DE102009000527A1 - Hermetisch abgedichtete Kondensatoranordnung - Google Patents
Hermetisch abgedichtete Kondensatoranordnung Download PDFInfo
- Publication number
- DE102009000527A1 DE102009000527A1 DE102009000527A DE102009000527A DE102009000527A1 DE 102009000527 A1 DE102009000527 A1 DE 102009000527A1 DE 102009000527 A DE102009000527 A DE 102009000527A DE 102009000527 A DE102009000527 A DE 102009000527A DE 102009000527 A1 DE102009000527 A1 DE 102009000527A1
- Authority
- DE
- Germany
- Prior art keywords
- anode
- capacitor
- cathode
- arrangement according
- acid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003990 capacitor Substances 0.000 title claims abstract description 74
- 239000000919 ceramic Substances 0.000 claims abstract description 42
- 229920001940 conductive polymer Polymers 0.000 claims abstract description 33
- 239000011261 inert gas Substances 0.000 claims abstract description 18
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 7
- 239000001301 oxygen Substances 0.000 claims abstract description 7
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 7
- 238000000034 method Methods 0.000 claims description 28
- 229910052751 metal Inorganic materials 0.000 claims description 18
- 239000002184 metal Substances 0.000 claims description 18
- 239000012298 atmosphere Substances 0.000 claims description 14
- 239000004020 conductor Substances 0.000 claims description 13
- 239000000203 mixture Substances 0.000 claims description 13
- 229910000484 niobium oxide Inorganic materials 0.000 claims description 13
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims description 12
- 239000000853 adhesive Substances 0.000 claims description 10
- 230000001070 adhesive effect Effects 0.000 claims description 10
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 9
- 239000000463 material Substances 0.000 claims description 9
- URLJKFSTXLNXLG-UHFFFAOYSA-N niobium(5+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Nb+5].[Nb+5] URLJKFSTXLNXLG-UHFFFAOYSA-N 0.000 claims description 8
- 229910052715 tantalum Inorganic materials 0.000 claims description 8
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 6
- 230000032683 aging Effects 0.000 claims description 6
- 238000004519 manufacturing process Methods 0.000 claims description 4
- 229910052757 nitrogen Inorganic materials 0.000 claims description 4
- 229910052786 argon Inorganic materials 0.000 claims description 3
- 239000001307 helium Substances 0.000 claims description 3
- 229910052734 helium Inorganic materials 0.000 claims description 3
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 claims description 3
- 229910052743 krypton Inorganic materials 0.000 claims description 3
- DNNSSWSSYDEUBZ-UHFFFAOYSA-N krypton atom Chemical compound [Kr] DNNSSWSSYDEUBZ-UHFFFAOYSA-N 0.000 claims description 3
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 claims description 3
- 229910052754 neon Inorganic materials 0.000 claims description 3
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 claims description 3
- 229910052704 radon Inorganic materials 0.000 claims description 3
- SYUHGPGVQRZVTB-UHFFFAOYSA-N radon atom Chemical compound [Rn] SYUHGPGVQRZVTB-UHFFFAOYSA-N 0.000 claims description 3
- 238000007789 sealing Methods 0.000 claims description 3
- 229910052724 xenon Inorganic materials 0.000 claims description 3
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 claims description 3
- 229910001936 tantalum oxide Inorganic materials 0.000 claims description 2
- 229920001609 Poly(3,4-ethylenedioxythiophene) Polymers 0.000 claims 2
- 239000003292 glue Substances 0.000 claims 2
- 239000005518 polymer electrolyte Substances 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 28
- 238000000576 coating method Methods 0.000 description 16
- 239000011248 coating agent Substances 0.000 description 15
- 239000003792 electrolyte Substances 0.000 description 13
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 12
- 238000012360 testing method Methods 0.000 description 11
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 10
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 9
- 239000003054 catalyst Substances 0.000 description 9
- 229910052709 silver Inorganic materials 0.000 description 9
- 239000004332 silver Substances 0.000 description 9
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 8
- -1 niobium oxide Chemical compound 0.000 description 8
- 239000002245 particle Substances 0.000 description 8
- 239000002904 solvent Substances 0.000 description 8
- 238000003466 welding Methods 0.000 description 8
- 239000011230 binding agent Substances 0.000 description 7
- 239000000178 monomer Substances 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- 229910052759 nickel Inorganic materials 0.000 description 6
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 5
- 229910052799 carbon Inorganic materials 0.000 description 5
- 238000001035 drying Methods 0.000 description 5
- 239000000314 lubricant Substances 0.000 description 5
- 230000003647 oxidation Effects 0.000 description 5
- 238000007254 oxidation reaction Methods 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 235000014113 dietary fatty acids Nutrition 0.000 description 4
- 238000007598 dipping method Methods 0.000 description 4
- 150000002148 esters Chemical class 0.000 description 4
- 239000000194 fatty acid Substances 0.000 description 4
- 229930195729 fatty acid Natural products 0.000 description 4
- 150000004665 fatty acids Chemical class 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 239000011241 protective layer Substances 0.000 description 4
- GKWLILHTTGWKLQ-UHFFFAOYSA-N 2,3-dihydrothieno[3,4-b][1,4]dioxine Chemical compound O1CCOC2=CSC=C21 GKWLILHTTGWKLQ-UHFFFAOYSA-N 0.000 description 3
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 3
- JFDZBHWFFUWGJE-UHFFFAOYSA-N benzonitrile Chemical compound N#CC1=CC=CC=C1 JFDZBHWFFUWGJE-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 238000005056 compaction Methods 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 239000010931 gold Substances 0.000 description 3
- 150000008040 ionic compounds Chemical class 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 229910052758 niobium Inorganic materials 0.000 description 3
- 239000010955 niobium Substances 0.000 description 3
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 3
- 239000003921 oil Substances 0.000 description 3
- 235000019198 oils Nutrition 0.000 description 3
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 3
- FJKROLUGYXJWQN-UHFFFAOYSA-N papa-hydroxy-benzoic acid Natural products OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 3
- 239000012260 resinous material Substances 0.000 description 3
- 238000005245 sintering Methods 0.000 description 3
- 239000007784 solid electrolyte Substances 0.000 description 3
- 230000035882 stress Effects 0.000 description 3
- PBCFLUZVCVVTBY-UHFFFAOYSA-N tantalum pentoxide Inorganic materials O=[Ta](=O)O[Ta](=O)=O PBCFLUZVCVVTBY-UHFFFAOYSA-N 0.000 description 3
- 239000011135 tin Substances 0.000 description 3
- 229910052718 tin Inorganic materials 0.000 description 3
- 230000003442 weekly effect Effects 0.000 description 3
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 2
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 2
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 229910000881 Cu alloy Inorganic materials 0.000 description 2
- RGHNJXZEOKUKBD-SQOUGZDYSA-N D-gluconic acid Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C(O)=O RGHNJXZEOKUKBD-SQOUGZDYSA-N 0.000 description 2
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Chemical compound OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 2
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 2
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 2
- 239000005642 Oleic acid Substances 0.000 description 2
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 2
- 229910010293 ceramic material Inorganic materials 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 2
- POULHZVOKOAJMA-UHFFFAOYSA-N dodecanoic acid Chemical compound CCCCCCCCCCCC(O)=O POULHZVOKOAJMA-UHFFFAOYSA-N 0.000 description 2
- 229920006332 epoxy adhesive Polymers 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- LNTHITQWFMADLM-UHFFFAOYSA-N gallic acid Chemical compound OC(=O)C1=CC(O)=C(O)C(O)=C1 LNTHITQWFMADLM-UHFFFAOYSA-N 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 230000035876 healing Effects 0.000 description 2
- IPCSVZSSVZVIGE-UHFFFAOYSA-N hexadecanoic acid Chemical compound CCCCCCCCCCCCCCCC(O)=O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 description 2
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 2
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 239000011133 lead Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000002923 metal particle Substances 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 230000005012 migration Effects 0.000 description 2
- 238000013508 migration Methods 0.000 description 2
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 2
- 235000021313 oleic acid Nutrition 0.000 description 2
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 239000002685 polymerization catalyst Substances 0.000 description 2
- 229920000128 polypyrrole Polymers 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical compound OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 150000003626 triacylglycerols Chemical class 0.000 description 2
- DCXXMTOCNZCJGO-UHFFFAOYSA-N tristearoylglycerol Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(OC(=O)CCCCCCCCCCCCCCCCC)COC(=O)CCCCCCCCCCCCCCCCC DCXXMTOCNZCJGO-UHFFFAOYSA-N 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- WHOZNOZYMBRCBL-OUKQBFOZSA-N (2E)-2-Tetradecenal Chemical compound CCCCCCCCCCC\C=C\C=O WHOZNOZYMBRCBL-OUKQBFOZSA-N 0.000 description 1
- BUHVIAUBTBOHAG-FOYDDCNASA-N (2r,3r,4s,5r)-2-[6-[[2-(3,5-dimethoxyphenyl)-2-(2-methylphenyl)ethyl]amino]purin-9-yl]-5-(hydroxymethyl)oxolane-3,4-diol Chemical compound COC1=CC(OC)=CC(C(CNC=2C=3N=CN(C=3N=CN=2)[C@H]2[C@@H]([C@H](O)[C@@H](CO)O2)O)C=2C(=CC=CC=2)C)=C1 BUHVIAUBTBOHAG-FOYDDCNASA-N 0.000 description 1
