatoren gemäß der Komponente (b) eingesetzte Polyäthersiloxane haben einen Trübungspunkt von etwa 20 bis 70°C, vorzugsweise 25 bis 50°C. Der Glykolgehalt, bestehend aus Oxyäthylengruppen oder Oxyäthylen- und Oxypropylengruppen, ist vorteilhafterweise von 35 bis 80, vorzugsweise von 40 bis 70 Gewichtsprozent, bezogen auf das gesamte Gewicht des Polyäthersiloxans.
  • Die Komponente (b) stört die Herstellung des Schaums nicht, besitzt jedoch die Eigenschaft, den Schaum bei Einwirkung von Feuchtigkeit und Wärme zu zerstören, d. h. zerfallen zu lassen. Diese Wirkung beruht auf der Eigenschaft dieser Komponenten, in wässeriger Lösung einen insbesondere bei 40-50°C ausgeprägten Trübungspunkt aufzuweisen, d. h., diese Produkte zeigen AntischaumWirkung in der Wärme.
  • Je nach gewünschtem Effekt können die erfindungsgemäß zu verwendenden Schäume noch weitere Zusätze enthalten, wie Säuren, Alkalien, Katalysatoren, Harnstoff, Oxydationsmittel, Lösungsmittel oder Emulgatoren. Die Säuren und die Alkalien dienen vor allem der Einstellung des pH-Wertes der erfindungsgemäß verwendeten Flotte, der je nach dem zu behandelnden Substrat in der Regel 4 bis 10 beträgt.
  • Der Zusatz eines Verdickungsmittels ist nicht notwendig, da die Schäume auch ohne Verdickungsmittel ausreichend stabil sind, d. h. Schaumhalbwertszeiten bis zu 60 Minuten aufweisen können. Ihre Penetrationseigenschaften sind gut; eine Benetzung und ein leichtes Eindringen des Schaums ist gewährleistet.
  • Bei der Herstellung der Schäume wird zweckmäßig so vorgegangen, daß man die Verschäumungskomponenten (a) und (b) zuerst getrennt löst und dann miteinander vermischt und so zu wässerigen Lösungen von 0,1 bis 0,5 Gewichtsprozent an Verschäumungskomponenten gelangt.
  • Die Erzeugung der Schäume erfolgt vorzugsweise mechanisch mittels Schnellrührern, Mixern oder auch speziellen Schaumpumpen, wobei mit letzteren die Schäume auch kontinuierlich hergestellt werden können. Es hat sich als zweckmäßig erwiesen, die einzelnen Komponenten vorzulösen oder vorzudispergieren, bevor sie den Verschäumungsapparaten zugeführt werden.
  • Erfindungsgemäß haben sich Verschäumungsgrade, d. h. Volumenverhältnisse von unverschäumter zu verschäumter Zubereitung von 1 : 6 bis 1 : 20, vorzugsweise 1 : 8 bis 1 : 12, als geeignet erwiesen.
  • Die erfindungsgemäß eingesetzten Schäume zeichnen sich dadurch aus, daß sie über längere Zeit stabil sind und beim Auftragen auf das Substrat nicht sofort zerfallen (sich entwässern). Vorzugsweise haben die erfindungsgemäß verwendeten Schäume Halbwertzeiten von 5 bis 30 Minuten. Die Blasendurchmesser in den Schäumen betragen etwa 1 bis 100 µ.
  • Die Applikation der Schäume erfolgt in der Regel bei Raumtemperatur, d. h. etwa 15 bis 30° C.
  • Für das Färben oder Ausrüsten von Teppichen und Polgeweben aus Polyamid, Wolle, Polyacrylnitril oder Polyester wird eine Behandlungsflotte verschäumt und der Schaum aus einem Schaumbehälter (mit verstellbarer Rakel für die Einstellung der gewünschten Schaumschichtdicke) über eine Auftragswalze mit einer Abnahmerakel als Schaumschicht auf den Flor aufgebracht. Die Substrate brauchen nicht unbedingt vorbehandelt zu sein, können aber auch bei Raumtemperatur vorgenetzt werden (mit wässerigen Flotten üblicher Netzmittel, z. B. 1 g/I Flotte eines Alkylphenol-Äthylenoxydadduktes) oder bei Temperaturen bis zu 80°C vorgewaschen (mit üblichen Waschmitteln) und vorgebauscht sein. Erfolgen diese Vorbehandlungen, so ist es angebracht, die Substrate vor dem Schaum-Auftrag auf einen Restfeuchtegehalt von 40 bis 100 Gewichtsprozent, vorzugsweise 40 bis 50 Gewichtsprozent, bezogen auf das Substratgewicht, zu entwässern. Durch Anlegen eines Vakuums auf der Rückseite der Substrate (etwa 0,1 - bar Unterdruck) wird die Schaumschicht teilweise in das Substrat (den Teppich-Flor) eingesaugt, ohne daß ein Flottenverlust auftritt. Die Schaumhöhe kann dabei um etwa 10 bis 70% der ursprünglichen Höhe reduziert werden. Der Schaum wird dadurch gleichmäßig von den Florspitzen bis fast zum Florfuß verteilt. Anschließend kann gegebenenfalls mittels Rakel der Auftrag einer zweiten Schaumschicht erfolgen. Der gesamte Flottenauftrag, bezogen auf das Gewicht des trockenen Teppichs, liegt vorteilhafterweise zwischen 70 und 250%, vorzugsweise 70 bis 200 und insbesondere 120 bis 170%. Nach diesem Verfahren ist es auch möglich, unterschiedlich anfärbbares Polyamid-Teppich-Flor-Material zu färben und einen guten Differential-Dyeing-Effekt zu erhalten.
  • Der zu wählende Unterdruck ist im wesentlichen vom Quadratmetergewicht des Teppichs, der Konstruktion des Trägermaterials, von der Dichte des Teppichs, von der Länge des Polmaterials und auch vom Verschäumungsgrad des Schaumes abhängig. Im Bereich von >0-1 bar Unterdruck gelingt es, die Schaum-Decke teilweise, durch Entwässerung, in den Teppich hineinzusaugen. Wichtig dabei ist, daß die auf der Florseite verbleibende Schaumschicht möglichst gleich dick bleibt. Zu starkes Saugen führt zu Flottenverlust und kann zu unegalen Färbungen bzw. zu Färbungen mit frosting-Effekt (Grauschleier) führen.
