EP0436470B1 - Verfahren zum photochemischen Stabilisieren von gefärbten Polyamid-Fasermaterialien - Google Patents

Verfahren zum photochemischen Stabilisieren von gefärbten Polyamid-Fasermaterialien Download PDF

Info

Publication number
EP0436470B1
EP0436470B1 EP90811036A EP90811036A EP0436470B1 EP 0436470 B1 EP0436470 B1 EP 0436470B1 EP 90811036 A EP90811036 A EP 90811036A EP 90811036 A EP90811036 A EP 90811036A EP 0436470 B1 EP0436470 B1 EP 0436470B1
Authority
EP
European Patent Office
Prior art keywords
component
carbon atoms
process according
mol
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90811036A
Other languages
English (en)
French (fr)
Other versions
EP0436470A1 (de
Inventor
Thys Bouwknegt
Claude Dietz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Novartis AG
Original Assignee
Ciba Geigy AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ciba Geigy AG filed Critical Ciba Geigy AG
Publication of EP0436470A1 publication Critical patent/EP0436470A1/de
Application granted granted Critical
Publication of EP0436470B1 publication Critical patent/EP0436470B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P5/00Other features in dyeing or printing textiles, or dyeing leather, furs, or solid macromolecular substances in any form
    • D06P5/02After-treatment
    • D06P5/10After-treatment with compounds containing metal
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/50Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with organometallic compounds; with organic compounds containing boron, silicon, selenium or tellurium atoms
    • D06M13/503Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with organometallic compounds; with organic compounds containing boron, silicon, selenium or tellurium atoms without bond between a carbon atom and a metal or a boron, silicon, selenium or tellurium atom
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P1/00General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed
    • D06P1/44General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using insoluble pigments or auxiliary substances, e.g. binders
    • D06P1/64General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using insoluble pigments or auxiliary substances, e.g. binders using compositions containing low-molecular-weight organic compounds without sulfate or sulfonate groups
    • D06P1/642Compounds containing nitrogen
    • D06P1/6423Compounds containing azide or oxime groups
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P3/00Special processes of dyeing or printing textiles, or dyeing leather, furs, or solid macromolecular substances in any form, classified according to the material treated
    • D06P3/02Material containing basic nitrogen
    • D06P3/04Material containing basic nitrogen containing amide groups
    • D06P3/24Polyamides; Polyurethanes
    • D06P3/241Polyamides; Polyurethanes using acid dyes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S8/00Bleaching and dyeing; fluid treatment and chemical modification of textiles and fibers
    • Y10S8/92Synthetic fiber dyeing
    • Y10S8/924Polyamide fiber

