DE2114355C3 - Verfahren zur Herstellung eines mit Zeolithen aktivierten Kohlenwasserstoff -Crackkatalysators - Google Patents

Verfahren zur Herstellung eines mit Zeolithen aktivierten Kohlenwasserstoff -Crackkatalysators

Info

Publication number
DE2114355C3
DE2114355C3 DE19712114355 DE2114355A DE2114355C3 DE 2114355 C3 DE2114355 C3 DE 2114355C3 DE 19712114355 DE19712114355 DE 19712114355 DE 2114355 A DE2114355 A DE 2114355A DE 2114355 C3 DE2114355 C3 DE 2114355C3
Authority
DE
Germany
Prior art keywords
faujasite
silica
clay
alumina
silicate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
DE19712114355
Other languages
English (en)
Other versions
DE2114355B2 (de
DE2114355A1 (de
Inventor
Hanson Lee Bel Air Guidry, Md. (V.St.A.)
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WR Grace and Co
Original Assignee
WR Grace and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by WR Grace and Co filed Critical WR Grace and Co
Publication of DE2114355A1 publication Critical patent/DE2114355A1/de
Publication of DE2114355B2 publication Critical patent/DE2114355B2/de
Application granted granted Critical
Publication of DE2114355C3 publication Critical patent/DE2114355C3/de
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/02Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils characterised by the catalyst used
    • C10G11/04Oxides
    • C10G11/05Crystalline alumino-silicates, e.g. molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von Crackkatalysatoren aus Kieselsäure/ Tonerde einem synthetischen Zeolithen des Faujasit-Typs und Ton zur Umwandlung von Kohlenwasserstoff fen.
Es ist bekannt, mit Zeolithen aktivierte Kohlenwasserstoff-Umwandlungs-Katalysatoren herzustellen, indem man kristalline Aluminiumsilikate, wie Faujasit, mit anorganischen Trägermaterialien, wie Kieselsäure/Tonerde und Ton, verarbeitet Zur Herstellung Zeolithe enthaltender Katalysytoren wird vorzugsweise so vorgegangen, daß man einen kristallinen Zeolithen, gewöhnlich Faujasit herstellt, diesen zur Erhöhung der thermischen Stabilität und der katalytischen Aktivität modifiziert und den modifizierten Zeolithen in einen geeigneten anorganischen Träger einbaut.
Bei der großtechnischen Herstellung von Faujasits werden im allgemeinen Kieselsäure, Tonerde und Alkali in Gegenwart von Wasser bei erhöhten Temperaturen umgesetzt Der kristalline Faujasit wird dann aus dem Reaktionsgemisch entfernt das aus einer Aufschlämmung von feinverteilten Faujasitkristallen besteht die in einer wäßrigen Lösung eines Oberschusses an Kieselsäure und Natriumhydroxid suspendiert sind. Der isolierte Faujasit wird dann in einen amorphen Träger eingebaut wie beispielsweise in Kieselsäure/Tonerde.
Bei dieser großtechnischen Herstellung fallen erhebliehe Mengen an überschüssiger Kieselsäure und an Alkali in der flüssigen Phase der Reaktionsaufschlämmung als Nebenprodukt oder Mutterlösung an, die verworfen werden. Beim Vernichten der die überschüssige Kieselsäure enthaltenden Lösung ergeben sich erhebliche Schwierigkeiten; außerdem ist dieses Verfahren unwirtschaftlich.
Es wurde auch schon vorgeschlagen, die überschüssige Kieselsäure und Alkalilösung aus dem Nebenprodukt der Faujasitherstellung zur Herstellung von amorphen Kieselsäure/Tonerde-Katalysatoren zu verwenden. Eine solche Herstellung an annehmbaren Katalysatoren stieß jedoch bislang auf erhebliche Schwierigkeiten, wenn man von der als Nebenprodukt anfallenden Mutterlösung aus der Faujasitherstellung ausging.