  • Der Teppich läuft nun mit einer noch auf der Polseite befindlichen Schaumdecke in den Dämpfer. Beim Einlauf in den Dämpfer beginnt die Schaumdecke leicht aufzuschäumen, dies verhindert die Grauschleierbildung; sodann wird der Schaum - mit Hilfe des Schaummoderators = Komponente (b) - durch die Einwirkung des Sattdampfes gleichmäßig zerstört, d. h. er entwässert sich, die Farbflotte dringt weiter in das Polmaterial ein, so daß eine egale frostingfreie Färbung resultiert. Der Schaum muß nach < 20 Sekunden vollständig zerstört sein, um eine gute Flächen-Egalität zu erreichen.
  • Vorteilhafterweise kann man vor dem Schaumauftrag das Substrat mit einer vorzugsweise Verschäumer, insbesondere die Komponenten (a) und (b), enthaltenden Foulardierflotte vorfoulardieren. Dabei erfolgt die Imprägnierung vorzugsweise bei einer Flottenaufnahme von 40 bis 100 Gewichtsprozent. Der anschließende Schaumauftrag beträgt in der Regel 50 bis 180 Gewichtsprozent, vorzugsweise 50 bis 150 Gewichtsprozent. Nach der Vorfoulardierung des Substrats mit einer gegebenenfalls bereits einen Verschäumer enthaltenden Imprägnierflotte und anschließendem Schaumauftrag kann man mit Erfolg auf ein Einsaugen des Schaumes in das Textilgut verzichten und die Dampfbehandlung direkt durchführen.
  • Das Fixieren der Farbstoffe und Ausrüstmittel erfolgt durch Dampfbehandlung des Substrats, z. B. bei Temperaturen von 95 bis 180°C, vorzugsweise durch Dämpfen bei 98 bis 102°C, z. B. mit Sattdampf oder überhitztem Dampf.
  • Nach dem Fixieren kann wie üblich ausgewaschen (mit Wasser abspritzen), gespült und getrocknet werden, z. B. bei Temperaturen von 100 bis 30° C.Ausrüstmittei nur Trocknen und Fixieren.
  • Das erfindungsgemäße Verfahren bietet gegenüber bekannten Verfahren ganz wesentliche Vorteile.
  • Da beim Schaum-Färben geringe Feuchtigkeit gegenüber dem konventionellen Kontinue-Verfahren, bei dem die Menge der Farbflotte, bezogen auf das Teppichmaterial, bis zu 500% beträgt, aufgetragen wird und lediglich 1/3 des Auftrages erfolgt, sind höhere Produktionsgeschwindigkeiten möglich. Zudem resultiert eine bessere Entwicklung des Bausches, was zu einer Qualitäts-Steigerung führt. Ferner wird die Längsstreifigkeit bei Polyamid-Velour-Qualitäten vermieden.
  • Infolge der geringen Flüssigkeitsmengen wird das Abwasser den Betrieb auch nur gering belasten, was aus der Sicht der Ökologie wertvoll ist. Auch die Einsparung an Wasser und Energie ist eine vorteilhafte Folge der vorliegenden Erfindung sowie kein Farbflottenverlust im Dämpfer.
  • Die in den nachfolgenden Beispielen eingesetzten Farbstoffe/optischen Aufheller entsprechen den Formeln:
    Figure imgb0017
    Figure imgb0018
    Figure imgb0019
    Figure imgb0020
    Figure imgb0021
    Figure imgb0022
    = Mischung aus (16)
    Figure imgb0023
    Figure imgb0024
    und Farbstoff der Formel (10)
    Figure imgb0025
    Figure imgb0026
    Figure imgb0027
    Figure imgb0028
    Figure imgb0029
    Figure imgb0030
    Figure imgb0031
    Figure imgb0032
    = Mischung aus (25)
    Figure imgb0033
    Figure imgb0034
    und
    Figure imgb0035
    Figure imgb0036
    Figure imgb0037
    Figure imgb0038
    Figure imgb0039
    Figure imgb0040
    Figure imgb0041
  • Optische Aufheller
  • Figure imgb0042
    Figure imgb0043
  • In den nachfolgenden Beispielen beziehen sich Teile und Prozente auf das Gewicht.
  • Beispiel 1
  • 500 m2 eines Polyamid(6.6)-Schnittflorteppichs (Velourware mit Polypropylenbändchenrücken) mit einem Quadratmetergewicht von 535 g werden in einer Flotte, die pro Liter 1 g des Umsetzungsproduktes aus 1 Mol Nonylphenol und 9 Mol Äthylenoxyd enthält, kontinuierlich vorgenetzt und dann auf eine Flottenaufnahme von 40 Gewichtsprozent abgesaugt.
  • In einer Verschäumungsvorrichtung (Mixer) wird aus folgender wässeriger Flotte ein Farbschaum hergestellt, dessen Verschäumungsgrad 1 : 10 beträgt:
    Figure imgb0044
  • Dieser Schaum wird dann aus einem Schaumbehälter, der eine verstellbare Rakel für die Einstellung der gewünschten Schaumdicke aufweist, über eine Auftragswalze mittels einer Rutsche auf die Polseite des durch die Färbeanlage laufenden Teppichs aufgebracht (Laufgeschwindigkeit 9 m/Minute). Die Schichthöhe des Schaums beträgt 8 mm. Der Farbschaumauftrag beträgt 135%.
  • Anschließend durchläuft der Teppich eine Vakuumpassage, in der von der Rückseite her die Schaumschicht teilweise in den Teppich eingesaugt wird (Unterdruck von '-0,1 bar), wodurch die Höhe der Schaumschicht etwas reduziert wird. Über eine Transportwalze läuft der Teppich dann in einen Dämpfer (102°C, Sattdampf), wo ein leichtes Aufschäumen und dann ein Zerstören des Schaumes erfolgt. Anschließend wird der Teppich mit Wasser von etwa 80°C abgespritzt, dann abgesaugt und bei 100 bis 30° C auf einem Siebtrommeltrockner getrocknet.
