DE2812508B2 - Verfahren zur Herstellung von NJS'dialkylsubstituierten Tetrahydro-4,4'bipyridylen - Google Patents

Verfahren zur Herstellung von NJS'dialkylsubstituierten Tetrahydro-4,4'bipyridylen

Info

Publication number
DE2812508B2
DE2812508B2 DE2812508A DE2812508A DE2812508B2 DE 2812508 B2 DE2812508 B2 DE 2812508B2 DE 2812508 A DE2812508 A DE 2812508A DE 2812508 A DE2812508 A DE 2812508A DE 2812508 B2 DE2812508 B2 DE 2812508B2
Authority
DE
Germany
Prior art keywords
cathode
chamber
anode
aqueous
catholyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
DE2812508A
Other languages
English (en)
Other versions
DE2812508C3 (de
DE2812508A1 (de
Inventor
Susumu Furuhashi
Teruyuki Misumi
Masaaki Tokio Shiga
Kanagawa Yokohama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Imperial Chemical Industries Ltd
Original Assignee
Asahi Kasei Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP3110877A external-priority patent/JPS53116383A/ja
Priority claimed from JP53008959A external-priority patent/JPS5952712B2/ja
Application filed by Asahi Kasei Kogyo KK filed Critical Asahi Kasei Kogyo KK
Publication of DE2812508A1 publication Critical patent/DE2812508A1/de
Publication of DE2812508B2 publication Critical patent/DE2812508B2/de
Application granted granted Critical
Publication of DE2812508C3 publication Critical patent/DE2812508C3/de
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D211/00Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings
    • C07D211/04Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D211/68Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having one double bond between ring members or between a ring member and a non-ring member
    • C07D211/70Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having one double bond between ring members or between a ring member and a non-ring member with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/20Processes
    • C25B3/29Coupling reactions
    • C25B3/295Coupling reactions hydrodimerisation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