Definitions

  • the present invention relates to a process for the photochemical stabilization of dyed polyamide fiber materials, preferably with a pronounced three-dimensional character (pile and pile materials) and in particular carpets with the aid of foam.
  • EP-A-0 245 204 describes a process for the photochemical stabilization of polyamide fiber material with a mixture of an organic copper complex, a light stabilizer and optionally an antioxidant, which is applied to the polyamide fiber material from an aqueous bath.
  • Bisazomethines of aromatic aldehydes or ketones are understood here as Schiff bases of aliphatic or aromatic diamines, the aldehydes and ketones having an OH group in the o-position to the formyl or acyl radical.
  • the bond with the metal atom takes place via these two OH groups and the two nitrogen atoms in the bisazaomethine part. Accordingly, these are tidentate ligands.
  • These can contain one or more sulfo groups, which are in the aldehyde or Part of the ketone and / or in the bisazomethine bridge.
  • Copper complexes of the formula are preferably used as component (a) in which R represents hydrogen or an optionally substituted alkyl or aryl radical, Q is an optionally substituted alkylene, cycloalkylene or arylene radical and n means 0, 1, 2 or 3.
  • the benzene rings A and B can also be substituted independently of one another.
  • R denotes an optionally substituted alkyl radical
  • a C1-C8-alkyl radical in particular a C1-C4-alkyl radical, which can be branched or unbranched and optionally substituted, by halogen such as fluorine, chlorine or bromine, by C1- C4-alkoxy such as methoxy or ethoxy, by a phenyl or carboxyl radical, by C1-C4-alkoxycarbonyl such as the acetyl radical or by hydroxy or a mono- or dialkylated amino group.
  • cyclohexyl radical which can also be substituted, for example by C1-C4-alkyl or C1-C4-alkoxy.
  • R is an optionally substituted aryl radical
  • a phenyl or naphthyl radical is particularly suitable, which can be substituted by C1-C4-alkyl such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl and tert-butyl, C1 -C4-alkoxy such as methoxy, ethoxy, propoxy, isopropoxy, butoxy, isobutoxy, sec-butoxy and tert-butoxy, halogen such as fluorine, chlorine or bromine, C2-C5-alkanoylamino such as acetylamino, propionylamino or butyrylamino, nitro, cyano, sulfo or a mono- or dialkylated amino group.
  • C1-C4-alkyl such as methyl, ethyl, propyl, isopropyl, butyl, isobuty
  • Q is an alkylene radical, it is primarily an optionally substituted C2-C4 alkylene radical, in particular a -CH2-CH2 bridge.
  • a C2-C8-alkylene chain interrupted by oxygen or in particular by nitrogen is also possible, in particular the - (CH2) 3-NH- (CH2) 3 bridge.
  • Q is an arylene radical, it is primarily a phenylene radical, in particular an o-phenylene radical. This can optionally be substituted by C1-C4-alkyl or by C1-C4-alkoxy.
  • Q is a cycloalkylene radical, it is a cycloaliphatic radical with 5-7 C atoms, such as cyclopentylene, cyclohexylene or cycloheptylene.
  • Possible substituents for the benzene rings A and B are: halogen such as fluorine, chlorine or bromine, the cyano or nitro group, alkyl, alkoxy, hydroxy, hydroxyalkyl, alkoxyalkoxy, alkoxyalkoxyalkoxy, carboxymethoxy, alkylamino, dialkylamino, -SO2NH2, -SO2NHR0 or -SO2N (R0) 2, where R0 is alkyl or alkoxyalkyl and wherein alkyl and alkoxy are each to be understood to be residues with 1-4 carbon atoms, or one of residues ortho to one another, together with the carbon atoms to which they are attached are formed benzene residue.
  • halogen such as fluorine, chlorine or bromine
  • the cyano or nitro group alkyl, alkoxy, hydroxy, hydroxyalkyl, alkoxyalkoxy, alkoxyalkoxyalkoxy, carboxymethoxy, alkyla
  • the sulfo group (s) which are located in the benzene rings A and / or B and / or in the bridge member Q is (are) preferably in the form of an alkali metal salt, in particular a sodium or also an amine salt.
  • R ' is hydrogen or C1-C3 alkyl
  • R1, R2, R3 and R4 are each hydrogen, halogen, hydroxy, hydroxyalkyl, alkyl, alkoxy, alkoxyalkoxy, alkoxyalkoxyalkoxy, carboxymethoxy, alkylamino, dialkylamino, -SO2NH2, -SO2NHR2 or -SO2NR2, where R is alkyl or alkoxyalkyl and is alkyl or alkoxy in each case groups with 1-4 C atoms are to be understood, or R1 and R2 or R2 and R3 or R3 and R4 together with the carbon atoms to which they are attached form a benzene radical, X1 and Y1 each represent hydrogen, C1-C4 alkyl or an aromatic radical or X1 and Y1 together with the C atoms to which they are attached form a benzene radical, X1 and Y1 each represent hydrogen, C1-C4 alkyl or
  • C1 to C4 alkyl for X1 and Y1 means e.g. Methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl and tert-butyl.
  • Aromatic radicals for X1 and Y1 are especially optionally substituted naphthyl and especially phenyl radicals.
  • the copper complex compounds of the formula (2) are water-insoluble, provided they have no carboxymethoxy radicals (-O-CH2-COOH) or their salts.
  • the cycloaliphatic radicals are cyclopentylene, cyclohexylene or cycloheptylene radicals.
  • R1 to R beutton each independently represent hydrogen, chlorine, bromine, methyl, ethyl, butyl, methoxy, ethoxy, methoxyethoxy, ethoxyethoxyethoxy or diethylamino or R1 and R2 together form a condensed benzene radical.
  • substituents X1 and Y1 is preferably one hydrogen and the other hydrogen, methyl, ethyl or phenyl or X1 and Y1 together form a cyclohexylene radical.
  • Water-insoluble copper complexes of the formula are preferably used in which R5 to R8 independently of one another each hydrogen, hydroxy, bromine, methyl, tert. Butyl, methoxy, methoxyethoxy, ethoxyethoxyethoxy or diethylamino, X2 is hydrogen, methyl, ethyl, or phenyl and Y2 is hydrogen or R5 and R6 together form a condensed benzene radical or X2 and Y2 together form a cyclohexylene radical.
  • R9, R10 and R11 each independently represent hydrogen, chlorine, bromine, methyl or methoxy or wherein R9 and R10 together form a fused-on benzene ring and X3 is hydrogen, methyl, ethyl or phenyl.
  • copper complexes of acylhydrazone aromatic aldehydes and ketones which as Component (a) are used, it is primarily the complexes of the formula wherein R1 and R12 independently of one another are hydrogen or an optionally substituted alkyl or aryl radical and copper complexes of semicarbazones or thiosemicarbazones as component (a) are primarily the complexes of the formula wherein R1 has the meaning given by formula (5) and Z2 represents oxygen or sulfur.
  • R1 and / or R12 is an alkyl radical, this can be branched or unbranched and has a chain length of preferably 1 to 8, in particular 1 to 4, carbon atoms.
  • Suitable substituents are halogen such as fluorine, chlorine or bromine, C1-C4-alkoxy such as methoxy or ethoxy, also phenyl or carbonyl, C1-C4alkoxycarbonyl such as e.g. Acetyl or hydroxy, mono- or dialkylamino.
  • R1 and / or R12 is an optionally substituted aryl radical, a phenyl or naphthyl radical, which can be substituted by C1-C4-alkyl such as methyl, ethyl, propyl, isopropyl, is particularly suitable , Butyl, isobutyl, sec-butyl or tert-butyl, C1-C4-alkoxy such as methoxy, ethoxy, propoxy, isopropoxy, butoxy, isobutoxy, sec-butoxy or tert-butoxy, halogen such as fluorine, chlorine or bromine, C2-C5 Alkanoylamino such as acetylamino, propionylamino or butyrylamino, nitro, cyano, sulfo or a mono- or dialkylated amino group.
  • C1-C4-alkyl such as methyl, ethyl, propyl, isopropyl
  • Such complexes of the formula (5) are preferably used in which R1 is hydrogen and R12 is hydrogen, methyl or in particular the phenyl radical, and especially the complexes in which the sulfo group is in turn in the p-position to the oxygen.
  • Copper complexes of oximes as component (a) are mainly copper compounds of phenols of the formula wherein R is hydrogen, hydroxy, alkyl or cycloalkyl and in which the ring A may optionally be further substituted, such as copper compounds of salicylaldoxime and salicyldroxamic acid.
  • Suitable alkyl radicals are those with 1 to 4 carbon atoms, suitable cycloalkyl radicals cyclohexyl and methylcyclohexyl radicals, suitable substituents in ring A methyl, methoxy or chlorine. However, this ring is preferably unsubstituted.
  • the complexes of formulas (1) to (5) are preferably in neutral form, i.e. used as alkali salt, especially sodium or amine salt.
  • the compounds which can be used as component (a) are known and can be prepared by processes known per se. They are e.g. known from EP-A 51 188, 113 856 and 162 811 and can be prepared by known methods.
  • the copper complexes which can be used as component (a) are expediently applied from an aqueous bath, these being used advantageously in an amount such that 5 to 200 »g, in particular 10 to 100» g copper are added to 1 g polyamide fiber material.
  • the compounds of component (a) are water-insoluble, they are expediently used as finely divided dispersions, which are more common by grinding in the presence of Dispersants can be obtained.
  • the aqueous preparation contains (b) an anionic surfactant or a nonionic surfactant or a mixture of these surfactants and optionally (c) a salt of a hydrolyzed polymaleic anhydride and (d) a polar organic solvent.
  • Component (b) of the aqueous preparation constitutes the actual foaming agent.
  • Anionic or nonionic surfactants or mixtures of anionic and nonionic surfactants are generally suitable for this.
  • the anionic surfactants of component (b) are preferably alkylene oxide adducts, e.g. acidic ether groups or preferably ester groups of inorganic or organic acids, addition products of alkylene oxides, especially ethylene oxide and / or propylene oxide or styrene oxide onto aliphatic hydrocarbon radicals with a total of at least 2 carbon atoms, organic hydroxyl, carboxyl, amino and / or amido compounds or mixtures thereof Fabrics.
  • These acidic ethers or esters can be used as free acids or as salts, e.g. Alkali metal, alkaline earth metal, ammonium or amine salts are present.
  • anionic surfactants are prepared by known methods by adding at least 1 mol, preferably more than 1 mol, for example 2 to 60 mol, of ethylene oxide or propylene oxide to the organic hydroxyl, carboxyl, amino and / or amido compounds, or alternately in any order Add ethylene oxide and propylene oxide and then etherify or esterify the adducts and, if appropriate, convert the ethers or the esters into their salts.
  • the basic materials are higher fatty alcohols, ie alkanols or alkenols each with 8 to 22 carbon atoms, dihydric to hexavalent aliphatic alcohols with 2 to 9 carbon atoms, alicyclic alcohols, phenylphenols, benzylphenols, alkylphenols with one or more alkyl substituents, or at least together
  • fatty acids with 8 to 22 carbon atoms amines which have aliphatic and / or cycloaliphatic hydrocarbon radicals of at least 8 carbon atoms, particularly fatty amines containing such, hydroxyalkylamines, hydroxyalkylamides and aminoalkyl esters of fatty acids or dicarboxylic acids and higher alkylated aryloxycarboxylic acids.
  • Component (I) of the preferred anionic surfactants mentioned can be, for example, by the formula or the formula (8) RO- (CH2CH2-O) z -X in which R is alkyl or alkenyl each having 8 to 22 carbon atoms, X is the acid residue of an inorganic, oxygen-containing acid or the rest of an inorganic acid, p 4 to 12 and z 2 to 15.
  • the alkyl radicals on the benzene ring of the formula (7) can be butyl, hexyl, n-octyl, n-nonyl, p-tert-octyl, p-tert-nonyl, decyl or dodecyl.
  • the alkyl radicals having 8 to 12 carbon atoms are preferred, in particular the octyl and nonyl radicals.
  • the acid residue X is derived, for example, from low molecular weight dicarboxylic acids, such as Maleic acid, malonic acid, succinic acid or sulfosuccinic acid and is connected to the ethyleneoxy part of the molecule via an ester bridge.
  • X is derived from inorganic polybasic acids such as orthophosphoric acid and especially sulfuric acid.
  • the acid residue X is preferably in salt form, i.e. e.g. as an alkali metal, ammonium or amine salt. Examples of such salts are lithium, sodium, potassium, ammonium, trimethylamine, ethanolamine, diethanolamine or triethanolamine salts.
  • the fatty alcohols for the preparation of component (I) of formula (8) are e.g. those with 8 to 22, in particular with 8 to 18 carbon atoms, such as octyl, decyl, lauryl, tridecyl, myristyl, ceryl, stearyl, oleyl, arachidyl or behenyl alcohol.
  • a preferred compound of formula (8) is the sodium salt of lauryl triglycol ether sulfonic acid.
  • the alkylphenyl sulfonates of component (II) are generally alkali metal salts of the corresponding monosulfonic acids having 8 to 18 carbon atoms in the alkyl part which is straight-chain or branched, saturated or unsaturated.
  • alkyl radicals are N-octyl, tert-octyl, n-nonyl, tert-nonyl, n-decyl, n-dodecyl, tridecyl, myristyl, cetyl, stearyl or oleyl.
  • Alkyl radicals having 8 to 12 carbon atoms are preferred, dodecylbenzenesulfonate (sodium salt) being particularly suitable.
  • Components (I) and (II) can be used alone or as mixtures with one another.
  • the nonionic surfactants according to component (b) are advantageously nonionic alkylene oxide addition products of 1 to 100 moles of alkylene oxide, e.g. Ethylene oxide and / or propylene oxide in 1 mol of an aliphatic monoalcohol with at least 4 carbon atoms, a 3- to 6-valent aliphatic alcohol, a phenol which is optionally substituted by alkyl or phenyl or a fatty acid with 8 to 22 carbon atoms.
  • alkylene oxide e.g. Ethylene oxide and / or propylene oxide in 1 mol of an aliphatic monoalcohol with at least 4 carbon atoms, a 3- to 6-valent aliphatic alcohol, a phenol which is optionally substituted by alkyl or phenyl or a fatty acid with 8 to 22 carbon atoms.
  • the aliphatic monoalcohols for producing the nonionic surfactants are, for example, water-soluble monoalcohols with at least 4 carbon atoms, preferably 8 to 22 carbon atoms. These alcohols can be saturated or unsaturated and branched or straight-chain and can be used alone or in a mixture. Natural alcohols such as myristyl alcohol, cetyl alcohol, stearyl alcohol or oleyl alcohol or synthetic alcohols such as in particular 2-ethylhexanol, also trimethylhexanol, trimethylnonyl alcohol, hexadecyl alcohol or fatty alcohols can be reacted with the alkylene oxide.
  • alkylene oxides that can be reacted with alkylene oxide are 3- to 6-valent alkanols. These contain 3 to 6 carbon atoms and are in particular glycerol, trimethylolpropane, erythritol, mannitol, pentaerythritol and sorbitol.
  • the 3- to 6-valent alcohols are preferably reacted with propylene oxide or ethylene oxide or mixtures of these alkylene oxides.
  • Suitable optionally substituted phenols are, for example, phenol, o-phenylphenol or alkylphenols, the alkyl radical of which has 1 to 16, preferably 4 to 12, carbon atoms.
  • alkylphenols are p-cresol, butylphenol, tributylphenol, octylphenol and especially nonylphenol.
  • the fatty acids preferably have 8 to 12 carbon atoms and can be saturated or unsaturated, e.g. capric, lauric, myristic, palmitic or stearic acid or decenic, dodecenic, tetradecenic, hexadecenic, oleic, linoleic, linolenic or preferably ricinoleic acid.
  • Component (IV) advantageously includes octyl or preferably nonylphenol-ethylene oxide adducts with 2 to 12 ethylene oxide units.
  • the following compounds may be mentioned in particular: p-octylphenol / 2 mol ethylene oxide, p-nonylphenol / 9 mol ethylene oxide, p-nonylphenol / 10 mol ethylene oxide, p-nonylphenol / 11 mol ethylene oxide.
  • alkylphenol-ethylene oxide adducts can be e.g. derived from butylphenol or tributylphenol.
  • Component (IV) can expediently also be an adduct of 2 to 15 mol, preferably 7 to 15 mol, of ethylene oxide with 1 mol of an aliphatic monoalcohol having 8 to 22 carbon atoms.
  • the aliphatic monoalcohols can be saturated or unsaturated and can be used alone or as mixtures.
  • Natural alcohols such as e.g. Lauryl alcohol, myristyl alcohol, cetyl alcohol, stearyl alcohol, oleyl alcohol or synthetic alcohols such as in particular 2-ethylhexanol, furthermore triemethylhexanol, trimethylnonyl alcohol, hexadecyl alcohol or C12-C22 fatty alcohols are reacted with ethylene oxide.
  • Fatty acid can be used as component (IV).
  • the fatty acids preferably have 10 to 20 carbon atoms and can be saturated or unsaturated, such as, for example, capric, lauric, myristic, palmitic or stearic acid or decene, dodecene, tetradecene, hexadecene, oil, Linoleic or ricinoleic acid.
  • Component (V) is, by definition, optionally ethoxylated fatty alcohol, the HLB value of which is expediently 0.1 to 10, in particular 0.5 to 10.
  • Components (V) with HLB values in the range from 0.1 to 7.0 have proven to be particularly advantageous.
  • the HLB value is a measure of the "hydrophilic-lipophilic balance" in a molecule.
  • the HLB values can be determined or calculated experimentally according to WC Griffin, ISCC 5 , 249 (1954) or JT Davis, Tenside Detergens 11 (3), 133 (1974).
  • the fatty alcohols which can be considered as component (V) can be saturated or unsaturated. They preferably contain 12 to 18 carbon atoms. Examples of alcohols for component (V) may be lauryl, myristyl, cetyl, stearyl, oleyl, arachidyl, behenyl alcohol or C12-C22 fatty alcohols.
  • These fatty alcohols can advantageously be mono-, di- or triethoxylated.
  • the fatty acid-alkanolamine reaction products of component (VI) are e.g. products which are produced from fatty acids with 8 to 22, preferably 8 to 18 carbon atoms and alkanolamines with 2 to 6 carbon atoms, such as ethanolamine, diethanolamine, isopropanolamine or diisopropanolamine, diethanolamine being preferred.
  • Fatty acid diethanolamines having 8 to 18 carbon atoms are particularly preferred.
  • Suitable fatty acids are e.g. Caprylic, capric, lauric, myristic, palmitic, stearic, arachic, behenic, oleic, linoleic, linolenic, arachidonic or coconut fatty acids.
  • reaction products are coconut fatty acid diethanolamide and lauric acid or stearic acid diethanolamide.
  • nonionic surfactants are alkylene oxide reaction products of the formula wherein R 'is hydrogen, alkyl or alkenyl with at most 18 carbon atoms, preferably 8 to 16 carbon atoms, o-phenylphenyl or alkylphenyl with 4 to 12 carbon atoms in the alkyl part, of Z1 and Z2 one hydrogen and the other methyl, y is 1 to 15 and the Sum of n1 + n2 is 3 to 15.
  • nonionic surfactants are fatty alcohol polyglycol mixed ethers, in particular addition products of 3 to 10 moles of ethylene oxide and 3 to 10 moles of propylene oxide with aliphatic mono-carbon of 8 to 16 carbon atoms.
  • attachment products are examples of that Alkylene oxide reaction products of the formula (9): a1. Adduct of 12 moles of ethylene oxide and 12 moles of propylene oxide with 1 mole of a C4-C18 fatty alcohol, a2. Adduct of 5 moles of ethylene oxide and 5 moles of propylene oxide with 1 mole of C12-C14 fatty alcohol, a3. Adduct of 9 moles of ethylene oxide and 7 moles of propylene oxide with 1 mole of C16-C18 fatty alcohol, a4. Addition product of 9.5 mol of ethylene oxide and 9.5 mol of propylene oxide with 1 mol of nonylphenol.
  • component (a) are a non-coloring copper complex of bisazomethines, acylhydrazones, semicarbazones or thiosemicarbazones of aromatic aldehydes or ketones or oximes and as component (b) combinations of components (I), (II), (III), (IV) , (V) and (VI) are used.
  • a copper complex compound of the formula (2) and component (b) combinations of components (I), (II), (III), (IV), (V) and (VI) are particularly preferably used as component (a).
  • the compounds of component (b) are very good foaming agents, i.e. on the one hand, they can form the foam in sufficient quantity with a very small amount used, and on the other hand they can also stabilize the foam formed.
  • hydrolyzed polymaleic anhydride is used, which advantageously has a molecular weight of 300 to 5000 and which is at least partially present as a water-soluble salt of such a polymaleic anhydride.
  • Polymers of this type are suitable as complexing agents for binding the impurities present in the fiber material, such as calcium and / or magnesium salts.
  • Polymaleic anhydride is a homopolymer of maleic anhydride and can be hydrolyzed very easily, for example by heating with water to form a polymeric product which contains free carboxylic acid groups on a main carbon chain.
  • the product is not a pure polymaleic acid.
  • This polymeric product formed by hydrolysis of polymaleic anhydride is referred to as hydrolyzed polymaleic anhydride.
  • This hydrolyzed polymaleic anhydride can be prepared from a polymer obtained by addition polymerization from a starting monomer consisting essentially of maleic anhydride under the conditions of bulk polymerization or by solution polymerization.
  • Maleic anhydride is preferably polymerized in an inert organic solvent such as toluene or xylene in the presence of a polymerization catalyst, in particular a radical initiator such as benzoyl peroxide, di-tertiary-butyl peroxide or monobutyl hydroperoxide at temperatures up to 150 ° C, e.g. 120 ° to 145 ° C.
  • a polymerization catalyst in particular a radical initiator such as benzoyl peroxide, di-tertiary-butyl peroxide or monobutyl hydroperoxide at temperatures up to 150 ° C, e.g. 120 ° to 145 ° C.
  • the main chain of the primary polymer is essentially formed by non-hydrolyzable bonds.
  • the primary non-hydrolyzed polymer product is then hydrolyzed with water or a water-soluble alkali after being freed from unreacted monomer and other non-polymeric types of molecules and so used.
  • the acid number can be determined by potentiometric titration in aqueous solution against 0.1N potassium hydroxide solution, graphing ⁇ pH: ⁇ V and considering the highest peak as the end point; ⁇ pH means the pH change, ⁇ V the volume change and V the titrated volume.
  • the molecular weight of the hydrolyzed polymaleic anhydride is in the specified low range.
  • Polymaleic anhydride having a molecular weight which does not exceed 2000 and is preferably in the range from 350 to 1000 is preferably used.
  • the molecular weight of the polymaleic anhydride is generally determined arithmetically from osmometric data of the polymaleic anhydride before the hydrolysis.
  • bases By adding bases to the hydrolyzed polymaleic anhydride, their carboxyl groups are present as water-soluble salt groups when using medium-strong to strong bases. When using weak bases, the carboxyl groups are only partially present as water-soluble salts.
  • salt groups e.g. Alkali metal, alkyl ammonium, alkanol ammonium or ammonium salts called.
  • the alkali metal salts include, in particular, the sodium or potassium salt and the alkylammonium or alkanolammonium salts include the trimethylammonium, monoethanolammonium, diethanolammonium or triethanolammonium salt.
  • the sodium or ammonium salt is preferred.
  • the component (c) is the salt of the hydrolyzed polymaleic anhydride of the type indicated as an aqueous, about 40 to 60 percent by weight solution.
  • Suitable polar organic solvents for the optional component (d) of the process according to the invention are preferably solvents soluble in water in any ratio.
  • Component (d) serves to improve the solubility of the individual components during use.
  • water-soluble, organic solvents are aliphatic C1-C4 alcohols such as methanol, ethanol or the propanols; Alkylene glycols such as ethylene glycol or propylene glycol; Monoalkyl ethers of glycols such as ethylene glycol monomethyl, ethyl or butyl ether and diethylene glycol monomethyl or ethyl ether; Ketones such as acetone, methyl ethyl ketone, cyclohexanone, diacetone alcohol; Ethers and acetals such as diisopropyl ether, diphenyl oxide, dioxane, tetrahydrofuran, also tetrahydrofurfuryl alcohol, pyridine, acetonitrile
  • Mixtures of the solvents mentioned can also be used.
  • Preferred are the alcohols, monoalkyl ethers of the glycols and ketones of the type mentioned, especially the ethylene glycols, e.g. Ethylene and especially propylene glycol, and diacetone alcohol.
  • the dyeing is carried out in the customary manner, for example using metal complex dyes or also using anthraquinone dyes or azo dyes.
  • metal complex dyes known types, in particular the 1: 2 chromium or 1: 2 cobalt complexes of mono- or disazo or -azomethine dyes used, which are described in large numbers in the literature.
  • dyes from other classes of dyes are of course also possible, such as disperse or vat dyes.
  • the foam-forming mixtures can also be used for fiber materials tinted white with optical brighteners.
  • optical brighteners can belong to the coumarin, oxazine, naphthalimide, stilbene, styril, pyrazine, pyrazoline, triazolyl, benzofuranyl, benzoxazolyl, bisbenzoxazolyl, thiophene bisbenzoxazolyl or benzimidazolyl series.
  • the foamed aqueous preparation can be prepared by simply stirring the individual components (a), (b) and, if appropriate, (c) and (d) with water.
  • the foamed aqueous preparation advantageously contains, based in each case on the mixture: 2 to 20 percent by weight, preferably 6 to 14 percent by weight of component (a), 0.5 to 10 percent by weight, preferably 1 to 4 percent by weight of component (b), 0 to 2 percent by weight, preferably 0 to 1 percent by weight of component (c), 0 to 5 weight percent, preferably 0 to 1.5 weight percent of component (d) and ad 100% water.
  • the amounts used in which the foamed preparations are added to the treatment liquors vary, depending on the dyeing or finishing process, between 1 and 30 g, preferably between 4 and 20 g, per liter of treatment liquor. With these quantities used, the copper content per 1 g of polyamide fiber material is between 5 to 200 »g.
  • Synthetic polyamide e.g. Polyamide 6, polyamide 66 or polyamide 12 understood.
  • fiber mixtures made of polyurethane and polyamide are also considered, e.g. made of polyamide / polyurethane material in a mixing ratio of 70:30.
  • the pure or mixed polyamide material can be in a wide variety of processing forms, e.g. as fiber, yarn, fabric, pile fabric or knitted fabric.
  • Pole fabrics made of polyamide or polyamide / polyurethane mixtures are preferred.
  • the present method is particularly suitable for the treatment of polyamide material which is exposed to light and heat and e.g. used as car upholstery or carpet.
  • the aftertreatment and dyeing liquors can also contain conventional additives, suitably electrolytes such as salts, e.g. Sodium sulfate, ammonium sulfate, sodium or ammonium phosphates or polyphosphates, ammonium acetate or sodium acetate and / or acids such as e.g. Mineral acids, such as sulfuric acid or phosphoric acid, or organic acids, suitably contain lower aliphatic carboxylic acids, such as formic, acetic or oxalic acid. The acids serve primarily to adjust the pH of the liquors used according to the invention, which is generally 4 to 8, depending on the substrate to be treated.
  • electrolytes such as salts, e.g. Sodium sulfate, ammonium sulfate, sodium or ammonium phosphates or polyphosphates, ammonium acetate or sodium acetate and / or acids
  • mineral acids such as sulfuric acid or phosphoric acid, or organic acids, suitably contain lower alipha
  • the aftertreatment and dyeing liquors can also contain further additives or auxiliaries such as catalysts, ureas, oxidizing agents, retardants, dispersants, stabilizers or emulsifiers.
  • the foams are preferably produced mechanically by means of high-speed stirrers, dynamic or static mixers or also special foam pumps, with the latter also being able to produce the foams continuously.
  • degrees of foaming i.e. Volume ratios of unfoamed to foamed preparation from 1: 6 to 1:12, preferably 1: 8 to 1:10 have been found to be suitable.
  • the foams used according to the invention are notable for the fact that they are stable over a long period of time and do not disintegrate immediately when applied to the substrate.
  • the foams used according to the invention preferably have half-lives of 2 to 10 minutes.
  • the bubble diameters in the foams are about 1 to 100 perennial
  • the foams can be applied uniformly to the fiber materials using various application techniques. Examples of some possibilities are: sucking in, rolling up, rolling up / sucking, doctor blades with fixed knives or roller doctor blades (one or both sides), padding, blowing in, pressing in, printing, passing the textile substrate through a chamber that is continuously foam is loaded and in which the foam is under a certain pressure. Single-sided roller doctor blades, padding and pressing are preferred application techniques. The above-mentioned procedures destroy the foam structure by dewatering the foam and wetting the textile material.
  • the foamed preparation is generally applied at room temperature, i.e. around 15 to 30 ° C. Based on the treated fabric, the foam application is usually 10 to 100, in particular 30 to 80 percent by weight.
  • a treatment liquor is foamed and the foam from a foam container, preferably with an adjustable doctor blade, is brought continuously to the front of the fabric via an application roller. If desired, the foam application can be repeated on the back of the fabric. When applying foam on the front and back of the fabric, intermediate drying between the application on the front and that on the back is not necessary. It is also possible to apply different treatment liquors to the front and back of the textile goods.
  • Another possibility of applying the foam is to pad the substrate with a padding liquor containing the foamed preparation.
  • the impregnation is preferably carried out with a liquor absorption of 40 to 100 percent by weight.
  • the textile is dried at temperatures between 100 and 160 ° C.
  • Example 1 5 carpet samples with a weight of 500 g / m2 are prepared.
  • the carpets are wetted in an aqueous liquor which contains 1 to 2% of a nonionic leveling agent based on alkylamine polyglycol ether per liter in a reel runner at 20 ° C. for 5 minutes.
  • the pH is 7.
  • the following dye combination is added to the liquor: 0.22% of the dye of the formula 0.014% of the dye of the formula and 0.095% of a dye mixture of the formulas
  • the treatment is continued for 5 minutes at the same temperature.
  • the temperature is then raised to 98 ° C. within 45 minutes.
  • the samples are removed from the dye bath and rinsed cold.