  • Das erhaltene Teppichmaterial ist egal, in einem beigen Farbton gefärbt, zeigt eine hervorragende Durchfärbung, die Weichheit und Bauschigkeit des Materials wird durch das Schaumfärben positiv beeinflußt.
  • Weitere Schaumstabilisatorgemische, die mit ebenfalls gutem Erfolg eingesetzt werden können, sind solche aus Dodecylbenzolsulfonat, Kokosfettsäureäthanolamid, Lauryltriglykoläthersulfat-natrium und dem Dinatriumsalz der 1-Benzyl-2-stearylbenzimidazoldisulfonsäure (0,5/1/1/1); ferner ein Gemisch aus Laurinsäurediäthanolamid und Lauryltriglykoläthersulfatnatrium (1/1) sowie die Verbindungen Dodecylbenzolsulfonat (Natriumsalz), Kokosfettsäurediäthanolamid, Lauryltriglykoläthersulfatnatrium das Addukt aus 1 Mol Nonylphenol und 9 Mol Äthylenoxyd oder das Ammoniumsalz des sauren Schwefelsäureesters des Adduktes von 1 Mol Nonylphenol und 2 Mol Äthylenoxyd.
  • Als Schaummoderator können ebenfalls die Verbindungen der Formeln (7) bis (15) oder deren Mischungen eingesetzt werden.
  • Beispiel 2
  • Ein Polyamid(6)-Teppich mit einem Quadratmetergewicht von 2000 g wird auf einem Foulard mit folgender Flotte bei einer Flottenaufnahme von 70% imprägniert:
    Figure imgb0045
    sowie eine Natriumhydroxydlösung (30° Be) zur Einstellung der Flotte auf einen pH-Wert von 8.
  • Anschließend wird auf gleiche Art und Weise wie im Beispiel 1 beschrieben folgende Flotte verschäumt und appliziert:
    Figure imgb0046
    Figure imgb0047
  • Der Verschäumungsgrad beträgt 1 : 8.
  • Dieser Schaum wird auf die Polseite des wie zuvor bereits imprägnierten Teppichs aufgebracht, wobei der Schaumauftrag 70%, bezogen auf das Gewicht des trockenen Teppichs, beträgt. Alsdann wird der Teppich in einem Horizontaldämpfer bei 98°C mit Sattdampf während 4 Minuten behandelt, anschließend gespült und getrocknet. Man erhält eine Beigefärbung mit ausgezeichneten Licht- und Naßechtheiten.
  • Beispiel 3
  • Ein Polyamid(6.6)-Schnittflorteppich mit einem Quadratmetergewicht von 610 g wird in einer Flotte, die pro Liter 1 g des Anlagerungsproduktes von 9 Mol Äthylenoxyd an 1 Mol Nonylphenol enthält, kontinuierlich vorgenetzt und auf eine Flottenaufnahme von 50 Gewichtsprozent abgesaugt.
  • In einer Verschäumungsvorrichtung wird aus folgender wässeriger Flotte ein Farbschaum hergestellt, dessen Verschäumungsgrad 1 : 9 beträgt:
    Figure imgb0048
  • Dieser Schaum wird dann auf die gleiche Art und Weise, wie im Beispiel 1 beschrieben, auf die Polseite des Teppichs aufgebracht, wobei der Schaumauftrag 160%, bezogen auf das Gewicht des trockenen Teppichs, beträgt. Alsdann wird der Teppich in einem Horizontaldämpfer bei 98° C mit Sattdampf während 41/2 Minuten behandelt, anschließend gespült und getrocknet.
  • Man erhält eine streifenfreie, egale, grüne Färbung mit ausgezeichneten Licht- und Naßechtheiten.
  • Beispiel 4
  • Ein Polyamid(6.6)-Schnittflorteppich mit einem Quadratmetergewicht von 2300 g wird auf einem Foulard mit folgender Flotte bei einer Flottenaufnahme von 100% imprägniert:
    Figure imgb0049
  • Anschließend wird auf gleiche Art und Weise wie in Beispiel 1 beschrieben folgende Flotte verschäumt und appliziert:
    Figure imgb0050
    Figure imgb0051
  • Der Verschäumungsgrad beträgt 1 : 8.
  • Dieser Schaum wird auf die Polseite des wie zuvor bereits imprägnierten Teppichs aufgebracht, wobei der Schaumauftrag 100%, bezogen auf das Gewicht des trockenen Teppichs, beträgt. Alsdann wird der Teppich in einem Dämpfer bei 98-100° C mit Sattdampf während 6 Minuten behandelt, wobei der Schaum auf der Oberfläche des Teppichs bereits nach 12 Sekunden zerfällt. Nach Spülen und Trocknen erhält man eine egale, streifenfreie, goldgelbe Färbung mit hervorragenden Licht- und Naßechtheiten.
  • Beispiel 5
  • Ein Polyamid(6.6)-Schnittflorteppich mit einem Quadratmetergewicht von 1750 g wird auf einem Foulard mit folgender Flotte bei einer Flottenaufnahme von 100% imprägniert:
    Figure imgb0052
  • Anschließend wird auf gleiche Art und Weise wie in Beispiel 1 beschrieben folgende Flotte verschäumt und appliziert:
    Figure imgb0053
  • Der Verschäumungsgrad beträgt 1 : 8.
  • Dieser Schaum wird auf die Polseite des wie zuvor bereits imprägnierten Teppichs aufgebracht, wobei der Schaumauftrag 100%, bezogen auf das Gewicht des trockenen Teppichs, beträgt. Alsdann wird der Teppich in einem Dämpfer bei 100°C mit Sattdampf während 51/2 Minuten behandelt, anschließend gespült und getrocknet. Man erhält eine egale, streifenfreie, grüne Färbung mit hervorragenden Licht- und Naßechtheiten.
  • Beispiel 6
  • Ein Polyamid(6.6)-Schnittflorteppich mit einem Quadratmetergewicht von 1885 g wird auf einem Foulard mit folgender Flotte bei einer Flottenaufnahme von 40% imprägniert:
    Figure imgb0054
    • 1 g/I Natriumazetat