Aufgabe der vorliegenden Erfindung ist es, ein Verfahren zur Herstellung eines einsatzfähigen Faujasit enthaltenden Kohlenwasserstoff-Crackkatalysators vorzuschlagen, wobei die als Nebenprodukt anfallende Alkalisilikatlösung aus der Faujasitsynthese voll einge-
jo setzt werden kann.
Diese Aufgabe wird erfindungsgemäß gelöst durch ein Verfahren zur Herstellung eines mit Zeolithen aktivierten Kohlenwasserstoff-Crackkatalysators durch
a) Zugabe von Ton zu einer Mutterlösung mit einem Gehalt an Alkalisilikat
b) Gelieren des Silikates in der Mutterlösung durch Behandlung der Mutterlölsung mit einer Mineralsäure oder Kohlendioxid,
c) Altern des gelierten Silikats 15 bis 60 Minuten lang bei Temperaturen im Bereich von 21 bis 52° Q
d) Zugabe eines Aluminiumsalzes zu der gealterten Mischung,
e) Ausfällen der Tonerde in der Mischung durch Einstellen des pH-Wertes auf einen Wert im Bereich von 5,5 bis 7,5,
f) Einbringen von Zeolithteilchen in die Mischung während einer Verfahrensstufe,
g) Waschen der Kieselsäure/Tonerde zur Entfernung löslicher Verunreinigungen, gegebenenfalls nach Filtrieren und Wiederaufschlämmung der Mischung und
h) Isolierung des gewaschenen, Kieselsäure/Tonerde enthaltenden Tons und des Faujasits.
Das erfindiingsgemäße Verfahren ist dadurch gekennzeichnet daß als Alkalisilikat enthaltende Mutterlösung eine solche verwendet wird, die bei der Synthese eines Faujasits mit einem Kieselsäure/Tonerde-Verhältnis von 3:1 bis 6 :1 aus einer Alkalisilikat und Tonerde enthaltenden Lösung anfällt daß man vor der Verfahrensstufe g) einen Faujasit zugibt wenn der synthetisierte Faujasit von der Mutterlösung abgetrennt worden ist und daß man nach der Verfahrensstufe g) das gewaschene Produkt mit einer Seltene-Erdmetall-Ionen enthaltenden wäßrigen Lösung behandelt und so dem Faujasit durch Ionenaustausch ein Gehalt von 2,0 bis 4,0 Gew.-%, berechnet als Oxide, an Seltenen Erden vermittelt wird, wobei der erhaltene Katalysator einen
Gehalt von 10 bis 20 Gew.-% Faujasit 25 bis 50 Gew.-% Ton und 40 bis 60 Gew.-% synthetischer Kieselsäure/ Tonerde aufweist
Vorzugsweise wild das erfindungsgemäße Verfahren wie folgt durchgeführt:
Zunächst wird ein Alkalifaujasit mit einem Kieselsäure/Tonerde-Verhältnis von 3,0 bis 6,0 hergestellt, indem man Silikat, Aluminat und eine wäßrige Alkalihydroxidlösung, insbesondere Natronlauge, umsetzt Hierbei wird ein Faujasit enthaltendes Reaktionsgemisch ι ο erhalten, bei dem die Faujasitkristalle in einer wäßrigen Mutterlösung suspendiert sind, die 50 g Na2O oder ein anderes Alkalioxid und 100 g SiO2 je Liter gelöst enthält
Die Faujasitmutterlösung wird mit weiterem Silikat und gegebenenfalls der gewünschten Tonmenge kombiniert und dann unter Verringerung des pH-Wertes durch Zugabe von Kohlendioxid oder einer Mineralsäure, wie Schwefelsäure oder Salzsäure, geliert Der anfängliche pH-Wert der Silikatlösung liegt bei etwa 12 und wird während der Umsetzung vorzugsweise auf 10,0 bis 10,7 erniedrigt
Die gelierte Mischung wird mit genügend Natriumaluminat versetzt, damit etwa 0 bis 40 Gew.-% Tonerde in dem synthetischen Anteil des amorphen anorganischen Trägermaterials im fertigen Katalysator vorhanden sind.
Dann läßt man die Reaktionsmischung 15 bis 60 Minuten lang bei Temperaturen im Bereich von 21 bis 52° C altern.
Die gealterte Mischung wird mit einer ausreichenden jo Menge Aluminiumsalzlösung, vorzugsweise einer Alaunlösung, versetzt, um zu gewährleisten, daß die erforderliche Menge an Tonerde in dem Kieselsäure/ Tonerdeanteil des amorphen Trägers im fertigen Katalysator vorhanden ist Die Kieselsäure/Tonerde y, enthält im allgemeinen 25 bis 40 Gew.-% Aluminiumoxid.