Description

  • Die vorliegende Erfindung betrifft ein Verfahren zum photochemischen Stabilisieren von gefärbten Polyamid-Fasermaterialien, vorzugsweise mit ausgeprägt dreidimensionalem Charakter (Pol- und Flormaterialien) und insbesondere Teppichen mit Hilfe von Schaum.
  • Die EP-A-0 245 204 beschreibt ein Verfahren zum photochemischen Stabilisieren von Polyamidfasermaterial mit einer Mischung aus einem organischen Kupferkomplex, einem Lichtschutzmittel und gegebenenfalls einem Antioxidant,
    welche auf das Polyamidfasermaterial aus einem wässrigem Bad appliziert wird.
  • Aus der EP-A-0 200 843 ist bekannt, zur Verbesserung der Lichtechtheit von Polyamidfärbungen Kupferkomplexe von Biaszomethinen einzusetzen, wobei die Kupferkomplexe im Färbebad appliziert werden. Bei diesem Prozess ist es unvermeidlich, dass Flottenabfälle entstehen, in denen sich kupferhaltige Verunreinigungen befinden.
  • Ueberraschenderweise ist es gelungen, diese Abfälle zu verhindern, indem man diese Kupferkomplexverbindungen mittels einer verschäumten, wässrigen Zubereitung auf das gefärbte Textilmaterial in einer Nachbehandlung appliziert.
  • Gegenstand der vorliegenden Erfindung ist demnach ein Verfahren zum photochemischen Stabilisieren von gefärbten textilen Polyamid-Fasermaterialien, das dadurch gekennzeichnet ist, dass man das gefärbte Fasermaterial nach dem Färbeprozess mit einer wässrigen Zubereitung behandelt, welche mindestens
    • (a) einen nicht färbenden Kupferkomplex von Bisazomethinen, Acylhydrazonen, Semicarbazonen oder Thiosemicarbazonen aromatischer Aldehyde oder Ketone oder Oximen und
    • b) ein anionisches oder nichtionogenes Tensid oder eine Mischung dieser Tenside enthält,
    wobei man die wässrige Zubereitung vor der Behandlung des Fasermaterials verschäumt.
  • Unter Bisazomethinen aromatischer Aldehyde oder Ketone werden hier Schiff'sche Basen von aliphatischen oder aromatischen Diaminen verstanden, wobei die Aldehyde und Ketone in o-Stellung zum Formyl- bzw. Acylrest eine OH-Gruppe aufweisen. Die Bindung mit dem Metallatom erfolgt über diese beiden OH-Gruppen und die beiden Stickstoffatome im Bisazaomethinteil. Es handelt sich demnach hier um vierzähnige Liganden. Diese können eine oder mehrere Sulfogruppen enthalten, die sich im Aldehyd- bzw. Ketonteil und/oder in der Bisazomethinbrücke befinden.
  • Zur Anwendung als Komponente (a) gelangen bevorzugt Kupferkomplexe der Formel
    Figure imgb0001

    worin R für Wasserstoff oder einen gegebenenfalls substituierten Alkyl- oder Arylrest steht,
    Q einen gegebenenfalls substituierten Alkylen-, Cycloalkylen- oder Arylenrest und
    n 0, 1, 2 oder 3 bedeutet.
  • Die Benzolringe A und B können ebenfalls unabhängig voneinander substituiert sein.
  • Bezeichnet R einen gegebenenfalls substituierten Alkylrest, so kommt vorzugsweise ein C₁-C₈-Alkylrest, insbesondere ein C₁-C₄-Alkylrest in Betracht, der verzweigt oder unverzweigt und gegebenenfalls substituiert sein kann und zwar durch Halogen wie Fluor, Chlor oder Brom, durch C₁-C₄-Alkoxy wie Methoxy oder Ethoxy, durch einen Phenyl- oder Carboxylrest, durch C₁-C₄-Alkoxycarbonyl wie z.B. den Acetylrest oder durch Hydroxy oder eine mono- oder dialkylierte Aminogruppe. Darüberhinaus kommt auch der Cyclohexylrest in Frage, der ebenfalls substituiert sein kann wie beispielsweise durch C₁-C₄-Alkyl oder C₁-C₄-Alkoxy.
  • Bedeutet R einen gegebenenfalls substituierten Arylrest, so kommt insbesondere ein Phenyl- oder Naphthylrest in Betracht, der substituiert sein kann durch C₁-C₄-Alkyl wie Methyl, Ethyl, Propyl, Isopropyl, Butyl, Isobutyl, sek.Butyl und tert.Butyl, C₁-C₄-Alkoxy wie Methoxy, Ethoxy, Propoxy, Isopropoxy, Butoxy, Isobutoxy, sek.Butoxy und tert.Butoxy, Halogen wie Fluor, Chlor oder Brom, C₂-C₅-Alkanoylamino wie Acetylamino, Propionylamino oder Butyrylamino, Nitro, Cyano, Sulfo oder eine mono- oder dialkylierte Aminogruppe.
  • Bedeutet Q einen Alkylenrest, so handelt es sich vor allem um einen gegebenenfalls substituierten C₂-C₄-Alkylenrest, insbesondere eine -CH₂-CH₂-Brücke. In Frage kommt aber auch eine durch Sauerstoff oder insbesondere durch Stickstoff unterbrochene C₂-C₈-Alkylenkette und zwar vor allem die -(CH₂)₃-NH-(CH₂)₃-Brücke.
  • Bedeutet Q einen Arylenrest, so handelt es sich in erster Linie um einen Phenylenrest, insbesondere einen o-Phenylenrest. Dieser kann gegebenenfalls durch C₁-C₄-Alkyl oder durch C₁-C₄-Alkoxy substituiert sein.
  • Bedeutet Q einen Cycloalkylenrest, so handelt es sich um einen cycloaliphatischen Rest mit 5-7 C-Atomen wie Cyclopentylen, Cyclohexylen oder Cycloheptylen.
  • Als Substituenten für die Benzolringe A und B kommen in Frage: Halogen wie Fluor, Chlor oder Brom, die Cyano- oder Nitrogruppe, Alkyl, Alkoxy, Hydroxy, Hydroxyalkyl, Alkoxyalkoxy, Alkoxyalkoxyalkoxy, Carboxymethoxy, Alkylamino, Dialkylamino, -SO₂NH₂, -SO₂NHR₀ oder -SO₂N(R₀)₂, wobei R₀ Alkyl oder Alkoxyalkyl ist und wobei unter Alkyl und Alkoxy jeweils Reste mit 1-4 C-Atomen zu verstehen sind, oder einen aus zueinander orthoständigen Resten, zusammen mit den C-Atomen, an die sie gebunden sind, gebildeten Benzolrest.
  • Die Sulfogruppe(n), die sich in den Benzolringen A und/oder B und/oder im Brückenglied Q befindet(n), liegt(en) bevorzugt als Alkalimetallsalz, insbesondere als Natrium- oder auch als Aminsalz vor.
  • Bei den Kupferkomplexen der Formel (1) haben eine besondere Bedeutung die Bisazomethinkomplexe der Formel
    Figure imgb0002

    worin
    R' Wasserstoff oder C₁-C₃-Alkyl
    R₁, R₂, R₃ und R₄ je Wasserstoff, Halogen, Hydroxy, Hydroxyalkyl, Alkyl, Alkoxy, Alkoxyalkoxy, Alkoxyalkoxyalkoxy, Carboxymethoxy, Alkylamino, Dialkylamino, -SO₂NH₂, -SO₂NHR oder -SO₂NR₂ bedeuten, wobei R Alkyl oder Alkoxyalkyl ist und wobei unter Alkyl oder Alkoxy jeweils Gruppen mit 1-4 C-Atomen zu verstehen sind, oder
    R₁ und R₂ oder R₂ und R₃ oder R₃ und R₄ zusammen mit den C-Atomen, an die sie gebunden sind, einen Benzolrest bilden,
    X₁ und Y₁ je Wasserstoff, C₁-C₄-Alkyl oder einen aromatischen Rest bedeuten oder X₁ und Y₁ zusammen mit den C-Atomen, an die sie gebunden sind, einen cycloaliphatischen Rest mit 5-7 C-Atomen bilden.
  • C₁ bis C₄-Alkyl für X₁ und Y₁ bedeutet z.B. Methyl, Ethyl, n-Propyl, Isopropyl, n-Butyl, Isobutyl, sek.-Butyl und tert.-Butyl. Als aromatische Reste kommen für X₁ und Y₁ vor allem gegebenenfalls substituierte Naphthyl- und insbesondere Phenylreste in Betracht.
  • Im allgemeinen sind die Kupferkomplexverbindungen der Formel (2) wasserunlöslich, sofern sie keine Carboxymethoxyreste (-O-CH₂-COOH) oder deren Salze aufweisen.
  • Bei den cycloaliphatischen Resten handelt es sich um Cyclopentylen-, Cyclohexylen- oder Cycloheptylenreste.
  • Vorzugsweise bedeuten R₁ bis R₄ unabhängig voneinander je Wasserstoff, Chlor, Brom, Methyl, Ethyl, Butyl, Methoxy, Ethoxy, Methoxyethoxy, Ethoxyethoxyethoxy oder Diethylamino oder R₁ und R₂ bilden zusammen einen ankondensierten Benzolrest.
  • Von den Substituenten X₁ und Y₁ ist vorzugsweise einer Wasserstoff und der andere Wasserstoff, Methyl, Ethyl oder Phenyl oder X₁ und Y₁ bilden zusammen einen Cyclohexylenrest.
  • Bevorzugt gelangen wasserunlösliche Kupferkomplexe der Formel
    Figure imgb0003

    zum Einsatz, worin R₅ bis R₈ unabhängig voneinander je Wasserstoff, Hydroxy, Brom, Methyl, tert. Butyl, Methoxy, Methoxyethoxy, Ethoxyethoxyethoxy oder Diethylamino, X₂ Wasserstoff, Methyl, Ethyl, oder Phenyl und Y₂ Wasserstoff bedeuten oder R₅ und R₆ zusammen einen ankondensierten Benzolrest oder X₂ und Y₂ zusammen einen Cyclohexylenrest bilden.
  • Von besonderem Interesse sind Verbindungen der Formel
    Figure imgb0004