    sowie Essigsäure zur Einstellung der Flotte auf einen pH-Wert von 6,0.
  • Anschließend wird auf gleiche Art und Weise wie in Beispiel 1 beschrieben folgende Flotte verschäumt und appliziert:
    Figure imgb0055
  • Der Verschäumungsgrad beträgt 1 : 9.
  • Dieser Schaum wird auf die Polseite des wie zuvor bereits imprägnierten Teppichs aufgebracht, wobei der Schaumauftrag 80%, bezogen auf das Gewicht des trockenen Teppichs, beträgt. Alsdann wird der Teppich in einem Dämpfer bei 98-100°C mit Sattdampf während 6 Minuten behandelt, anschließend gespült und getrocknet. Man erhält eine egale, braune Färbung mit hervorragenden Licht- und Naßechtheiten.
  • Beispiel 7
  • Ein Polyamid(6.6)-Schnittflorteppich mit einem Quadratmetergewicht von 580 g wird auf einem Foulard mit folgender Flotte bei einer Flottenaufnahme von 100% imprägniert:
    Figure imgb0056
  • Anschließend wird auf gleiche Art und Weise wie in Beispiel 1 beschrieben folgende Flotte verschäumt und appliziert:
    Figure imgb0057
  • Der Verschäumungsgrad beträgt 1 : 8.
  • Dieser Schaum wird auf die Polseite des wie zuvor bereits imprägnierten Teppichs aufgebracht, wobei der Schaumauftrag 140%, bezogen auf das Gewicht des trockenen Teppichs, beträgt. Alsdann wird der Teppich in einem Dämpfer bei 100°C mit Sattdampf während 51/2 Minuten behandelt, anschließend gespült und getrocknet. Man erhält eine egale, braune Färbung mit hervorragenden Licht- und Naßechtheiten.
  • Beispiel 8
  • Ein Polyamid(6.6)-Schnittflorteppich mit einem Quadratmetergewicht von 720 g wird in einer Flotte, die pro Liter 1 g des Anlagerungsproduktes von 9 Mol Äthylenoxyd an 1 Mol Nonylphenol enthält, kontinuierlich vorgenetzt und auf eine Flottenaufnahme von 50 Gewichtsprozent abgesaugt.
  • In einer Verschäumungsvorrichtung wird aus folgender wässeriger Flotte ein Farbschaum hergestellt, dessen Verschäumungsgrad 1 : 9 beträgt:
    Figure imgb0058
  • Dieser Schaum wird dann auf gleiche Art und Weise wie in Beispiel 1 beschrieben auf die Polseite des Teppichs aufgebracht, wobei der Schaumauftrag 160%, bezogen auf das Gewicht des trockenen Teppichs, beträgt. Alsdann wird der Teppich in einem Horizontaldämpfer bei 100°C mit Sattdampf während 4 Minuten behandlet, anschließend gespült und getrocknet.
  • Man erhält eine streifenfreie, egale, goldgelbe Färbung mit ausgezeichneten Licht- und Naßechtheiten.
  • Beispiel 9
  • Ein Polyamid(6.6)-Schnittflorteppich mit einem Quadratmetergewicht von 600 g wird in einer Flotte, die pro Liter 1 g des Anlagerungsproduktes von 9 Mol Äthylenoxyd an 1 Mol Nonylphenol enthält, kontinuierlich vorgenetzt und auf eine Flottenaufnahme von 50 Gewichtsprozent abgesaugt.
  • In einer Verschäumungsvorrichtung wird aus folgender wässeriger Flotte ein Farbschaum hergestellt, dessen Verschäumungsgrad 1 : 8 beträgt:
    Figure imgb0059
  • Dieser Schaum wird dann auf gleiche Art und Weise wie in Beispiel 1 beschrieben auf die Polseite des Teppichs aufgebracht, wobei der Schaumauftrag 180%, bezogen auf das Gewicht des trockenen Teppichs beträgt. Alsdann wird der Teppich in einem Horizontaldämpfer bei 100°C mit Sattdampf während 4 Minuten behandelt, anschließend gespült und getrocknet.
  • Man erhält eine streifenfreie, egale, beige Färbung mit ausgezeichneten Licht- und Naßechtheiten.
  • Beispiel 10
  • Ein Polyamid(6.6)-Schnittflorteppich mit einem Quadratmetergewicht von 720 g wird in einer Flotte, die pro Liter 1 g des Anlagerungsproduktes von 9 Mol Äthylenoxyd an 1 Mol Nonylphenol enthält, kontinuierlich vorgenetzt und auf eine Flottenaufnahme von 50 Gewichtsprozent abgesaugt.
  • In einer Verschäumungsvorrichtung wird aus folgender wässeriger Flotte ein Farbschaum hergestellt, dessen Verschäumungsgrad 1 : 8 beträgt:
    Figure imgb0060
  • Dieser Schaum wird dann auf gleiche Art und Weise wie in Beispiel 1 beschrieben auf die Polseite des Teppichs aufgebracht, wobei der Schaumauftrag 150%, bezogen auf das Gewicht des trockenen Teppichs, beträgt. Alsdann wird der Teppich in einem Horizontaldämpfer bei 100°C mit Sattdampf während 41/2 Minuten behandelt, anschließend gespült und getrocknet.
  • Man erhält eine streifenfreie, egale, grüne Färbung mit ausgezeichneten Licht- und Naßechtheiten.
  • In den Beispielen 2 bis 10 können ebenfalls die Polyäthersiloxane der Formeln (7) bis (15) als Schaummoderator eingesetzt werden.