Die Erfindung betrifft ein Verfahren zur Herstellung von Ν,Ν'-dialkylsubstituierten Tetrahydro-4,4'-bipyridylen aus den entsprechenden N-alkylsubstituierten Pyridiniumsalzen durch e'.ektrolytische Dimerisation.
Es ist bekannt, daß ein N,N'-disubst.-4,4'-Bipyridiliumsalz, das durch Oxidation eines Ν,Ν'-disubst. Tetrahydro-4,4'-bipyridyls hergestellt worden ist, ein sehr wirksames Herbizid ist. Diese Verbindung wird üblicherweise hergestellt aus 4,4'-Bipyridyl durch Quaternisierung, doch kann diese Verbindung in hoher Ausbeute erhalten werden durch Oxidation eines Ν,Ν'-disubst. Tetrahydro-4,4'-bipyridyl mit einem organischen Oxidationsmittel, wie beispielsweise Chinon, oder einem anorganischen Oxysäureanhydrid, wie beispielsweise SO2.
Der vorliegenden Erfindung lag die Aufgabe zugründe, ein Verfahren zur Herstellung von Ν,Ν'-dialkylsubstituierten Tetrahydro-4,4'-bipyridylen zur Verfügung zu stellen, die als Ausgangcverbindungen für die Herstellung von Ν,Ν'-dialkylsubstituierten-4,4'-Bipyridiliumsalzen verwendet werden können.
Es ist bereits bekannt, durch elektrolytische Reduktion von N-substituierten Pyridiniumsalzen, nachstehend »monomeres Salz« genannt, N,N'-disubstituierte Tetrahydro-4,4'-bipyridyle, nachstehend »Dimeres« genannt, herzustellen.
Es ist weiterhin bekannt, das erwünschte Produkt dadurch vor einer Anhäufung in der Elektrolysezone bei der Elektrolyse einer wäßrigen Lösung des monomeren Salzes zu bewahren, daß die elektrolytische Reduktion in Gegenwart eines mit Wasser nicht mischbaren organischen Lösungsmittels durchgeführt wird. Beispielsweise beschreibt die CH 495988, daß das an der Oberfläche der Elektrode gebildete ölige Produki gelöst in und durch ein mit Wasser nicht mischbares organisches Lösungsmittel entfernt wird, wodurch die Reaktion tatsächlich vorangetrieben werden kann.
Beim Nacharbeiten dieses Verfahrens wurde jedoch gefunden, daß im Hinblick auf Substanzen unbekannter Zusammensetzung, die an der Oberfläche der Elektrode abgelagert wurden, und der schnellen Herabsetzung der Stromleistung bei der Bildung des Dimeren, es nicht möglich war, das Verfahren während einer längeren Zeit fortzusetzen. Als Grund hierfür wird angenommen, daß trotz der Möglichkeit des Lösens und Entfernens des an der Oberfläche der Elektrode gebildeten Dimeren durch das mit Wasser nicht mischbare organische Lösungsmittel während des dauernden Kontaktes des im Lösungsmittel gelösten Dimeren mit der Oberfläche der Elektrode einige unerwünschte Folgereaktionen im Anschluß an die Bildung des Dimeren stattfinden und der Effekt der Entfernung des Dimeren von der Elektrodenoberfläche entscheidend und drastisch herabgemindert wird.
Es wurde ein neues Verfahren gefunden, mit dem die genannten Mangel der bekannten Verfahren überwunden und die elektrolytische Reaktion während einer längeren Zeitspanne stabil fortgesetzt werden kann. Dieses Verfahren gemäß der Erfindung zur
Herstellung von Ν,Ν'-dialkylsubstituierten Tetrahydro-4,4'-bipyridylen mit 1 bis 5 C-Atomen im Alkylrest durch elektrolyiische Dimerisation der entsprechend N-alkylsubstituierten Pyridiniumsalze in einer elektronischen Zelle, die eine Anode, eine Kathode ΐ und mindestens ein zwischen Anode und Kathode in der Kathodenkammer angeordnetes Diaphragma aufweist, ist dadurch gekennzeichnet, daß
a) ein wäßriger, ein entsprechend N-alkylsubstituiertes Pyridiniumsalz enthaltender Katholyt i<> durch die elektrolytische Zelle strömt, welche über einen einen Übergang und eine Einspeisung aufweisender Umlauf mit einem außerhalb der Zelle angeordneten Extraktor in Verbindung steht, wehrend elektrischer Strom zwischen is Anode und Kathode fließt, wobei ein dem genannten N-alkylsubstituierten Pyridiniumsalz entsprechendes Ν,Ν'-dialkylsubstituiertes Tetrahydro-4,4'-bipyridyl an der Oberfläche der Kathode gebildet und gleichzeitig von der Oberfläche der Kathode in den durch die Zelle fließenden wäßrigen Katholyten entfernt wird,
b) der das Bipyridil enthaltende wäßrige Katholyt durch den Übergang zum Extraktor überführt, mit einem mit Wasser nicht mischbaren organisehen Lösungsmittel in Berührung gebracht und das Bipyridil in das organische Lösungsmittel extrahiert wird,
c) die wäßrige von der organischen Phase abgetrennt wird,
d) die abgetrennte wäßrige Phase allein zu der Zelle durch die Einspeisung zurückgeführt wird und
e) die Stufen a) bis d) kontinuierlich wiederholt werden.
Das Verfahren gemäß der Erfindung kann char- r> genweise oder kontinuierlich durchgeführt werden, indem das Ausgangsmaterial, d. h. das monomere Salz, kontinuierlich oder schrittweise zugeführt wird. Entsprechend dem Verfahren gemäß der Erfindung kann der Kontakt des gebildeten Dimeren mit der Oberfläche der Kathode entscheidend eingeschränkt werden, und damit kann Auftreten von Folgereaktionen des gebildeten Dimeren tatsächlich verhindert werden. Dementsprechend ist es beim Verfahren gemäß der Erfindung möglich, die elektroiytische Reak- 4 > tion für eine lange Zeitspanne stabil fortzuführen. Beim Verfahren gemäßt der Erfindung dürfte die Entfernung des an der Oberfläche der Elektrode gebildeten öligen Produktes in den Katholyten hauptsächlich auf die Scherkräfte zurückzuführen sein, die durch die schnelle Strömung des wäßrigen Katholyten ausgelöst werden. Außerdem ist es denkbar, daß die Löslichkeit des öligen Produktes in Wasser dadurch gesteigert werden kann, daß das N-alkylsubstiiuierte Pyridiniumsalz als ein oberflächenaktives Mittel wirkt.
Die Einzelheiten, Merkmale und Vorteile des Verfahrens gemäß der Erfindung sind der nachstehenden ausführlichen Beschreibung im Zusammenhang mit den Zeichnungen zu entnehmen, wobei
Fig. 1 eine schematische Ansicht des Systems dar- t>o stellt, die eine Variante des Verfahrens gemäß der Erfindung zeigt, bei der eine Zweikammerelektrolysezelle verwendet wird;
Fig. 2 eine schematische Ansicht des Systems darstellt, die eine andere Variante des Verfahrens gemäß tr> der Erfindung zeigt, bei der eine Dreikammerelektrolysezelle verwendet wird;
Fig. 3 eine schematische Ansicht des Systems darstellt, die noch eine andere Variante des Verfahrens gemäß der Erfindung zeigt, bei der eine Zweikammerelektrolysezelle verwendet wird und außerdem ein Anolyt zirkuliert;
Fig. 4 eine schematische Ansicht des gleichen Systems entsprechend Fig. 2 darstellt, jedoch mit mehr Einzelheiten veranschaulicht.
Eine Ausführungsform des Verfahrens gemäß der Erfindung wird nun unter Bezugnahme auf die Zeichnungen näher erläutert. Fig. 1 zeigt ein System, da» zur Durchführung des Verfahrens gemäß der Erfindungverwendet wird. Gemäß Fig. 1 umfaßt die elektroiytische Zelle 1 eine Kathodenkammer 2, eine Anodenkammer 3, ein Diaphragma 4, eine Kathode 5 und Anode 5, eine Einspeisung 7, die mit dem Übergang T einen Umlauf bildet, einen Katholytumlauf 8, einen Extraktor 9, eine organische Phase 10 und eine wäßrige Phase 11.
Wasser und ein mit Wasser nicht mischbares, das Dimere lösendes organisches Lösungsmittel werden in den Extraktor eingefüllt, und eine vorbestimmte Menge des monomeren Salzes wird in der wäßrigen Phase gelöst. Nur diese wäßrige Phase, die das monomere Salz enthält und nachstehend als »wäßriger Katholyt« oder lediglich als »Katholyt« bezeichnet wird, wird kontinuierlich in die Kathodenkammer 2 durch die Einspeisung 7 über den Kathodenumlaut 8 eingegeben. Dieser Katholyt wird kontinuierlich am Auslaß der Kathodenkammer abgezogen und zum Extraktor 9 durch den Übergang T zurückgeführt. Wird eine vorbestimmte Spannung zwischen Anode und Kathode angelegt, während der wäßrige Katholyt umläuft, so fließt ein entsprechender Strom zwischen den beiden Elektroden, und während der wäßrige Katholyt durch die Kathodenkammer fließt, wird ein Teil des im Katholyten gelösten monomeren Salzes der Elektrolyse unterworfen. Obgleich das gebildete Dimere die Eigenschaft hat, an der metallischen Oberfläche der Elektrode zu haften, wird durch de;i wäßrigen Katholyten, der mit Energie entlang der Oberfläche der Elektrode entlang fließt, das Dimere leicht von der Oberfläche der Elektrode entfernt. Das Dimere wird dann zusammen mit dem Katholyten zum Extraktor überführt. Im Extraktor wird das Dimere durch das Extraktionslösungsmittel extrahiert. Unter kontinuierlicher Wiederholung der vorgenannten Verfahrensstufen wird das monomere Salz im Katholyten allmählich in das Dimere überführt.
Ist die lineare Geschwindigkeit des längs der Kathodenoberfläche fließenden wäßrigen Katholyten zu niedrig, wird der Grad der Entfernung des Produktes von der Kathodenoberfläche gemindert, wobei das Produkt an der Kathodenoberfläche abgelagert wird unter gleichzeitiger Herabsetzung des Wirkungsgrades der Elektrolyse. Die lineare Geschwindigkeit des wäßrigen Katholyten, die für eine wirkungsvolle Elektrolysenführung notwendig ist, variiert in Abhängigkeit von der zugeführten Elektrizitätsinenge, doch fließt bevorzugt bei Durchführung der Elektrolyse bei einer Stromdichte von 0,1 bis 30 A/dm2 der wäßrige Katholyt mit einer linearen Geschwindigkeit von mindestens 0,1 m/Sekunde. Der obere Grenzwert der linearen Geschwindigkeit ist nicht besonders kritisch, doch liegt er praktisch bei 10 m/Sekunde. Obwohl es technisch möglich ist, daß der wäßrige Katholyt mit einer linearen Geschwindigkeit von mehr als 10 m/ Sekunde fließt, wird es nicht bevorzugt, derart hohe lineare Geschwindigkeiten anzuwenden, da der An-
stieg des Flüssigkeitsdruckes im Inneren der Elektrolysezelle nicht nur eine hohe Druckfestigkeit der Teile der Elektrolysezelle, wie beispielsweise die des Diaphragmas erfordert, sondern auch eine gegenüber hohem Druck widerstandsfähige Umlaufpumpe erforderlich macht, und weil darüber hinaus die Elektrolyseleistung über eine bestimmte lineare Geschwindigkeit hinaus nicht mehr zu steigern ist. Die bevorzugte lineare Geschwindigkeit liegt im allgemeinen im Bereich zwischen 0,3 und 5 m/Sekunde.