    worin
    R₉, R₁₀ und R₁₁ unabhängig voneinander je Wasserstoff, Chlor, Brom, Methyl oder Methoxy bedeuten oder worin R₉ und R₁₀ zusammen einen ankondensierten Benzolring bilden und
    X₃ Wasserstoff, Methyl, Ethyl oder Phenyl ist.
  • Im Vordergrund des Interesses stehen indessen Verbindungen der Formel (4), worin R₉, R₁₀, R₁₁ und X₃ für Wasserstoff stehen.
  • Bei Kupferkomplexen von Acylhydrazonen aromatischer Aldehyde und Ketone, die als Komponente (a) zum Einsatz kommen, handelt es sich in erster Linie um die Komplexe der Formel
    Figure imgb0005

    worin R₁ und R₁₂ unabhängig voneinander für Wasserstoff oder einen gegebenenfalls substituierten Alkyl- oder Arylrest stehen und bei Kupferkomplexen von Semicarbazonen bzw. Thiosemicarbazonen als Komponente (a) handelt es sich in erster Linie um die Komplexe der Formel
    Figure imgb0006

    worin R₁ die unter Formel (5) angegebene Bedeutung hat und Z₂ für Sauerstoff oder Schwefel steht.
  • Bedeuten in den Formeln (5) und (5a) R₁ und/oder R₁₂ einen Alkylrest, so kann dieser verzweigt oder unverzweigt sein und hat eine Kettenlänge von vorzugsweise 1 bis 8, insbesondere 1 bis 4 C-Atomen. Als Substituenten kommen in Frage Halogen wie Fluor, Chlor oder Brom, C₁-C₄-Alkoxy wie Methoxy oder Ethoxy, ferner Phenyl oder Carbonyl, C₁-C₄Alkoxycarbonyl wie z.B. Acetyl oder Hydroxy, Mono- oder Dialkylamino.
  • Bedeuten in den Formeln (5) und (5a) R₁ und/oder R₁₂ einen gegebenenfalls substituierten Arylrest, so kommt insbesondere ein Phenyl- oder Naphthylrest in Betracht, der substituiert sein kann durch C₁-C₄-Alkyl wie Methyl, Ethyl, Propyl, Isopropyl, Butyl, Isobutyl, sek.Butyl oder tert.Butyl, C₁-C₄-Alkoxy wie Methoxy, Ethoxy, Propoxy, Isopropoxy, Butoxy, Isobutoxy, sek.Butoxy oder tert.Butoxy, Halogen wie Fluor, Chlor oder Brom, C₂-C₅-Alkanoylamino wie Acetylamino, Propionylamino oder Butyrylamino, Nitro, Cyano, Sulfo oder eine mono- oder dialkylierte Aminogruppe.
  • Bevorzugt gelangen solche Komplexe der Formel (5) zur Anwendung, in denen R₁ Wasserstoff und R₁₂ Wasserstoff, Methyl oder insbesondere den Phenylrest bedeuten, und vor allem die Komplexe, bei denen sich die Sulfogruppe wiederum in p-Stellung zum Sauerstoff befindet.
  • Bei Kupferkomplexen von Oximen als Komponente (a) handelt es sich hauptsächlich um Kupferverbindungen von Phenolen der Formel
    Figure imgb0007

    worin R Wasserstoff, Hydroxy, Alkyl oder Cycloalkyl bedeutet und in der der Ring A gegebenenfalls weiter substituiert sein kann, wie z.B. Kupferverbindungen des Salicylaldoxims und der Salicylhdroxamsäure.
  • Geeignete Alkylreste sind solche mit 1 bis 4 C-Atomen, geeignete Cycloalkylreste Cyclohexyl- und Methylcyclohexylreste, geeignete Substituenten im Ring A Methyl, Methoxy oder Chlor. Vorzugsweise ist dieser Ring jedoch unsubstituiert.
  • Die Komplexe der Formeln (1) bis (5) werden bevorzugt in neutraler Form, d.h. als Alkalisalz, insbesondere Natrium- oder Aminsalz verwendet.
  • Die als Komponente (a) verwendbaren Verbindungen sind bekannt und können nach an sich bekannten Verfahren hergestellt werden. Sie sind z.B. aus den EP-A 51 188, 113 856 und 162 811 bekannt und können nach bekannten Verfahren hergestellt werden.
  • Die als Komponente (a) verwendbaren Kupferkomplexe werden zweckmässigerweise aus wässrigem Bad appliziert, wobei diese vorteilhaft in einer Menge eingesetzt werden, dass auf 1 g Polyamidfasermaterial 5 bis 200 »g, insbesondere 10 bis 100 »g Kupfer kommen.
  • Sind die Verbindungen der Komponente (a) wasserunlöslich, werden sie zweckmässig als fein verteilte Dispersionen eingesetzt, die durch Mahlen in Gegenwart üblicher Dispergiermittel erhalten werden.
  • Die wässrige Zubereitung enthält neben der Komponente (a)
    (b) ein anionisches Tensid oder ein nichtionogenes Tensid oder eine Mischung dieser Tenside und gegebenenfalls
    (c) ein Salz eines hydrolysierten Polymaleinsäueanhydrids und
    (d) ein polares organisches Lösungsmittel.
  • Die Komponente (b) der wässrigen Zubereitung stellt den eigentlichen Schaumbildner dar. Dafür eignen sich in der Regel anionische oder nichtionogene Tenside oder Mischungen von anionischen und nichtionogenen Tensiden.
  • Die anionischen Tenside der Komponente (b) sind vorzugsweise Alkylenoxidaddukte, wie z.B. saure Ethergruppen oder vorzugsweise Estergruppen von anorganischen oder organischen Säuren enthaltende Anlagerungsprodukte von Alkylenoxiden, besonders Ethylenoxid und/oder Propylenoxid oder auch Styroloxid an aliphatische Kohlenwasserstoffreste mit insgesamt mindestens 2 Kohlenstoffatomen aufweisende organische Hydroxyl-, Carboxyl-, Amino- und/oder Amidoverbindungen bzw. Mischungen dieser Stoffe. Diese sauren Ether oder Ester können als freie Säuren oder als Salze, z.B. Alkalimetall-, Erdalkalimetall-, Ammonium- oder Aminsalze vorliegen.
  • Die Herstellung dieser anionischen Tenside erfolgt nach bekannten Methoden, indem man an die organischen Hydroxyl-, Carboxyl-, Amino- und/oder Amidoverbindungen mindestens 1 Mol, vorzugsweise mehr als 1 Mol, z.B. 2 bis 60 Mol Ethylenoxid oder Propylenoxid oder alternierend in beliebiger Reihenfolge Ethylenoxid und Propylenoxid anlagert und anschliessend die Anlagerungsprodukte verethert bzw. verestert und gegebenenfalls die Ether bzw. die Ester in ihre Salze überführt. Als Grundstoffe kommen höhere Fettalkohole, d.h. Alkanole oder Alkenole je mit 8 bis 22 Kohlenstoffatomen, zwei- bis sechswertige aliphatische Alkohole von 2 bis 9 Kohlenstoffatomen, alicyclische Alkohole, Phenylphenole, Benzylphenole, Alkylphenole mit einen, oder mehreren Alkylsubstituenten, der bzw. die zusammen mindestens 4 Kohlenstoffatome aufweisen, Fettsäuren mit 8 bis 22 Kohlenstoffatomen, Amine, die aliphatische und/oder cycloaliphatische Kohlenwasserstoffreste von mindestens 8 Kohlenstoffatomen aufweisen, besonders derartige Reste aufweisende Fettamine, Hydroxyalkylamine, Hydroxyalkylamide und Aminoalkylester von Fettsäuren oder Dicarbonsäuren und höher alkylierter Aryloxycarbonsäuren in Betracht.
  • Beispielsweise kommen als anionische Tenside in Frage:
    • sulfatierte aliphatische Alkohole, deren Alkylkette 8 bis 18 Kohlenstoffatome aufweist, z.B. sulfatierter Laurylalkohol;
    • sulfatierte ungesättigte Fettsäuren oder Festtsäureniederalkylester, die im Fettrest 8 bis 20 Kohlenstoffatome aufweisen, z.B. Rizinolsäure und solche Fettsäuren enthaltende Oele, z.B. Rizinusöl;
    • Alkylsulfonate, deren Alkylkette 8 bis 20 Kohlenstoffatome enthält, z.B. Dodecylsulfonat;
    • Alkylarylsulfonate mit geradkettiger oder verzweigter Alkylkette mit mindestens 6 Kohlenstoffatomen, z.B. Dodecylbenzolsulfonate oder 3,7-Diisobutyl-naphthalinsulfonate;
    • die als Seifen bezeichneten Alkalimetall-, Ammonium- oder Aminsalze von Fettsäuren mit 10 bis 20 Kohlenstoffatomen, z.B. Kolophoniumsalze;
    • Ester von Polyalkoholen, insbesondere Mono- oder Diglyceride von Fettsäuren mit 12 bis 18 Kohlenstoffatomen, z.B. Monoglyceride der Laurin-, Stearin- oder Oelsäure, und
    • die mit einer organischen Dicarbonsäure wie z.B. Maleinsäure, Malonsäure oder Sulfobernsteinsäure, vorzugsweise jedoch mit einer anorganischen mehrbasischen Säure wie o-Phosphorsäure oder insbesondere Schwefelsäure in einen sauren Ester übergeführten Anlagerungsprodukte von 1 bis 60 Mol Ethylenoxid und/oder Propylenoxid an Fettamine, Fettsäuren oder Fettalkohole je mit 8 bis 22 Kohlenstoffatomen, an Alkylphenole mit 4 bis 16 Kohlenstoffatomen in der Alkylkette oder an drei- bis sechswertige Alkanole mit 3 bis 6 Kohlenstoffatomen,
  • Gut geeignete anionische Tenside der Komponente (b) sind
    • (I) saure Ester oder deren Salze eines Polyadduktes von 2 bis 15 Mol Ethylenoxid an 1 Mol Fettalkohol mit 8 bis 22 Kohlenstoffatomen oder an 1 Mol Alkylphenol mit 4 bis 12 Kohlenstoffatomen im Alkylteil,
    • (II) Alkylphenylsulfonate mit 8 bis 18 Kohlenstoffatomen im Alkylrest,
    • (III) sulfonierte 1-Benzyl-2-alkylbenzimidazole mit 8 bis 22 Kohlenstoffatomen im Alkylrest,
    wobei die Komponenten (I), (II) und (III) einzeln oder als Gemisch verwendet werden können.
  • Die Komponente (I) der genannten bevorzugten anionischen Tenside kann z.B. durch die Formel
    Figure imgb0008