Anschließend wird der pH-Wert der Mischung auf 5,5 bis 7,5 eingestellt und zwar durch Zugabe von Ammoniak, wobei Aluminiumoxid aus der Lösung ausgefällt wird. Die ausgefälllten Feststoffe werden abfiltriert und isoliert
Danach wird der isolierte feste Katalysator wieder mit Wasser aufgeschlämmt, getrocknet, beispielsweise sprühgetrocknet, zur Entfernung löslicher Verunreinigungen gewaschen und mit einer wäßrigen Seltenen-Erdchloridlösung bei einem pH-wert von 4,5 bis 5,0 ausgetauscht
Der zur Herstellung des Katalysators verwendete Faujasit mit einem Kieselsäure/Tonerde-Verhältnis von V) 3,0 bis 6,0 kann auf bekannte Weise hergestellt werden. Hierbei werden die Reaktionsteilnehmer, die die Kieselsäure, die Tonerde und das Alkali liefern, in den folgenden Verhältnissen eingesetzt:
Na2OZSiO2 03 bis 0,7 SiO2ZAl2O3 6 bis 20
H2OZNa2O 25 bis 60
Die obenerwähnten Reaktionsmischungen werden etwa 4 bis 60 Tage auf Temperaturen von —4 bis etwa <,o + 1040C erhitzt
Typische Verfahren zur Herstellung von Faujasit sind beispielsweise in der US-PS 31 30 007 näher beschrieben.
Auf Grund dieser Herstellungsweise wird der Faujasit t,r> mit einer etwa 97%igen Ausbeute, bezogen auf das in der Reaktiomsmischung vorhandene Aluminiumoxid, erhalten. Die Muttelrösung der Reaktionsmischung enthält jedoch einen Oberschuß an nicht ungesetztem Alkalisilikat in Mengen von 25 bis 50 g Na2O je Liter und 50 bis 100 g SiO2 je Liter.
Bei der Herstellung von Faujasit nach üblichen Verfahren wird als Kieselsäurelieferant gewöhnlich eine Natriumsilikatlösung verwendet, die etwa 200 bis 300 g Na2O und 600 bis 900 g SiO2 je Liter enthält Es kann zwar bei der üblichen FaujasithersieUung jedes lösliche Aluminiurasalz verwendet werden, jedoch wird Natriumaluminat bevorzugt An Stelle von Natriumaluminat und Natriumsilikat können natürlich auch die entsprechenden anderen Alkalisalze wie Kalisalze verwendet werden.
Bei dem erfindungsgemäßen Verfahren enthält der hergestellte Katalysator einen erheblichen Anteil an Ton wie beispielsweise Kaolinit, Halloysit, Montmorillonit, Anauxit, Dickit und Nacrit Der Ton kann in seiner natürlich vorkommenden Art oder in thermisch modifizierter Art verwendet werden; beispielsweise kann man die Kalzinierung so führen, daß das Kaolin beispielsweise in Metakaolin umgewandelt wird.
Die der Mutterlösung zugesetzte Menge an zusätzlichem Silikat hängt von der Kieselsäuremenge ab, die in dem amorphen Träger gewünscht wird. Im allgemeinen wird weiteres Silikat zugegeben, um die SiO2 Konzentration auf einen Höchstwert von etwa 60 g je Liter einzustellen. Die Menge an Geliermittel, d h. an saurem Reagenz is* so bemessen, daß bei Temperaturen von 21 bis 52° C eine Gelierung des Silikats in etwa 0,5 bis 5,0 Minuten erfolgt Die Gelierzeit wird durch Probenentnahme von angesäuertem Silikat bestimmt, indem man die zur Bildung eines festen Gels erforderliche Zeit beobachtet Im großtechnischen Verfahren wird das Gelieren durch Zugabe von Kohlendioxid oder einem sauren Geliermittel zu einer Silikatlösung oder Aufschlämmung bewirkt wobei man die Aufschlämmung in einem Geliertank umwälzt, bis sich das Gel gebildet hat
Im Anschluß an das Gelieren kann eine Natriumaluminatlösung zugesetzt werden, die etwa 1,4 bis 4,2 Mol Na2O je Liter und etwa 1,0 bis 3,0 Mol Al2Oa je Liter enthält Die Aluminatlösung wird gründlich in der gelierten Silikataufschlämmung dispergiert und 15 bis 60 Minuten bei 21 bis 52°C gealtert