- CUXYLFPMQMFGPL-WPOADVJFSA-N (9Z,11E,13E)-octadeca-9,11,13-trienoic acid Chemical compound CCCC\C=C\C=C\C=C/CCCCCCCC(O)=O CUXYLFPMQMFGPL-WPOADVJFSA-N 0.000 description 1
- OYHQOLUKZRVURQ-NTGFUMLPSA-N (9Z,12Z)-9,10,12,13-tetratritiooctadeca-9,12-dienoic acid Chemical compound C(CCCCCCC\C(=C(/C\C(=C(/CCCCC)\[3H])\[3H])\[3H])\[3H])(=O)O OYHQOLUKZRVURQ-NTGFUMLPSA-N 0.000 description 1
- MEHUJCGAYMDLEL-CABCVRRESA-N (9r,10s)-9,10,16-trihydroxyhexadecanoic acid Chemical compound OCCCCCC[C@H](O)[C@H](O)CCCCCCCC(O)=O MEHUJCGAYMDLEL-CABCVRRESA-N 0.000 description 1
- DSSYKIVIOFKYAU-XCBNKYQSSA-N (R)-camphor Chemical compound C1C[C@@]2(C)C(=O)C[C@@H]1C2(C)C DSSYKIVIOFKYAU-XCBNKYQSSA-N 0.000 description 1
- BJEPYKJPYRNKOW-REOHCLBHSA-N (S)-malic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O BJEPYKJPYRNKOW-REOHCLBHSA-N 0.000 description 1
- ZWFDBRUSCVLUPK-BTJKTKAUSA-N (z)-but-2-enedioic acid;hexanedioic acid Chemical compound OC(=O)\C=C/C(O)=O.OC(=O)CCCCC(O)=O ZWFDBRUSCVLUPK-BTJKTKAUSA-N 0.000 description 1
- WBYWAXJHAXSJNI-VOTSOKGWSA-M .beta-Phenylacrylic acid Natural products [O-]C(=O)\C=C\C1=CC=CC=C1 WBYWAXJHAXSJNI-VOTSOKGWSA-M 0.000 description 1
- 125000001140 1,4-phenylene group Chemical group [H]C1=C([H])C([*:2])=C([H])C([H])=C1[*:1] 0.000 description 1
- LDMOEFOXLIZJOW-UHFFFAOYSA-N 1-dodecanesulfonic acid Chemical compound CCCCCCCCCCCCS(O)(=O)=O LDMOEFOXLIZJOW-UHFFFAOYSA-N 0.000 description 1
- RTBFRGCFXZNCOE-UHFFFAOYSA-N 1-methylsulfonylpiperidin-4-one Chemical compound CS(=O)(=O)N1CCC(=O)CC1 RTBFRGCFXZNCOE-UHFFFAOYSA-N 0.000 description 1
- WLFONUVMQNTLNG-UHFFFAOYSA-N 1-phenyldodecane-1-sulfonic acid Chemical compound CCCCCCCCCCCC(S(O)(=O)=O)C1=CC=CC=C1 WLFONUVMQNTLNG-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 1
- LBLYYCQCTBFVLH-UHFFFAOYSA-N 2-Methylbenzenesulfonic acid Chemical compound CC1=CC=CC=C1S(O)(=O)=O LBLYYCQCTBFVLH-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- WXHLLJAMBQLULT-UHFFFAOYSA-N 2-[[6-[4-(2-hydroxyethyl)piperazin-1-yl]-2-methylpyrimidin-4-yl]amino]-n-(2-methyl-6-sulfanylphenyl)-1,3-thiazole-5-carboxamide;hydrate Chemical compound O.C=1C(N2CCN(CCO)CC2)=NC(C)=NC=1NC(S1)=NC=C1C(=O)NC1=C(C)C=CC=C1S WXHLLJAMBQLULT-UHFFFAOYSA-N 0.000 description 1
- LBLYYCQCTBFVLH-UHFFFAOYSA-M 2-methylbenzenesulfonate Chemical compound CC1=CC=CC=C1S([O-])(=O)=O LBLYYCQCTBFVLH-UHFFFAOYSA-M 0.000 description 1
- AGBXYHCHUYARJY-UHFFFAOYSA-N 2-phenylethenesulfonic acid Chemical compound OS(=O)(=O)C=CC1=CC=CC=C1 AGBXYHCHUYARJY-UHFFFAOYSA-N 0.000 description 1
- CCTFMNIEFHGTDU-UHFFFAOYSA-N 3-methoxypropyl acetate Chemical compound COCCCOC(C)=O CCTFMNIEFHGTDU-UHFFFAOYSA-N 0.000 description 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- ALYNCZNDIQEVRV-UHFFFAOYSA-N 4-aminobenzoic acid Chemical compound NC1=CC=C(C(O)=O)C=C1 ALYNCZNDIQEVRV-UHFFFAOYSA-N 0.000 description 1
- 229940090248 4-hydroxybenzoic acid Drugs 0.000 description 1
- WSASFFHWOQGSER-MUAIWGBPSA-N 82xgf31q2y Chemical compound C1[C@@]23[C@H](C(O)=O)CC[C@H]2[C@](C)(CO)[C@@H]1C(C(O)=O)=C[C@@H]3O WSASFFHWOQGSER-MUAIWGBPSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 239000005711 Benzoic acid Substances 0.000 description 1
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- WBYWAXJHAXSJNI-SREVYHEPSA-N Cinnamic acid Chemical compound OC(=O)\C=C/C1=CC=CC=C1 WBYWAXJHAXSJNI-SREVYHEPSA-N 0.000 description 1
- 241000723346 Cinnamomum camphora Species 0.000 description 1
- 229910000531 Co alloy Inorganic materials 0.000 description 1
- RGHNJXZEOKUKBD-UHFFFAOYSA-N D-gluconic acid Natural products OCC(O)C(O)C(O)C(O)C(O)=O RGHNJXZEOKUKBD-UHFFFAOYSA-N 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical class CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 1
- MEHUJCGAYMDLEL-UHFFFAOYSA-N Ethyl-triacetylaleuritat Natural products OCCCCCCC(O)C(O)CCCCCCCC(O)=O MEHUJCGAYMDLEL-UHFFFAOYSA-N 0.000 description 1
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 1
- 235000010469 Glycine max Nutrition 0.000 description 1
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 1
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 1
- 239000005639 Lauric acid Substances 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 1
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 235000021314 Palmitic acid Nutrition 0.000 description 1
- 229920002845 Poly(methacrylic acid) Polymers 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 229920001800 Shellac Polymers 0.000 description 1
- WSASFFHWOQGSER-UHFFFAOYSA-N Shellolic acid Natural products C1C23C(C(O)=O)CCC2C(C)(CO)C1C(C(O)=O)=CC3O WSASFFHWOQGSER-UHFFFAOYSA-N 0.000 description 1
- 239000006087 Silane Coupling Agent Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- QXZUUHYBWMWJHK-UHFFFAOYSA-N [Co].[Ni] Chemical compound [Co].[Ni] QXZUUHYBWMWJHK-UHFFFAOYSA-N 0.000 description 1
- OWXLRKWPEIAGAT-UHFFFAOYSA-N [Mg].[Cu] Chemical compound [Mg].[Cu] OWXLRKWPEIAGAT-UHFFFAOYSA-N 0.000 description 1
- 235000011054 acetic acid Nutrition 0.000 description 1
- 150000008065 acid anhydrides Chemical class 0.000 description 1
- 239000000783 alginic acid Substances 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 229960001126 alginic acid Drugs 0.000 description 1
- 150000004781 alginic acids Chemical class 0.000 description 1
- BJEPYKJPYRNKOW-UHFFFAOYSA-N alpha-hydroxysuccinic acid Natural products OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 1
- DTOSIQBPPRVQHS-PDBXOOCHSA-N alpha-linolenic acid Chemical compound CC\C=C/C\C=C/C\C=C/CCCCCCCC(O)=O DTOSIQBPPRVQHS-PDBXOOCHSA-N 0.000 description 1
- 235000020661 alpha-linolenic acid Nutrition 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 229960004050 aminobenzoic acid Drugs 0.000 description 1
- JFCQEDHGNNZCLN-UHFFFAOYSA-N anhydrous glutaric acid Natural products OC(=O)CCCC(O)=O JFCQEDHGNNZCLN-UHFFFAOYSA-N 0.000 description 1
- 238000002048 anodisation reaction Methods 0.000 description 1
- 238000007743 anodising Methods 0.000 description 1
- 239000003125 aqueous solvent Substances 0.000 description 1
- 235000003704 aspartic acid Nutrition 0.000 description 1
- HNYOPLTXPVRDBG-UHFFFAOYSA-N barbituric acid Chemical compound O=C1CC(=O)NC(=O)N1 HNYOPLTXPVRDBG-UHFFFAOYSA-N 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- SRSXLGNVWSONIS-UHFFFAOYSA-N benzenesulfonic acid Chemical compound OS(=O)(=O)C1=CC=CC=C1 SRSXLGNVWSONIS-UHFFFAOYSA-N 0.000 description 1
- 229940092714 benzenesulfonic acid Drugs 0.000 description 1
- 235000010233 benzoic acid Nutrition 0.000 description 1
- 229960004365 benzoic acid Drugs 0.000 description 1
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- ZADPBFCGQRWHPN-UHFFFAOYSA-N boronic acid Chemical compound OBO ZADPBFCGQRWHPN-UHFFFAOYSA-N 0.000 description 1
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 1
- KVNRLNFWIYMESJ-UHFFFAOYSA-N butyronitrile Chemical compound CCCC#N KVNRLNFWIYMESJ-UHFFFAOYSA-N 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 1
- 239000000292 calcium oxide Substances 0.000 description 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 1
- 229960000846 camphor Drugs 0.000 description 1
- 229930008380 camphor Natural products 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 239000004359 castor oil Substances 0.000 description 1
- 235000019438 castor oil Nutrition 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 235000013985 cinnamic acid Nutrition 0.000 description 1
- 229930016911 cinnamic acid Natural products 0.000 description 1
- 235000015165 citric acid Nutrition 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- IYRDVAUFQZOLSB-UHFFFAOYSA-N copper iron Chemical compound [Fe].[Cu] IYRDVAUFQZOLSB-UHFFFAOYSA-N 0.000 description 1
- TVZPLCNGKSPOJA-UHFFFAOYSA-N copper zinc Chemical compound [Cu].[Zn] TVZPLCNGKSPOJA-UHFFFAOYSA-N 0.000 description 1
- XTYUEDCPRIMJNG-UHFFFAOYSA-N copper zirconium Chemical compound [Cu].[Zr] XTYUEDCPRIMJNG-UHFFFAOYSA-N 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 239000007822 coupling agent Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000004070 electrodeposition Methods 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 238000004049 embossing Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 235000004515 gallic acid Nutrition 0.000 description 1
- 229940074391 gallic acid Drugs 0.000 description 1
- 239000000174 gluconic acid Substances 0.000 description 1
- 235000012208 gluconic acid Nutrition 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 239000004220 glutamic acid Substances 0.000 description 1
- 125000005456 glyceride group Chemical group 0.000 description 1
- PEDCQBHIVMGVHV-UHFFFAOYSA-N glycerol group Chemical group OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 1
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 1
- 238000007731 hot pressing Methods 0.000 description 1
- 238000007373 indentation Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- UGKDIUIOSMUOAW-UHFFFAOYSA-N iron nickel Chemical compound [Fe].[Ni] UGKDIUIOSMUOAW-UHFFFAOYSA-N 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 229910000833 kovar Inorganic materials 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 229960004488 linolenic acid Drugs 0.000 description 1
- KQQKGWQCNNTQJW-UHFFFAOYSA-N linolenic acid Natural products CC=CCCC=CCC=CCCCCCCCC(O)=O KQQKGWQCNNTQJW-UHFFFAOYSA-N 0.000 description 1
- 239000000944 linseed oil Substances 0.000 description 1
- 235000021388 linseed oil Nutrition 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 239000001630 malic acid Substances 0.000 description 1
- 235000011090 malic acid Nutrition 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229940098779 methanesulfonic acid Drugs 0.000 description 1
- WBYWAXJHAXSJNI-UHFFFAOYSA-N methyl p-hydroxycinnamate Natural products OC(=O)C=CC1=CC=CC=C1 WBYWAXJHAXSJNI-UHFFFAOYSA-N 0.000 description 1
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- WQEPLUUGTLDZJY-UHFFFAOYSA-N n-Pentadecanoic acid Natural products CCCCCCCCCCCCCCC(O)=O WQEPLUUGTLDZJY-UHFFFAOYSA-N 0.000 description 1