    oder die Formel



            (8)   R-O-(CH₂CH₂-O)z-X



    dargestellt werden, worin R Alkyl oder Alkenyl mit je 8 bis 22 Kohlenstoffatomen, X der Säurerest einer anorganischen, Sauerstoff enthaltenden Säure oder der Rest einer anorganischen Säure, p 4 bis 12 und z 2 bis 15 sind.
  • Die Alkylreste am Benzolring der Formel (7) können Butyl, Hexyl, n-Octyl, n-Nonyl, p-tert.-Octyl, p-tert.-Nonyl, Decyl oder Dodecyl sein. Bevorzugt sind die Alkylreste mit 8 bis 12 Kohlenstoffatomen, insbesondere die Octyl- und Nonylreste.
  • Der Säurerest X leitet sich beispielsweise von niedermolekularen Dicarbonsäuren ab, wie z.B. Maleinsäure, Malonsäure, Bernsteinsäure oder Sulfobernsteinsäure und ist über eine Esterbrücke mit dem Ethylenoxyteil des Moleküls verbunden. Insbesondere leitet sich X jedoch von anorganischen mehrbasischen Säuren wie Orthophosphorsäure und insbesondere Schwefelsäure ab. Der Säurerest X liegt vorzugsweise in Salzform, d.h. z.B. als Alkalimetall-, Ammonium- oder Aminsalz vor. Beispiele für solche Salze sind Lithium-, Natrium-, Kalium-, Ammonium-, Trimethylamin-, Ethanolamin-, Diethanolamin- oder Triethanolaminsalze.
  • Die Fettalkohole zur Herstellung der Komponente (I) der Formel (8) sind z.B. solche mit 8 bis 22, insbesondere mit 8 bis 18 Kohlenstoffatomen, wie Octyl-, Decyl-, Lauryl-, Tridecyl-, Myristyl-, Ceryl-, Stearyl-, Oleyl-, Arachidyl- oder Behenylalkohol.
  • Die Esterbildung erfolgt in der Regel mit den gleichen Säuren, die für die Verbindungen der Formel (7) genannt sind. Eine bevorzugte Verbindung der Formel (8) ist das Natriumsalz der Lauryltriglykolethersulfonsäure.
  • Für die Komponente (I) der Formeln (7) und (8) werden insbesondere folgende Verbindungen genannt:
    • 1. Ammoniumsalz des sauren Schwefelsäureesters des Anlagerungsproduktes von 2 Mol Ethylenoxid an 1 Mol p-tert.-Nonylphenol;
    • 2. Natriumsalz des sauren Maleinsäureesters des Anlagerungsproduktes von 2 Mol Ethylenoxid an 1 Mol p-Nonylphenyl;
    • 3. Ammoniumsalz des sauren Schwefelsäureesters des Anlagerungsproduktes von 3 Mol Ethylenoxid an 1 Mol p-Butylphenol;
    • 4. Ammoniumsalz des sauren Phosphorsäureester des Anlagerungsproduktes von 2 Mol Ethylenoxid an 1 Mol p-Nonylphenol;
    • 5. Natriumsalz des Disulfobernsteinsäureesters des Anlagerungsproduktes von 4 Mol Ethylenoxid an 1 Mol n-Octylphenol;
    • 6. Ammoniumsalz des sauren Schwefelsäureesters des Anlagerungsproduktes von 9 Mol Ethylenoxid an 1 Mol p-Nonylphenol;
    • 7. Ammoniumsalz des sauren Schwefelsäureesters des Anlagerungsproduktes von 6 Mol Ethylenoxid an 1 Mol p-Nonylphenol;
    • 8. Natriumsalz des Monosulfobernsteinsäureesters des Anlagerungsproduktes von 2 Mol Ethylenoxid an 1 Mol p-Nonylphenol;
    • 9. Ammoniumsalz des sauren Schwefelsäureesters des Anlagerungsproduktes von 6 Mol Ethylenoxid an 1 Mol Dodecylphenol;
    • 10. Ammoniumsalz des sauren Schwefelsäureesters des Anlagerungsproduktes von 2 Mol Ethylenoxid an 1 Mol Octylphenol;
    • 11. Ammoniumsalz des sauren Schwefelsäureesters des Anlagerungsproduktes von 2 Mol Ethylenoxid an 1 Mol Alfol (1014);
    • 12. Ammoniumsalz des sauren Schwefelsäureesters des Anlagerungsproduktes von 2 Mol Ethylenoxid an 1 Mol Stearylalkohol;
    • 13. Ammoniumsalz des sauren Schwefelsäureesters des Anlagerungsproduktes von 3 Mol Ethylenoxid an 1 Mol 2-Ethylhexanol;
    • 14. Ammoniumsalz des sauren Schwefelsäureesters des Anlagerungsproduktes von 15 Mol Ethylenoxid an 1 Mol Stearylalkohol;
    • 15. Ammoniumsalz des sauren Schwefelsäureesters des Anlagerungsproduktes von 3 Mol Ethylenoxid an 1 Mol Tridecylalkohol;
    • 16. Ammoniumsalz des sauren Schwefelsäureesters des Anlagerungsproduktes von 4 Mol Ethylenoxid an 1 Mol Hydroabietylalkohol;
    • 17. Ammoniumsalz des sauren Schwefelsäureesters des Anlagerungsproduktes von 3 Mol Ethylenoxid an 1 Mol Alfol (2022);
    • 18. Ammoniumsalz des sauren Schwefelsäureesters des Anlagerungsproduktes von 3 Mol Ethylenoxid an 1 Mol Laurylalkohol;
    • 19. Di-(β-hydroxy-ethyl)-aminsalz des sauren Schwefelsäureesters des Anlagerungsproduktes von 3 Mol Ethylenoxid an 1 Mol Laurylalkohol;
    • 20. Natriumsalz des sauren Schwefelsäureesters des Anlagerungsproduktes von 2 Mol Ethylenoxid an 1 Mol Laurylalkohol;
    • 21. Natriumsalz des sauren Schwefelsäureesters des Anlagerungsproduktes von 3 Mol Ethylenoxid an 1 Mol Laurylalkohol;
    • 22. Saurer Phosphorsäureester des Anlagerungsproduktes von 5 Mol Ethylenoxid an 1 Mol 2-Ethyl-n-hexanol;
    • 23. Ammoniumsalz des sauren Schwefelsäureesters des Anlagerungsproduktes von 3 Mol Ethylenoxid an 1 Mol eines Alkoholgemisches mit 20 bis 22 Kohlenstoffatomen.
    • 24. Diphosphorsäureester des Anlagerungsproduktes von 8 Mol Ethylenoxid an 1 Mol Dodecylamin.
    • 25. Ammoniumsalz des sauren Phosphorsäureesters des Anlagerungsproduktes von 8 Mol Ethylenoxid an 1 Mol Talgfettamin.
  • Die Alkylphenylsulfonate der Komponente (II) sind in der Regel Alkalimetallsalze der entsprechenden Monosulfonsäuren mit 8 bis 18 Kohlenstoffatomen im Alkylteil, der geradkettig oder verzweigt, gesättigt oder ungesättigt ist. Als Alkylreste kommen z.B. n-Octyl, tert.-Octyl, n-Nonyl, tert.-Nonyl, n-Decyl, n-Dodecyl, Tridecyl, Myristyl, Cetyl, Stearyl oder Oleyl in Frage. Bevorzugt sind Alkylreste mit 8 bis 12 Kohlenstoffatomen, wobei Dodecylbenzolsulfonat (Natriumsalz) besonders geeignet ist.
  • Die Komponenten (I) und (II) können allein oder auch als Mischungen untereinander verwendet werden.
  • Die nichtionogenen Tenside gemäss der Komponente (b) sind vorteilhafterweise nichtionogene Alkylenoxidanlagerungsprodukte von 1 bis 100 Mol Alkylenoxid, z.B. Ethylenoxid und/oder Propylenoxid an 1 Mol eines aliphatischen Monoalkohols mit mindestens 4 Kohlenstoffatomen, eines 3- bis 6-wertigen aliphatischen Alkohols, eines gegebenenfalls durch Alkyl oder Phenyl substituierten Phenols oder einer Fettsäure mit 8 bis 22 Kohlenstoffatomen.
  • Bei den aliphatischen Monoalkoholen zur Herstellung der nichtionogenen Tenside handelt es sich z.B. um wasserlösliche Monoalkohle mit mindestens 4 Kohlenstoffatomen, vorzugsweise 8 bis 22 Kohlenstoffatomen. Diese Alkohle können gesättigt oder ungesättigt und verzweigt oder geradkettig sein und können allein oder im Gemisch eingesetzt werden. Es können natürliche Alkohole wie z.B. Myristylalkohol, Cetylalkohol, Stearylalkohol oder Oleylalkohol oder synthetische Alkohole wie insbesondere 2-Ethylhexanol, ferner Trimethylhexanol, Trimethylnonylalkohol, Hexadecylalkohol oder Fettalkohole mit dem Alkylenoxid umgesetzt werden.
  • Weitere aliphatische Alkohole, die mit Alkylenoxid umgesetzt werden können, sind 3- bis 6-wertige Alkanole. Diese enthalten 3 bis 6 Kohlenstoffatome und sind insbesondere Glycerin, Trimethylolpropan, Erythrit, Mannit, Pentaerythrit und Sorbit. Die 3- bis 6-wertigen Alkohole werden vorzugsweise mit Propylenoxid oder Ethylenoxid oder Gemischen dieser Alkylenoxide umgesetzt.
  • Als gegebenenfalls substituierte Phenole eignen sich beispielsweise Phenol, o-Phenylphenol oder Alkylphenole, deren Alkylrest 1 bis 16, vorzugsweise 4 bis 12 Kohlenstoffatome aufweist. Beispiele dieser Alkylphenole sind p-Kresol, Butylphenol, Tributylphenol, Octylphenol und besonders Nonylphenol.
  • Die Fettsäuren weisen vorzugsweise 8 bis 12 Kohlenstoffatome auf und können gesättigt oder ungesättigt sein, wie z.B. die Caprin-, Laurin-, Myristin-, Palmitin- oder Stearinsäure bzw. die Decen-, Dodecen-, Tetradecen-, Hexadecen-, Oel-, Linol-, Linolen- oder vorzugsweise Rizinolsäure.
  • Als nichtionogene Tenside seien beispielsweise genannt:
    • Anlagerungsprodukte von vorzugsweise 5 bis 80 Mol Alkylenoxiden, insbesondere Ethylenoxid, wobei einzelne Ethylenoxideinheiten durch substituierte Epoxide, wie Styroloxid und/oder Propylenoxid ersetzt sein können, an höhere ungesättigte oder gesättigte Fettalkohole, Fettsäuren, Fettamine oder Fettamide mit 8 bis 22 Kohlenstoffatomen oder an Phenylphenol oder Alkylphenole, deren Alkylreste mindestens 4 Kohlenstoffatome aufweisen;
    • Alkylenoxid-, insbesondere Ethylenoxid- und/oder Propylenoxid-Kondensationsprodukte;
    • Umsetzungsprodukte aus einer 8 bis 22 Kohlenstoffatome aufweisenden Fettsäure und einem primären oder sekundären, mindestens eine Hydroxyniederalkyl- oder Niederalkoxyniederalkylgruppe aufweisenden Amin oder Alkylenoxid-Anlagerungsprodukte dieser hydroxyalkylgruppenhaltigen Umsetzungsprodukte, wobei die Umsetzung so erfolgt, dass das molekulare Mengenverhältnis zwischen Hydroxyalkylamin und Fettsäure 1:1 und grösser als 1, z.B. 1,1:1 bis 2:1 sein kann, und
    • Anlagerungsprodukte von Propylenoxid an einen drei- bis sechswertigen aliphatischen Alkohol von 3 bis 5 Kohlenstoffatomen, z.B. Glycerin oder Pentaerythrit, wobei die Polypropylenoxidaddukte ein durchschnittliches Molekulargewicht von 250 bis 1800, vorzugsweise 400 bis 900, aufweisen.
  • Gut geeignete nichtionogene Tenside der Komponente (b) sind
    • (IV) Anlagerungsprodukte von 2 bis 15 Mol Ethylenoxid an 1 Mol Fettalkohol oder Fettsäure mit jeweils 8 bis 22 Kohlenstoffatomen oder an 1 Mol Alkylphenol mit insgesamt 4 bis 12 Kohlenstoffatomen im Alkylteil,
    • (V) gegebenenfalls mono-, di- oder triethoxylierte Fettalkohole mit 8 bis 22 Kohlenstoffatomen im Fettalkoholrest, oder
    • (VI) Fettsäuredialkanolamide mit 8 bis 22 Kohlenstoffatomen im Fettsäurerest.
  • Als Komponente (IV) kommen vorteilhafterweise Octyl- oder vorzugsweise Nonylphenol-Ethylenoxidaddukte mit 2 bis 12 Ethylenoxideinheiten in Betracht.
  • Im einzelnen seien die folgenden Verbindungen genannt: p-Octylphenol/2 Mol Ethylenoxid, p-Nonylphenol/9 Mol Ethylenoxid, p-Nonylphenol/10 Mol Ethylenoxid, p-Nonylphenol/11 Mol Ethylenoxid.
  • Weitere Alkylphenol-Ethylenoxidaddukte lassen sich z.B. von Butylphenol oder Tributylphenol ableiten.
  • Die Komponente (IV) kann zweckmässigerweise auch ein Anlagerungsprodukt von 2 bis 15 Mol, vorzugsweise 7 bis 15 Mol Ethylenoxid an 1 Mol eines aliphatischen Monoalkohols mit 8 bis 22 Kohlenstoffatomen sein.
  • Die aliphatischen Monoalkohole können gesättigt oder ungesättigt sein und können allein oder als Gemische eingesetzt werden. Es können natürliche Alkohole wie z.B. Laurylalkohol, Myristylalkohol, Cetylalkohol, Stearylalkohol, Oleylalkohol oder synthetische Alkohole wie insbesondere 2-Ethylhexanol, ferner Triemthylhexanol, Trimethylnonylalkohol, Hexadecylalkohol oder C₁₂-C₂₂-Fettalkohole mit Ethylenoxid umgesetzt werden.
  • Es können auch Ethylenoxidanlagerungsprodukte von 2 bis 15 Mol Ethylenoxid an 1 Mol Fettsäure als Komponente (IV) eingesetzt werden. Die Fettsäuren weisen vorzugsweise 10 bis 20 Kohlenstoffatome auf und können gesättigt oder ungesättigt sein, wie z.B. die Caprin-, Laurin-, Myristin-, Palmitin- oder Stearinsäure bzw. die Decen-, Dodecen-, Tetradecen-, Hexadecen-, Oel-, Linol- oder Ricinolsäure.
  • Bei der Komponente (V) handelt es sich um einen definitionsgemäss gegebenenfalls ethoxylierten Fettalkohol, dessen HLB-Wert zweckmässigerweise 0,1 bis 10, insbesondere 0,5 bis 10 beträgt. Komponenten (V) mit HLB-Werten im Bereich von 0,1 bis 7,0 haben sich als besonders vorteilhaft erwiesen. Der HLB-Wert ist ein Mass für die "Hydrophilic-Lipophilic-Balance" in einem Molekül. Die HLB-Werte können gemäss W.C. Griffin, ISCC 5, 249(1954) oder J.T. Davis, Tenside Detergens 11(3), 133(1974), experimentell bestimmt oder berechnet werden.
  • Die als Komponente (V) in Betracht kommenden Fettalkohole können gesättigt oder ungesättigt sein. Vorzugsweise enthalten sie 12 bis 18 Kohlenstoffatome. Als Beispiele von Alkoholen für die Komponente (V) seien Lauryl-, Myristyl-, Cetyl-, Stearyl-, Oleyl-, Arachidyl-, Behenylalkohol oder C₁₂-C₂₂-Fettalkohole genannt.
  • Diese Fettalkohole können vorteilhafterweise mono-, di- oder triethoxyliert sein.
  • Bevorzugte Komponenten (V) sind Cetylalkohol oder Diethylenglykolcetylether (= Polyoxyethylen-(2)-cetylether) der Formel C₁₆H₃₃-O-(CH₂CH₂O)₂-H.
  • Bei den Fettsäure-Alkanolamin-Umsetzungsprodukten der Komponente (VI) handelt es sich z.B. um Produkte, welche aus Fettsäuren mit 8 bis 22, vorzugsweise 8 bis 18 Kohlenstoffatomen und Alkanolaminen mit 2 bis 6 Kohlenstoffatomen, wie Ethanolamin, Diethanolamin, Isopropanolamin oder Diisopropanolamin hergestellt werden, wobei Diethanolamin bevorzugt ist. Besonders bevorzugt sind Fettsäurediethanolamine mit 8 bis 18 Kohlenstoffatomen.
  • Geeignete Fettsäuren sind z.B. Capryl-, Caprin-, Laurin-, Myristin-, Palmitin-, Stearin-, Arachin-, Behen-, Olein-, Linol-, Linolen-, Arachidon- oder Kokosfettsäure.
  • Bevorzugte Beispiele derartiger Umsetzungsprodukte sind das Kokosfettsäurediethanolamid sowie das Laurinsäure- oder Stearinsäurediethanolamid.
  • Weitere gut geeignete nichtionogene Tenside sind Alkylenoxid-Umsetzungsprodukte der Formel
    Figure imgb0009