Die isolierten Katalysatorfestteile werden gewöhnlich bei Temperaturen zwischen 121 und 1770C sprühgetrocknet, wobei man Mikrokugeln mit einem durchschnittlichen Durchmesser von etwa 50 bis 70 μπι erhält Der sprühgetrocknete Katalysator kann dann anschließend mit Lösungen ausgetauscht werden, die Ammoniumionen enthalten, um dadurch den Sodagehalt oder Na2O-Gehalt auf 0,5 Gew.-% zu verringern. Der Kaltalyator wird dann mit einer wäßrigen Lösung eines Seltenen-Erdsalzes, vorzugsweise Chloriden der Seltenen Erden, ausgetauscht Dieses wird solange durchgeführt, bis 2,0 bis 4,0 Gew.-% an Seltenen Erden, berechnet als Oxid, aufgenommen werden. Anschließend wird der Katalysator zwischen 150 bis 177°C getrocknet, um den Feuchtigkeitsgehalt von etwa 60 auf 15% zu verringern.
Der nach dem erfindungsgemäßen Verfahren hergestellte Katalysator enthält 10 bis 20 Gew.-% Faujasit, bezogen auf die Kieselsäure/Tonerdebasis. Der Rest des Katalysators von 80 bis 90% besteht im wesentlichen aus einem amorphen anorganischen Träger. Dieser enthält 25 bis 50 Gew. % Ton und 40 bis 60 Gew.-% synthetische Kieselsäure/Tonerde. Dieser Anteil an synthetischer Kieselsäure/Tonerde besteht wiederum aus etwa 25 bis 40 Gew.-% Al2O3, während der Rest im
wesentlichen SiOj ist
Der Katalysator besitzt eine hohe Abriebfestigkeit und eine hervorragende katalytische Aktivität
Beispiel 1
Es wurde eine Natriumfaujasit-Aufschlämmung wie folgt hergestellt:
1. Eine Natriumsilikatlösung mit einem Gehalt von 17,6 Gew.-% SiO2 wurde hergestellt, indem etwa
12 700 Liter einer Natriumsüikatlösung einer Dichte von 1,269 g/cm3 mit 3785 Litern Wasser verdünnt wurden. Dann wurde eine Natriumaluminatlösung hergestellt, indem 560 kg Aluminiumtrihydrat, Al(OH)3, in 820 kg einer 50%igen NaOH-Lösung aufgelöst wurden; die Mischung wurde lD dann mit 1700 Liter Wasser verdünnt Die Natriumsilikat- und Natriumaluminatlösungen wurden dann kombiniert und 1 Stunde bei Zimmertemperatur umgewälzt
2. Es wurde eine Faujasit-Keimmischung hergestellt, indem 590 kg einer 50gew.-%igen NaOH-Lösung, 550 kg Wasser, 50 kg Aluminiumtrihydrat, Al(OH)3, und 381 kg einer Natriumsilikatlösung einer Dichte von 1,269 g/cm3 mit einem Gehalt von 21,6 Gew.-% SiO2 umgesetzt wurden. Diese Mischung wurde 2d etwa 26 Stunden bei einer Temperatur von 21 bis 37,8° C gemischt
3. Die gemäß Stufe 2 hergestellte Keimmischung wurde mit der Natriumsilikat/Aluminatmischung der Stufe 1 vermischt und 45 bis 60 Minuten gerührt Die Mischung wurde dann auf etwa 100° C erwärmt und etwa 6 bis 12 Stunden bei einer Temperatur von etwa 98° C stehengelassen. Hierbei wurde eine Aufschlämmung aus Faujasitkristallen in Mutterlösung erhalten. Die Aufschlämmung wurde dann mit genügend Wasser verdünnt, so daß ein Volumen von insgesamt 30 000 bis 37 000 Liter mit einer Temperatur von 71 ° C erhalten wurde.
Etwa 170 Liter der so hergestellten Natriumfaujasit-Aufschlämmung, die 2232 g Na2O und 43 g nicht umgesetztes SiO2Je Liter, und insgesamt 2,3 kg Faujasit, ein Molekularsieb des Natriums Typ Y mit einem Kieselsäure/Tonerde-Verhältnis von etwa 5,2 enthielt, wurde mit 13 950 kg Kaolin mit einem Anteil von 14,1 % gesamtflüchtigen Bestandteilen kombiniert Diese aus Ton, Faujasit und Silikat bestehende Aufschlämmung wurde mit einer Geschwindigkeit von 3,8 Litern je Minute durch eine erhitzte Reationsschlange gepumpt, in die gasförmiges CO2 mit solcher Geschwindigkeit eingeleitet wurde, daß innerhalb von 5 Minuten bei einer Temperatur von 29,4° C eine Gelierung erfolgte. Das gelierte Reaktionsgemisch mit einem pH-Wert von 10,7 wurde mit 1000 g einer Natrikmaluminailösung kombiniert, die 1,4 Mol Na2O je Mol Al2O3 und insgesamt 200 g AI2O3 enthielt Diese Mischung mit einem pH-Wert von 11,4 wurde 47 Minuten bei 7,2"C gelagert, woraufhin 967 Liter einer Alaunlösung mit 100 g Al2O3 je Liter zugesetzt wurden, um einen pH-Wert von 5,5 zu erreichen. Der pH-Wert wurde durch Zugabe von 0,70 Liter einer 23%igen Amrconiumhydroxidlösung aus 7,5 eingestellt Die Aufschlämmung wurde dann filtriert, wobei ein Filterkuchen von 47,6 kg erhalten wurde. Dieser wurde mit 8 Litern Wasser aufgeschlämmt und homogenisiert Die homogenisierte Aufschlämmung wurde dann sprühgetrocknet, wobei ein mikrokugelförmiges Produkt erhalten wurde, das 25,7 Gew.