- YZMHQCWXYHARLS-UHFFFAOYSA-N naphthalene-1,2-disulfonic acid Chemical compound C1=CC=CC2=C(S(O)(=O)=O)C(S(=O)(=O)O)=CC=C21 YZMHQCWXYHARLS-UHFFFAOYSA-N 0.000 description 1
- ZKATWMILCYLAPD-UHFFFAOYSA-N niobium pentoxide Inorganic materials O=[Nb](=O)O[Nb](=O)=O ZKATWMILCYLAPD-UHFFFAOYSA-N 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- 239000004006 olive oil Substances 0.000 description 1
- 235000008390 olive oil Nutrition 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 229940044654 phenolsulfonic acid Drugs 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920001197 polyacetylene Polymers 0.000 description 1
- 229920000767 polyaniline Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 239000004848 polyfunctional curative Substances 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920000137 polyphosphoric acid Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920000123 polythiophene Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 235000019422 polyvinyl alcohol Nutrition 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 235000019260 propionic acid Nutrition 0.000 description 1
- FVSKHRXBFJPNKK-UHFFFAOYSA-N propionitrile Chemical compound CCC#N FVSKHRXBFJPNKK-UHFFFAOYSA-N 0.000 description 1
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 229960004889 salicylic acid Drugs 0.000 description 1
- 235000003441 saturated fatty acids Nutrition 0.000 description 1
- 150000004671 saturated fatty acids Chemical class 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 239000004208 shellac Substances 0.000 description 1
- ZLGIYFNHBLSMPS-ATJNOEHPSA-N shellac Chemical compound OCCCCCC(O)C(O)CCCCCCCC(O)=O.C1C23[C@H](C(O)=O)CCC2[C@](C)(CO)[C@@H]1C(C(O)=O)=C[C@@H]3O ZLGIYFNHBLSMPS-ATJNOEHPSA-N 0.000 description 1
- 235000013874 shellac Nutrition 0.000 description 1
- 229940113147 shellac Drugs 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 239000003549 soybean oil Substances 0.000 description 1
- 235000012424 soybean oil Nutrition 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 229920001909 styrene-acrylic polymer Polymers 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 1
- 150000003457 sulfones Chemical class 0.000 description 1
- 150000003460 sulfonic acids Chemical class 0.000 description 1
- 150000003462 sulfoxides Chemical class 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- TUNFSRHWOTWDNC-HKGQFRNVSA-N tetradecanoic acid Chemical compound CCCCCCCCCCCCC[14C](O)=O TUNFSRHWOTWDNC-HKGQFRNVSA-N 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 239000004634 thermosetting polymer Substances 0.000 description 1
- ITMCEJHCFYSIIV-UHFFFAOYSA-N triflic acid Chemical compound OS(=O)(=O)C(F)(F)F ITMCEJHCFYSIIV-UHFFFAOYSA-N 0.000 description 1
- 239000002383 tung oil Substances 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 235000021122 unsaturated fatty acids Nutrition 0.000 description 1
- 150000004670 unsaturated fatty acids Chemical class 0.000 description 1
- 239000012178 vegetable wax Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/004—Details
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/004—Details
- H01G9/08—Housing; Encapsulation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/30—Electrodes characterised by their material
- H01G11/48—Conductive polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/54—Electrolytes
- H01G11/56—Solid electrolytes, e.g. gels; Additives therein
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G2/00—Details of capacitors not covered by a single one of groups H01G4/00-H01G11/00
- H01G2/02—Mountings
- H01G2/06—Mountings specially adapted for mounting on a printed-circuit support
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G2/00—Details of capacitors not covered by a single one of groups H01G4/00-H01G11/00
- H01G2/12—Protection against corrosion
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/004—Details
- H01G9/04—Electrodes or formation of dielectric layers thereon
- H01G9/042—Electrodes or formation of dielectric layers thereon characterised by the material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/15—Solid electrolytic capacitors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/004—Details
- H01G9/008—Terminals
- H01G9/012—Terminals specially adapted for solid capacitors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/13—Energy storage using capacitors
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
Abstract
Description
- Hintergrund der Erfindung
- Elektrolytkondensatoren (z. B. Tantalkondensatoren) werden zunehmend wegen ihres volumetrischen Wirkungsgrads, ihrer Zuverlässigkeit und Prozesskompatibilität bei der Entwicklung von Schaltkreisen eingesetzt. Zum Beispiel ist einer der entwickelten Kondensatortypen ein Kondensator mit festem Elektrolyten, der eine Anode (z. B. Tantal), eine auf der Anode gebildete dielektrische Oxidschicht (z. B. Tantalpentoxid, Ta2O5), eine Schicht eines festen Elektrolyten und eine Katode enthält. Die Schicht des festen Elektrolyten kann aus einem leitfähigen Polymer bestehen, wie in den
US-Patenten 5,457,862 an Sakata et al.,5,473,503 an Sakata et al.,5,729,428 an Sakata et al.,5,812,367 an Kudoh et al. beschrieben. Leider ist jedoch die Stabilität des leitfähigen Polymers bei hohen Temperaturen gering wegen seiner Tendenz, sich von einem dotierten in einen undotierten Zustand oder umgekehrt umzuwandeln. Infolge der Umwandlung kann sich die Leitfähigkeit des Polymers verringern, was sich direkt auf die Kapazität und den ESR auswirkt und zur Verschlechterung der Leistungsfähigkeit führt. - Daher besteht zur Zeit Bedarf für einen Elektrolytkondensator, der eine verbesserte Leistungsfähigkeit in Umgebungen mit hohen Temperaturen aufweist.
- Zusammenfassung der Erfindung
- Gemäß einer Ausführung der vorliegenden Erfindung wird eine Kondensatoranordnung offengelegt, die ein Keramikgehäuse enthält, in dem ein Elek trolytkondensator eingeschlossen und hermetisch abgedichtet ist. Der Kondensator umfasst eine Anode, eine dielektrische Schicht, die die Anode überzieht, und eine Katode, die die dielektrische Schicht überzieht. Die Katode enthält ein leitfähiges Polymer. Das Keramikgehäuse bildet einen Hohlraum, der eine gasförmige Atmosphäre besitzt, die ein inertes Gas enthält. Die Anordnung umfasst weiter einen Katodenanschluss, der in elektrischer Verbindung mit der Katode steht und außerhalb des Keramikgehäuses angeordnet ist, und einen Anodenanschluss, der in elektrischer Verbindung mit der Anode steht und außerhalb des Keramikgehäuses angeordnet ist.
- Gemäß einer weiteren Ausführung der vorliegenden Erfindung wird ein Verfahren zur Herstellung einer Kondensatoranordnung offen gelegt. Das Verfahren umfasst die Herstellung eines Elektrolytkondensators, der eine Anode, eine dielektrische Schicht, die die Anode überzieht, und eine Katode umfasst, die die dielektrische Schicht überzieht, wobei die Katode ein leitfähiges Polymer enthält und sich ein Anoden-Anschlussdraht von der Anode erstreckt. Der Elektrolytkondensator wird innerhalb eines Keramikgehäuses angeordnet. Die Katode wird elektrisch mit einem Katodenanschluss und der Anodendraht mit einem Anodenanschluss verbunden. Ein Deckel wird auf das Keramikgehäuse gesetzt. Der Deckel wird in Gegenwart einer gasförmigen Atmosphäre, die ein inertes Gas enthält, zum Keramikgehäuse hermetisch abgedichtet.
- Andere Eigenschaften und Aspekte der vorliegenden Erfindung werden nachstehend detaillierter dargelegt.
- Kurze Beschreibung der Zeichnungen
- Eine vollständige und erhellende Darlegung der vorliegenden Erfindung einschließlich deren bester Form, die sich an jemanden mit gewöhnlichem Fachwissen richtet, wird insbesondere im Rest der Spezifikation gegeben, der sich auf die beigefügten Figuren bezieht, in denen:
-
1 eine Schnittansicht einer Ausführung einer Elektrolytkondensatoranordnung der Anordnung der vorliegenden Erfindung ist; -
2 –4 grafische Darstellungen von Leckstrom („DCL”), Kapazität und Reihenverlustwiderstand (ESR) der Teile von Beispiel 1 in verschiedenen Stadien der Lebensdauerprüfung bei Belastung sind; -
5 –7 grafische Darstellungen von Leckstrom („DCL”), Kapazität und Reihenverlustwiderstand (ESR) der Teile von Beispiel 2 in verschiedenen Stadien der Lebensdauerprüfung bei Belastung sind; -
8 –10 grafische Darstellungen von Leckstrom („DCL”), Kapazität und Reihenverlustwiderstand (ESR) der Teile von Beispiel 3 in verschiedenen Stadien der Lebensdauerprüfung bei Belastung sind; -
11 –13 grafische Darstellungen von Leckstrom („DCL”), Kapazität und Reihenverlustwiderstand (ESR) der Teile von Beispiel 4 in verschiedenen Stadien der Lebensdauerprüfung bei Belastung sind und -
14 –16 grafische Darstellungen von Leckstrom („DCL”), Kapazität und Reihenverlustwiderstand (ESR) der Teile des Vergleichsbeispiels in verschiedenen Stadien der Lebensdauerprüfung bei Belastung sind. - Der wiederholte Gebrauch von Referenzzeichen in der vorliegenden Spezifikation und den Zeichnungen soll dieselben oder analoge Merkmale oder Elemente der Erfindung darstellen.
- Detaillierte Beschreibung repräsentativer Ausführungsformen
- Es ist von jemandem mit gewöhnlichem Fachwissen zu verstehen, dass die vorliegende Diskussion nur eine Beschreibung von beispielhaften Ausführungsformen ist und nicht als Beschränkung der breiteren Aspekte der vorliegenden Erfindung gedacht ist. Diese breiteren Aspekte sind im beispielhaften Aufbau enthalten.
- Allgemein ausgedrückt, bezieht sich die vorliegende Erfindung auf eine Kondensatoranordnung, die einen Kondensator mit einem Elektrolyten aus einem leitfähigen Polymer umfasst, der in Gegenwart eines inerten Gases hermetisch in einem Keramikgehäuse eingeschlossen ist. Ohne sich durch Theorie einschränken zu wollen, nehmen die Erfinder der vorliegenden Anmeldung an, dass das Keramikgehäuse imstande ist, die Menge an Sauerstoff und Feuchtigkeit zu begrenzen, die zum leitfähigen Polymer des Kondensators gelangt. Auf diese Weise ist es weniger wahrscheinlich, dass das leitfähige Polymer in Umgebungen mit hohen Temperaturen oxidiert; infolgedessen wird die thermische Stabilität der Kondensatoranordnung erhöht.