Das Extraktionslösungsmittel kann gegebenenfalls im wäßrigen Katholyten gelöst sein. Die Menge des im wäßrigen Katholyten enthaltenen Extraktionslösungsmittels ist abhängig von der Art des verwendeten Lösungsmittels, doch sind die erhaltenen Ergebnisse um so besser, je kleiner die Menge des enthaltenen Lösungsmittels ist. Es ist jedoch zu bemerken, daß erfindungsgemäß auch Extraktionslösungsmittel ohne Schwierigkeiten verwendet werden können, die eine Wasserlöslichkeit von 0,1 bis 5% besitzen. Wird jedoch ein organisches Lösungsmittel, das in dem wäßrigen Katholyten mit einer Konzentration von mehr als etwa H) Gew.-% gelöst ist, verwendet, so sind die erhaltenen Ergebnisse außerordentlich schlecht. Der Grund hierfür dürfte im nachstehenden liegen.
Das Reaktionsprodukt wird gelöst und enthält in dem vom Extraktor zu der Zelle zurückgeführten wäßrigen Katholyten nach der Extraktion mindestens eine Extraktionsgleichgewichtskonzentration. Wird jedoch ein Lösungsmittel mit einer höheren Wasserlöslichkeit verwendet, so wird die Löslichkeit des Reaktionsproduktes im wäßrigen Katholyten gesteigert und damit eine größere Menge des im wäßrigen Katholyten enthaltenen Reaktionsproduktes vom Extrakior zu der Zelle zurückgeführt. Demzufolge ist eine beträchtliche Menge des Reaktionsproduktes stets an der Oberfläche der Elektrode vorhanden^ so daß unerwünschte Folgereaktionen des Reaktionsproduktes auftreten können, wobei die gebildeten Nebenprodukte auf der Oberfläche der Elektrode Kbgeschieden werden und zu einer ungünstigen Oberflächenbeschaffenheit der Elektrode führen.
In der oben beschriebenen Ausführungsform veranlaßt das Diaphragma 4 nicht nur das Anion des monomeren Salzes, in die Anodenkammer zu wandern, so daß das Anion aus dem wäßrigen Katholyten entfernt wird, sondern verhindert auch, daß das gebildete Dimere in die Anodenkammer diffundiert, so daß keine Reaktionsprodukte infolge eines Kontaktes mit der Anode gebildet werden.
Monomere Salze, die erfindungsgemäß elektrolytisch dimcrisiert werden, sind N-(C1 bis C5)AlkyIpyridiniumsalze, wie beispielsweise N-Methylpyridiniumsalze, N-Äthylpyridiniumsalze, N-n- und -iso-Propylpyridiniumsalze, N-n-, -iso-, -see- und -tert.-Butylpyridiniumsalze und N-n-, -iso-, -sec-, -act.- und -tert.-Amylpyridiniumsalze. Als Anionen der obengenannten N-Alkylpyridiniumsalze sind beispielsweise zu nennen: Chlorid, Bromid, Jodid, Fluorid, Sulfat. Benzolsulfonat, C1 bis C30-Alkylsulfonat, Trifluormethansulfonat, Methylsulfat, Benzoat, Acetat, Citrat. Lactat, Fumarat, Malat, Maleat, Salicylat, Succinat, Trichloracetat, Phosphat, Cyanid, Thiocyanat, Nitrat, Carbonat, Fluorsilikat und Tetrafluorborat. Ein Halogenid, wie beispielsweise ein Chlorid- oder Bromidion, ein Sulfat- oder Methlysulfation sind als Anionen besonders bevorzugt. Beispielsweise kann N-Methylpyridiniumchlorid hergestellt werden durch
Umsetzung zwischen Pyridin und Methylchlorid. Ein N-Methylpyridiniumsalz mit einem anderen Anion als oben beschrieben kann beispielsweise hergestellt werden, indem es an einem Kationenaustauschcr adsorbiert und mit einer Säure behandelt wird, die das obenerwähnte Anion aufweist, unter Gewinnung des gebildeten N-Methylpyridiniumsalzes.
Das N-alkylsubstituierte Pyridiniumsalz kann dem wäßrigen Katholyten in fester Form oder in wäßriger Lösung zugegeben werden. Bevorzugt sollte die Reinheit des als Ausgangsmaterial verwendeten monomeren Salzes so hoch wie möglich sein. Wenn Verunreinigungen, wie Methanol oder aromatische Nitroverbindungen, in dem Ausgangsmaterial vorliegen, die mit dem gebildeten Ν,Ν'-dialkylsubst. Tetrahydro-4,4'-bipyridyl reagieren können, wird die Elektrolyse in erheblichem Umfange nachteilig beeinflußt.
Als organische Lösungsmittel, die als Extraktionslösungsmittel bei der Durchführung des Verfahrens gemäß der Erfindung verwendet werden können, sind beispielsweise zu nennen: gesättigte Kohlenwasserstoffe, wie n-Pentan, η-Hexan, n-Heptan, n-Octan, n-Nonan, n-Decan, Isopentan, Isohexan, Isoheptan. Isooctan, Petroläther und Kerosin; cycloaliphatische Kohlenwasserstoffe, wie Cyclopentan, Cyclohexan, Methylcyclohexan, Cyclohexan und 1,3-Cyclohexadien; aromatische Kohlenwasserstoffe, wie Benzol, Toluol, Xylole, Äthylbenzol, Propylbenzol Methyläthylbenzole, Styrol, Cumol, Hemimellitol, Pseudocumol und Mesitylen; halogenierte aromatische Verbindungen, wie Chlorbenzol, Dichlorbenzole, Chlortoluole, Brombenzol und Fluorbenzol; aromatische Amine, wie Anilin, N-Methylanilin, N-Äthylanilin, Dimethylanilin, Diäthylaniline, Toluidine und Chloraniline; aromatische Cyanoverbindungen, wie Benzonitril; Äther, wie Diäthyläther, Diisopropyläther, Di-n-butyläther. Di-n-hexyläther, Methylphenyläther, Äthylphenyläther, Äthylbenzyläther, Furan und 2-Methylfuran; mit Wasser nicht mischbare Alkohole mit 4 oder mehr C-Atomen, wie Butylalkoholc, Amylalkohole. Heptanole und Hexanole sowie Amine, wie Triäthylamin und Triamylamine. Diese können allein oder als Mischung verwendet werden.
Diese organischen Lösungsmittel sind geeignet, das Dimere zu lösen und sind in Wasser nicht mischbar, so daß jedes von ihnen als Extraktionslösungsmittel verwendet werden kann. Von diesen organischen Lösungsmitteln werden aromatische Kohlenwasserstoffe, wie Toluol, Xylole und Äthylbenzol, halogenierte aromatische Verbindungen, wie Chlorbenzol, und gesättigte Kettenkohlenwasserstoffe, wie n-Hexan und Isooctan, bevorzugt. Als »mit Wasser nicht mischbar« wird ein Lösungsmittel verstanden, das in Wasser unlöslich ist, falls es löslich ist, nur bis zu einer Konzentration von K) Gew.-% oder weniger löslich ist.
Erfindungsgemäß kann die Extraktion unter Verwendung jedes bekannten Flüssigkeit-Flüssigkeit-Extraktors durchgeführt werden, wie beispielsweise Drehscheibenkolonnen, Quer-Gegenstrom-Zentrifugalextraktoren, Füllkörperkolonnen, Sprühtürmen, Siebbödenkolonnen, Kolonnen mit Umlenkblechen und Mischer-Abscheidern.
Anschließend wird der bei der Durchführung des Verfahrens gemäß der Erfindung verwendbare Elektrodenwerkstoff beschrieben. Als Kathode können metallische Werkstoffe mit einer hohen Wasserstoff-Überspannung verwendet werden, beispielsweise Blei,
Quecksilber, Kupfer sowie Legierungen, die mindestens eines dieser Metalle als Hauptkomponente enthalten, beispielsweise Blei-Tellur-Legierungen, Blei-Silber-Legierungen, Blei-Zinn-Legierungen und Blei-Kupfer-Legierungen. Für die Anode können elektrisch leitende Werkstoffe, die gegenüber der korrodierenden Wirkung des Elektrolyten beständig sind, verwendet werden, beispielsweise Platin, Kohlenstoff, Nickel, Titan und rostfreier Stahl.
Die Oberflächenbeschaffenheit der Kathode ist erfindungsgemäß eine der besonders wichtigen Faktoren. Um gute Ergebnisse zu erhalten, ist es erforderlich, die Kathodenoberfläche stets sauber und eben zu halten. Wenn diese Anforderungen der Oberflächenbeschaffenheii der Elektrode nicht erfüiii sind, besteht die Gefahr, daß die angewandte Elektrizitätsmenge zum größten Teil durch die Wasserstoffbildung verlorengeht. Demzufolge ist der Oberflächenbeschaffenheit der Elektrode besondere Sorgfalt zu widmen.
Als Diaphragmen zur Aufteilung der Elektrolysezellen können anorganische Membrane, beispielsweise Asbestmembrane und Glasfilter, verwendet werden, sowie poröse organische Membrane aus Polymerverbindungen, wie Cellophan, Celluloseacetat, Polyacrylnitril und Polytetrafluoräthylen sowie Ionenaustauscherharzen. Erfindungsgemäß werden jedoch im Hinblick auf ihre hohe Selektivität gegenüber Ionen insbesondere Ionenaustauschermembrane bevorzugt. Die Vorteile bei der Verwendung von Ionenaustauschermembranen bestehen darin, daß das Reaktionsprodukt, d. h. das Dimere, vollkommen vor einer Zersetzung geschützt werden kann, die beispielsweise durch Chlor oder Sauerstoff ausgelöst wird, die durch anodische Oxidation eines Anions (CI" oder SO4 :~) des N-alkyl-subst. Pyridiniumsalzes gebildet werden, und außerdem darin, daß anionische Bestandteile, die beim Fortgang der Elektrolyse in der Kathodenkammer allmählich angesammelt werden, außerhalb der Dimerisierungszone leicht entfernt werden können. Darüber hinaus ist es bei Verwendung von Ionenaustauschermembranen möglich, ungünstige Verunreinigungen, die in dem als Ausgangsmaterial verwendeten Monomersalz vorhanden sind, in der elektrolytischen Dimerisationszone auszuschalten.
Wenn bei Durchführung des Verfahrens gemäß der Erfindung Ionenaustauschermembrane verwendet werden, werden Art und Zahl der Ionenaustauschermembran und deren Kombination in den Fällen, in denen die Zahl der Membrane zwei oder mehr beträgt, durch die verschiedenen Versuchsbedingungen bestimmt, wie beispielsweise durch die Art und die Reinheit des als Ausgangsmaterial verwendeten monomeren Salzes. Im allgemeinen werden die günstigsten Ergebnisse bei Verwendung von einer bis zu drei Ionenaustauschermembranen erzielt.
Weist die elektrolytische Zelle zwei Ionenaustauschermembrane auf und ist in eine Kathodenkammer, eine Anodenkammer und eine Zwischenkammer aufgeteilt, so werden vorzugsweise die Elektrolytlösungen für die jeweiligen Kammern getrennt zirkuliert und die Elektrolytkonzentration jeder Elektrolytlösung auf einen bestimmten konstanten Wert einreguliert, indem verbrauchter Elektrolyt entfernt oder frischer Elektrolyt zugeführt wird. Beispielsweise wird, wenn eine Anionenaustauschermembran und eine Kationenaustauschermembran auf der Kathodenseite
bzw. der Anodenseite angeordnet ist und das N-alkylsubst. Pyridiniumsalz in den Katholyten eingeführt wird, ein Anion des N-alkylsubst. Pyridiniumsalzes, beispielsweise das Chloridion, durch Elektrolyse durch die Anionenaustauschermembran in die Zwischenkammer überführt und darin gesammelt, während das durch elektrolytische Dimei isation gebildete Ν,Ν'-dialkylsubst. Tetrahydro-4,4'-bipyridyl durch Extraktion außerhalb der Reaktionszone entfernt wird. Wenn andererseits beispielsweise ein Alkalielektrolyt, wie beispielsweise Natriumhydroxid, als Anolyt verwendet wird, so wird das Alkaliion, beispielsweise das Natriumion, durch die Kationenaustauschermembran in die Zwischenkammer überführt, während das OH-Ion an der Anode unter Sauerstoffbildung oxidiert wird. In der Zwischenkammer reagiert das Nalriumion beispielsweise mit dem Chloridion unter Bildung von Natriumchlorid. Demzufolge steigt die Konzentration an Natriumchlorid in der Zwischenkammerflüssigkeit während der Durchführung der Elektrolyse an. Es wird deshalb vorzugsweise die Zwischenkammerflüssigkeit nach und nach durch Wasser ersetzt und dadurch Natriumchlorid entfernt, um die Natriumchloridkonzentration konstant zu halten. Wird andererseits Natriumhydroxid im Anolyten verbraucht, so wird vorzugsweise Natriumhydroxid nach und nach in den Anolyten eingeführt.