-°/o gesamtflüchtige Bestandteile enthielt. 350 g des sprüh-
35 getrockneten Produktes wurden dann mit Ammoniumsulfatlösung bei einem pH-Wert von 7 bis 7,5 gewaschen. Der gewaschene Filterkuchen wurde dann mit 0,75 Liter Wasser wieder aufgeschlämmt und der pH-Wert auf 5,0 eingestellt, und zwar mit 45 ml einer 6%igen Schwefelsäure. Diese Aufschlämmung wurde dann mit einer Lösung von Seltenen-Erdchloriden ausgetauscht, die 20 g Seltene-Erdchloride in 0,40 Liter Wasser gelöst enthielt Der pH-Wert der Lösung der Seltenen-Erdchloride wurde mit HQ auf etwa 23 eingestellt Der Katalysator-Filterkuchen wurde etwa 30 Minuten bei 71°C mit der Seltenen-Erdchloridlösung ausgetauscht Der pH-Wert der Aufschlämmung wurde durch entsprechende Zugabe von Schwefelsäure zwischen 4^ und 5,25 gehalten. Der ausgetauschte Katalysator wurde dann durch Filtrieren isoliert und bei etwa 1500C getrocknet Der fertige Katalysator enthielt 232 Gew.-% SE2O3,17,1 Gew.-% Faujasit (Kieselsäure/ Tonerde-Basis) 44,2 Gew.-% Ton und 38,7 Gew.-% Kieselsäure/Tonerde, die 26,0 Gew.-% Al2O3 enthielt
Beispiel 2
Es wurde ein Natriumfaujasit nach dem Verfahren gemäß Beispiel 1, entsprechend den Verfahrensschritten 1 bis 3 hergestellt
Der Faujasit wurde von der Silikat enthaltenen Mutterlösung durch Filtrieren getrennt, wobei eine Mutterlösung erhalten wurde, die 22,6 g Na2O und 43 g SiO2 je Liter enthielt 170 Liter dieser Mutterlösung wurden mit 13 950 g Ton verarbeitet; diese Aufschlämmung wurde dann mit einer Geschwindigkeit von 3,8 Liter je Minute durch eine erhitzte Reaktionsschlange gepumpt, durch die Kohlendioxid mit einer solchen Geschwindigkeit geleitet wurde, daß innerhalb von 5 Minuten bei 29,4° C eine Gelierung erfolgte. Die Gelierung wurde 25 Minuten durchgeführt, bis man ein geliertes Produkt mit einem pH-Wert von 10,7 erhielt Diese gelierte Mischung wurde mit 1860 g Natriumaluminatlösung verarbeitet, die ein Na2OZAl2O3 Verhältnis von 1,4 besaß. Die Natriumaluminatlösung enthielt insgesamt 372 g Tonerde. Die erhaltene Aufschlämmung besaß einen pH-Wert von 11,7, wobei das Reaktionsgemisch auf 75,6 Liter eingestellt wurde. Nach 47 Minuten Altern bei 29,4°C wurden 18,0 Liter einer Alaunlösung mit einem Gehalt von 100 g Al2O3 je Liter zugegeben, um eine Mischung mit einem pH-Wert von 4,1 zu erhalten. Dieser pH-Wert wurde dann durch Zugabe von 34 ml einer 23%igen Ammoniumhydroxidlösung auf 7,7 eingestellt Anschließend wurden 3,86 kg gewaschener Natriumfaujasitkuchen aus der Faujasitsynthese zugegeben. Dieser Kuchen enthielt 3732% Festoffanteile. Die Mischung wurde umgewälzt und etwa 1 Stunde gerührt und dann filtriert; hierbei wurden 513 kg Katalysatorfilterkuchen erhalten. Dieser Filterkuchen wurde mit 8 Liter Wasser wieder aufgeschlämmt und dann homogenisiert und bei 121° C sprühgetrocknet Es wurden 15,4 sprühgetrocknetes Produkt erhalten. Die Mischung wurde dann mit einer Ammoniumsulfatlösung bei einem pH-Wert von 7,5 ausgetauscht, um ein Produkt zu erhalten, das 0,5 Gew.-% Na2O enthielt Der ausgetauschte Filterkuchen wurde mit Wasser wieder aufgeschlämmt und der pH-Wert durch Zugabe von 6%iger Schwefelsäure auf 5,0 eingestellt Das wiederaufgeschlämmte Produkt wurde dann mit einer Seltenen Erdchloridlösung ausgetauscht, die 15 g SECl3 in 350 ml Wasser enthielt, der pH-Wert wurde mit Salzsäure auf 2,8 eingestellt Der Filterkuchen wurde mit einer Seltenen-Erdchloridlösung bei 71 "C 30