- Der Elektrolytkondensator enthält allgemein eine Anode, die aus einer Ventilmetallzusammensetzung ausgebildet ist. Die Ventilmetallzusammensetzung kann eine hohe spezifische Ladung von ungefähr 5 000 μF·V/g oder mehr, in manchen Ausführungen ungefähr 25 000 μF·V/g oder mehr, in manchen Ausführungen ungefähr 40 000 μF·V/g oder mehr und in manchen Ausführungen ungefähr 70 000 μF·V/g bis ungefähr 200 000 μF·V/g oder mehr haben. Die Ventilmetallzusammensetzung enthält ein Ventilmetall (d. h. ein Metall, das oxidiert werden kann) oder eine auf einem Ventilmetall basierende Verbindung, wie z. B. Tantal, Niob, Aluminium, Hafnium, Titan, Legierungen davon, Oxide davon, Nitride davon und so weiter. Zum Beispiel kann die Ventilmetallzusammensetzung ein elektrisch leitfähiges Oxid von Niob, wie etwa Nioboxid, enthalten, das ein Atomverhältnis von Niob zu Sauerstoff von 1:1,0 ± 1,0, in einigen Ausführungen 1:1,0 ± 0,3, in einigen Ausführun gen 1:1,0 ± 0,1 und in einigen Ausführungen 1:1,0 ± 0,05 besitzt. Zum Beispiel kann das Niobiumoxid NbO0.7, NbO1.0, NbO1.1 und NbO2 sein. In einer bevorzugten Ausführung enthält die Zusammensetzung NbO1.0, ein leitfähiges Nioboxid, das selbst nach dem Sintern bei hohen Temperaturen chemisch stabil bleiben kann. Beispiele für solche Ventilmetalloxide sind in den
US-Patenten Nr. 6,322,912 an Fife;6,391,275 an Fife et al.;6,416,730 an Fife et al.;6,527,937 an Fife;6,576,099 an Kimmel et al.;6,592,740 an Fife et al.;6,639,787 an Kimmel et al. und7,220,397 an Kimmel et al. sowie den US-Patentanmeldungen Nr. 2005/0019581 an Schnitter; 2005/0103638 an Schnitter et al. und 2005/0013765 an Thomas et al. beschrieben, die hier in ihrer Gesamtheit für alle Zwecke als Referenz mit aufgenommen werden. - Zum Ausbilden der Anode können im Allgemeinen herkömmliche Herstellungsverfahren verwendet werden. In einer Ausführung wird zunächst ein Tantal- oder Nioboxid-Pulver ausgewählt, das eine bestimmte Teilchengröße hat. Zum Beispiel können die Teilchen flockig, kantig, knollenförmig und Mischungen oder Abwandlungen davon sein. Die Teilchen weisen auch typischerweise eine Siebgrößenverteilung von mindestens etwa 60 mesh (Korngröße ca. 0,27 mm), in einigen Ausführungen von etwa 60 (ca. 0,27 mm) bis etwa 325 mesh (ca. 0,05 mm) und in einigen Ausführungen von etwa 100 (ca. 0,16 mm) bis etwa 200 mesh (ca. 0,08 mm) auf. Weiter beträgt die spezifische Oberfläche etwa 0,1 bis etwa 10,0 m2/g, in einigen Ausführungen etwa 0,5 bis etwa 5,0 m2/g und in einigen Ausführungen etwa 1,0 bis etwa 2,0 m2/g. Der Begriff „spezifische Oberfläche” bezieht sich auf die Oberfläche, die mit dem Verfahren der physikalischen Gasadsorption (B. E. T.) nach Braunauer, Emmet und Teller, Journal of American Chemical Society, Bd. 60, 1938, S. 309, mit Stickstoff als Adsorptionsgas bestimmt wird. Ebenso liegt die Massendichte (oder Scott-Dichte) zwischen etwa 0,1 und etwa 5,0 g/cm3, in einigen Ausführungen zwischen etwa 0,2 und etwa 4,0 g/cm3 und in einigen Ausführungen zwischen etwa 0,5 und etwa 3,0 g/cm3.
- Zur Erleichterung der Ausbildung der Anode können den elektrisch leitfähigen Teilchen andere Bestandteile zugefügt werden. Zum Beispiel können die elektrisch leitfähigen Teilchen wahlfrei mit einem Bindemittel und/oder Gleitmittel vermischt werden, um zu gewährleisten, dass die Teilchen ausreichend aneinander haften, wenn sie zum Ausbilden des Anodenkörpers gepresst werden. Geeignete Bindemittel können Kampfer, Stearin- und andere seifige Fettsäuren, Carbowax (Union Carbide), Glyptal (General Electric), Polyvinylalkohole, Naphthalin, Pflanzenwachs und Mikrowachse (aufgereinigte Paraffine) sein. Das Bindemittel kann in einem Lösungsmittel gelöst und verteilt sein. Zu beispielhaften Lösungsmitteln können Wasser, Alkohole und so weiter gehören. Wenn sie eingesetzt werden, kann der Prozentsatz der Binde- und/oder Gleitmittel von ungefähr 0,1% bis ungefähr 8% des Gewichts der Gesamtmasse variieren. Es sollte jedoch verstanden werden, dass in der vorliegenden Erfindung Binde- und Gleitmittel nicht erforderlich sind.
- Das resultierende Pulver kann mit einer beliebigen herkömmlichen Pulver-Pressform verdichtet werden. Zum Beispiel kann die Pressform eine Verdichtungspresse mit einer Station sein, bei der eine Pressform und ein oder mehrere Stempel benutzt werden. Alternativ dazu können Verdichtungs-Pressformen vom Amboss-Typ benutzt werden, bei denen nur eine Pressform und ein einziger Unterstempel benutzt werden. Verdichtungspressen mit Einzelstation stehen in verschiedenen Grundtypen zur Verfügung, wie z. B. Nocken-, Kniehebelpressen und Exzenter-/Kurbel-Pressen mit unterschiedlichen Eigenschaften, wie einfach wirkend, doppelt wirkend, mit gleitender Pressform, beweglicher Platte, entgegenwirkendem Kolben, Schrauben-, Schlag-, Heißpressen, Prägen oder Maßprägen. Das Pulver kann um einen Anodendraht verdichtet werden (z. B. einen Tantal-Draht). Es muss weiterhin erkannt werden, dass der Anodendraht alternativ dazu nach dem Pressen und/oder Sintern des Anodekörpers am Anodenkörper befestigt (z. B. angeschweißt) werden kann. Nach dem Pressen können alle Binde-/Gleitmittel entfernt werden, indem der Pressling im Vakuum mehrere Minuten auf eine bestimmte Temperatur erhitzt wird (z. B. ungefähr 150°C bis ungefähr 500°C). Alternativ können die Binde-/Gleitmittel auch entfernt werden, indem der Pressling mit einer wässrigen Lösung in Kontakt gebracht wird, zum Beispiel wie in dem Bishop et al. erteilten
US-Patent Nr. 6,197,252 beschrieben, das hier für alle Zwecke in seiner Gesamtheit als Referenz mit aufgenommen wird. Danach wird der Pressling gesintert, um eine poröse Gesamtmasse zu bilden. Zum Beispiel kann in einer Ausführung der Pressling bei einer Temperatur von ungefähr 1200°C bis ungefähr 2000°C und in einigen Ausführungen von ungefähr 1500°C bis ungefähr 1800°C im Vakuum oder in einer inerten Atmosphäre gesintert werden. Beim Sintern schrumpft der Pressling, weil Bindungen zwischen den Teilchen wachsen. Zusätzlich zu den oben beschriebenen Techniken kann auch jedes andere Verfahren zum Ausbilden des Anodenkörpers gemäß der vorliegenden Erfindung benutzt werden, wie z. B. in demUS-Patent 4,085,435 an Galvagni,4,945,452 an Sturmer et al.,5,198,968 an Galvagni,5,357,399 an Salisbury,5,394,295 an Galvagni et al.,5,495,386 an Kulkarni und6,322,912 an Fife beschrieben, die hier für alle Zwecke in ihrer Gesamtheit als Referenz mit aufgenommen werden. - Obwohl nicht erforderlich, kann die Dicke der Anode gewählt werden, um die elektrische Leistungsfähigkeit des Kondensators zu verbessern. Zum Beispiel kann die Dicke der Anode ungefähr 4 Millimeter oder weniger betragen, in manchen Ausführungen ungefähr 0,2 bis ungefähr 3 Millimeter und in manchen Ausführungen ungefähr 0,4 bis ungefähr 1 Millimeter. Auch die Form der Anode kann gewählt werden, um die elektrischen Eigenschaften des resultierenden Kondensators zu verbessern. Zum Beispiel kann die Anode eine Form haben, die bogenförmig, sinusförmig, rechteckig, U-förmig, V-förmig, usw. ist. Die Anode kann auch eine „gerillte” Form haben, die eine oder mehrere Rillen, Fugen, Furchen oder Einbuchtungen enthält, um das Verhältnis von Oberfläche zu Volumen zu erhöhen und dadurch den ESR zu minimieren und den Frequenzgang der Kapazität zu erweitern. Solche „gerillten” Anoden werden zum Beispiel in den
US-Patenten Nr. 6,191,936 an Webber et al.,5,949,639 an Maeda et al. und3,345,545 an Bourgault et al., sowie in der US-Patentanmeldung mit der Veröffentlichungs-Nr. 2005/0270725 an Hahn et al. beschrieben, die hier für alle Zwecke in ihrer Gesamtheit als Referenz mit aufgenommen werden. - Nach der Ausbildung kann die Anode anodisch oxidiert werden, sodass eine dielektrische Schicht über und/oder innerhalb der Anode gebildet wird. Anodisches Oxidieren ist ein elektrochemischer Prozess, mit dem die Anode oxidiert wird, um ein Material zu bilden, das eine relativ hohe Dielektrizitätskonstante hat. Zum Beispiel kann eine Anode aus Niobiumoxid (NbO) anodisch oxidiert werden, um Niobiumpentoxid (Nb2O5) zu bilden. Typischerweise wird das anodische Oxidieren durchgeführt, indem anfänglich ein Elektrolyt an die Anode gebracht wird, wie etwa durch Tauchen der Anode in den Elektrolyten. Der Elektrolyt liegt im Allgemeinen in Form einer Flüssigkeit, wie einer Lösung (z. B. wässrig oder nicht-wässrig), einer Dispersion, einer Schmelze usw. vor. Im Allgemeinen wird im Elektrolyten ein Lösungsmittel verwendet, wie etwa Wasser (z. B. entionisiertes Wasser), Ether (z. B. Diethylether und Tetrahydrofuran), Alkohole (z. B. Methanol, Ethanol, N-Propanol, Isopropanol und Butanol), Triglyceride, Ketone (z. B. Aceton, Methylethylketon und Methylisobutylketon), Ester (z. B. Ethylacetat, Butylacetat, Diethylen-Glycoletheracetat und Methoxypropylacetat), Amide (z. B. Dimethylformamid, Dimethylacetamid, Dimethylcapryl-/caprin-Fettsäureamid und N-Alkylpyrrolidone), Nitrile (z. B. Acetonitril, Propionitril, Butyronitril und Benzonitril), Sulfoxide oder Sulfone (z. B. Dimethylsulfoxide (DMSO) und Sulfolan) und so weiter. Das Lösungsmittel kann zwischen etwa 50 Gew.-% und etwa 99,9 Gew.-%, in einigen Ausführungsformen zwischen etwa 75 Gew.-% und etwa 99 Gew.-% und in einigen Ausführungsformen zwischen etwa 80 Gew.-% und etwa 95 Gew.-% des Elektrolyten ausmachen. Obwohl nicht unbedingt erforderlich, ist die Verwendung eines wässrigen Lösungsmittels (z. B. Wasser) oft erwünscht, um die Bildung des angestrebten Oxids zu erleichtern. Tatsächlich kann Wasser etwa 50 Gew.-% oder mehr, in einigen Ausführungsformen etwa 70 Gew.-% oder mehr und in einigen Ausführungsformen zwischen etwa 90 Gew.-% und etwa 100 Gew.-% der (des) im Elektrolyten verwendeten Lösungsmittel(s) ausmachen.