Claims (27)

1. Verfahren zum Veredeln, insbesondere zum Färben, optisch Aufhellen und/oder Ausrüsten von textilen Fasermaterialien mit einer wässerigen Zubereitung in Schaumform, die neben Farbstoff oder optischem Aufheller und/oder Ausrüstmitteln, einen Schaumstabilisator, einen Schaummoderator und gegebenenfalls weitere Hilfsmittel enthält, dadurch gekennzeichnet, daß man aus einer wässerigen Zubereitung, die
(a) als Schaumstabilisator 1 bis 4 g/I eines anionischen oder nichtionogenen Tensids oder einer Mischung dieser Tenside und
(b) als Schaummoderator 0,1 bis 1 g/I eines Siloxanoxyalkylen-Copolymerisats, welches einen Trübungspunkt von 20 bis 70° C und eine Antischaumwirkung in der Wärme hat,

enthält, einen Schaum herstellt, wobei der Verschäumungsgrad 1 : (6 bis 20) beträgt, diesen Schaum auf die textilen Fasermaterialien kontinuierlich in Form mindestens einer Schicht aufbringt, die Schaumschicht gegebenenfalls in die Fasermaterialien einsaugt und diese anschließend einer Dampfbehandlung unterwirft.
2. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, daß das anionische Tensid ein
(1) saurer Ester oder dessen Salz eines Polyadduktes von 2 bis 15 Mol Äthylenoxyd an 1 Mol Fettalkohol mit 8 bis 22 Kohlenstoffatomen oder an 1 Mol Alkylphenol mit 4 bis 12 Kohlenstoffatomen im Alkylteil,
(2) Alkylphenylsulfonat mit 8 bis 18 Kohlenstoffatomen im Alkylrest oder
(3) sulfoniertes 1-Benzyl-2-alkylbenzimidazol mit 8 bis 22 Kohlenstoffatomen im Alkylrest

ist, wobei die Komponenten (1), (2) und (3) einzeln oder als Gemisch verwendet werden.
3. Verfahren gemäß einem der Ansprüche 1 und 2, dadurch gekennzeichnet, daß das nichtionogene Tensid ein
(4) Anlagerungsprodukt von 2 bis 15 Mol Äthylenoxyd an 1 Mol Fettalkohol oder Fettsäure mit jeweils 8 bis 22 Kohlenstoffatomen oder an 1 Mol Alkylphenol mit insgesamt 4 bis 12 Kohlenstoffatomen im Alkylteil,
(5) gegebenenfalls mono-, di- oder triäthoxylierter Fettalkohol mit 8 bis 22 Kohlenstoffatomen im Fettalkoholrest oder
(6) Fettsäuredialkanolamid mit 8 bis 22 Kohlenstoffatomen im Fettsäurerest

ist, wobei die Komponenten (4), (5) und (6) einzeln oder als Gemisch verwendet werden.
4. Verfahren gemäß einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß man als Schaumstabilisator (a)
(1) einen sauren Ester oder dessen Salz eines Polyadduktes von 2 bis 15 Mol Äthylenoxyd an 1 Mol Fettalkohol mit 8 bis 22 Kohlenstoffatomen oder an 1 Mol Alkylphenol mit 4 bis 12 Kohlenstoffatomen im Alkylteil,
(2) ein Alkylphenylsulfonat mit 8 bis 18 Kohlenstoffatomen im Fettsäurerest,
(4) ein Anlagerungsprodukt von 2 bis 15 Mol Äthylenoxyd an 1 Mol Fettalkohol oder Fettsäure mit jeweils 8 bis 22 Kohlenstoffatomen oder an 1 Mol Alkylphenol mit insgesamt 4 bis 12 Kohlenstoffatomen im Alkylteil,
(5) einen gegebenenfalls mono-, di- oder triäthoxylierten Fettalkohol mit 8 bis 22 Kohlenstoffatomen im Fettalkoholrest und
(6) ein Fettsäuredialkanolamid mit 8 bis 12 Kohlenstoffatomen im Fettsäurerest und gegebenenfalls
(3) ein sulfoniertes 1-Benzyl-2-alkylbenzimidazol mit 8 bis 22 Kohlenstoffatomen im Alkylrest

verwendet.
5. Verfahren gemäß Anspruch 4, dadurch gekennzeichnet, daß man als Schaumstabilisator (a) ein Nonylphenol-Äthylenoxyaddukt mit 2 bis 12 Äthylenoxydeinheiten verwendet.
6. Verfahren gemäß Anspruch 4, dadurch gekennzeichnet, daß man als Schaumstabilisator (a) einen Schwefel- oder Phosphorsäureester eines Alkylphenol-Äthylenoxydadduktes mit 8 bis 12 Kohlenstoffatomen im Alkylteil und 2 bis 12 Äthylenoxydeinheiten oder dessen Alkalimetall-, Ammonium- oder Aminsalz verwendet.
7. Verfahren gemäß Anspruch 4, dadurch gekennzeichnet, daß man als Schaumstabilisator (a) einen Schwefelsäureester eines Fettalkohol-Äthylenoxydadduktes mit 8 bis 18 Kohlenstoffatomen im Alkoholteil und 2 bis 4 Äthylenoxydeinheiten oder dessen Alkalimetallsalz verwendet.
8. Verfahren gemäß Anspruch 4, dadurch gekennzeichnet, daß man als Schaumstabilisator (a) ein Alkylphenylsulfonat mit 8 bis 12 Kohlenstoffatomen im Alkylteil verwendet.
9. Verfahren gemäß Anspruch 4, dadurch gekennzeichnet, daß man als Schaumstabilisator (a) ein Fettsäurediäthanolamid mit 8 bis 18 Kohlenstoffatomen im Fettsäurerest verwendet.
10. Verfahren gemäß Anspruch 4, dadurch gekennzeichnet, daß das sulfonierte 1-Benzyl-2-alkylbenz- imidazol 16 bis 18 Kohlenstoffatome im Alkylrest aufweist.
11. Verfahren gemäß Anspruch 4, dadurch gekennzeichnet, daß man als Schaumstabilisator (a) ein Gemisch aus dem Umsetzungsprodukt von 7 bis 15 Mol Äthylenoxyd an 1 Mol Stearylalkohol, Kokosfettsäurediäthanolamid und Cetylalkohol oder diäthoxyliertem Cetylalkohol verwendet.
12. Verfahren gemäß Anspruch 4, dadurch gekennzeichnet, daß man als Schaumstabilisator (a) ein Gemisch aus einem Nonylphenol-Äthylenoxydaddukt mit 10 bis 12 Äthylenoxydeinheiten, dem Natriumsalz eines Schwefelsäureesters von Fettalkohol-Äthylenoxydaddukten mit 10 bis 12 Kohlenstoffatomen im Alkoholteil und 2 bis 4 Äthylenoxydeinheiten und Kokosfettsäurediäthanolamid verwendet.
13. Verfahren gemäß Anspruch 4, dadurch gekennzeichnet, daß man als Schaumstabilisator (a) das Umsetzungsprodukt aus 1 Mol Nonylphenol und 2 Mol Äthylenoxyd, das Ammoniumsalz des sauren Schwefelsäureesters des Umsetzungsproduktes aus 1 Mol Nonylphenol und 2 Mol Äthylenoxyd, Lauryltriglykoläthersulfat-Natrium, Dodecylphenylsulfonat-Natrium oder ein Fettsäurediäthanolamid mit 8 bis 18 Kohlenstoffatomen im Fettsäurerest verwendet.
14. Verfahren gemäß Anspruch 4, dadurch gekennzeichnet, daß man als Schaumstabilisator (a) ein Gemisch aus Dodecylbenzolsulfonat, Lauryltriglykoläthersulfat-Natrium, Kokosfettsäurediäthanolamid und dem Dinatriumsalz der 1-Benzyl-2-stearyl-benzimidazoldisulfonsäure verwendet.
15. Verfahren gemäß Anspruch 4, dadurch gekennzeichnet, daß man als Schaumstabilisator (a) ein Gemisch aus Lauryltriglykoläthersulfat-Natrium und einem Fettsäurediäthanolamid mit 8 bis 18 Kohlenstoffatomen im Fettsäurerest verwendet.
16. Verfahren gemäß Anspruch 4 zum Färben und/oder Ausrüsten von textilen Flormaterialien mit einer wässerigen Zubereitung in Schaumform, die einen Farbstoff oder einen optischen Aufheller und/oder ein Ausrüstmittel, einen Schaumstabilisator, einen, Schaummoderator und gegebenenfalls weitere Hilfsmittel enthält, dadurch gekennzeichnet, daß man aus einer wässerigen Zubereitung, die
(a) als Schaumstabilisator 1 bis 4 g/I eines
(1a) Esters mehrbasischer Säuren von Alkylphenol-Äthylenoxydaddukten mit 4 bis 12 Kohlenstoffatomen im Alkylteil und 2 bis 12 Äthylenoxydeinheiten oder deren Salze,
(1b) Esters mehrbasischer Säuren von Fettalkohol-Äthylenoxydaddukten mit 1 bis 4 Äthylenoxydeinheiten oder deren Salze,
(2) Alkylphenylsulfonats mit 8 bis 18 Kohlenstoffatomen im Alkylrest,
(4a) Alkylphenol-Äthylenoxydaddukts mit 8 oder 9 Kohlenstoffatomen im Alkylteil und 2 bis 12 Äthylenoxydeinheiten oder
(6) Fettsäuredialkanolamids mit 8 bis 12 Kohlenstoffatomen im Fettsäurerest und gegebenenfalls
(3) eines sulfonierten 1-Benzyl-2-alkylbenzimidazols mit 8 bis 22 Kohlenstoffatomen im Alkylrest, wobei die Komponenten einzeln oder als Gemisch verwendet werden, und
(b) als Schaummoderator 0,1 bis 1 g/I eines Siloxanoxyalkylen-Copolymerisats enthält,