    worin R' Wasserstoff, Alkyl oder Alkenyl mit höchstens 18 Kohlenstoffatomen, vorzugsweise 8 bis 16 Kohlenstoffatomen, o-Phenylphenyl oder Alkylphenyl mit 4 bis 12 Kohlenstoffatomen im Alkylteil, von Z₁ und Z₂ eines Wasserstoff und das andere Methyl, y 1 bis 15 bedeuten und die Summe von n₁ + n₂ 3 bis 15 beträgt.
  • Besonders vorteilhafte nichtionogene Tenside sind Fettalkoholpolyglykolmischether, insbesondere Anlagerungsprodukte von 3 bis 10 Mol Ethylenoxid und 3 bis 10 Mol Propylenoxid an aliphatische Monoalkohle von 8 bis 16 Kohlenstoffatomen.
  • Die folgenden Anlagerungsprodukte sind Beispiele für die
    Alkylenoxid-Umsetzungsprodukte der Formel (9):
    a1. Anlagerungsprodukt von 12 Mol Ethylenoxid und 12 Mol Propylenoxid an 1 Mol eines C₄-C₁₈-Fettalkohols,
    a2. Anlagerungsprodukt von 5 Mol Ethylenoxid und 5 Mol Propylenoxid an 1 Mol C₁₂-C₁₄-Fettalkohol,
    a3. Anlagerungsprodukt von 9 Mol Ethylenoxid und 7 Mol Propylenoxid an 1 Mol C₁₆-C₁₈-Fettalkohol,
    a4. Anlagerungsprodukt von 9,5 Mol Ethylenoxid und 9,5 Mol Propylenoxid an 1 Mol Nonylphenol.
  • Bevorzugt werden für die Komponente (b) Kombinationen aus den Komponenten (I), (II), (III), (IV), (V) und (VI) eingesetzt.
  • Bevorzugt werden als Komponente (a) ein nicht färbender Kupferkomplex von Bisazomethinen, Acylhydrazonen, Semicarbazonen oder Thiosemicarbazonen aromatischer Aldehyde oder Ketone oder Oximen und als Komponente (b) Kombinationen aus den Komponenten (I), (II), (III), (IV), (V) und (VI) verwendet.
  • Besonders bevorzugt werden als Komponente (a) eine Kupferkomplexverbindung der Formel (2) und als Komponente (b) Kombinationen aus den Komponenten (I), (II), (III), (IV), (V) und (VI) verwendet.
  • Ganz besonders bevorzugte Gemische der Komponente (b) sind z.B. solche aus
    • (1) Nonylphenol-Ethylenoxidaddukten mit 10 bis 12 Ethylenoxideinheiten, Natriumsalzen von Schwefelsäureestern von Fettalkohol-Ethylenoxidaddukten mit 8 bis 12 Kohlenstoffatomen im Alkoholteil und 2 bis 4 Ethylenoxideinheiten und Kokosfettsäurediethanolamid,
    • (2) Umsetzungsprodukte von 7 bis 15 Mol Ethylenoxid an 1 Mol Stearylalkohol, Kokosfettsäurediethanolamid und Cetylakohol oder diethoxyliertem Cetylalkohol, oder
    • (3) Dodecylbenzolsulfonat, Lauryltrigylkolethersulfat-Natrium, Kokosfettsäurediethanolamid und dein Dinatriumsalz der 1-Benzyl-2-stearyl-benzimidazoldisulfonsäure.
  • Im Vordergrund des Interesses stellen Gemische aus einem Schwefelsäureester eines Fettalkohol-Ethylenoxidadduktes mit 8 bis 18 Kohlenstoffatomen im Alkoholteil und 2 bis 4 Ethylenoxideinheiten oder dessen Alkalimeiallsalze und einen Fettsäurediethanolamid mit 8 bis 18 Kohlenstoffatomen im Fettsäurerest.
  • Von ganz besonderem Interesse sind Gemische aus Lauryltriglykolethersulfat-Natrium und Fettsäurediethanolamid mit 8 bis 18 Kohlenstoffatomen.
  • Die Verbindungen der Komponente (b) sind sehr gute Verschäumer, d.h. sie können einerseits mit sehr geringer Einsatzmenge den Schaum in ausreichender Menge bilden und andererseits den gebildeten Schaum auch stabilisieren.
  • Als fakultative Komponente (c) der wässrigen Zubereitung wird hydrolysiertes Polymaleinsäureanhydrid verwendet, welches zweckmässigerweise ein Molekulargewicht von 300 bis 5000 hat und welches mindestens teilweise als wasserlösliches Salz eines derartigen Polymaleinsäureanhydrids vorliegt. Polymerisate dieser Art eignen sich als Komplexierungsmittel zur Bindung der im Fasermaterial vorhandenden Verunreinigungen, wie z.B. Calcium- und/oder Magnesiumsalze.
  • Polymaleinsäureanhydrid ist ein Homopolymerisat aus Maleinsäureanhydrid und lässt sich sehr leicht, beispielsweise durch Erhitzen mit Wasser unter Bildung eines polymeren Produktes hydrolysieren, welches freie Carbonsäuregruppen an einer Kohlenstoffhauptkette enthält. Das Produkt stellt keine reine Polymaleinsäure dar. Die genaue Konstitution des Produktes ist nicht bekannt. Daher wird im Rahmen dieser Erfindung dieses durch Hydrolyse von Polymaleinsäureanhydrid gebildete polymere Produkt als hydrolysiertes Polymaleinsäureanhydrid bezeichnet. Dieses hydrolysierte Polymaleinsäureanhydrid kann aus einem durch Additionspolymerisation aus einem im wesentlichen aus Maleinsäureanhydrid bestehenden Ausgangsmonomer unter Bedingungen der Polymerisation in der Masse oder durch Lösungspolymerisation erhaltenen Polymeren hergestellt werden. Vorzugsweise polymerisiert man Maleinsäureanhydrid in einem inerten organischen Lösungsmittel wie Toluol oder Xylol in Gegenwart eines Polymerisationskatalysators, insbesondere eines Radikalinitiators wie Benzoylperoxid, Di-tertiär-butylperoxid oder Monobutylhydroperoxid bei Temperaturen bis 150°C, z.B. 120° bis 145°C. Die Hauptkette des Primärpolymers wird im wesentlichen durch nicht-hydrolysierbare Bindungen gebildet. Das primäre nicht-hydrolysierte Polymerprodukt wird dann, nach Befreiung von nicht umgesetztem Monomer und anderen nicht-polymeren Molekülarten, mit Wasser oder einem wasserlöslichen Alkali hydrolysiert und so verwendet. Gegebenenfalls kann man es auch in nicht-hydrolysierter Form in die wässrigen Behandlungsbäder geben.
  • Während der Polymerisation oder der nachfolgenden Hydrolyse kann eine Decarboxylierung des Polymerisats eintreten, so dass die gefundene Säurezahl des hydrolysierten Polymaleinsäureanhydrids niedriger liegt als der theoretische Wert von 1143 mg KOH/g. Eine solche Decarboxylierung geht aber nicht so weit, dass die Säurezahl unter 350 mg KOH/g fällt. Die Säurezahl lässt sich durch potentiometrische Titration in wässriger Lösung gegen 0,1n-Kaliumhydroxidlösung bestimmen, wobei man ΔpH:ΔV graphisch aufträgt und die höchste Spitze als Endpunkt ansieht; dabei bedeutet ΔpH die pH-Aenderung, ΔV die Volumenänderung und V das titrierte Volumen.
  • Von Bedeutung ist, dass das Molekulargewicht des hydrolysierten Polymaleinsäureanhydrids im angegebenen niedrigen Bereich liegt. Bevorzugt verwendet man Polymaleinsäureanhydrid mit einem Molekulargewicht, das 2000 nicht überschreitet und vorzugsweise im Bereich von 350 bis 1000 liegt.
  • Das Molekulargewicht des Polymaleinsäureanhydrids wird in der Regel rechnerisch aus osmometrischen Daten des Polymaleinsäureanhydrids vor der Hydrolyse bestimmt.
  • Weitere Einzelheiten über die Natur des hydrolysierten Polymaleinsäureanhydrids einschliesslich seiner Herstellung sind in den britischen Patentschriften GB-A-1 369 429, GB-A-1 411 063 und GB-A 1 491 978 und in der schweizerischen Patentschrift CH-A-624 256 beschrieben.
  • Durch Zugabe von Basen zum hydrolysierten Polymaleinsäureanhydrid liegen deren Carboxylgruppen bei Verwendung von mittelstarken bis starken Basen als wasserlösliche Salzgruppen vor. Bei Verwendung von schwachen Basen liegen die Carboxylgruppen nur teilweise als wasserlösliche Salze vor. Als Salzgruppen seien z.B. Alkalimetall-, Alkylammonium-, Alkanolammonium- oder Ammoniumsalze genannt. Als Alkalimetallsalze seien insbesondere das Natrium- oder Kaliumsalz und als Alkylammonium- oder Alkanolammoniumsalze das Trimethylammonium-, Monoethanolammonium-, Diethanolammonium- oder Triethanolammoniumsalz genannt. Bevorzugt ist das Natrium- oder Ammoniumsalz.
  • In der Regel liegt als Komponente (c) das Salz des hydrolysierten Polymaleinsäureanhydrids der angegebenen Art als wässrige, etwa 40 bis 60 gewichtsprozentige Lösung vor.
  • Als polares organisches Lösungsmittel für die fakultative Komponente (d) des erfindungsgemässen Verfahrens kommen in Wasser vorzugsweise in jedem Verhältnis lösliche Lösungsmittel in Betracht. Die Komponente (d) dient dazu, die Löslichkeit der einzelnen Komponenten bei der Anwendung zu verbessern. Beispiele von wasserlöslichen, organischen Lösungsmitteln sind aliphatische C₁-C₄-Alkohole wie Methanol, Ethanol oder die Propanole; Alkylenglykole wie Ethylenglykol oder Propylenglykol; Monoalkylether von Glykolen wie Ethylenglykolmonomethyl-, -ethyl- oder -butylether und Diethylenglykolmonomethyl- oder ethylether; Ketone wie Aceton, Methylethylketon, Cyclohexanon, Diacetonalkohol; Ether und Acetale wie Diisopropylether, Diphenyloxid, Dioxan, Tetrahydrofuran, ferner Tetrahydrofurfurylalkohol, Pyridin, Acetonitril, γ-Butyrolacton, N,N-Dimethylformamid, N,N-Dimethylacetamid, Tetramethylharnstoff und Tetramethylensulfon. Auch Mischungen der genannten Lösungsmittel können verwendet werden. Bevorzugt sind die genannten Alkohole, Monoalkylether der Glykole und Ketone der angegebenen Art, vor allem die Ethylenglykole, z.B. Ethylen- und insbesondere Propylenglykol, sowie Diacetonalkohol.
  • Die Färbung erfolgt in üblicher Weise z.B. mit Metallkomplexfarbstoffen oder auch mit Anthrachinonfarbstoffen oder Azofarbstoffen. Als Metallkomplexfarbstoffe werden die bekannten Typen, insbesondere die 1:2-Chrom- oder 1:2-Kobaltkomplexe von Mono- oder Disazo- oder -azomethinfarbstoffen eingesetzt, die in der Literatur in grosser Zahl beschrieben sind. Neben diesen kommen natürlich auch Farbstoffe aus anderen Farbstoffklassen in Frage, wie z.B. Dispersions- oder auch Küpenfarbstoffe.
  • Die schaumbildenden Mischungen können auch für mit optischen Aufhellern weissgetönte Fasermaterialien eingesetzt werden. Je nach dem Substrat können anionische oder kationische sowie in Wasser dispergierbare optische Aufheller verwendet werden. Die optischen Aufheller können der Cumarin-, Oxazin-, Naphthalimid-, Stilben-, Styril-, Pyrazin-, Pyrazolin-, Triazolyl-, Benzofuranyl-, Benzoxazolyl-, Bisbenzoxazolyl-, Thiophen-bisbenzoxazolyl- oder Benzimidazolylreihe angehören.
  • Die verschäumte wässrige Zubereitung kann durch einfaches Verrühren der einzelnen Komponenten (a), (b) und gegebenenfalls (c) und (d) mit Wasser hergestellt werden.
  • Die verschäumte wässrige Zubereitung enthält mit Vorteil, jeweils bezogen auf die Mischung:
    2 bis 20 Gewichtsprozent, vorzugsweise 6 bis 14 Gewichtprozent der Komponente (a),
    0,5 bis 10 Gewichtsprozent, vorzugsweise 1 bis 4 Gewichtprozent der Komponente (b),
    0 bis 2 Gewichtsprozent, vorzugsweise 0 bis 1 Gewichtprozent der Komponente (c),
    0 bis 5 Gewichtsprozent, vorzugsweise 0 bis 1,5 Gewichtprozent der Komponente (d) und
    ad 100 % Wasser.
  • Die Einsatzmengen, in denen die verschäumten Zubereitungen den Behandlungsflotten zugesetzt werden, bewegen sich je nach Färbe- oder Ausrüstungsverfahren zwischen 1 und 30 g, vorzugsweise zwischen 4 und 20 g pro Liter Behandlungsflotte. Bei diesen Einsatzmengen liegt der Kupfergehalt pro 1 g Polyamidfasermaterial zwischen 5 bis 200 »g.
  • Unter Polyamidmaterial wird synthetisches Polyamid, wie z.B. Polyamid 6, Polyamid 66 oder auch Polyamid 12, verstanden. Neben den reinen Polyamidfasern kommen vor allem auch Fasermischungen aus Polyurethan und Polyamid in Betracht, so z.B. aus Polyamid/Polyurethan-Material im Mischungsverhältnis 70:30. Grundsätzlich kann das reine oder gemischte Polyamidmaterial in den verschiedensten Verarbeitungsformen vorliegen, wie z.B. als Faser, Garn, Gewebe, Polgewebe oder Gewirke.
  • Polgewebe aus Polyamid oder Polyamid/Polyurethan-Gemischen sind bevorzugt.
  • Das vorliegende Verfahren eignet sich besonders zur Behandlung von Polyamidmaterial, das Licht und Hitze ausgesetzt wird und z.B. als Autopolsterstoff oder Teppich Verwendung findet.
  • Die Nachbehandlungs- und Färbeflotten können auch übliche Zusätze, zweckmässig Elektrolyte wie Salze, z.B. Natriumsulfat, Ammoniumsulfat, Natrium- oder Ammoniumphosphate oder -polyphosphate, Ammoniumacetat oder Natriumacetat und/oder Säuren, wie z.B. Mineralsäuren, wie Schwefelsäure oder Phosphorsäure, oder organische Säuren, zweckmässig niedere aliphatische Carbonsäuren, wie Ameisen-, Essig- oder Oxalsäure enthalten. Die Säuren dienen vor allem der Einstellung des pH-Wertes der erfindungsgemäss verwendeten Flotten, der in der Regel, je nach dem zu behandelnden Substrat, 4 bis 8 beträgt.
  • Je nach dem gewünschten Effekt können die Nachbehandlungs- und Färbeflotten noch weitere Zusätze oder Hilfsstoffe wie Katalysatoren, Harnstoffe, Oxidationsmittel, Retardiermittel, Dispergiermittel, Stabilisatoren oder Emulgiermittel enthalten.
  • Die Erzeugung der Schäume erfolgt vorzugsweise mechanisch mittels Schnellrührer, dynamischer oder statischer Mixer oder auch spezieller Schaumpumpen, wobei mit letzteren die Schäume auch kontinuierlich hergestellt werden können.
  • Erfindungsgemäss haben sich Verschäumungsgrade, d.h. Volumenverhältnisse von unverschäumter zu verschäumter Zubereitung von 1:6 bis 1:12, vorzugsweise 1:8 bis 1:10 als geeignet erwiesen.
  • Die erfindungsgemäss eingesetzten Schäume zeichnen sich dadurch aus, dass sie über längere Zeit stabil sind und beim Auftragen auf das Substrat nicht sofort zerfallen. Vorzugsweise haben die erfindungsgemäss verwendeten Schäume Halbwertszeiten von 2 bis 10 Minuten. Die Blasendurchmesser in den Schäumen betragen etwa 1 bis 100 ».
  • Die Schäume können nach verschiedenen Anwendungstechniken gleichmässig auf die Fasermaterialien aufgebracht werden. Als Beispiele einiger Möglichkeiten seien genannt: Hineinsaugen, Aufrollen, Aufrollen/Saugen, Rakeln mit feststehenden Messern, bzw. Rollrakeln (ein- oder beidseitig), Foulardieren, Hineinblasen, Hineinpressen, Drucken, Hindurchführen des textilen Substrates durch eine Kammer, die kontinuierlich mit Schaum beschickt wird und in der der Schaum unter einem gewissen Druck steht. Einseitiges Rollrakeln, Foulardieren und Hineinpressen sind bevorzugte Anwendungstechniken. Durch die genannten Verfahrensweisen wird die Schaumstruktur zerstört, indem sich der Schaum entwässert und das Textilmaterial benetzt.
  • Die Applikation der verschäumten Zubereitung erfolgt in der Regel bei Raumtemperatur, d.h. etwa bei 15 bis 30°C. Bezogen auf das behandelte Gewebe beträgt der Schaumauftrag in der Regel 10 bis 100, insbesondere 30 bis 80 Gewichtsprozent.
  • Für die photochemische Stabilisierung der gefärbten Textilien wird eine Behandlungsflotte verschäumt und der Schaum aus einem Schaumbehälter, vorzugsweise mit verstellbarer Rakel, über eine Auftragswalze kontinuierlich auf die Vorderseite des Gewebes gebracht. Gewünschtenfalls kann der Schaumauftrag auf der Rückseite des Gewebes wiederholt werden. Beim Schaumauftrag auf Vor- und Rückseite des Gewebes ist eine Zwischentrocknung zwischen dem Auftrag auf der Vorderseite und dem auf der Rückseite nicht erforderlich. Es ist auch möglich, auf Vorder- und Rückseite des Textilguts unterschiedliche Behandlungsflotten aufzubringen.
  • Eine andere Möglichkeit des Schaumauftrags besteht darin, das Substrat mit einer die verschäumte Zubereitung enthaltenden Foulardierflotte zu foulardieren. Dabei erfolgt die Imprägnierung vorzugsweise bei einer Flottenaufnahme von 40 bis 100 Gewichtsprozent.
  • Nach dem Schaumauftrag wird das Textilgut bei Temperaturen zwischen 100 und 160°C getrocknet.
  • In den folgenden Beispielen beziehen sich die Prozentsätze, wenn nichts anderes angegeben ist, auf das Gewicht.
  • Beispiel 1: Es werden 5 Teppichmuster mit einem Gewicht von 500 g/m² bereitet. Die Teppiche werden in einer wässrigen Flotte, welche pro Liter 1 bis 2 % eines nichtionischen Egalisiermittels auf der Basis von Alkylaminpolyglykolether enthält, in einer Haspelkufe 5 Minuten bei 20°C genetzt. Der pH-Wert beträgt 7. Anschliessend gibt man der Flotte folgende Farbstoffkombination hinzu:
    0,22 % des Farbstoffes der Formel
    Figure imgb0010