Als bei der Durchführung des Verfahrens gemäß der Erfindung einzusetzende Elektrolyte können beispielsweise Hydroxide, wie Natriumhydroxid, Kaliumhydroxid, Lithiumhydroxid und Ammoniumhydroxid; Metallsalze, wie Lithiumchlorid, Lithiumbromid, Lithiumfluorid, Lithiumsulfat, Lithiumphosphat. Kaliumchlorid, Kaliumbromid, Kaliumfluorid, Kaliumsulfat, Kaliumphosphat, Natriumchlorid, Natriumbromid, Natriumfluorid, Natriumsulfat, Natriumphosphat, Calciumchlorid, Calciumbromid, Kupfersulfate, Aluminiumsulfat und Natriumnitrat sowie Ammoniumsalze, wie Ammoniumchlorid und Ammoniumsulfat, verwendet werden. Diese Verbindungen können allein oder in Kombination verwendet werden. Von diesen Elektrolyten werden Natriumhydroxid, Natriumchlorid und Natriumsulfat besonders bevorzugt.
Eine Reihe von Varianten bei der Durchführung des Verfahrens gemäß der Erfindung unter Verwendung der Ionenaustauschermembrane sind möglich, doch haben viele Faktoren, wie Stromausbeute und Widerstand der Ionenaustauschermembran gegenüber den Gasen, die gebildet werden, entscheidenden Einfluß bei der Durchführung des Verfahrens gemäß der Erfindung und müssen in Betracht gezogen werden. Unter diesem Gesichtspunkt besteht eine besonders bevorzugte Ausführungsform der elektrolytischen Dimerisation gemäß der Erfindung, darin, daß
der wäßrige Katholyt konstant mit dem N-alkylsubst. Pyridiniumsalz und die Anodenkammer konstant mit einem Alkali beschickt wird, und das Salz, das in der Zwischenkammer durch Neutralisation zwischen dem Anion des N-alkylsubst. Pyridiniumsalzes, eingewandert aus der Kathodenkammer, und dem Kation des genannten Alkalis, eingewandert aus der Anodenkammer, gebildet wird, konstant aus dieser Zwischenkammer entfernt wird.
Diese bevorzugte Ausführungsform gemäß der Erfindung wird beispielsweise gemäß dem System, wie es in Fig. 4 dargestellt ist, angewandt. In Fig. 4 wird eine elektrolytische Zelle 42 mit einem Mischer 43,
einem Absetzbehälter 44, einem Katholyt-Reservoir 45, einem Reservoir 46 für eine Zwischenkammerflüssigkeit und einem Reservoir 47 für einen Anolyten beschrieben, die einen Alkalieinlaß 48, einen Auslaß 49 für die Zwischenkammerflüssigkeit, einen Wassereinlaß 50, einen Einlaß 51 für das Extraktionslösungsmittel und einen Auslaß 52 für das Reaktionsprodukt aufweist. Die Anodenkammer 53 ist in Reihe mit dem Anolytreservoir 47 und der Umwälzpumpe für den Umlauf geschaltet. Die Zwischenkammer 54 ist in Reihe mit dem Reservoir 46 für die Zwischenkammerflüssigkeit und mit der Umwälzpumpe für den Umlauf geschaltet. Mit diesen Anordnungen können die Elektrolyte in der Anodenkammer und der Zwischenkammer individuell während der Elektrolyse umgewälzt werden. Der wäßrige Kathoiyt, der die Kathodenkammer 55 verläßt, wird in dem Mischer 43 der Produktextraktion unterworfen, in dem Abscheider 44 von dem Extrakt getrennt und über das Katholytreservoir 45 in die Kathodenkammer 55 zurückgeführt. Ein Teil des Extraktes wird in den Mischer 43 zurückgeführt, während der restliche Teil des Extraktes kontinuierlich am Produktauslaß 52 abgezogen wird. Während Alkali kontinuierlich an dem Alkalieinlaß 48 in das Anolytreservoir 47 eingeführt wirJ, wird das N-alkylsubst. Pyridiniumsalz kontinuierlich durch den Einlaß 56 in das Katholytreservoir 45 eingeführt, während die wäßrige Lösung des in der Zwischenkammei gebildeten Salzes kontinuierlich aus dem Reservoir 46 der Zwischenkammerflüssigkeit abgezogen wird, wodurch die Anforderungen eines Materialausgleiches erfüllt werden können. Die Ströme der einzelnen Elektrolyte durch die Anodenkammer 53, die Zwischenkammer 54 und die Kathodenkammer 55 sind vorzugsweise gleich. Demzufolge können die Elektrolytströme in den obengenannten Kammern vorzugsweise angemessen geregelt werden, indem optimale Bedingungen hinsichtlich der Zahl, der Größe, der Form und der Anordnung der öffnungen in den Flüssigkeitsein- und -auslassen der Kammern gewählt werden.
Die Verwendung einer wäßrigen Lösung von N-Methylpyridiniumchlorid als wäßriger Kathoiyt bei der Durchführung dieser bevorzugten Ausführungsform der elektrolytischen Dimerisation gemäß der Erfindung wird nachstehend im einzelnen erläutert. Das N-Methylpyridiniumkation in der wäßrigen Lösung bindet ein Elektron auf der Oberfläche der Kathode und wird dimerisiert unter Bildung von N,N'-Dimethyltetrahydro-4,4'-bipyridyl. Obwohl dieses Bipyridyl im wesentlichen in Wasser unlöslich ist und dazu neigt, an der Oberfläche der Kathode zu haften, wird es tatsächlich von dieser Oberfläche entfernt durch den Umlauf durch die Kathodenkammer und Einführung, zusammen mit dem Katholyten, in den Extraktor, wo das Bipyridyl in das Extraktionslösungsmittel extrahiert wird.
Die bevorzugte Konzentration von N-Methylpyridiniumchlorid in dem wäßrigen Katholyten kann im allgemeinen zwischen 0,1 und 2 Mol/Liter betragen, insbesondere 0,5 bis 1 Mol/Liter. Liegt die Konzentration über 2 Mol/Liter, so ist zwar die während der Elektrolyse gebildete Wasserstoffmenge gering, doch ist die Produktausbeute niedrig. Ist andererseits die Konzentration zu niedrig, vor allem niedriger als 0,1 Mol/Liter, so ist die Ausbeute zwar hoch, doch ist die Menge des gebildeten Wasserstoffs zu groß. Die obenerwähnte bevorzugte Konzentration wird im allgemeinen nicht nur bei der sogenannten kontinuierlichen Verfahrensführung, sonder gleichermaßen auch bei der chargenweisen Durchführung des Verfahrens angewandt, unabhängig von der Art des mo-' nomeren Salzes.
Die Konzentration des N-Methylpyridiniumchlorids im wäßrigen Katholyten wird durch kontinuierliche Zuführung frischen N-Methylpyridiniumchlorids in einer dem Verbrauch des N-Methylpyridiniumkat-
i« ions entsprechenden Menge konstant gehalten. Das Anion des N-Methylpyridiniumchlorids, nämlich das Chlondion, wandert durch die Anionenaustauschermembran in die Zwischenkammer, wo es mit dem Alkalikation, das aus der Anodenkammer in die Zwi-
i"> schenkammer hineinwandert, unter Bildung des Salzes reagier!. Da die Saizkoiizeritratiuii in der Zwischenkammer allmählich mit dem Fortgang der Elekti .ilyse ansteigt, kann die Konzentration vorzugsweise konstant gehalten werden, indem die Flüssigkeit der
-Ι' Zwischenkammer kontinuierlich durch Wasser ersetzt wird. Wie aus den obigen Ausführungen ersichtlich,
- erreicht das Chloridanion nicht die Anode, so daß die Bildung von molekularem Chlor nicht auftritt. Sollte dies doch geschehen, so tritt im Hinblick auf die hohe
-'") Widerstandsfähigkeit der auf der Anodenseite angeordneten Kationenaustauschermembran gegenüber molekularem Chlor keine Zerstörung der Membran ein. Da das Alkalikation des der Anodenkammer zugeführten Alkalis durch die Kationenaustauscher-
K) membran in die Zwischenkammer wandert, wird das verbleibende OH-Ion an der Anode unter Sauerstoffbildung oxidiert. Infolge der hohen Widerstandsfähigkeit der an der Anodenseite angeordneten Kationenaustauschermembran gegenüber Sauerstoff im status nascendi findet gleichermaßen keine Zerstörung der Membran statt.
Da das das N-alkylsubst. Pyridiniumsalz direkt bei dieser bevorzugten Ausführungsform des Verfahrens gemäß der Erfindung in den wäßrigen Katholyten eingeführt wird, kann seine Konzentration im Katholyten optimal auf ein hohes Niveau von beispielsweise etwa 1 Mol/Liter angehoben werden, wodurch der elektrische Widerstand der Kathodenkammer reduziert werden kann, und die eingeschränkte Stromdichte der
Kationenaustauschermembran, die im Vergleich zu der Anionenaustauschermembran niedrig ist, beeinflußt nicht die Elektrolysegeschwindigkeit, üo daß die Elektrolyse bei einer hohen Stromdichte durchgeführt werden kann. Andere Vorteile der direkten kontinuierlichen Zuführung des N-alkylsubst. Pyridiniumsalzes in den Katholyten bestehen darin, daß im Hinblick darauf, daß das N-alkylsubst. Pyridiniumkation nicht durch die Kationenaustauschermembran hindurchgeht, die Membranspannung auf ein niedriges Niveau
einreguliert und damit die Elektrolysekosten herabgesetzt werden können, während die Stromausbeute bei der Herstellung des Ν,Ν'-dialkylsubst. Tetrahydro-4,4'-bipyridil gesteigert werden kann.
Bei der elektrolytischen Dimerisation des N-alkyl-
ho subst. Pyridiniumsalzes gemäß dieser bevorzugten Ausführungsform des Verfahrens gemäß der Erfindungwerden die ionischen Anteile, beispielsweise das N-alkylsubst. Pyridiniumkation und das Kation anderer Elektrolyte, wie beispielsweise das Natriumion,
b5 weder in der Anodenkammer, der Zwischenkammer noch der Kathodenkammer gemischt, und demzufolge kann die Trennung und die Entfernung der einzelnen Elektrolyseprodukte sehr leicht erfolgen.
Wie oben erläutert, kann bei der elektrolytischen Dimerisation des N-subst. Pyridiniumsalzes gemäß der bevorzugten Ausführungsform der Erfindung nicht nur die Herstellung des Ν,Ν'-dialkylsubst. Tetrahydro-4,4'-bipyridyls in hoher Ausbeute erfolgen, sondern es kann gleichermaßen eine stabile kontinuierliche Verfahrensführung während einer langen Zeitspanne ohne Zerstörung der Ionenaustauschermembran erfolgen.
Wird das Verfahren gemäß der Erfindung in einem industriellen Ausmaß durchgeführt, indem das als Ausgangsmaterial verwendete monomere Salz kontinuierlich dem Katholyten zugeführt und das Reaktionsprodukt kontinuierlich durch Lösen in dem Extraktionslösungsmittel entfernt wird, so kann die Durchführung der elektrolytischen Dimerisation während einer langen Zeitspanne kontinuierlich stabil gehalten werden.
Beispiel 1