- Der Elektrolyt ist ionisch leitfähig und kann eine ionische Leitfähigkeit von ungefähr 1 Millisiemens pro Zentimeter („mS/cm”) oder mehr haben, in einigen Ausführungsformen ungefähr 30 mS/cm oder mehr und in einigen Ausführungsformen zwischen ungefähr 40 mS/cm und ungefähr 100 mS/cm, bestimmt bei einer Temperatur von 25°C. Um die ionische Leitfähigkeit des Elektrolyten zu erhöhen, kann eine Verbindung verwendet werden, die in der Lage ist, in dem Lösungsmittel zu dissoziieren, um Ionen zu bilden. Für diesen Zweck geeignete ionische Verbindungen können zum Beispiel sein: Säuren, wie Salzsäure, Salpetersäure, Schwefelsäure, Phosphorsäure, Polyphosphorsäure, Borsäure, Boronsäure usw., organische Säuren, darunter Carbonsäuren, wie Acrylsäure, Methacrylsäure, Malonsäure, Bernsteinsäure, Salicylsäure, Sulfosalicylsäure, Adipinsäure, Maleinsäure, Apfelsäure, Ölsäure, Gallussäure, Weinsäure, Zitronensäure, Ameisensäure, Essigsäure; Glycolsäure, Oxasäure, Propionsäure, Phthalsäure, Isophthalsäure, Glutarsäure, Gluconsäure, Milchsäure, Asparaginsäure, Glutaminsäure, Itaconsäure, Trifluoressigsäure, Barbitursäure, Zimtsäure, Benzoesäure, 4-Hydroxybenzoesäure, Aminobenzoesäure usw., Sulfonsäuren, wie Methansulfonsäure, Benzolsulfonsäure, Toluolsulfonsäure, Trifluormethansulfonsäure, Styrolsulfonsäure, Naphthalindisulfonsäure, Phenolsulfonsäure, Dodecylsulfonsäure, Phenyldodekansulfonsäure usw., polymere Säuren, wie Poly-Acryl- oder Poly-Methacrylsäure und deren Copolymere (z. B. Malein-Acryl-, Sulfon-Acryl- und Styrol-Acryl-Copolymere), Carageensäure, Carboxymethylcellulose, Alginsäure usw. Die Konzentration ionischer Verbindungen wird so gewählt, dass die gewünschte ionische Leitfähigkeit erreicht wird. Zum Beispiel kann eine Säure (z. B. Phosphorsäure) zwischen ungefähr 0,01 Gew.-% und ungefähr 5 Gew.-%, in einigen Ausführungsformen zwischen ungefähr 0,05 Gew.-% und ungefähr 0,8 Gew.-% und in einigen Ausführungsformen zwischen ungefähr 0,1 Gew.-% und ungefähr 0,5 Gew.-% des Elektrolyten ausmachen. Bei Bedarf können im Elektrolyten auch Mischungen von ionischen Verbindungen verwendet werden.
- Ein Strom wird durch den Elektrolyten geschickt, um die dielektrische Schicht zu bilden. Der Wert der Spannung bestimmt die Dicke der dielektrischen Schicht. Die Stromversorgung kann zum Beispiel anfangs auf einen galvanostatischen Modus eingestellt werden, bis die erforderliche Spannung erreicht ist. Danach wird die Stromversorgung auf einen potentiostatischen Modus umgeschaltet, um sicherzustellen, dass sich die gewünschten Dicke des Dielektrikums auf der Oberfläche der Anode bildet. Natürlich können auch andere bekannte Verfahren verwendet werden, wie etwa Pulsverfahren oder schrittweise potentiostatische Verfahren. Die Spannung liegt typischerweise im Bereich von etwa 4 bis ungefähr 200 Volt und in einigen Ausführungen von etwa 9 bis ungefähr 100 Volt. Während der anodischen Oxidation kann der Elektrolyt auf einer erhöhten Temperatur gehalten werden, wie etwa 30°C oder mehr, in einigen Ausführungsformen zwischen etwa 40°C und etwa 200°C und in manchen Ausführungsformen zwischen etwa 50°C und etwa 100°C. Die anodische Oxidation kann auch bei Raumtemperatur oder darunter erfolgen. Die resultierende dielektrische Schicht kann auf einer Oberfläche der Anode und in ihren Poren gebildet werden.
- Sobald die dielektrische Schicht ausgebildet ist, kann optional eine Schutzschicht aufgebracht werden, wie z. B. aus einem relativ isolierenden harzartigen Material (natürlich oder synthetisch). Dieses Material kann einen spezifischen Widerstand von mehr als ungefähr 10 Ohm·cm, in manchen Ausführungen von mehr als ungefähr 100 Ohm·cm, in manchen Ausführungen von mehr als ungefähr 1000 Ohm·cm, in manchen Ausführungen von mehr als ungefähr 1 × 105 Ohm·cm, und in manchen Ausführungen von mehr als ungefähr 1 × 1010 Ohm·cm haben. Einige harzartigen Materialien, die in der vorliegenden Erfindung verwendet werden können, schließen, ohne aber darauf beschränkt zu sein, Polyurethan, Polystyrol, Ester von ungesättigten oder gesättigten Fettsäuren (z. B. Glyceride) und so weiter ein. Geeignete Ester von Fettsäuren sind Ester der Laurinsäure, Myristinsäure, Palmitinsäure, Stearinsäure, Elaeostearinsäure, Ölsäure, Linolsäure, Linolensäure, Aleuritinsäure, Shellolsäure, und so weiter, sind aber nicht darauf beschränkt. Es hat sich herausgestellt, dass diese Fettsäureester besonders nützlich sind, wenn sie in relativ komplexen Kombinationen verwendet werden, um ein „Trocknungs-Öl” zu bilden, das es erlaubt, den resultierenden Film schnell zu einer stabilen Schicht zu polymerisieren. Solche Trocknungs-Öle können Mono-, Di- und/oder Tri-Glyceride enthalten, die ein Glycerol-Gerüst mit einem, zwei, bzw. drei Fettsäure-Resten haben, die verestert sind. Einige geeignete Trocknungs-Öle, die benutzt werden können, sind zum Beispiel Olivenöl, Leinöl, Rizinusöl, Tungöl, Sojaöl und Schellack, sind aber nicht darauf beschränkt. Diese und andere Schutzschicht-Materialien werden detaillierter in dem Fife et al. erteilten
US-Patent Nr. 6,674,635 beschrieben, das hier in seiner Gesamtheit für alle Zwecke als Referenz mit aufgenommen wird. - Das anodisch oxidierte Teil wird anschließend einem Schritt zur Herstellung einer Katode aus einem leitfähigen Polymer unterworfen. Die Beschichtung aus leitfähigem Polymer kann ein oder mehrere Polyheterocyclen enthalten (z. B. Polypyrrole, Polythiophene, Poly(3,4-Ethylendioxid-Thiophen (PEDT), Polyaniline), Polyacetylene, Poly-p-Phenylene, Polyphenolate und deren Derivate. Darüber hinaus kann, falls gewünscht, die Beschichtung aus leitfähigem Polymer auch aus mehreren leitfähigen Polymerschichten ausgebildet werden. Zum Beispiel kann in einer Ausführungsform die leitfähige Polymerkatode eine aus PEDT geformte Schicht und eine weitere, aus einem Polypyrrol geformte Schicht enthalten. Es können verschiedene Verfahren angewendet werden, um die Beschichtung aus leitfähigem Polymer auf den Anodenteil aufzubringen. Zum Beispiel können herkömmliche Verfahren, wie Elektropolymerisation, Siebdruck, Eintauchen, Elektrotauchbeschichtung und Spritzen verwendet werden, um eine Beschichtung aus leitfähigem Polymer auszubilden. In einer Ausführung können zum Beispiel die Monomere, die zum Ausbilden des leitfähigen Polymers (z. B. 3,4-Ethylendioxythiophen) verwendet werden, anfangs mit einem Polymerisations-Katalysator gemischt werden, um eine Lösung zu bilden. Ein geeigneter Polymerisations-Katalysator ist zum Beispiel BAYTRON C, wobei es sich um Eisen-III-Toluol-Sulfonat handelt, das von H. C. Starck vertrieben wird. BAYTRON C ist ein im Handel verfügbarer Katalysator für BAYTRON M, bei welchem es sich um 3,4-Ethylendioxythiophen handelt, ein PEDT-Monomer, welches ebenfalls von H. C. Starck vertrieben wird. Sobald eine Katalysatordispersion ausgebildet wurde, kann das Anodenteil dann in die Dispersion getaucht werden, so dass sich das leitfähige Polymer auf der Oberfläche des Anodenteils ausbildet. Alternativ dazu können Katalysator und Monomer(e) auch separat auf das Anodenteil aufgebracht werden. In einer Ausführung kann der Katalysator zum Beispiel in einem Lösungsmittel (z. B. Butanol) gelöst werden und dann als Tauchlösung auf das Anodenteil aufgebracht werden. Das Anodenteil kann dann getrocknet werden, um das Lösungsmittel davon zu entfernen. Danach kann das Anodenteil in eine Lösung getaucht werden, die das geeignete Monomer enthält. Sobald das Monomer in Kontakt mit der Oberfläche des Anodenteils kommt, die den Katalysator enthält, polymerisiert es chemisch darauf. Zusätzlich kann der Katalysator (z. B. BAYTRON C) auch mit den Materialien gemischt werden, die zur Ausbildung der optionalen Schutzschicht benutzt werden (z. B. harzartige Materialien). In solchen Fällen kann das Anodenteil danach in eine Lösung getaucht werden, die das Monomer (BAYTRON M) enthält. Als Folge davon kann das Monomer den Katalysator innerhalb und/oder auf der Oberfläche der Schutzschicht kontaktieren und damit reagieren, um die das leitfähige Polymer enthaltende Beschichtung auszubilden. Obwohl oben verschiedene Verfahren beschrieben worden sind, versteht es sich, dass jedes andere Verfahren zum Aufbringen der leitfähigen Beschichtung(en) auf das Anodenteil in der vorliegenden Erfindung verwendet werden kann. Zum Beispiel werden andere Verfahren zum Aufbringen solcher leitfähigen Polymerbeschichtung(en) in den
US-Patenten 5,457,862 an Sakata et al.,5,473,503 an Sakata et al.,5,729,428 an Sakata et al. und5,812,367 an Kudoh et al. beschrieben, die hier in ihrer Gesamtheit für alle Zwecke als Referenz mit aufgenommen werden. - In den meisten Ausführungen wird das leitfähige Polymer nach dem Aufbringen ausgeheilt. Die Ausheilung kann nach jedem Aufbringen einer Schicht aus leitfähigem Polymer erfolgen, oder sie kann nach dem Aufbringen der gesamten Beschichtung mit leitfähigem Polymer erfolgen. In einigen Ausführungen kann das leitfähige Polymer zum Beispiel durch Tauchen des Presslings in eine Elektrolytlösung, wie etwa eine Lösung von Phosphorsäure und/oder Schwefelsäure, und anschließendes Anlegen einer konstanten Spannung an die Lösung bis zum Absinken des Stroms auf einen vorgewählten Pegel ausgeheilt werden. Bei Bedarf kann dieses Ausheilen in mehreren Schritten erfolgen. In einer Ausführung wird zum Beispiel der Pressling, der eine leitfähige Polymerbeschichtung hat, zuerst in Phosphorsäure getaucht und ungefähr 20 Volt daran angelegt, und anschließend wird er in Schwefelsäure getaucht und ungefähr 2 Volt daran angelegt. In dieser Ausführungsform kann die Verwendung der zweiten Niederspannungs-Schwefelsäure- oder -Toluolsulfonsäurelösung dazu beitragen, dass die Kapazität des resultierenden Kondensators erhöht und sein Verlustfaktor reduziert wird. Nach Aufbringen einer oder aller der oben beschriebenen Schichten kann der Pressling dann bei Bedarf gewaschen werden, um verschiedene Nebenprodukte, überschüssigen Katalysator und so weiter zu entfernen. Weiterhin kann in manchen Fällen nach einigen oder allen oben beschriebenen Tauchschritten eine Trocknung angewendet werden. Zum Beispiel kann das Trocknen nach Aufbringen des Katalysators und/oder nach dem Waschen des Presslings erwünscht sein, um die Poren des Presslings zu öffnen, damit er während nachfolgender Tauchschritte eine Flüssigkeit aufnehmen kann.