    0,014 % des Farbstoffes der Formel
    Figure imgb0011

    und 0,095 % eines Farbstoffgemisches der Formeln
    Figure imgb0012
    Figure imgb0013

    Nach Zugabe der Farbstoffkombination wird noch 5 Minuten bei gleicher Temperatur weiterbehandelt. Anschliessend erhöht man die Temperatur innerhalb von 45 Minuten auf 98°C. Danach färbt man noch weitere 45 Minuten bei dieser Temperatur.
  • Man entnimmt die Muster aus dem Färbebad und spült kalt.
  • In einer Verschäumungsvorrichtung wird aus einer Flotte, die
    • a) 1 g/l der Zusammensetzung aus
      2,0% 50%iger NaOH
      5,0 % einer 50%igen, wässrigen Polymaleinsäure
      15,0 % Kokosfettsäurediethanolamid
      25,0 % Lauryltriglykolethersulfat
      9,0 % Diacetonalkohol und
      44 % Wasser
      sowie
    • b) 16 g/l einer Zusammensetzung aus
      10,0 % des Kupferkomplexes der Formel
      Figure imgb0014
      4,3 % Natriumsulfat
      2,5 % eines Ethylenoxid/Propylenoxidblockpolymers
      10 % Mg-Al-Silikat
      0,75 % 1,2-Propylenglykol
      0,3 % eines Polysaccharids und
      81,15% Wasser
    enthält, ein Schaum hergestellt, dessen Verschäumungsgrad 1:9 beträgt. Die Schaumhalbwertszeit beträgt 5 Minuten.
  • Die einzelnen Teppiche werden wie folgt nachbehandelt:
    • Muster 1: Der Teppich wird nach dem Färben bei 140° getrocknet. Es erfolgt keine Nachbehandlung.
    • Muster 2: Mit der Verschäumungsflotte wird das Teppichmuster auf einem Foulard bei einer Flottenaufnahme von 50 % imprägniert. Anschliessend wird bei 140°C getrocknet.
    • Muster 3: Der Schaum wird mittels einer verstellbaren Rakel zur Einstellung der gewünschten Schaumdicke über eine Auftragwalze mittels einer Rutsche auf die Polseite des Teppichs kontinuierlich aufgebracht. Die Flottenaufnahme beträgt 50 %. Die Warenlaufgeschwindigkeit ist 12 m/Minute. Die Schichthöhe des Schaumes beträgt 10 mm. Der Schaumauftrag beträgt 50 %. Anschliessend wird der Teppich bei 140° getrocknet.
    • Muster 4: Man verfährt wie bei Muster 3, jedoch beträgt die Flottenaufnahme 100 %.
  • Beispiele 2 bis 4: In diesen Beispielen wird die Konzentration der Kupferkomplexverbindung der Formel (104) variiert.
    • Beispiel 2: Ein Teppichmuster (= Muster 5) mit einem Gewicht von 500 g/m² wird wie in Beispiel 1 beschrieben, genetzt, gefärbt und kalt gespült. Die Nachbehandlung erfolgt entsprechend Muster 2, mit dem Unterschied, dass 12 g/l der Zusammensetzung b) eingesetzt wird.
    • Beispiel 3: Man verfahrt wie in Beispiel 2 mit dem Unterschied, dass 8 g/l der Zusammensetzung b) eingesetzt wird (= Muster 6).
    • Beispiel 4: Man verfährt wie in Beispiel 2 mit dem Unterschied, dass 4 g/l der Verbindung der Zusammensetung b) eingesetzt wird. (= Muster 7).
  • Von den gefärbten und nachbehandelten Teppichen werden die Lichtechtheiten nach DIN 75.202 (FAKRA) bestimmt. Die Ergebnisse sind in Tabelle 1 zusammengefasst: Tabelle 1
    Belichtung nach DIN 75 202 (FAKRA)
    1 × Fakra (=72 h) 2 × Fakra (=144 h) 3 × Fakra (=216 h)
    Muster 1 4-5 3H⁺ 2H
    Muster 2 5 -5 4-5
    Muster 3 5 5 -5
    Muster 4 5 5 -5
    Muster 5 4-5 4 +3-4
    Muster 6 4-5 4 3-4
    Muster 7 4-5 4 -3-4
  • Die Resultate zeigen, dass die Lichtechtheiten der Färbungen, welche mit der erfindungsgemässen Zubereitung behandelt werden, deutlich besser sind als Vergleichsfärbungen ohne Nachbehandlung entsprechend Muster 1.

Claims (21)

  1. Verfahren zum photochemischen Stabilisieren von gefärbten, textilen Polyamid-Fasermaterialien, dadurch gekennzeichnet, dass man das gefärbte Fasermaterial nach dem Färbeprozess mit einer wässrigen Zubereitung behandelt, welche mindestens
    (a) einen nicht färbenden Kupferkomplex von Bisazomethinen, Acylhydrazonen, Semicarbazonen oder Thiosemicarbazonen aromatischer Aldehyde oder Ketone oder Oximen und
    (b) ein anionisches oder nichtionogenes Tensid oder eine Mischung dieser Tenside enthält,
    wobei man die wässrige Zubereitung vor der Behandlung des Fasermaterials verschäumt.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass man als Komponente (a) einen Kupferkomplex der Formel
    Figure imgb0015
    verwendet, worin R für Wasserstoff oder einen gegebenenfalls substituierten Alkyl- oder Arylrest steht, Q einen gegebenenfalls substituierten Alkylen-, Cycloalkylen- oder Arylenrest und n 0, 1, 2 oder 3 bedeutet.
  3. Verfahren gemäss einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass man als Komponente (a) einen Bisazomethinkomplex der Formel
    Figure imgb0016
    verwendet, worin
    R' Wasserstoff oder C₁-C₃-Alkyl, R₁, R₂, R₃ und R₄ je Wasserstoff, Halogen, Hydroxy, Hydroxyalkyl, Alkyl, Alkoxy, Alkoxyalkoxy, Alkoxyalkoxyalkoxy, Carboxymethoxy, Alkylamino, Dialkylamino, -SO₂NH₂, -SO₂NHR oder -SO₂NR₂ bedeuten, wobei R Alkyl oder Alkoxyalkyl ist und wobei unter Alkyl oder Alkoxy jeweils Gruppen mit 1-4 C-Atomen zu verstehen sind, oder R₁ und R₂ oder R₂ und R₃ oder R₃ und R₄ zusammen mit den C-Atomen, an die sie gebunden sind, einen Benzolrest bilden, X₁ und Y₁ je Wasserstoff, C₁-C₄-Alkyl oder einen aromatischen Rest bedeuten oder X₁ und Y₁ zusammen mit den C-Atomen, an die sie gebunden sind, einen cycloaliphatischen Rest mit 5-7 C-Atomen bilden.
  4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass man Kupferkomplexe der Formel
    Figure imgb0017
    verwendet, worin R₅ bis R₈ unabhängig voneinander je Wasserstoff, Hydroxy, Brom, Methyl, tert. Butyl, Methoxy, Methoxyethoxy, Ethoxyethoxyethoxy oder Diethylamino, X₂ Wasserstoff, Methyl, Ethyl, oder Phenyl und Y₂ Wasserstoff bedeuten oder R₅ und R₆ zusammen einen ankondensierten Benzolrest oder X₂ und Y₂ zusammen einen Cyclohexylenrest bilden.
  5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass man Kupferkomplexe der Formel
    Figure imgb0018
    verwendet, worin
    R₉, R₁₀ und R₁₁ unabhängig voneinander je Wasserstoff, Chlor, Brom, Methyl oder Methoxy bedeuten oder worin R₉ und R₁₀ zusammen einen ankondensierten Benzolring bilden und X₃ Wasserstoff, Methyl, Ethyl oder Phenyl ist.
  6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass man eine Verbindung der Formel (4) verwendet, worin R₉, R₁₀, R₁₁ und X₃ für Wasserstoff stehen.
  7. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass man als Komponente (a) Kupferkomplexe der Formel
    Figure imgb0019
    verwendet, worin
    R₁ und R₁₂ unabhängig voneinander für Wasserstoff oder einen gegebenenfalls substituierten Alkyl- oder Arylrest stehen.
  8. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass man als Komponente (a) Kupferkomplexe der Formel
    Figure imgb0020
    verwendet, worin R₁ die unter Formel (5) angegebene Bedeutung hat und Z₂ für Sauerstoff oder Schwefel steht.
  9. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass man als Komponente (a) Kupferkomplexe der Formel
    Figure imgb0021
    verwendet, worin
    R Wasserstoff, Hydroxy, Alkyl oder Cycloalkyl bedeutet und in der der Ring A gegebenenfalls weiter substituiert sein kann.
  10. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass man als Komponente (b) Kombinationen der Komponenten
    (I) saure Ester oder deren Salze eines Polyadduktes von 2 bis 15 Mol Ethylenoxid an 1 Mol Fettalkohol mit 8 bis 22 Kohlenstoffatomen oder an 1 Mol Alkylphenol mit 4 bis 12 Kohlenstoffatomen im Alkylteil,
    (II) Alkylphenylsulfonate mit 8 bis 18 Kohlenstoffatomen im Alkylrest,
    (III) sulfonierte 1-Benzyl-2-alkylbenzimidazole mit 8 bis 22 Kohlenstoffatomen im Alkylrest,
    (IV) Anlagerungsprodukte von 2 bis 15 Mol Ethylenoxid an 1 Mol Fettalkohol oder Fettsäure mit jeweils 8 bis 22 Kohlenstoffatomen oder 1 Mol Alkylphenol mit insgesamt 4 bis 12 Kohlenstoffatomen im Alkylteil,
    (V) einen gegebenenfalls mono-, di- oder triethoxylierten Fettalkohol mit 8 bis 22 Kohlenstoffatomen im Fettalkoholrest, und
    (VI) ein Fettsäuredialkanolamid mit 8 bis 12 Kohlenstoffatomen im Fettsäurerest verwendet.
  11. Verfahren gemäss einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass man als Komponente (a) einen nicht färbenden Kupferkomplex von Bisazomethinen, Acylhydrazonen, Semicarbazonen oder Thiosemicarbazonen aromatischer Aldehyde oder Ketone oder Oximen und als Komponente (b) eine Kombination der Komponenten (I), (II), (III), (IV), (V) und (VI) verwendet.
  12. Verfahren gemäss einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass man als Komponente (a) einen Kupferkomplex der Formel (2), und als Komponente (b) eine Kombination der Komponenten (I), (II), (III) (IV), (V) und (VI) verwendet.
  13. Verfahren gemäss einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass man als Komponente (b) ein Gemisch aus einem Schwefelsäureester eines Fettalkohol-Ethylenoxidadduktes mit 8 bis 18 Kohlenstoffatomen im Alkoholteil und 2 bis 4 Ethylenoxideinheiten oder dessen Alkalimetallsalz und einem Fettsäurediethanolamid mit 8 bis 18 Kohlenstoffatomen im Fettsäurerest verwendet.
  14. Verfahren gemäss Anspruch 1, dadurch gekennzeichnet, dass man als Komponente (b) ein Gemisch aus Lauryltriglykolethersulfat-Natrium und einem Fettsäurediethanolamid mit 8 bis 18 Kohlenstoffatomen im Fettsäurerest verwendet.
  15. Verfahren gemäss Anspruch 1, dadurch gekennzeichnet, dass die verschäumte wässrige Zubereitung zusätzlich
    als Komponente (c) ein Salz eines hydrolysierten Polymaleinsäureanhydrids enthält.
  16. Verfahren gemäss Anspruch 1, dadurch gekennzeichnet, dass die verschäumte wässrige Zubereitung zusätzlich
    als Komponente (d) ein polares organisches Lösungsmittel enthält.
  17. Verfahren gemäss Anspruch 15, dadurch gekennzeichnet, dass man als fakultative Komponente (c) ein Natrium- oder Ammoniumsalz eines hydrolysierten Polymaleinsäureanhydrids mit einem Molekulargewicht von 300 bis 5000 verwendet.
  18. Verfahren gemäss Anspruch 16, dadurch gekennzeichnet, dass die fakultative Komponente (d) Ethylen- oder Propylenglykol und Diacetonalkohol enthält.
  19. Verfahren gemäss einem der Ansprüche 1 bis 18, dadurch gekennzeichnet, dass die verschäumte wässrige Zubereitung
    2 bis 20 Gewichtsprozent der Komponente (a),
    0,5 bis 10 Gewichtsprozent der Komponente (b),
    0 bis 2 Gewichtsprozent der Komponente (c),
    0 bis 5 Gewichtsprozent der Komponente (d) und
    ad 100 % Wasser enthält.
  20. Verfahren gemäss einem der Ansprüche 1 bis 19, dadurch gekennzeichnet, dass der Verschäumungsgrad 1:6 bis 1:12 beträgt.
  21. Verfahren gemäss einem der Ansprüche 1 bis 20, dadurch gekennzeichnet, dass man die verschäumte Behandlungsflotte über eine Auftragwalze kontinuierlich auf das gefärbte textile Fasermaterial aufbringt und dieses nach allfälliger Entwässerung des Schaumes trocknet.
EP90811036A 1990-01-03 1990-12-27 Verfahren zum photochemischen Stabilisieren von gefärbten Polyamid-Fasermaterialien Expired - Lifetime EP0436470B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH1090 1990-01-03
CH10/90 1990-01-03