Minuten ausgetauscht, worauf der pH-Wert auf 5,0 eingestellt wurde. Das erhaltene Produkt wurde dann bei 149°C getrocknet, wobei ein Katalysator erhalten wurde, der 3,27% SE2O3, 15,7% Faujasit (Kieselsäure/ Tonerdebasis) 41.8% Ton, 42,5% Kieselsäure/Tonerde und synthetisch s Kieselsäure/Tonerdehydrogel mit einem Gehalt von 40,0 Gew.-% Al2O3 enthielt.
Beispiel 3
Es wurde ein Natriumfaujasit gemäß Beispiel 1 hergestellt und von der Silikat enthaltenden Mutterlösung abfiltriert. Die Mutterlösung wurde mit 11,1kg Natriumsilikatlösung mit einem Gehalt von 28,7% S1O2 und 8,7% Na2O kombiniert, wobei 170 Liter Silikat und Mutterlösung mit einem Gehalt von 18.7 g Na2O und 43 g S1O2 je Liter erhalten wurden. Diese 170 Liter wurden mit 4820 g Ton vermischt. Die flüssige Aufschlämmung wurde dann mit einer Geschwindigkeit von 3,8 Litern je Minute durch eine erhitzte Reaktionsschlange geleitet, in die Kohlendioxid so schnell eingeleitet wurde, daß das Material in 2 Minuten bei 26,70C gelierte. Diese Gelierung wurde 25 Minuten durchgeführt, wobei das gelierte Produkt einen pH-Wert von 10,2 erreicht. Die Gelmischung wurde 5 Minuten gealtert, wobei das Volumen auf 75,6 Liter eingestellt wurde. 10,6 Liter einer Alaunlösung mit einem Gehalt von 100 g AbO3 je Liter wurden zugegeben, wobei ein pH-Wert von 4,2 erreicht wurde. Der pH-Wert wurde durch Zugabe von 1900 ml einer 23%igen Ammoniaklösung auf 7,5 eingestellt. Anschließend wurden 4,0 kg gewaschener Natriumfaujasitkuchen aus der Faujasitsynthese zugesetzt. Dieser Filterkuchen enthielt 32,55% Feststoffe. Die Mischung wurde 1 Stunde umgewälzt und dann filtriert, wobei 44,5 kg eines Katalysatorfilterkuchens erhalten wurde Dieser Filterkuchen wurde mit 9 Liter Wasser aufgeschlämmt, homogenisiert und bei 93,3° C sprühgetrocknet.
730 g des sprühgetrockneten Produktes wurden danr mit Ammoniumsulfatlösung bei einem pH-Wert von 7,f ausgetauscht, um eine Produkt zu erhalten, das 0,i Gew.-% Na2O enthielt. Der ausgetauschte Filterkucher wurde mit Wasser wieder aufgeschlämmt und dei pH-Wert wurde durch Zugabe von 6%iger Schwefel säure auf 5,0 eingestellt. Dieses wiederaufgeschlämmtc Produkt wurde dann mit einer Seltenen-Erdchloridlö sung ausgetauscht, die 67,5 g SECI3 χ 6 H2O gelöst ir 1460 ml Wasser enthielt, wobei der pH-Wert mit HC auf 3,0 eingestellt wurde. Der Filterkuchen wurde 3( Minuten bei einer Temperatur von 71,1°C mit einei Seltenen Erdchloridlösung ausgetauscht. Das erhalten« Produkt wurde filtriert und mit Wasser gespült, dann be 150°C getrocknet; hierbei wurde ein Katalysatoi erhalten, der 3,02% SE2O3,15,7% Faujasit (Kieselsäure, Tonerdebasis) 24,3% Ton, 60% eines synthetischer Kieselsäure/Tonerdehydrogels mit 25 Gew.-% Al2O enthielt.
Die katalytische Aktivität der nach den Beispielen 1,; und 3 erhaltenen Produkte ergibt sich aus den folgender Werten, wobei nach der Arbeit von Ciapetta et al in Oi & Gas Journal, Oktober 16,1967, der Kohlenstofferzeu gungsfaktor (CPF) und der Gaserzeugungsfaktor (GPF bestimmt wurden.
Deaktivierung CPF GPF 732°C Damp! CPF GPF
566°C Dampf 0.28 0.16 1.05 atü-8 h 0.38 0.11
4.22 atii-24 h 0.46 0.19 Mikroaktivität 0,54 0.13
Mikroaktivität 0.48 0.17 88.3 - -
Beispiel 1 83.7 89,9
Beispiel 2 92.7 -
Beispiel 3 90.0