- Bei Bedarf kann auf dem Teil optional eine Kohlenstoffschicht (z. B. Graphit) bzw. eine Silberschicht aufgebracht werden. Die Silberbeschichtung kann zum Beispiel als lötbarer Leiter, Kontaktschicht und/oder Ladungssammler für den Kondensator dienen, und die Kohlenstoffbeschichtung kann den Kontakt der Silberbeschichtung mit dem leitfähigen Polymer begrenzen. Diese Beschichtungen können das leitfähige Polymer teilweise oder ganz bedecken.
- Unabhängig von der besonderen Weise, in der es geformt wird, wird gemäß der vorliegenden Erfindung ein Keramikgehäuse bereitgestellt, um den Kon densator einzuschließen und hermetisch abzudichten. Allgemein ausgedrückt, geschieht das hermetisch dichte Einschließen des Kondensators innerhalb des Keramikgehäuses in Gegenwart einer gasförmigen Atmosphäre, die zumindest ein inertes Gas enthält, um die Oxidation der Katode aus leitfähigem Polymer während des Gebrauch zu verhindern. Das inerte Gas kann zum Beispiel Stickstoff, Helium, Argon, Xenon, Neon, Krypton, Radon und so weiter sowie Mischungen davon enthalten. Typischerweise bilden inerte Gase den größten Teil der Atmosphäre innerhalb des Keramikgehäuses, wie etwa von ungefähr 50 Gew.-% bis ungefähr 100 Gew.-%, in einigen Ausführungsformen von ungefähr 75 Gew.-% bis ungefähr 100 Gew.-% und in einigen Ausführungsformen von ungefähr 90 Gew.-% bis ungefähr 99 Gew.-% der Atmosphäre. Bei Bedarf kann auch ein relativ kleiner Anteil an nicht-inerten Gasen verwendet werden, wie etwa Kohlendioxid, Sauerstoff, Wasserdampf usw. In solchen Fällen stellen die nicht-inerten Gase jedoch typischerweise 15 Gew.-% oder weniger, in einigen Ausführungsformen 10 Gew.-% oder weniger, in einigen Ausführungsformen etwa 5 Gew.-%, in einigen Ausführungsformen etwa 1 Gew.-% oder weniger und in einigen Ausführungsformen von etwa 0,01 Gew.-% bis etwa 1 Gew.-% der Atmosphäre innerhalb des Keramikgehäuses dar. Zum Beispiel kann der Feuchtigkeitsgehalt (ausgedrückt als relative Feuchtigkeit) etwa 10% oder weniger betragen, in einigen Ausführungsformen etwa 5% oder weniger, in einigen Ausführungsformen etwa 1% oder weniger und in einigen Ausführungsformen von etwa 0,01% bis etwa 5%.
- Das Keramikgehäuse kann eine oder mehrere Schichten eines Keramikmaterials enthalten, wie etwa Aluminiumnitrid, Aluminiumoxid, Siliziumoxid, Magnesiumoxid, Calciumoxid und so weiter. Die Breite und Länge des Keramikgehäuses kann abhängig von der beabsichtigten Anwendung unterschiedlich sein. In einer Ausführung beträgt die Länge des Gehäuses (in
1 die Richtung-y) zum Beispiel von ungefähr 2,0 bis ungefähr 10,0 Millimeter, in manchen Ausführungen von ungefähr 2,5 bis ungefähr 8,0 Millimeter und in manchen Ausführungen von ungefähr 3,0 bis ungefähr 6,5 Millimeter. - Die Breite des Gehäuses (in
1 die Richtung-x) kann im Bereich von ungefähr 1,0 bis ungefähr 5 Millimeter liegen, in manchen Ausführungen von ungefähr 1,5 bis ungefähr 4,5 Millimeter und in manchen Ausführungen von ungefähr 2,0 bis ungefähr 3,5 Millimeter. Die Gesamthöhe des Gehäuses (in1 die Richtung-z) kann optional klein bleiben, so dass die resultierende Anordnung leicht in Produkte mit geringer Bauhöhe eingebaut werden kann. Zum Beispiel kann die Dicke des Gehäuses ungefähr 5,0 Millimeter oder weniger betragen, in manchen Ausführungen von ungefähr 0,4 bis ungefähr 3,5 Millimeter und in manchen Ausführungen von ungefähr 0,5 bis ungefähr 3,0 Millimeter. - Die Weise, wie der Kondensator elektrisch mit dem Keramikgehäuse verbunden wird, kann variieren, wie in der Technik bekannt ist. Zum Beispiel können eine oder mehrere Flächen des Gehäuses leitfähige Leiterbahnen enthalten, die elektrisch mit den Anoden- und Katodenanschlüssen des Kondensators verbunden sind. Zum Ausbilden der Leiterbahnen kann jedes leitfähige Material verwendet werden, wie etwa ein leitfähiges Metall (z. B. Kupfer, Nickel, Silber, Zink, Zinn, Palladium, Blei, Aluminium, Molybdän, Titan, Eisen, Zirkonium, Wolfram, Magnesium und Legierungen davon). Besonders geeignete leitfähige Metalle sind zum Beispiel Kupfer, Kupfer-Legierungen (z. B. Kupfer-Zirkonium, Kupfer-Magnesium, Kupfer-Zink oder Kupfer-Eisen), Nickel und Nickel-Legierungen (z. B. Nickel-Eisen). Die Leiterbahnen können unter Verwendung einer beliebigen bekannten Technik ausgebildet werden, wie etwa Bedrucken oder Beschichten einer Fläche des Gehäuses mit einer Tinte, die das Metall enthält. Bei Bedarf können eine oder mehrere dünne äußere Metallschichten (z. B. Gold) auf einer Grundmetallschicht (z. B. Kupferlegierung) beschichtet oder abgelagert werden, um die Leitfähigkeit weiter zu erhöhen.
- Diese Leiterbahnen werden elektrisch mit äußeren Anoden- und Katodenanschlüssen zur Montage der Kondensatoranordnung auf einer Oberfläche verbunden. Die Anschlüsse können einfach gebildet werden, indem die Leiterbahnen durch das Keramikgehäuse hindurch verlängert werden. Alternativ können die Anschlüsse die Form von Pins, Ballen, Platten usw. haben, die durch das Keramikgehäuse hindurch mit den Leiterbahnen verbunden sind. Auf jeden Fall wird die Dicke oder Höhe der Anschlüsse allgemein so gewählt, dass die Dicke der Kondensatoranordnung minimiert wird. Zum Beispiel kann die Dicke der Anschlüsse im Bereich von ungefähr 0,05 bis ungefähr 1 Millimeter, in manchen Ausführungen von ungefähr 0,05 bis ungefähr 0,5 Millimeter und von ungefähr 0,1 bis ungefähr 0,2 Millimeter liegen. Falls gewünscht, kann die Oberfläche der Anschlüsse galvanisch mit Nickel, Silber, Gold, Zinn usw. überzogen werden, wie in der Technik bekannt, um sicherzustellen, dass das fertige Bauteil auf eine Leiterplatte montiert werden kann. In einer speziellen Ausführung sind beide Oberflächen der Anschlüsse mit Nickel, bzw. Flash-Silber beschichtet, während die Montageoberfläche auch mit einer Lötzinn-Schicht beschichtet wird.