Eine elektrolytische Zelle mit einem Platinnetz als Anode und einer Bleiplatte mit einer tatsächlichen Elektrodenfläche von 2 cm X 20 cm als Kathode wurde mittels einer Anionenaustauschermembran auf der Anodenseite und einer Kationenaustauschermembran auf der Kathodenseite unter Bildung einer Anodenkammer mit einer Kammerbreite von 4 mm, einer Zwischenkammer mit einer Kammerbreite von 15 mm und einer Kathodenkammer mit einer Kammerbreite von 1 mm aufgeteilt. Diese elektrolytische Zelle wurde mit einem Extraktor und Flüssigkeitsreservoiren entsprechend Fig. 3 verbunden. In Fig. 2 ist mit 17 die elektrolytische Zelle, mit 18 die Anodenkammer, mit 19 die Zwischenkammer, mit 20 die Kathodenkammer, mit 21 die Anionenaustauschermembran und mit 22 die Kationenaustauschermembran bezeichnet, während 23 den Extraktor, 24 ein Extraktionslösungsmittel, 25 den wäßrigen Katholyten, 26 das Anolyt-Reservoir und 27 das Reservoir für die Zwischenkammerflüssigkeit bezeichnet. Flüssigkeitsumwälzpumpen sind mit 28, 29 und 30 bezeichnet.
500 ml einer 1-n-wäßrigen Lösung von N-Methylpyridiniumsulfat wurden in das Reservoir 27 der Zwischenkammerflüssigkeit eingeführt, während 300 ml einer 0,1-n-wäßrigen Lösung von N-Methylpyridiniumsulfat und 300 ml η-Hexan in den Extraktor 23 gegeben wurden. Weiterhin wurde eine l-n-wäßrige Lösung von Natriumsulfat in das Anolyt-Reservoir 26 eingefüllt. Diese wäßrigen Lösungen wurden mittels der Umwälzpumpen 28, 29 und 30 umgewälzt. Das Reaktionsprodukt wurde aus dem Katholyten durch Extraktion im Extraktor entfernt, und nur die wäßrige Phase der unteren Schicht im Extraktor wurde mit einer linearen Geschwindigkeit von 0,5 m/Sekunde in der Kathodenkammer umgewälzt. Die lineare Geschwindigkeit sowohl des Anolyten als auch der Zwischenkammerflüssigkeit betrug in der Anodenkammer und der Zwischenkammer jeweils 0,1 m/Sekunde.
Während des Umlaufes des Anolyten, der Zwischenkammerflüssigkeit und des Katholyten floß ein elektrischer Strom von 7 Ampere/dm2 zwischen den Elektroden. Der pH-Wert des wäßrigen Katholyten betrug etwa 7 gerade zu Beginn des elektrischen Stromflusses, stieg jedoch auf etwa 13 innerhalb einiger Minuten, und dieser pH-Wert änderte sich nicht bis zum Ende der Elektrolyse. Die Spannung zwischen den Elektroden betrug etwa 10 Volt zu Beginn der Elektrolyse, fiel jedoch allmählich und betrug 7,8 Volt am Ende der Elektrolyse. Während die Ausgangslösung des monomeren Salzes kontinuierlich in die Zwi-
' schenkammer eingegeben wurde, wurde die gesamte n-Hexan-Schicht im Extn»ktor durch 300 ml frischen n-Hexans5 Stunden nach dem Beginn der Elektrolyse ersetzt, und die Elektrolyse wurde für weitere 5 Stunden fortgesetzt.
ι» Nach Beendigung der Elektrolyse wurde das im n-Hexan gelöste erhaltene Dimere durch kernmagnetische Resonanzanalyse analysiert. Es wurde gefunden, daß 61,7% der insgesamt zum Einsatz gekommenen Elektrizitätsmenge für die Bildung des Dimeren aus-■> genutzt worden waren. Für die Wasserstoff menge, die während der Elektrolyse entstanden war, waren 37,4% der insgesamt zur Anwendung gekommenen Elektrizitätsmenge verbraucht worden. Die Ausbeute betrug 90,2%, bezogen auf das umgesetzte monomere
-'ti Salz.
Beispiel 2
Unter Verwendung des gleichen in Beispie! 1 beschriebenen Elektrolysesystems wurde die Elektro-
-'■> lyse in der gleichen Weise, wie in Beispie! 1 beschrieben, durchgeführt mit der Ausnahme, daß N-Methylpyridiniumchlorid anstelle von N-Methylpyridiniumsulfat verwendet wurde. 59,4% der insgesamt zur Anwendung kommenden Elektrizitätsmenge wurde
i<> für die Dimerisation und 39,2% für die Wasserstoffbildung verbraucht. Die Ausbeute betrug 89,4%, bezogen auf das verbrauchte monomere Salz.
Beispiel 3
)r) In dem in Beispiel 1 beschriebenen System wurde eine Kationenaustauschermembran als Membran zur Abtrennung von Anoden- und Zwischenkammer und eine Anionenaustauschermembran als Membran zur Abtrennung von Zwischen- und Kathodenkammer verwendet. Eine 1-n-wäßrige Lösung von N-Methylpyridiniumchlorid als monomeres Ausgangssalz wurde direkt in die Kathodenkammer eingeführt. 300 ml einer 1-n-wäßrigen Lösung von N-Methylpyridiniumchlorid und 300 ml Diäthyläther wurden in den Extraktor 23 eingefüllt, während 300 ml einer 1-n-wäßrigen Lösung Natriumsulfat sowohl in das Anolyt-Reservoir 26 als auch in das Reservoir 27 der Zwischenkammerflüssigkeit eingegeben wurden. Diese Lösungen wurden mittels der Umwälzpumpen 28, 29 und 30 umgewälzt, und die Elektrolyse wurde in der gleichen Weise, wie in Beispiel 1 beschrieben, durchgeführt. Die Menge des während einer lOstündigen Elektrolyse erhaltenen Dimeren entsprach 58,6% der Gesamtmenge der zugeführten Elektrizität, und die Menge der für die Wasserstoffbildung verbrauchten Elektrizität betrug 41,0%, der insgesamt zur Anwendunggekommenen Elektrizitätsmenge. Die Ausbeute betrug 92,4%, bezogen auf das verbrauchte monomere Salz.
Beispiel 4
Eine elektrolytische Zelle mit einem Platinnetz als Anode und einer Bleiplatte mit einer tatsächlichen Elektrodenfläche von 2 cm X 20 cm als Kathode b5 wurde durch eine Kationenaustauschermembran unter Bildung einer Anoden- und einer Kathodenkammer getrennt und dann mit einem Anolyt-Reservoir und einem Extraktor verbunden, die beide außerhalb
der elektroiytischen Zelle, wie in Fig. 3 dargestellt, angeordnet waren. In Fig. 3 bedeutet 31 die elektro-Iytische Zelle, 32 die Kaiionenaustauschermembran, 33 die Anodenkamiuer und 34 die Kathodenkammer, während 35 den Extraktor, 36 das Extraktionslösungsmittel, 37 den wäßrigen Katholyten, 38 den Anolyt-Reservoir und 39 den Anolyten bezeichnen. Die Bezugsziffern 40 und 41 kennzeichnen Flüssigkeitsumwälzpumpen.
500 ml einer 1-n-wäßrigen Lösung von N-Methylpyridiniumsulfat wurden in das Anolyt-Reservoir 38 und 300 ml einer 0,1-η-wäßrigen Lösung von N-Methylpyridiniumsulfat und 300 ml η-Hexan wurden in den Extraktor 35 gegeben. Der Anolyt wurde dann zwischen dem Anolyt-Reservoir und der Anodenkammer mittels der Umwälzpumpe 40 bei einer linearen Geschwindigkeit von 0,1 m/Sekunde in der Anodenkammer umgewälzt, während der Katholyt zwischen dem Extraktor und der Kathodenkammer mittels der Umwälzpumpe 41 mit einer linearen Geschwindigkeit in der Kathodenkammer von 0,5 m/Sekunde umgewälzt wurde. Während die Flüssigkeiten umgewälzt wurden, floß ein elektrischer Strom von 2,8 Ampere zwischen den Elektroden. Nach dem Beginn der Einführung des elektrischen Stroms wurde N-Methylpyridiniumsulfat kontinuierlich nach und nach dem Anolyt-Reservoir zugeführt, um das verbrauchte monomere Salz aufzufrischen, und es wurden 1 (K) ml des das Dimere enthaltenden η-Hexan abgezogen und durch 100 ml frischen η-Hexan, jeweils 2 Stunden nach dem Beginn drr Elektrolyse, ersetzt. Die Elektrolyse konnte 10 Stunden durchgeführt werden.
Nach Beendigung der Elektrolyse wurde das gebildefe und in η-Hexan gelöste Dimere unter Verwendung der NMR-Analysevorrichtung analysiert. Es wurde gefunden, daß 62,4% der insgesamt angewandten Elektrizitätsmenge für die Bildung des Dimeren und 37,1% für die Wasserstoffbildung verbraucht worden waren. Die Ausbeute betrug 93.8%, bezogen auf das verbrauchte monomere Salz.
Beispiel 5
Unter Bezugnahme auf Fig. 4 wurde eine elektrolytische Zelle mit einem Platinnetz als Anode und einer Platte aus einer im wesentlichen aus Blei und 0.5 Gew.-'f Tellur bestehenden Legierung als Kathode mit einer tatsächlichen Elektrodenfläche von 2 cm x 20 cm durch eine Anionenaustauschermembran auf der Kathodenseite und einer Kationenaustauschermembran auf der Anodenseite in eine Krthodcnkanimcr 55 mit einer Kammerbreite von 1 mm. eine Zwischenkammer 54 mit einer Kammerbreite von 15 mm und eine Anodenkammer 53 mit einer Kammerbreite von 4 mm aufgeteilt. Diese Kammern waren jeweils mit einem Extraktor und/oder einem Flüssigkeitsrcscrvoir über Umlaufleitungen mit Umwälzpumpen, wie in Fig. 4 gezeigt, verbunden.
3(H) ml einer wäßrigen Lösung von Natriumchlorid mit einer Konzentration von 1 Mol/Liter, 300 ml einer 1-n-wäßrigen Lösung von N-Methylpyridiniumchlorid mit einer Konzentration von 1 Mol/Liter wurden in das Zwischenkammerflüssigkeitsreservoir 46, das Anolyt-Reservoir 47 bzw. das Katholyt-Reservoir 45 eingefüllt. Diese wäßrigen Lösungen wurden mittels der Umwälzpumpen derart umgewalzt, daß die linearen Geschwindigkeiten jeweils 0,1 m/Sekunde in der Zwischenkammer 54. (I. I m'Sekunde in der Anodenkammer 53 und 0,8 m/Sekunde in der Kathodenkammer 55 betrugen. Wie in Fig. 4 dargestellt, wurden 1500 ml Toluol in die untere Schicht des Abscheiders 44 gegeben und zwischen dem Abscheider 44 und dem Mixer 43 mit einer Geschwindigkeit von 100 ml/Minute mittels einer das Extraktionslösungsmittel umwälzenden Pumpe umgewälzt. Während die Lösungen in dieser Weise umgewälzt wurden, floß ein elektrischer Strom zwischen den Elektroder
ic mit einer Stromdichte von 10 A/dm2. Im Laufe dei Zeit wurde das N-Methylpyridiniumchlorid im Katholyten nach und nach in N.N'-Dimethyltetrahydro-4,4'-bipyridil umgewandelt, das in das Extraktionslösungsmittel überführt wurde. Entsprechend wurde eine wäßrige Lösung von N-Methylpyridiniumchlorid in einer Konzentration von 3,1 Mol/Liter kontinuierlich dem Katholyt-Reservoir zugeführt, so daß die Konzentration an N-Methylpyridiniumchlorid im Katholyten bei 1 Mol/Liter aufrechterhalten wurde. An-
2i> dererseits wurde eine 5-n-wäßrige Lösung von Natriumhydroxid nach und nach dem Anolyt-Reservoir zugeführt, so daß der pH-Wert des Anolyten bei etwa 13 gehalten wurde. Da Natriumchlorid gebildet und nach und nach in der Zwischenkammer gesammelt
:i wurde, wurde die Zwischenkammerflüssigkeit nach und nach durch Wasser in dem Zwischenkammerflüssigkeitsreservoir ersetzt, so daß die Konzentration an Natriumchlorid bei 1 Mol/Liter gehalten wurde. Die Elektrolyse wurde 150 Stunden unter den obenge-
)o nannten Bedingungen fortgesetzt. Es wurde gefunden, daß 8,9% der insgesamt zugeführten Elektrizitätsmenge für die Wasserstoffbildung und 90,2% für die Bildung von N,N'-Dimethyltetrahydro-4,4'-bipyridyl verbraucht worden war. Die Ausbeute betrug 88,1 %,
j-, bezogen auf das verbrauchte monomere Salz.
Beispiel 6
Eine elektrolytische Zelle mit einer mit Platin beschichteten Titanplatte als Anode und einer Kupferplatte als Kathode wurde mittels einer Anionenaustauschermembran auf der, Kathodenseite und einer Kationenaustauschermembran auf der Anodenseite unter Bildung einer Kathodenkammer, einer Zwischenkammer und einer Anodenkammer aufgeteilt.