Claims (1)

Patentansprüche: *
1. Verfahren zur Herstellung eines mit Zeolithen aktivierten Kohlen« asserstoff-Crackkatalysators durch
a) Zugabe von Ton zu einer Mutterlösung mit einem Gehalt an Alkalisilikat,
b) Gelieren des Silikates in der Mutterlösung durch Behandlung der Mutterlösungmit einer Mineralsäure oder Kohlendioxid,
c) Altern des gelierten Silikats 15 bis 60 Minuten lang bei Temperaturen im Bereich von 21 bis 52° C,
d) Zugabe eines Aluminiumsalzes zu der gealterten Mischung,
e) Ausfällen der Tonerde in der Mischung durch Einstellen des pH-Wertes auf einen Wert Im Bereich von 5,5 bis 7,5,
f) Einbringen von Zeolithteilchen in die Mischung während einer Verfahrensstufe,
g) Waschen der Kieselsäure/Tonerde zur Entfernung löslicher Verunreinigungen, gegebenenfalls nach Filtrieren und Wiederaufschlämmung der Mischung und
h) Isolierung des gewaschenen, Kieselsäure/Tonerde enthaltenden Tons und des Faujasits.
dadurch gekennzeichnet, daß als Alkalisilikat enthaltende Mutterlösung eine solche verwendet wird, die bei der Synthese eines Faujasits mit einem Kieselsäure/Tonerde-Verhältnis von 3:1 bis 6 :1 aus einer Alkalisiliktat und Tonerde enthaltenden Lösung anfällt, daß man vor der Verfahrensstufe g) einen Faujasit zugibt, wenn der synthetisierte Faujasit von der Mutterlösung abgetrennt worden ist, und daß man nach der Verfahrensstufe g) das gewaschene Produkt mit einer Seltene-Erdmetall-Ionen enthaltenden wäßrigen Lösung behandelt und so dem Faujasit durch !ionenaustausch ein Gehalt von 2,0 bis 4,0 Gew.-%, berechnet als Oxide, an Seltenen Erden vermittelt wird, wobei der erhaltene Katalysator einen Gehalt von 10 bis 20 Gew.-% Faujasit, 25 bis 50 Gew.-% Ton und 40 bis 60 Gew.-% syntehtischer Kieselsäure/Tonerde aufweist
DE19712114355 1970-03-26 1971-03-24 Verfahren zur Herstellung eines mit Zeolithen aktivierten Kohlenwasserstoff -Crackkatalysators Expired DE2114355C3 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US2301370A 1970-03-26 1970-03-26