einen Schaum herstellt, wobei der Verschäumungsgrad 1 : (6-20) beträgt, diesen Schaum auf die textilen Flormaterialien kontinuierlich in Form mindestens einer Schicht aufbringt, die Schaumschicht teilweise in die Flormaterialien einsaugt und diese anschließend dämpft.
17. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, daß das nichtionogene Tensid ein Alkylenoxyd-Umsetzungsprodukt der Formel
Figure imgb0061
ist, worin R' Wasserstoff, Alkyl oder Alkenyl mit höchstens 18 Kohlenstoffatomen, vorzugsweise 8 bis 16 Kohlenstoffatomen, o-Phenylphenyl oder Alkylphenyl mit 4 bis 12 Kohlenstoffatomen im Alkylteil, von Z, und Z2 eines Wasserstoff und das andere Methyl, y 1 bis 15 bedeuten und die Summe von n, + n2 3 bis 15 beträgt.
18. Verfahren gemäß Anspruch 17, dadurch gekennzeichnet, daß das nichtionogene Tensid ein Anlagerungsprodukt von 3 bis 10 Mol Äthylenoxyd und 3 bis 10 Mol Propylenoxyd an einen aliphatischen Monoalkohol von 8 bis 16 Kohlenstoffatomen ist.
19. Verfahren gemäß einem der Ansprüche 1 bis 18, dadurch gekennzeichnet, daß man als Schaummoderator (b) ein Polyäthersiloxan mit einem Trübungspunkt bei 20 bis 70° C, vorzugsweise 25 bis 50° C, verwendet.
20. Verfahren gemäß einem der Ansprüche 1 bis 18, dadurch gekennzeichnet, daß man als Schaummoderator (b) ein Umsetzungsprodukt aus einem halogensubstituierten Organopolysiloxan und einem Alkalimetallsalz eines Polyoxyalkylens verwendet.
21. Verfahren gemäß einem der Ansprüche 1 bis 20, dadurch gekennzeichnet, daß man eine verschäumte Farbstoffzubereitung über eine Auftragswalze kontinuierlich in Form einer Schicht auf das textile Fasermaterial aufbringt, den Schaum durch Anlegen eines Unterdrucks von > 0 bis 1 bar so weit in das Fasermaterial saugt, daß eine in der Höhe reduzierte Schaumdecke zurückbleibt, das Fasermaterial mit Sattdampf dämpft, dann mit Wasser abspritzt und schließlich trocknet.
22. Verfahren gemäß einem der Ansprüche 1 bis 21, dadurch gekennzeichnet, daß man eine erste Schaumschicht auf die Florseite eines Teppichs aufbringt, mittels Vakuum in den Teppich einsaugt, anschließend eine zweite Schaumschicht aufbringt, mit Sattdampf dämpft und anschließend gegebenenfalls mit Wasser abspritzt und trocknet.
23. Verfahren gemäß Anspruch 22, dadurch gekennzeichnet, daß man den Teppich mit dem Schaum färbt, dämpft, mit Wasser abspritzt und schließlich trocknet.
24. Verfahren gemäß einem der Ansprüche 1 bis 23, dadurch gekennzeichnet, daß man eine verschäumte Ausrüstmittelzubereitung über eine Auftragswalze kontinuierlich in Form einer Schicht auf das textile Fasermaterial aufbringt, den Schaum durch Anlegen eines Unterdrucks von > bis 1 bar so weit in das Fasermaterial saugt, daß eine in der Höhe reduzierte Schaumdecke zurückbleibt, das Fasermaterial anschließend dämpft.
25. Verfahren gemäß Anspruch 24, dadurch gekennzeichnet, daß man die verschäumte Ausrüstmittelzubereitung auf das Textilmaterial nacheinander von jeder Seite aufbringt.
26. Verfahren gemäß einem der Ansprüche 1 bis 20, dadurch gekennzeichnet, daß man den Teppich mit einer wässerigen Färbeflotte imprägniert, anschließend die verschäumte Zubereitung aufbringt und die Färbung durch Dämpfen fertigstellt.
27. Verfahren gemäß Anspruch 26, dadurch gekennzeichnet, daß auch die Färbeflotte die Komponenten (a) und (b) enthält.
EP80810380A 1979-12-14 1980-12-08 Verfahren zum Veredeln, insbesondere zum Färben, optisch Aufhellen oder Ausrüsten von textilen Fasermaterialien Expired EP0030919B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT80810380T ATE4466T1 (de) 1979-12-14 1980-12-08 Verfahren zum veredeln, insbesondere zum faerben, optisch aufhellen oder ausruesten von textilen fasermaterialien.