r> Die Elektrodenfläche betrug 40 cnr. Diese elektrolytische Zelle wurde mit einem Extraktor über Flüssigkeitsumwälzleitungen mit einer Umwälzpumpe für Flüssigkeiten verbunden. 600 ml Diäthyläther wurden in den Extraktor eingegeben. 1 Liter einer 1-n-wäßri-
■)0 gen Lösung von Natriumsulfat und 1,5 Liter einer 1 η-wäßrigen Lösung von Natriumchlorid wurden in ein Anolyt-Reservoir bzw. ein Zwischenkammerflüssigkeitsreservoir eingegeben. In der gleichen Weise wie in den vorstehenden Beispielen wurden diese Lösun-
Vj gen jeweils umgewälzt, so daß die lineare Geschwindigkeit in jeder Kammer 0,5 m/Sekunde betrug. 700 ml einer wäßrigen Lösung von N-Methylpyridiniumchlorid mit einer Konzentration von 0,4 Gew.-% wurde in den Extraktor gegeben und mittels einer
hd Umwälzpumpe in der Weise umgewälzt, daß die lineare Geschwindigkeit dieser wäßrigen Lösung 0,7 in/ Sekunde in der Kathodenkamnier betrug. Während alle Lösungen in dieser Weise umgewälzt wurden, floß ein elektrischer Strom zwischen den beiden Elektro-
Iv-, den mit einer Stromdichte von 20 A/dnr.
Eine 2-n-wäßrige Lösung von Natriumhydroxid wurde kontinuierlich der Anodenkammer mit einer Geschwindigkeit von 119 g/Stunde zugeführt, und
eine wäßrige Natriumchloridlösung wurde aus der Zwischenkammer mit einer bestimmten Geschwindigkeit abgezogen, während Wasser zugeführt wurde, so daß die Konzentration der Lösungen während der gesamten Elektrolyse auf dem ursprünglichen Niveau > gehalten wurden.
Die Elektrolyse wurde 8 Stunden unter den obigen Bedingungen durchgeführt. Es wurde gefunden, daß die Umwandlung des eingeführten N-Methylpyridiniumchlorids 67,3% betrug und daß 36,0% der Ge- ι ο samtmenge der angewandten Elektrizität für die Bildung des N,N'-Dimethyltetrahydro-4,4'-bipyridyl verbraucht worden war. Die für die Bildung von Wasserstoff verbrauchte Elektrizitätsmenge betrug 42,5 % der insgesamt angewandten Eiektrizitätsmenge, im Mittel über die gesamte Elektrolyse. Die Ausbeute betrug 95,7%, bezogen auf das verbrauchte monomere Salz.
Nach der Elektrolyse wurde die elektrolytische Zelle auseinandergebaut, um die Elektroden zu prü- -> <> fen. Es wurde gefunden, daß die Elektroden insgesamt nicht elektrolytisch korrodiert waren.
Beispiel 7
Ein mit Platin beschichtetes Titannetz wurde als 2-5 Anode und eine Platte aus einer Bleilegierung mit etwa 0,5 Gew.% Tellur zur Steigerung der Härte als Kathode verwendet. Die tatsächliche Elektrodenfläche der Bleilegierungsplatte betrug 2 cm x 20 cm. Eine elektrolytische Zelle in Form eines Kastens )<> wurde zusammengebaut. Eine Anionenaustauschermembran wurde auf der Kathodenseite und eine Kationenaustauschermembran auf der Anodenseite angeordnet. Die Kammerbreite der Kathodenkammer betrug 1 mm, die der Zwischenkammer 15 mm und r> die der Anodenkammer 4 mm. Jeweils ein Einlaß und ein Auslaß in Form einer runden öffnung mit einem Durchmesser von 6 mm wurden für die Elektrolyten an jeder Seite der elektrolytischen Zelle gebildet, d. h. sowohl an der Seite der Kathoden- als auch de« Ano- 4<> denkammer sowie an der oberen und der unteren Seite der Zwischenkammer. Diese elektrolytische Zelle wurde in ein System entsprechend Fig. 4 eingebaut, und die Elektrolyse wurde unter den nachstehenden Bedingungen durchgeführt.
Die linearen Geschwindigkeiten der umgewälzten Elektrolyte betrug etwa 0,5 m/Sekunde in der Kathodenkammer und etwa 0,1 m/Sekunde in der Zwischen- und der Anodenkammer. Die Menge an Elektrolyt, die in jedes Flüssigkeitsreservoir eingegeben >o wurde, betrug 300 ml. N-Methylpyridiniumchlorid wurde im Katholyten mit einer Konzentration von 1 Mol/Liter gelöst, Natriumchlorid wurde in der Zwischenkammerflüssigkeit mit einer Konzentration von 1 Mol/Liier und Natriumhydroxid in dem Anolyten Vi mit einer Konzentration von 1 Mol/Liter gelöst. Während der Durchführung der Elektrolyse wurden N-Methylpyridiniumchlorid und Natriumhydroxid dem Katholyten bzw. dem Anolyten in einer Menge von etwa 0,2 Mol/Stunde zugeführt, so daß die obenge- t>o nannten Konzentrationen erhalten wurden. Die wäßrige Lösung des Natriumchlorids wurde aus dem Zwischenkammerflüssigkeitsreservoirin einer Menge von etwa 0,2 Mol/Stunde, bezogen auf Natriumchlorid, abgezogen und statt dessen wurde Wasser zugegeben, bs Während die Elektrolyte in dieser Weise umgewälzt wurden, floß ein elektrischer Strom zwischen den beiden Elektrolyten mit einer Stromdichte von 20 A/ dm2. Wurdj die Elektrolyse während 4 Stunden unter den obengenannten Bedingungen durchgeführt, so wurde gefunden, daß 20,3% der Gesamtmenge der angewandten Elektrizität für die Wasserstoffbildung verbraucht worden war. Dieser Prozentsatz stieg bei Fortsetzung der Elektrolyse allmählich an, und wenn nach 26,5 Stunden die Elektrolyse beendet wurde, ergab sich ein Anstieg auf etwa 40%.
Als Extraktionslösungsmittel wurden 1,5 Liter Toluol verwandt. Frisches Toluol wurde nicht kontinuierlich zugeführt, doch wurde das Extraktionslösungsmittel mit einer Geschwindigkeit von 100 ml/Min.ite zwischen dem Abscheider und dem Mischer eines Extraktors vom Mischer-Abscheider-Typ mittels einer Umwälzpumpe umgewälzt. Der Rührer des Mischers rotierte mit etwa 500 UpM. Jeweils in Intervallen von 4,8,5,13,18 und 26,5 Stunden nach dem Beginn der Elektrolyse wurde die Elektrolyse zeitweilig unterbrochen, und die gesamte Toluollösung wurde durch frisches Toluol ersetzt. Selbstverständlich wurde am Ende der Elektrolyse die Toluollösung nur abgezogen und nicht durch frisches Toluol ersetzt. Die Mengen des innerhalb der genannten Intervalle gebildeten N,N'-Dimethyltetrahydro-4,4'-bipyridyl wurden unter Einsatz eines kernmagnetischen Resonanzanalyseapparates bestimmt. Es wurde gefunden, daß die während der jeweiligen Intervalle gebildeten Mengen 0,416, 0,49, 0,45, 0,441 bzw. 0,638 Mole betrugen. Diese Menge des gebildeten Ν,Ν'-Dimethyltetrahydro-4,4'-bipyridyls entsprechen einem Verbrauch von 69,7%, 73,0%, 67,1 %, 59,1 % bzw. 50,3% der jeweiligen angewandten Elektrizitätsmengen, bezogen auf das gebildete N,N'-Dimethyltetrahydro-4,4'-bipyridyl.
Die Gesamtmenge des zu Beginn der Elektrolyse und während der Elektrolyse dem Katho'yten zugeführten N-Methylpyridiniumchlorids betrug 5,566 Mole, und die im Katholyten nach der Beendigung der Elektrolyse verbliebene Menge an N-Methylpyridiniumchlorid betrug 0,519MoI. Die Gesamtmenge des gebildeten Ν,Ν'-Dimethyltetrahydro-4,4'-bipyridyls betrug 2,435 Mole. Die Ausbeute betrug 96,5%, bezogen auf das verbrauchte monomere Salz. Die Gesamtmenge der angewandten Elektrizität betrug 2,537 Faraday. Entsprechend wurde gefunden, daß 61,6% der Gesamtmenge der angewandten Elektrizität durch die Bildung von N,N'-Dimethyltetrahydro-4,4'-bipyridyl verbraucht worden war.
Beispiel 8
Eine elektrolytische Zelle mit einem Platinnetz als Anode und einer Bleiplatte mit einer tatsächlichen Elektrodenfläche von 2 cm X 20 cm als Kathode wurde über eine Anionenaustauschermembran auf der Anodenseite und einer Kationenaustauschermembran auf der Kathodenseite in eine Anodenkammer mit einer Kamnierbreite von 4 mm, einer Zwischenkammer mit einer Kammerbreite von 15 mm und einer Kathodenkammer mit einer Kammerbreite von 1 mm aufgeteilt. Die elektrolytische Zelle war mit einem Extraktor und Flüssigkeitsreservoiren entsprechend Fig. 2 verbunden.
300 ml einer wäßrigen Lösung, enthaltend 1 Mol/ Liter Natriumchlorid, wurde in das Zwischenkammerflüssigkeitsreservoir 27 und 300 ml einer wäßrigen Lösung, enthaltend 0,5 Mol/Liter Natriumhydro-
xid, wurden in das Anolyt-Reservoir 26 eingeführt. 1,5 Liter Diäthyläther und 600 ml einer wäßrigen Lösung, enthaltend 0,2 Mol/Liter N-Methylpyridiniumchlorid, wurden in den Extraktor 23 eingegeben. Die jeweiligen wäßrigen Lösungen wurden mitteis der Umwälzpumpen 29, 28 bzw. 30 umgewälzt. Nur die wäßrige Phase der unteren Schicht im Extraktor wurde mit einer linearen Geschwindigkeit in der Kathodenkammer von 0,5 m/Sekunde umgewälzt. Die linearen Geschwindigkeiten des Anolyten und der Zwischenkammerflüssigkeit betrugen 0,1 m/Sekunde in den Anoden- bzw. der Zwischenkammer.
Während der Anolyt, die Zwischenkammerflüssigkeit und der Katholyt umgewälzt wurden, floß zwischen den Elektroden ein elektrischer Strom von 20 A/dm2. Die Spannung zwischen den Elektroden betrag etwa 18 Volt zu Beginn der Elektrolyse, fiel jedoch auf etwa 11 Volt nach einer Stunde. 2 Stunden nach dem Beginn der Elektrolyse war die Spannung auf etwa 9,5 Volt stabilisiert. N-Methylpyridiniumchlorid wurde nach und nach in den Katholyten eingeführt, so daß die Konzentration hieran im Katholyten bei 0,2 Mol/Liter gehalten wurde. Natriumhydroxid wurde nach und nach dem Anolyten zugegeben, so daß der pH-Wert des Anolyten bei etwa 13 gehalten wurde. Sobald die Konzentration an N,N'-Dimethyltetrahydro-4,4'-bipyridyl im Diäthyläther
0,3 mMol/g erreichte, wurde die Diäthylätherlösung im Extraktor abgezogen und durch frischen Diäthyläther ersetzt. Etwa 20% der Gesamtmenge der angewandten Elektrizität wurden durch die Wasserstoffbildung verbraucht.
Die Elektrolyse wurde dann fortgesetzt. Die Menge an gebildetem Wasserstoff stieg entsprechend der Elektrolysezeit an. 50 Stunden nach dem Beginn der Elektrolyse wurde gefunden, daß etwa 30% der Gesamtmenge der angewandten Elektrizität durch die Wasserstoffbildung verbraucht worden war.
Als Ergebnis einer 26,5 Stunden dauernden Elektrolyse wurden 2,435 Mol N,N'-Dimethyltetrahydro-4,4'-bipyridyl aus 5,05 Mol N-Methylpyridiniumchlorid gewonnen. Diese Ausbeute entspricht 96,4% der theoretischen Ausbeute. 75,6% der Gesamtmenge der angewandten Elektrizität wurde tatsächlich ausgenutzt.
Nach Beendigung der Elektrolyse wurde die elek- -0 trolytische Zelle ausgebaut. Eine kleine Menge einer braunen, schlammähnlichen Substanz war an der Oberfläche der Kathode abgeschieden, doch konnte diese leicht durch Waschen mit Wasser entfernt werden. Nach dem Reinigen der Kathode und anschlie- ^5 Bender Prüfung unter dem Mikroskop wurde weder eine Veränderung noch ein Kathodenabtrag infolge Korrosion festgestellt.
Hierzu 3 Blatt Zeichnungen