Publications (2)

Publication Number Publication Date
EP0436470A1 EP0436470A1 (de) 1991-07-10
EP0436470B1 true EP0436470B1 (de) 1995-11-29

Family

ID=4177363

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90811036A Expired - Lifetime EP0436470B1 (de) 1990-01-03 1990-12-27 Verfahren zum photochemischen Stabilisieren von gefärbten Polyamid-Fasermaterialien

Country Status (5)

Country Link
US (1) US5069681A (de)
EP (1) EP0436470B1 (de)
JP (1) JPH03294588A (de)
AT (1) ATE130881T1 (de)
DE (1) DE59009925D1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007028997A1 (de) 2007-06-23 2008-12-24 Cht R. Beitlich Gmbh Verfahren zur Vergilbungsinhibierung

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE59108599D1 (de) * 1990-05-31 1997-04-17 Ciba Geigy Stabilisierung von Färbungen auf Polyamidfasern
CH688013B5 (de) * 1992-09-08 1997-10-31 Ciba Geigy Ag Stabilisierung von Faerbungen auf Polyamidfasern.
US5700850A (en) 1993-08-05 1997-12-23 Kimberly-Clark Worldwide Colorant compositions and colorant stabilizers
US5773182A (en) 1993-08-05 1998-06-30 Kimberly-Clark Worldwide, Inc. Method of light stabilizing a colorant
US6211383B1 (en) 1993-08-05 2001-04-03 Kimberly-Clark Worldwide, Inc. Nohr-McDonald elimination reaction
US5721287A (en) 1993-08-05 1998-02-24 Kimberly-Clark Worldwide, Inc. Method of mutating a colorant by irradiation
US5681380A (en) 1995-06-05 1997-10-28 Kimberly-Clark Worldwide, Inc. Ink for ink jet printers
US5645964A (en) 1993-08-05 1997-07-08 Kimberly-Clark Corporation Digital information recording media and method of using same
US6017661A (en) 1994-11-09 2000-01-25 Kimberly-Clark Corporation Temporary marking using photoerasable colorants
US5865471A (en) 1993-08-05 1999-02-02 Kimberly-Clark Worldwide, Inc. Photo-erasable data processing forms
US6017471A (en) 1993-08-05 2000-01-25 Kimberly-Clark Worldwide, Inc. Colorants and colorant modifiers
US5733693A (en) 1993-08-05 1998-03-31 Kimberly-Clark Worldwide, Inc. Method for improving the readability of data processing forms
US5685754A (en) 1994-06-30 1997-11-11 Kimberly-Clark Corporation Method of generating a reactive species and polymer coating applications therefor
US6242057B1 (en) 1994-06-30 2001-06-05 Kimberly-Clark Worldwide, Inc. Photoreactor composition and applications therefor
US6071979A (en) 1994-06-30 2000-06-06 Kimberly-Clark Worldwide, Inc. Photoreactor composition method of generating a reactive species and applications therefor
US6008268A (en) 1994-10-21 1999-12-28 Kimberly-Clark Worldwide, Inc. Photoreactor composition, method of generating a reactive species, and applications therefor
AU6378696A (en) 1995-06-05 1996-12-24 Kimberly-Clark Worldwide, Inc. Novel pre-dyes
US5786132A (en) 1995-06-05 1998-07-28 Kimberly-Clark Corporation Pre-dyes, mutable dye compositions, and methods of developing a color
JP2000506550A (ja) 1995-06-28 2000-05-30 キンバリー クラーク ワールドワイド インコーポレイテッド 新規な着色剤および着色剤用改質剤
US5782963A (en) 1996-03-29 1998-07-21 Kimberly-Clark Worldwide, Inc. Colorant stabilizers
US6099628A (en) 1996-03-29 2000-08-08 Kimberly-Clark Worldwide, Inc. Colorant stabilizers
DE69620428T2 (de) 1995-11-28 2002-11-14 Kimberly Clark Co Lichtstabilisierte fabstoffzusammensetzungen
US5855655A (en) 1996-03-29 1999-01-05 Kimberly-Clark Worldwide, Inc. Colorant stabilizers
US5891229A (en) 1996-03-29 1999-04-06 Kimberly-Clark Worldwide, Inc. Colorant stabilizers
US6524379B2 (en) 1997-08-15 2003-02-25 Kimberly-Clark Worldwide, Inc. Colorants, colorant stabilizers, ink compositions, and improved methods of making the same
BR9906513A (pt) 1998-06-03 2001-10-30 Kimberly Clark Co Fotoiniciadores novos e aplicações para osmesmos
AU4320799A (en) 1998-06-03 1999-12-20 Kimberly-Clark Worldwide, Inc. Neonanoplasts and microemulsion technology for inks and ink jet printing
EP1100852A1 (de) 1998-07-20 2001-05-23 Kimberly-Clark Worldwide, Inc. Verbesserte tintenstrahldrucktinten-zusammensetzungen
PL366326A1 (en) 1998-09-28 2005-01-24 Kimberly-Clark Worldwide, Inc. Novel photoinitiators and applications therefor
WO2000042110A1 (en) 1999-01-19 2000-07-20 Kimberly-Clark Worldwide, Inc. Novel colorants, colorant stabilizers, ink compositions, and improved methods of making the same
US6331056B1 (en) 1999-02-25 2001-12-18 Kimberly-Clark Worldwide, Inc. Printing apparatus and applications therefor
US6294698B1 (en) 1999-04-16 2001-09-25 Kimberly-Clark Worldwide, Inc. Photoinitiators and applications therefor
US6368395B1 (en) 1999-05-24 2002-04-09 Kimberly-Clark Worldwide, Inc. Subphthalocyanine colorants, ink compositions, and method of making the same
KR101157417B1 (ko) * 2004-10-28 2012-06-22 훈츠만 어드밴스트 머티리얼스(스위처랜드) 게엠베하 열안정성의 개선방법
US7829636B2 (en) * 2006-08-29 2010-11-09 Sara Shaghaghi Polymers for bitumen modification & other uses
CN106638039B (zh) * 2016-12-02 2019-11-08 中原工学院 一种锦纶薄织物的酸性染料泡沫印花液及泡沫印花方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH622921B (de) * 1978-07-27 Ciba Geigy Ag Verfahren zum veredeln, insbesondere zum faerben, bedrucken oder optisch aufhellen.
EP0058139B1 (de) * 1981-02-11 1985-08-28 Ciba-Geigy Ag Verfahren zum Färben oder Ausrüsten von textilen Fasermaterialien
US4428751A (en) * 1982-03-29 1984-01-31 Milliken Research Corporation Wet processing of textile materials and foam control composition
EP0162811B1 (de) * 1984-05-22 1989-10-11 Ciba-Geigy Ag Verfahren zur fotochemischen Stabilisierung von Polyamidfasermaterial
DE3565136D1 (en) * 1984-12-21 1988-10-27 Ciba Geigy Ag Process for the photochemical stabilisation of synthetic fibrous materials containing polyamide fibres
DE3563462D1 (en) * 1985-05-09 1988-07-28 Ciba Geigy Ag Process for the photochemical stabilisation of undyed and dyed polyamide fibrous material and its mixtures
US4775386A (en) * 1986-05-05 1988-10-04 Ciba-Geigy Corporation Process for photochemical stabilization of undyed and dyed polyamide fibre material and blends thereof with other fibres: copper complex and light stabilizer treatment
US4874391A (en) * 1986-07-29 1989-10-17 Ciba-Geigy Corporation Process for photochemical stabilization of polyamide fiber material and mixtures thereof with other fibers: water-soluble copper complex dye and light-stabilizer
EP0362139B1 (de) * 1988-09-29 1993-10-13 Ciba-Geigy Ag Verfahren zur fotochemischen Stabilisierung von ungefärbtem und gefärbtem Polyamidfasermaterial und dessen Mischungen

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007028997A1 (de) 2007-06-23 2008-12-24 Cht R. Beitlich Gmbh Verfahren zur Vergilbungsinhibierung

Also Published As

Publication number Publication date
EP0436470A1 (de) 1991-07-10
DE59009925D1 (de) 1996-01-11
JPH03294588A (ja) 1991-12-25
ATE130881T1 (de) 1995-12-15
US5069681A (en) 1991-12-03

Similar Documents

Publication Publication Date Title
EP0436470B1 (de) Verfahren zum photochemischen Stabilisieren von gefärbten Polyamid-Fasermaterialien
DE3208309C2 (de)
DE2929954C2 (de) Verfahren zum Behandeln von textilen Fasermaterialien
EP0102926B1 (de) Färbereihilfsmittel und seine Verwendung beim Färben oder Bedrucken von synthetischen Polyamidfasermaterialien
EP0074923B1 (de) Färbereihilfsmittel und seine Verwendung beim Färben oder Bedrucken von synthetischen Polyamidfasermaterialien
DE2943754A1 (de) Schaumdaempfungsmittel und ihre verwendung zum entschaeumen waessriger systeme
EP0030919B1 (de) Verfahren zum Veredeln, insbesondere zum Färben, optisch Aufhellen oder Ausrüsten von textilen Fasermaterialien
EP0210129A1 (de) Wasserlösliche oder in Wasser dispergierbare Pfropfpolymerisate, deren Herstellung und Verwendung
EP0058139B1 (de) Verfahren zum Färben oder Ausrüsten von textilen Fasermaterialien
DE2326935B2 (de) Verfahren zur Herstellung von Lignin-Addukten mit blockierten Hydroxylgruppen und diese Addukte enthaltende Farbstoffmasse
DE2153366C3 (de) Polyglykolätherverbindungen, Verfahren zu deren Herstellung und deren Verwendung
DE3000382C2 (de)
EP0204656A1 (de) Verfahren zum Färben von hydrophobem Fasermaterial
EP0235080A1 (de) Färbereihilfsmittel und seine Verwendung beim Färben oder optischen Aufhellen von synthetischen stickstoffhaltigen Fasermaterialien
DE2802305A1 (de) Carboxylgruppenhaltige propylenoxyd-polyaddukte, verfahren zu ihrer herstellung und ihre verwendung als faerbereihilfsmittel
DE2744607C2 (de) Verfahren zum Nachbehandeln von gefärbten oder bedruckten Synthesefasern
EP0287514A1 (de) Waschmittel für die Nachwäsche von faserreaktiven Färbungen, Verfahren zu dessen Herstellung und dessen Verwendung
EP0064029B1 (de) Hilfsmittelgemisch und seine Verwendung als Faltenfreimittel beim Färben oder optischen Aufhellen von Polyesterfasern enthaltenden Textilmaterialien
EP0064030B1 (de) Färbereihilfsmittelgemisch und seine Verwendung beim Färben von synthetischen Fasermaterialien
DE2700627A1 (de) Phenylphthalat-carrier zum faerben und bedrucken von synthetischen fasern
EP0051261A1 (de) Verfahren zur Herstellung von Ätzreservedrucken auf Textilmaterialien
DE3119518A1 (de) Verfahren zum faerben oder ausruesten von textilen fasermaterialien
GB2104554A (en) Stable mixed disperse dyestuff preparations
DE1288066B (de)
CH637432A5 (en) Dyeing assistant suitable for use in the dyeing of synthetic fibre materials

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19901231

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB IT LI SE

17Q First examination report despatched

Effective date: 19930329

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB IT LI SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19951129

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19951129

Ref country code: GB

Effective date: 19951129

REF Corresponds to:

Ref document number: 130881

Country of ref document: AT

Date of ref document: 19951215

Kind code of ref document: T

ET Fr: translation filed
REF Corresponds to:

Ref document number: 59009925

Country of ref document: DE

Date of ref document: 19960111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19960229

GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 19951129

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: CIBA-GEIGY AG TRANSFER- CIBA SC HOLDING AG

26N No opposition filed
BECN Be: change of holder's name

Effective date: 19961129

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Free format text: CIBA SC HOLDING AG TRANSFER- CIBA SPECIALTY CHEMICALS HOLDING INC.

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19991029

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19991229

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001231

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20021106

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20031128

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20040115

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040831

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041231

BERE Be: lapsed

Owner name: *CIBA SPECIALTY CHEMICALS HOLDING INC.

Effective date: 20041231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050701

BERE Be: lapsed

Owner name: *CIBA SPECIALTY CHEMICALS HOLDING INC.

Effective date: 20041231