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CH11095/79 1979-12-14
CH1109579 1979-12-14
CH396180 1980-05-21
CH3961/80 1980-05-21

Publications (2)

Publication Number Publication Date
EP0030919A1 EP0030919A1 (de) 1981-06-24
EP0030919B1 true EP0030919B1 (de) 1983-08-17

Family

ID=25694281

Family Applications (1)

Application Number Title Priority Date Filing Date
EP80810380A Expired EP0030919B1 (de) 1979-12-14 1980-12-08 Verfahren zum Veredeln, insbesondere zum Färben, optisch Aufhellen oder Ausrüsten von textilen Fasermaterialien

Country Status (9)

Country Link
US (1) US4365967A (de)
EP (1) EP0030919B1 (de)
BR (1) BR8008130A (de)
CA (1) CA1149557A (de)
DE (2) DE3064604D1 (de)
DK (1) DK532280A (de)
ES (1) ES8205025A1 (de)
FR (1) FR2472052A1 (de)
GB (1) GB2069542B (de)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE15240T1 (de) * 1981-02-11 1985-09-15 Ciba Geigy Ag Verfahren zum faerben oder ausruesten von textilen fasermaterialien.
JPS57171768A (en) * 1981-04-15 1982-10-22 Shinetsu Chem Ind Co Fiber treating agent
US4444563A (en) * 1981-09-07 1984-04-24 Ciba-Geigy Corporation Dyeing assistant and use thereof in dyeing or printing synthetic polyamide fibre materials
ATE20099T1 (de) 1981-12-29 1986-06-15 Ciba Geigy Ag Verfahren zum trichromie-faerben oder -bedrucken.
EP0092512B1 (de) * 1982-04-08 1986-04-30 Ciba-Geigy Ag Verfahren zum Trichromie-Färben oder -Bedrucken
EP0102926B1 (de) * 1982-09-03 1987-01-07 Ciba-Geigy Ag Färbereihilfsmittel und seine Verwendung beim Färben oder Bedrucken von synthetischen Polyamidfasermaterialien
ATE30176T1 (de) * 1983-05-25 1987-10-15 Ciba Geigy Ag Verfahren zum trichromie-faerben oder -bedrucken.
US4477514A (en) * 1983-11-14 1984-10-16 Dow Corning Corporation Method for treating cellulosic textile fabrics with aqueous emulsions of carboxyfunctional silicone fluids
US4604099A (en) 1984-01-30 1986-08-05 Ciba-Geigy Corporation Process for printing cellulose-containing textile material with foam-containing reactive dyes and addition of (meth) acrylamide polymers
US4761296A (en) * 1984-05-18 1988-08-02 Nabisco Brands, Inc. Crackers having stabilized sunflower seeds
US4556434A (en) * 1984-12-10 1985-12-03 Airrigation Engineering Company, Inc. Sewer cleaning foam composition and method
DE3514110A1 (de) * 1985-04-19 1986-10-23 Hoechst Ag, 6230 Frankfurt Verfahren zum endengleichen ausruesten von textilen fasermaterialien mit substantiven ausruestungsmitteln
DE4111661A1 (de) * 1991-04-10 1992-10-15 Renk Ag Planetengetriebe
US5277839A (en) * 1992-06-03 1994-01-11 Litton Industrial Automation Automated Vehicles Guidepath material
US6251369B1 (en) 1996-03-05 2001-06-26 Sultan Dental Products Dental fluoride foam
US5789037A (en) * 1997-01-31 1998-08-04 Premier Colors, Inc. Cross-linking agent and process for cross-linking binder and textile colorant on a textile fabric
CA2327034C (en) * 1999-12-01 2007-07-17 Canon Kabushiki Kaisha Method of reforming element surface, element with reformed surface, method of manufacturing element with reformed surface, surface treatment liquid for forming reformed surface, and method of manufacturing surface treatment liquid
CN103989274A (zh) * 2013-02-19 2014-08-20 建跃实业股份有限公司 光动能布

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2402353A1 (de) * 1974-01-18 1975-07-31 Hoechst Ag Verfahren zum faerben und/oder ausruesten von textilen flaechengebilden
DE2715862A1 (de) * 1977-04-09 1978-10-19 United Merchants & Mfg Verfahren zur textilveredelung und zusammensetzung
DE2722083A1 (de) * 1977-05-16 1978-11-23 Union Carbide Corp Verfahren zur behandlung eines poroesen substrates
DE2929954A1 (de) * 1978-07-27 1980-02-21 Ciba Geigy Ag Verfahren zum behandeln von textilen fasermaterialien
EP0009240A1 (de) * 1978-09-19 1980-04-02 United Merchants and Manufacturers, Inc. Schaumpräparat zur Behandlung von Textilmaterialien
EP0009721A1 (de) * 1978-09-19 1980-04-16 United Merchants and Manufacturers, Inc. Verfahren zum Behandeln von Textilmaterialien mit Hilfe von Schaum