Claims (6)

Patentansprüche:
1. Verfahren zur Herstellung von N,N'-dialkyI-substituierten Tetrahydro-4,4'-bipyridylen mit 1 bis 5 C-Atomen im Alkylrest durch elektrolytische Dimerisation der entsprechend N-alkylsubstituierten Pyridiniumsalze in einer elektrolytischen Zelle, die eine Anode, eine Kathode und mindestens ein zwischen Anode und Kathode in |0 der Kathodenkammer angeordnetes Diaphragma aufweist, dadurch gekennzeichnet, daß
a) ein wäßriger, ein entsprechend N-alkylsubstituiertes Pyridiniumsalz enthaltender Katholyt durch die elektrolytische Zelle strömt, welche über einen einen Übergang und eine Einspeisung aufweisenden Umlauf mit einem außerhalb der Zelle angeordneten Extraktor in Verbindung steht, während elektrischer Strom zwischen Anode und Kathode fließt, wobei ein dem genannten N-alkylsubstituierten Pyridiniumsalz entsprechendes N,N'-dialkylsubstituiertes Tetrahydro-4,4'-bipyridyl an der Oberfläche der Kathode gebildet und gleichzeitig von der Oberfläche der Kathode in den durch die Zelle fließenden wäßrigen Katholyten entfernt wird,
b) der das Bipyridyl enthaltende wäßrige Katholyt durch den Übergang zum Extraktor überführt, mit einem mit Wasser nicht misch- Jo baren organischen Lösungsmittel in Berührung gebracht und das Bipyridyl in das organische Lösungsmittel extrahiert wird,
c) die wäßrige von der organischen Phase abgetrennt wird, J5
d) die abgetrennte wäßrige Phase allein zu der Zelle durch die Einspeisung zurückgeführt wird und
e) die Stufen a) bis d) kontinuierlich wiederholt werden.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß als Diaphragma eine Ionenaustauschermembran verwendet wird.
3. Verfahren nach Anspruch 1 und 2, dadurch gekennzeichnet, daß die Zelle zwei Diaphragmen 4r> aufweist, wobei eine Kationenaustauschermembran an der Anodenseite und eine Anionenaustauschermembran an der Kathodenseite unter Bildung einer Anoden-, einer Zwischen- und einer Kathodenkammer angeordnet ist, und daß ein v> Anolyt zwischen der Anodenkammer und einem außerhalb der Zelle angeordneten Anolytreservoir umläuft, während eine Zwischenkammerflüssigkeit zwischen der Zwischenkammer und einem außerhalb der Zelle angeordneten Reservoir für die Zwischenkammerflüssigkeit umläuft.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß der Anolyt eine wäßrige, Alkali enthaltende Lösung und die Zwischenkammerflüssigkeit eine wäßrige Lösung ist, die das gleiche ho Salz enthält, das durch Neutralisation zwischen dem Anion des N-alkylsubstituierten Pyridiniumsalzes und dem Alkalikation gebildet wird.
5. Verfahren nach Anspruch 1 bis 4, dadurch gekennzeichnet, daß das organische Lösungsmittel b5 Toluol ist.
6. Verfahren nach Anspruch 1 bis 5, dadurch gekennzeichnet, daß die Kathode aus Blei, Kupfer oder Legierungen, die Blei und/oder Kupfer als Hauptkomponenten enthalten, besteht.
DE2812508A 1977-03-23 1978-03-22 Verfahren zur Herstellung von N1N'dialkylsubstituierten Tetrahydro-4,4'bipyridylen Expired DE2812508C3 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP3110877A JPS53116383A (en) 1977-03-23 1977-03-23 Electrolytic dimerization of n-substituted pyridinium salt
JP53008959A JPS5952712B2 (ja) 1978-01-31 1978-01-31 N−置換ピリジニウム塩の電解二量化法