- Unter Bezugnahme auf
1 wird zum Beispiel eine Ausführungsform einer solchen Kondensatoranordnung100 gezeigt, die ein Keramikgehäuse120 und einen Elektrolytkondensator20 enthält. Das Keramikgehäuse120 umfasst eine untere Wand122 und zwei gegenüberliegende Seitenwände124 , zwischen denen ein Hohlraum126 gebildet wird, der den Kondensator20 aufnimmt. Die untere Wand122 und die Seitenwände124 werden aus einer oder mehreren Schichten eines Keramikmaterials gebildet, wie oben beschrieben. In dieser speziellen Ausführungsform enthält die untere Wand122 auch Leiterbahnen127 und129 , die elektrisch mit einem Anodendraht80 bzw. der Katode82 des Kondensators20 verbunden sind. Die Verbindung der Leiterbahnen127 und129 mit dem Draht80 und der Katode82 kann mit jeder bekannten Technik erfolgen, wie etwa Schweißen, Laserschweißen, leitfähigen Klebern usw. In einer speziellen Ausführung wird zum Beispiel ein leitfähiger Kleber131 verwendet, um den Draht80 mit der Leiterbahn127 zu verbinden. Ebenso wird ein leitfähiger Kleber133 verwendet, um die Katode82 mit der Leiterbahn129 zu verbinden. Die leitfähigen Kleber können aus leitfähigen Metallteilchen gebildet werden, die in einer Kunstharz-Mischung eingebettet sind. Die Metallteilchen können aus Silber, Kupfer, Gold, Platin, Nickel, Zink, Wismut, usw. sein. Die Kunstharzmischung kann ein Duroplast-Kunstharz (z. B. Epoxidharz), einen Härter (z. B. Säureanhydrid) und einen Haftvermittler (z. B. Silan-Haftvermittler) enthalten. Geeignete leitfähige Kleber sind in der US-Patentanmeldung mit der Publikations-Nummer 2006/0038304 an Osako et al. beschrieben, die hier in ihrer Gesamtheit für alle Zwecke als Referenz mit aufgenommen wird. - Die Leiterbahn
127 ist durch die Keramikwand122 hindurch über eine Verbindung161 mit einem äußeren Anodenanschluss151 verbunden, während die Leiterbahn129 über eine Verbindung163 mit einem äußeren Katodenanschluss153 verbunden ist. Die Verbindungen161 und163 können die Form eines Drahtes, Streifens, Blechs, Pfostens usw. haben und aus einem Metall gebildet sein. Alternativ können die Leiterbahnen einfach durch eine Durchkontaktierung der Keramikwand verlängert sein, um die äußeren Anschlüsse zu bilden. Verschiedene Techniken zum Ausbilden leitender Anschlüsse bei einem Keramikgehäuse sind detaillierter in denUS-Patenten Nr. 5,314,606 an Irie et al. und7,304,832 an Ushio et al. sowie den U.S.-Patent Patentanmeldungen mit der Publikations-Nr. 2005/0167789 an Zhuang und 2007/0138606 an Brailev beschrieben, die hier in ihrer Gesamtheit für alle Zwecke als Referenz mit aufgenommen werden. - Sobald der Kondensator
20 in das Keramikgehäuse120 gesetzt ist, wird ein Deckel125 auf eine obere Fläche der Seitenwände124 gesetzt. Der Deckel125 kann aus einer Keramik, einem Metall (z. B. Eisen, Kupfer, Nickel, Kobalt usw. sowie deren Legierungen) und so weiter geformt werden. In einer Ausführungsform enthält der Deckel zum Beispiel eine Kovar®-Legierung (Carpenter Technology Corporation), bei der es sich um eine eisenhaltige Nickel-Kobalt-Legierung handelt. Die Größe des Gehäuses120 ist allgemein so bemessen, dass der Deckel125 keine Fläche des Kondensators20 berührt, sodass dieser nicht verunreinigt wird. Nach dem Aufsetzen in der gewünschten Position wird der Deckel125 unter Verwendung bekannter Techniken zu den Seitenwänden124 hermetisch abgedichtet, wie etwa Schweißen (z. B. - Widerstandsschweißen, Laserschweißen usw.), Löten usw. Die hermetische Abdichtung geschieht, wie oben beschrieben, allgemein in Gegenwart eines inerten Gases, sodass die resultierende Anordnung im Wesentlichen frei von reaktiven Gasen, wie etwa Sauerstoff oder Wasserdampf, ist.
- Obwohl nicht erforderlich, können beim Keramikgehäuse
120 auch andere Schichten und/oder Materialien verwendet werden. Zum Beispiel können an der unteren Wand122 , an den Seitenwänden124 und/oder am Deckel125 ein oder mehrere Sperrglieder (nicht gezeigt) geformt werden, um eine Beschädigung des Kondensators20 während der hermetischen Abdichtung der Anordnung zu verhindern. Die Sperrglieder können aus jedem in der Technik bekannten Material geformt werden, wie etwa aus reflexionsarmen Materialien, die in der Lage sind, die Reflexion eines Laserstrahls zu verhindern. Zu Beispielen solcher Materialien gehören Polymere, wie etwa Epoxidharze, Polyimide, Polyolefine (z. B. Polyethylen oder Polypropylen), die optional Füllpartikel enthalten (z. B. schwarzes Pigment). - Als Ergebnis der vorliegenden Erfindung kann die Kondensatoranordnung ausgezeichnete elektrische Eigenschaften aufweisen, selbst wenn sie Umgebungen mit hohen Temperaturen ausgesetzt wird. Zum Beispiel kann die Kondensatoranordnung einen äquivalentem Serienwiderstand („ESR”) von weniger als ungefähr 50 Ohm, in einigen Ausführungen von weniger als ungefähr 25 Ohm, in einigen Anwendungen von ungefähr 0,01 bis ungefähr 10 Ohm und in einigen Anwendungen von ungefähr 0,1 bis ungefähr 5 Ohm haben, gemessen bei einer Betriebsfrequenz von 120 Hz. Darüber hinaus kann der Leckstrom, der sich im Allgemeinen auf den Strom bezieht, der von einem Leiter zum benachbarten Leiter durch einen Isolator fließt, auf relativ niedrigen Niveaus gehalten werden. Zum Beispiel beträgt der numerische Wert des normierten Leckstroms eines Kondensators nach der vorliegenden Erfindung in einigen Ausführungen weniger als etwa 1 μA/μF·V, in einigen Ausführungen weniger als etwa 0,5 μA/μF·V und in einigen Ausführungen weniger als etwa 0,1 μA/μF·V, wobei μA für Mikroampere steht und μF·V das Produkt der Kapazität und der Nennspannung ist. Solche Werte für ESR und normierten Leckstrom können sogar nach der Alterung über einen beträchtlichen Zeitraum bei hohen Temperaturen beibehalten werden. Zum Beispiel können die Werte über 100 Stunden oder mehr, in einigen Ausführungen zwischen etwa 300 Stunden und etwa 2500 Stunden und in einigen Ausführungen zwischen etwa 400 Stunden und etwa 1500 Stunden (z. B. 500 Stunden, 600 Stunden, 700 Stunden, 800 Stunden, 900 Stunden, 1000 Stunden, 1100 Stunden oder 1200 Stunden) bei Temperaturen im Bereich von etwa 100°C bis etwa 250°C und in einigen Ausführungen von etwa 100°C bis etwa 200°C (z. B. 100°C, 125°C, 150°C, 175°C oder 200°C) beibehalten werden.
- Die vorliegende Erfindung kann besser verstanden werden, wenn auf die folgenden Beispiele Bezug genommen wird.
- Testverfahren
- Äquivalenter Serienwiderstand (ESR) und Kapazität:
- Der äquivalente Serienwiderstand und die Kapazität wurden unter Verwendung eines LCR-Messgeräts Agilent 4284A mit 2 Volt Vorspannung und einem Wechselspannungssignal gemessen. Die Betriebsfrequenz betrug 120 Hz.
- Leckstrom:
- Der Leckstrom („DCL”) wurde mit einem Leckstrom-Testset MC 190 von Mantracourt Electronics LTD (UK) gemessen. Der Test mit dem MC 190 maß den Leckstrom bei einer Nennspannung von 10 V nach 30 Sekunden.
- BEISPIEL 1
- 70,000 μFV/g Tantalpulver (HC Starck) wurden zu Presslingen gepresst. Die anodische Oxidation wurde dann in einer wässrigen Lösung ausgeführt, die Phosphorsäure enthielt. Die Spannung wurde so gewählt, dass eine Kapazität von 33 μF bei einer Nennspannung von 10,0 V erzielt werden sollte. Nach der anodischen Oxidation wurden die Presslinge in herkömmlichen Verfahren, die in der Technik bekannt sind, mit einer leitfähigen Polymerschicht (PEDT), einer Graphitbeschichtung und einer Silberbeschichtung versehen. Der Kondensatorkörper hatte eine Größe von 2,44 mm × 1,78 mm × 0,68 mm.
- Ein Keramikbehälter wurde auch bei Kyocera America, Inc. aus San Diego, Kalifornien unter der Bezeichnung „Cap Pak” bezogen. Zum Befestigen des Tantalkondensators innerhalb des Keramikbehälters wurde ein mit Silber angereicherter Epoxidkleber (Thermoset K 611-14, Lord Corporation) verwendet. Zuerst wurde der Anschlussdraht (Tantal) des Kondensators an eine Leiterbahn innerhalb des Behälters geklebt; dann wurde ein Teil des Kondensators an eine weitere Leiterbahn geklebt. Die resultierende Anordnung wurde in einem auf 85°C eingestellten Umluftofen 45 Minuten lang erwärmt, um den Kleber auszuhärten. Um sicherzustellen, dass die Verklebungen fest Waren, wurden auch 0,01 Gramm zusätzlichen Epoxidklebers (Henkel-Loctite) aufgebracht. Dieser zusätzliche Kleber wurde dann bei Raumtemperatur 60 Minuten lang ausgehärtet. Ein Metalldeckel aus Kovar® wurde bereitgestellt und so bearbeitet, dass er gut zur Größe des Keramikbehälters passte. Nach dem Aushärten der Kleber wurde der Deckel auf die Oberseite des Behälters gesetzt, sodass kein direkter Kontakt zwischen der Innenfläche des Deckels und der Außenfläche des befestigten Kondensators bestand. Die resultierende Anordnung wurde dann in eine Schweißkammer gesetzt und 120 Minuten lang mit Stickstoffgas gespült, bevor Nahtschweißen bei 60°C durchgeführt wurde. Nach dem Nahtschweißen wurde kein Einbrennen oder Ausheilen durchgeführt.
- Nach dem Formieren wurden die Teile einem Dauertest in Luft bei 150°C ausgesetzt. Wöchentlich wurden der Leckstrom (DCL), der äquivalente Serienwiderstand (ESR) und die Kapazität der Teile bei Raumtemperatur (23°C ± 2°C) bestimmt, um zu überprüfen, ob das Teil eine Verschlechterung aufwies. Die Ergebnisse sind in
2 –4 dargestellt. Wie gezeigt, traten innerhalb der ersten 100 Stunden einige abrupte Veränderungen auf; dann stabilisierten sich die Leistungsdaten über fast 1200 Stunden. Die Veränderungen innerhalb der ersten 100 Stunden können möglicherweise auf thermisches Ausheilen des Tantalpentoxid-Dielektrikums zurückzuführen sein. Bemerkenswerterweise zeigt nur 1 von 9 Mustern einen irregulären ESR von etwa 6,0 Ω nach 1200 Stunden; es wird angenommen, dass dies auf schlechte Befestigung des Kondensators zurückzuführen war. Es wurde keine signifikante Veränderung der Kapazität festgestellt. Der Leckstrom („DCL”) zeigte ein sehr flaches Plateau und einen Bereich zwischen 3,0 und 16,0 μA nach 1200 Stunden, was normal war, weil der gemessene DCL nicht den eingeschwungenen Leckstrom erreicht hatte. - BEISPIEL 2
- Es wurden Kondensatoranordnungen wie in Beispiel 1 beschrieben hergestellt, abgesehen davon, dass die Teile Luft bei 175°C ausgesetzt wurden. Das Prüfen wurde wöchentlich durchgeführt, wie in Beispiel 1 beschrieben. Die Ergebnisse sind in
5 –7 gezeigt. Ähnlich wie bei Beispiel 1 wurde keine signifikante Verschlechterung gefunden. - BEISPIEL 3
- Es wurden Kondensatoranordnungen wie in Beispiel 1 beschrieben hergestellt, abgesehen davon, dass die Teile Luft bei 200°C ausgesetzt wurden. Das Prüfen wurde wöchentlich durchgeführt, wie in Beispiel 1 beschrieben. Die Ergebnisse sind in
8 –10 gezeigt. Ähnlich wie bei Beispiel 1 wurde keine signifikante Verschlechterung gefunden. - BEISPIEL 4
- Es wurden Kondensatoranordnungen wie in Beispiel 1 beschrieben hergestellt, abgesehen davon, dass die Teile Luft bei 175°C und einer angelegten Spannung von 6,0 Volt ausgesetzt wurden. Das Prüfen wurde wöchentlich durchgeführt, wie in Beispiel 1 beschrieben. Die Ergebnisse sind in
11 –13 dargestellt.11 zeigte eine Steigerung des DCL, was nicht überraschte, weil Tantalpentoxid ein immanentes thermisches Stabilitätsproblem aufgrund von Migration von Sauerstoff zum Tantalsubstrat hat. Im Ergebnis wird das Dielektrikum dünner, was die Migrationen von Punktdefekten innerhalb des Dielektrikums bei hoher Feldstärke erleichtert. Wie in13 gezeigt, wurde keine signifikante Erhöhung des ESR gefunden. Der ESR variierte während der ersten 900 Stunden um 2,0 Ω. Die Kapazität erhöhte sich anfangs um einen kleinen Betrag und verringerte sich mit einer geringen Tendenz. Bezüglich der Anfangskapazität veränderte sich die Kapazität nach 900 Stunden um –0,5%. - VERGLEICHSBEISPIEL 1
- Es wurden Tantalkondensatoren wie in Beispiel 1 getestet, ohne dass sie in einen Keramikbehälter gesetzt wurden. Die Ergebnisse sind in
14 –16 dargestellt, die eine schnelle Verschlechterung des leitfähigen Polymers zeigen. - Diese und weitere Modifikationen und Abwandlungen der vorliegenden Erfindung können von einem Fachmann durchgeführt werden, ohne dass vom Sinn und Umfang der vorliegenden Erfindung abgewichen wird. Zusätzlich dazu muss verstanden werden, dass Aspekte der verschiedenen Ausführungen ganz oder teilweise ausgetauscht werden können. Weiterhin wird ein Fachmann erkennen, dass die oben angegebene Beschreibung nur ein Bei spiel ist und nicht mit der Absicht angegeben wurde, die Erfindung einzuschränken, wie sie in den beigefügten Ansprüchen weiter beschrieben wird.