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL110880C (de) * 1959-06-01
DE1420493C3 (de) * 1959-10-28 1978-04-20 Th. Goldschmidt Ag, 4300 Essen Verfahren zur Herstellung von gemischt substituierten Siloxanen
GB1099853A (en) * 1964-02-20 1968-01-17 Mitsubishi Petrochemical Co Process for producing modified propylene polymer
NL153569B (nl) * 1965-02-08 1977-06-15 Union Carbide Corp Werkwijze ter bereiding van een polyurethanschuim, alsmede de geheel of ten dele daaruit bestaande voorwerpen.
CH1157969A4 (de) * 1969-07-30 1971-07-15
US3762860A (en) * 1971-05-27 1973-10-02 Dexter Chemical Corp Foam dyeing process
US3990840A (en) * 1972-03-24 1976-11-09 Hoechst Aktiengesellschaft Process and device for the dyeing and/or finishing of textile plane articles
US3913359A (en) * 1972-06-22 1975-10-21 Rca Corp Dyeing station in an apparatus for continuously dyeing fibrous material
US4118526A (en) * 1975-06-06 1978-10-03 United Merchants And Manufacturers, Inc. Method for treating fabrics
US4099913A (en) * 1976-03-25 1978-07-11 Union Carbide Corporation Foams for treating fabrics
US4023526A (en) * 1976-03-25 1977-05-17 Union Carbide Corporation Apparatus for application of foam to a substrate
DE2722082A1 (de) * 1977-05-16 1978-11-23 Union Carbide Corp Schaumpraeparat zur behandlung eines poroesen substrates
US4193762A (en) * 1978-05-01 1980-03-18 United Merchants And Manufacturers, Inc. Textile treatment process

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2402353A1 (de) * 1974-01-18 1975-07-31 Hoechst Ag Verfahren zum faerben und/oder ausruesten von textilen flaechengebilden
DE2715862A1 (de) * 1977-04-09 1978-10-19 United Merchants & Mfg Verfahren zur textilveredelung und zusammensetzung
DE2722083A1 (de) * 1977-05-16 1978-11-23 Union Carbide Corp Verfahren zur behandlung eines poroesen substrates
DE2929954A1 (de) * 1978-07-27 1980-02-21 Ciba Geigy Ag Verfahren zum behandeln von textilen fasermaterialien
EP0009240A1 (de) * 1978-09-19 1980-04-02 United Merchants and Manufacturers, Inc. Schaumpräparat zur Behandlung von Textilmaterialien
EP0009721A1 (de) * 1978-09-19 1980-04-16 United Merchants and Manufacturers, Inc. Verfahren zum Behandeln von Textilmaterialien mit Hilfe von Schaum

Also Published As

Publication number Publication date
FR2472052B1 (de) 1984-03-16
ES497742A0 (es) 1982-06-01
FR2472052A1 (fr) 1981-06-26
DK532280A (da) 1981-06-15
US4365967A (en) 1982-12-28
EP0030919A1 (de) 1981-06-24
ES8205025A1 (es) 1982-06-01
DE3064604D1 (en) 1983-09-22
GB2069542A (en) 1981-08-26
CA1149557A (en) 1983-07-12
BR8008130A (pt) 1981-06-30
GB2069542B (en) 1983-08-10
DE3046700A1 (de) 1981-08-27

Similar Documents

Publication Publication Date Title
EP0030919B1 (de) Verfahren zum Veredeln, insbesondere zum Färben, optisch Aufhellen oder Ausrüsten von textilen Fasermaterialien
DE2929954C2 (de) Verfahren zum Behandeln von textilen Fasermaterialien
EP0436470B1 (de) Verfahren zum photochemischen Stabilisieren von gefärbten Polyamid-Fasermaterialien
EP0058139B1 (de) Verfahren zum Färben oder Ausrüsten von textilen Fasermaterialien
DE2625706A1 (de) Verfahren zum entschaeumen waesseriger systeme
US4123378A (en) Stain removing agents and process for cleaning and optionally dyeing textile material
DE2943754A1 (de) Schaumdaempfungsmittel und ihre verwendung zum entschaeumen waessriger systeme
CH651581A5 (de) Waessrige zusammensetzungen enthaltend polymere auf acrylsaeurebasis, sowie verfahren zu deren herstellung.
EP0055975A1 (de) Stabiles, wasserfreies Textilhilfsmittel und seine Verwendung bei der oxidativen Entschlichtung von cellulosehaltigen Fasermaterialien
DE2153366B2 (de) 03.09.71 Schweiz 12944-71 Polyglykolätherverbindungen, Verfahren zu deren Herstellung und deren Verwendung
US4787912A (en) Dyeing assistant and use thereof for dyeing or whitening synthetic nitrogen-containing fibre materials
EP0274350B1 (de) Lagerstabiles, hartwasserbeständiges, wässeriges Textilhilfsmittel
DE3119518A1 (de) Verfahren zum faerben oder ausruesten von textilen fasermaterialien
CH679155A5 (de)
EP0064030B1 (de) Färbereihilfsmittelgemisch und seine Verwendung beim Färben von synthetischen Fasermaterialien
EP0360743A1 (de) Nichtionogene Tensidgemische und ihre Verwendung als Textilveredlungsmittel
EP0064029B1 (de) Hilfsmittelgemisch und seine Verwendung als Faltenfreimittel beim Färben oder optischen Aufhellen von Polyesterfasern enthaltenden Textilmaterialien
DE2410155A1 (de) Propoxylierte oder butoxylierte verzweigte fettalkohole
DE2938606A1 (de) Verfahren zum klotzfaerben von textilem cellulosematerial
US5176715A (en) Process for dyeing cellulosic fiber materials with vat dyes: dosing continuously over time interval
CH679258B5 (de)
DE1469646C (de) Verfahren zum Färben und Bedrucken von synthetischen Polyamidfasern
DE2204768A1 (de) Verfahren zur durchfuehrung von textilbehandlungsprozessen in der textilindustrie
DE2747699C3 (de) Kurzflottenfärbeverfahren für Stückwaren aus Cellulosefasern in Strangform
DE1444314B2 (de) Schaumarmes, egalisierendes netzmittel

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19801210

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT NL SE

ITF It: translation for a ep patent filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 4466

Country of ref document: AT

Date of ref document: 19830915

Kind code of ref document: T

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19830831

Year of fee payment: 4

REF Corresponds to:

Ref document number: 3064604

Country of ref document: DE

Date of ref document: 19830922

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19831104

Year of fee payment: 4

Ref country code: CH

Payment date: 19831104

Year of fee payment: 4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19831123

Year of fee payment: 4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19831130

Year of fee payment: 4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19831230

Year of fee payment: 4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19831231

Year of fee payment: 4

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: TH. GOLDSCHMIDT AG

Effective date: 19840309

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: HOECHST AKTIENGESELLSCHAFT, FRANKFURT

Effective date: 19840517

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state
27W Patent revoked

Effective date: 19841109

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

BERE Be: lapsed

Owner name: CIBA-GEIGY A.G.

Effective date: 19841208

NLR2 Nl: decision of opposition
REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 80810380.8

Effective date: 19851008