Publications (3)

Publication Number Publication Date
DE2812508A1 DE2812508A1 (de) 1978-10-05
DE2812508B2 true DE2812508B2 (de) 1980-02-28
DE2812508C3 DE2812508C3 (de) 1980-10-30

Family

ID=26343591

Family Applications (1)

Application Number Title Priority Date Filing Date
DE2812508A Expired DE2812508C3 (de) 1977-03-23 1978-03-22 Verfahren zur Herstellung von N1N'dialkylsubstituierten Tetrahydro-4,4'bipyridylen

Country Status (7)

Country Link
US (1) US4176020A (de)
BR (1) BR7801821A (de)
CA (1) CA1098860A (de)
DE (1) DE2812508C3 (de)
FR (1) FR2384862A1 (de)
GB (1) GB1551803A (de)
IN (1) IN147984B (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5576084A (en) * 1978-12-01 1980-06-07 Takeda Chem Ind Ltd Method and apparatus for production of vitamin b1 and intermediate thereof
US4589968A (en) * 1983-03-21 1986-05-20 Reilly Tar & Chemical Corp. Filter press electrochemical cell with improved fluid distribution system
US4670111A (en) * 1985-11-13 1987-06-02 Reilly Tar & Chemical Corp. Electrochemical dimerizations of pyridinium salts
US4931155A (en) * 1989-05-19 1990-06-05 Southwestern Analytical Chemicals, Inc. Electrolytic reductive coupling of quaternary ammonium compounds

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3481846A (en) * 1963-06-24 1969-12-02 Du Pont Electrolytic production of adiponitrile
FR1475272A (fr) * 1965-04-07 1967-03-31 Ici Ltd Procédé de fabrication de tétrahydro-4:4'-bipyridyles nünu'-disubstitués
US3493597A (en) * 1967-05-25 1970-02-03 Monsanto Co Purification of aqueous quaternary ammonium salt solutions
US3717646A (en) * 1970-08-27 1973-02-20 Ici Ltd 4,4'-(bis n,n'-carbamyl methyl)dihydrobipyridyls

Also Published As

Publication number Publication date
CA1098860A (en) 1981-04-07
GB1551803A (en) 1979-08-30
US4176020A (en) 1979-11-27
FR2384862B1 (de) 1980-10-24
IN147984B (de) 1980-09-06
BR7801821A (pt) 1979-02-13
DE2812508C3 (de) 1980-10-30
DE2812508A1 (de) 1978-10-05
FR2384862A1 (fr) 1978-10-20

Similar Documents

Publication Publication Date Title
EP0012215B1 (de) 2-Hydroxybutansulfonsaures Cholin und dessen Verwendung als Leitsalz
DE19962155A1 (de) Verfahren zur elektrochemischen Reduktion von Küpenfarbstoffen
DE1255640B (de) Zelle zur elektrolytischen Reduktion oder Oxydation von fluessigen Stoffen mit geringer elektrischer Leitfaehigkeit
EP1004348A2 (de) Verfahren zur Abtrennung organischer Säuren aus wässrigen Lösungen
DE2523117A1 (de) Verfahren und vorrichtung zur regeneration einer dekapierloesung
DE2812508C3 (de) Verfahren zur Herstellung von N1N&#39;dialkylsubstituierten Tetrahydro-4,4&#39;bipyridylen
DE2404560B2 (de) Verfahren zur Herstellung von Sebacinsäure
DE3608853C2 (de)
DE3420333C2 (de)
DE2739316A1 (de) Verfahren zur herstellung von p-benzochinondiketalen
DE1804809A1 (de) Verfahren zur Herstellung von Adipinsaeuredinitril
EP0646042B1 (de) Verfahren zur elektrochemischen herstellung von adipinsäure
DE2240731A1 (de) Verfahren zur herstellung von glyoxylsaeure
DE60111558T2 (de) Verfahren und vorrichtung zur abtrennung und zerstörung von gelöstem nitrat
DE1954707C3 (de) Verfahren zur Wiedergewinnung von Metallkatalysatoren
DE1618066C3 (de) Verfahren zur Herstellung von Ädipmsäurenitril durch elektrolytische Dimerisierung von Acrylnitril
DE2309127A1 (de) Verfahren zur herstellung von 3,5dijod-4-hydroxybenzonitril und 3-jod4-hydroxy-5-nitrobenzonitril
DE2256003A1 (de) Verfahren zur elektrolytischen reduktion von nitrosophenolen zu aminophenolen
DE1568054C3 (de) Verfahren zur Herstellung von Adipinsäuredinitril
DE2310622A1 (de) Diaphragmenzelle fuer die herstellung von schwefelsauren chromsaeureloesungen
DE2403446C2 (de) Verfahren zur Herstellung hydrierter Indole
DE2119979B2 (de) Verfahren zur elektrolytischen Hydrodimerisierung von Acrylnitril
DE1468230C3 (de) Verfahren zur Herstellung von Nitrilen, Alkyl- oder Arylestern gesättigter aliphatischer Di- oder Tetracarbonsäuren
DE1643558C3 (de) Verfahren zur Herstellung von Hydrochinon oder p-Benzochinon
DE1793568B1 (de) Verfahren zur Herstellung von paraffinischen Dicarbonsaeure- oder Teracarbonsaeureamiden

Legal Events

Date Code Title Description
OAP Request for examination filed
OD Request for examination
C3 Grant after two publication steps (3rd publication)
8327 Change in the person/name/address of the patent owner

Owner name: IMPERIAL CHEMICAL INDUSTRIES PLC, LONDON, GB

8328 Change in the person/name/address of the agent

Free format text: KNEISSL, R., DIPL.-CHEM. DR.RER.NAT., PAT.-ANW., 8000 MUENCHEN

8339 Ceased/non-payment of the annual fee