Publications (3)

Publication Number Publication Date
DE2114355A1 DE2114355A1 (de) 1971-10-07
DE2114355B2 DE2114355B2 (de) 1979-09-20
DE2114355C3 true DE2114355C3 (de) 1980-08-14

Family

ID=21812627

Family Applications (1)

Application Number Title Priority Date Filing Date
DE19712114355 Expired DE2114355C3 (de) 1970-03-26 1971-03-24 Verfahren zur Herstellung eines mit Zeolithen aktivierten Kohlenwasserstoff -Crackkatalysators

Country Status (7)

Country Link
JP (1) JPS549149B1 (de)
AU (1) AU2699671A (de)
CA (1) CA983464A (de)
DE (1) DE2114355C3 (de)
FR (1) FR2083594B1 (de)
GB (1) GB1343736A (de)
NL (1) NL7104013A (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2427843B1 (fr) * 1978-06-07 1987-09-18 Exxon Research Engineering Co Composition pour craquage catalytique a base d'alumine, de zeolite ultra stable y et d'une matrice d'oxyde poreux
US5051164A (en) * 1987-09-04 1991-09-24 Mobil Oil Corporation Crystalline porous silicate composite and its use in catalytic cracking

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3410808A (en) * 1965-09-03 1968-11-12 Exxon Research Engineering Co Zeolitic materials
US3472792A (en) * 1967-03-13 1969-10-14 Universal Oil Prod Co Hydrocarbon conversion catalyst

Also Published As

Publication number Publication date
FR2083594A1 (de) 1971-12-17
JPS549149B1 (de) 1979-04-21
NL7104013A (de) 1971-09-28
DE2114355B2 (de) 1979-09-20
FR2083594B1 (de) 1975-01-17
AU2699671A (en) 1972-09-28
DE2114355A1 (de) 1971-10-07
CA983464A (en) 1976-02-10
GB1343736A (en) 1974-01-16

Similar Documents

Publication Publication Date Title
DE69911896T2 (de) Stannosilikat Molekular-Siebe mit Beta-typ Struktur
DE2140481C3 (de) Verfahren zur Herstellung kristalliner Alumosilikate mit Faujasitstruktur
DE1542155C3 (de) Verwendung von einem an sich bekannten Kohlenwasserstoffkrackkatalysator und einem synthetischen Zeolith als Katalysator zum Kracken von Kohlenwasserstoffen
DE2531670A1 (de) Zeolith und verfahren zu dessen herstellung
DE3126521A1 (de) &#34;verfahren zur herstellung von crackkatalysatoren&#34;
DE3003361C2 (de) Katalysator und dessen Verwendung
DE1467045A1 (de) Verfahren zur Herstellung von synthetischen,kristallinen,zeolithischen Aluminosilicaten
DE2617571A1 (de) Verfahren zur herstellung von zeolithen mit hohem siliciumoxid-aluminiumoxid-verhaeltnis
DE2045256B2 (de) Verfahren zur Herstellung eines einen Zeolith enthaltenden Katalysators
DE2322710A1 (de) Kohlenwasserstoffumwandlungskatalysator mit gehalt an einem faujasiten
DE3010512A1 (de) Verfahren zur herstellung eines zeolithhaltigen silica-tonerde-hydrogelkatalysators
DE1545270A1 (de) Katalysator zur Umwandlung von Kohlenwasserstoffen und Verfahren zur Herstellung derselben
DE1542194B2 (de) Verfahren zur Herstellung eines nicht-kristallinen Kieselsäure Tonerde-Crackkatalysators
DE1792631C3 (de) Verfahren zur Herstellung von Mordenit durch Erhitzen amorpher Silicium-Aluminiumoxid-Gemische
DE2114355C3 (de) Verfahren zur Herstellung eines mit Zeolithen aktivierten Kohlenwasserstoff -Crackkatalysators
DE2108512C3 (de) Verfahren zur Herstellung von Zeolithen
DE2649734B2 (de) Verfahren zur Herstellung von Natriumfluorid aus Natriumsilicofluorid
DE2935123C2 (de)
DE2336204C3 (de) Verfahren zur Herstellung eines tonhaltigen Katalysators zum Cracken von Kohlenwasserstoffen
DE1442703C3 (de) Verfahren zur Herstellung eines Kieselsäure, Aluminiumoxid und Magnesiumoxid enthaltenden Crackkatalysators
DE1442853B2 (de) Verfahren zur Herstellung eines Aluminosilikatkatalysators
DE2115965C3 (de) Verfahren zur Herstellung von Mordenit und dessen Verwendung als Trager für Katalysatoren fur Kohlenwasserstoff-Umwandlungsverfahren
DE1959761C3 (de) Verfahren zur Herstellung eines synthetischen Faujasit enthaltenden Crackkatalysators
DE1667079C3 (de) Verfahren zur Herstellung von Kieselsäure-Tonerde-Crackkatalysatoren W R Grace &amp; Co, New York
DE2006976C3 (de) Verfahren zur Herstellung von Siliciumdioxyd-Aluminiumoxyd-Katalysatorteilchen

Legal Events

Date Code Title Description
OD Request for examination
C3 Grant after two publication steps (3rd publication)
8339 Ceased/non-payment of the annual fee