- ZITATE ENTHALTEN IN DER BESCHREIBUNG
- Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
- Zitierte Patentliteratur
-
- - US 5457862 [0001, 0025]
- - US 5473503 [0001, 0025]
- - US 5729428 [0001, 0025]
- - US 5812367 [0001, 0025]
- - US 6322912 [0016, 0019]
- - US 6391275 [0016]
- - US 6416730 [0016]
- - US 6527937 [0016]
- - US 6576099 [0016]
- - US 6592740 [0016]
- - US 6639787 [0016]
- - US 7220397 [0016]
- - US 6197252 [0019]
- - US 4085435 [0019]
- - US 4945452 [0019]
- - US 5198968 [0019]
- - US 5357399 [0019]
- - US 5394295 [0019]
- - US 5495386 [0019]
- - US 6191936 [0020]
- - US 5949639 [0020]
- - US 3345545 [0020]
- - US 6674635 [0024]
- - US 5314606 [0034]
- - US 7304832 [0034]
- Zitierte Nicht-Patentliteratur
-
- - (B. E. T.) nach Braunauer, Emmet und Teller, Journal of American Chemical Society, Bd. 60, 1938, S. 309 [0017]
Claims (29)
- Kondensatoranordnung, die folgendes umfasst: einen Elektrolytkondensator, der eine Anode, eine dielektrische Schicht, die die Anode überzieht, sowie eine Katode umfasst, die die dielektrische Schicht überzieht, wobei die Katode ein leitfähiges Polymer enthält; ein Keramikgehäuse, in dem der Elektrolytkondensator eingeschlossen und hermetisch abgedichtet ist, wobei das Keramikgehäuse einen inneren Hohlraum bildet, der eine gasförmige Atmosphäre besitzt, die ein inertes Gas enthält; einen Kathodenanschluss, der elektrisch mit der Katode verbunden und außerhalb des Keramikgehäuses angeordnet ist; und einen Anodenanschluss, der elektrisch mit der Anode verbunden und außerhalb des Keramikgehäuses angeordnet ist.
- Kondensatoranordnung nach Anspruch 1, wobei die Anode aus einer Ventilmetallzusammensetzung ausgebildet ist.
- Kondensatoranordnung nach Anspruch 2, wobei die Ventilmetallzusammensetzung Tantal enthält.
- Kondensatoranordnung nach Anspruch 2, wobei die Ventilmetallzusammensetzung Niobiumoxid enthält.
- Kondensatoranordnung nach Anspruch 1, wobei ein Anodenleitungsdraht von der Anode ausgeht und der Anodenleitungsdraht elektrisch mit dem Anodenanschluss verbunden ist.
- Kondensatoranordnung nach Anspruch 1, wobei das leitfähige Polymer Poly(3,4-Ethylendioxid-Thiophen) oder ein Derivat davon enthält.
- Kondensatoranordnung nach Anspruch 1, wobei das inerte Gas Stickstoff, Helium, Argon, Xenon, Neon, Krypton, Radon oder Kombinationen davon enthält.
- Kondensatoranordnung nach Anspruch 1, wobei inerte Gase ungefähr 50 Gew.-% bis 100 Gew.-% der gasförmigen Atmosphäre ausmachen.
- Kondensatoranordnung nach Anspruch 1, wobei inerte Gase ungefähr 75 Gew.-% bis 100 Gew.-% der gasförmigen Atmosphäre ausmachen.
- Kondensatoranordnung nach Anspruch 1, wobei Sauerstoff weniger als ungefähr 1 Gew.-% der gasförmigen Atmosphäre ausmacht.
- Kondensatoranordnung nach Anspruch 1, wobei eine erste Leiterbahn und eine zweite Leiterbahn auf einer Innenfläche des Keramikgehäuses und in elektrischem Kontakt mit dem Anodenanschluss bzw. dem Katodenanschluss ausgebildet werden, wobei die Anode in elektrischem Kontakt mit der ersten Leiterbahn und die Katode in elektrischem Kontakt mit der zweiten Leiterbahn ist.
- Kondensatoranordnung nach Anspruch 11, wobei ein leitfähiger Kleber die erste Leiterbahn mit der Anode elektrisch verbindet.
- Kondensatoranordnung nach Anspruch 11, wobei ein leitfähiger Kleber die zweite Leiterbahn mit der Katode elektrisch verbindet.
- Kondensatoranordnung nach Anspruch 1, wobei das Keramikgehäuse ein Sperrglied enthält, das ein reflexionsarmes Material enthält.
- Kondensatoranordnung nach Anspruch 1, wobei die Anordnung nach der Alterung bei 150°C über 1000 Stunden einen äquivalenten Serienwiderstand von ungefähr 50 Ohm oder weniger aufweist, gemessen bei einer Betriebsfrequenz von 120 Hz.
- Kondensatoranordnung nach Anspruch 1, wobei die Anordnung nach der Alterung bei 150°C über 1000 Stunden einen äquivalenten Serienwiderstand von ungefähr 0,01 Ohm bis ungefähr 10 Ohm aufweist, gemessen bei einer Betriebsfrequenz von 120 Hz.
- Kondensatoranordnung nach Anspruch 1, wobei die Anordnung nach der Alterung bei 175°C über 700 Stunden einen äquivalenten Serienwiderstand von ungefähr 50 Ohm oder weniger aufweist, gemessen bei einer Betriebsfrequenz von 120 Hz.
- Kondensatoranordnung nach Anspruch 1, wobei die Anordnung nach der Alterung bei 150°C über 1000 Stunden einen normierten Leckstrom von ungefähr 0,1 μA/μF·V oder weniger aufweist.
- Kondensatoranordnung nach Anspruch 1, wobei die Anordnung nach der Alterung bei 175°C über 700 Stunden einen normierten Leckstrom von ungefähr 0,1 μA/μF·V oder weniger aufweist.
- Verfahren zur Herstellung einer Kondensatoranordnung, wobei das Verfahren folgendes umfasst: Bereitstellung eines Elektrolytkondensators, der eine Anode, eine dielektrische Schicht, die die Anode überzieht, und eine Katode umfasst, die die dielektrische Schicht überzieht, wobei die Katode ein leitfähiges Polymer enthält und sich ein Anoden-Anschlussdraht von der Anode erstreckt; Positionierung des Elektrolytkondensators innerhalb eines Keramikgehäuses; elektrisches Verbinden der Katode mit einem Kathodenanschluss; elektrisches Verbinden des Anodendrahtes mit einem Anodenanschluss; Setzen eines Deckels auf das Keramikgehäuse; und hermetisches Abdichten des Deckels gegenüber dem Keramikgehäuse in Gegenwart einer gasförmigen Atmosphäre, die ein inertes Gas enthält.
- Verfahren nach Anspruch 20, wobei die Anode Tantal oder Niobiumoxid enthält.
- Verfahren nach Anspruch 20, wobei das leitfähige Polymer Poly(3,4-Ethylendioxid-Thiophen) oder ein Derivat davon enthält.
- Verfahren nach Anspruch 20, wobei das inerte Gas Stickstoff, Helium, Argon, Xenon, Neon, Krypton, Radon oder Kombinationen davon enthält.
- Verfahren nach Anspruch 20, wobei inerte Gase ungefähr 50 Gew.-% bis 100 Gew.-% der gasförmigen Atmosphäre ausmachen.
- Verfahren nach Anspruch 20, wobei inerte Gase ungefähr 75 Gew.-% bis 100 Gew.-% der gasförmigen Atmosphäre ausmachen.
- Verfahren nach Anspruch 20, wobei eine erste Leiterbahn und eine zweite Leiterbahn auf einer Innenfläche des Keramikgehäuses und in elektrischem Kontakt mit dem Anodenanschluss bzw. dem Katodenanschluss angebracht werden, wobei die Anode elektrisch mit der ersten Leiterbahn und die Katode elektrisch mit der zweiten Leiterbahn verbunden wird.
- Verfahren nach Anspruch 26, wobei ein leitfähiger Kleber die erste Leiterbahn mit der Anode elektrisch verbindet.
- Verfahren nach Anspruch 20, wobei ein leitfähiger Kleber die zweite Leiterbahn mit der Katode elektrisch verbindet.
- Verfahren nach Anspruch 20, wobei der Deckel an das Keramikgehäuse geschweißt oder gelötet wird.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/060,354 | 2008-04-01 | ||
US12/060,354 US8094434B2 (en) | 2008-04-01 | 2008-04-01 | Hermetically sealed capacitor assembly |
Publications (1)
Publication Number | Publication Date |
---|---|
DE102009000527A1 true DE102009000527A1 (de) | 2009-10-08 |
Family
ID=40469456
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE102009000527A Pending DE102009000527A1 (de) | 2008-04-01 | 2009-01-30 | Hermetisch abgedichtete Kondensatoranordnung |
Country Status (6)
Country | Link |
---|---|
US (2) | US8094434B2 (de) |
JP (5) | JP2009253278A (de) |
KR (1) | KR101579979B1 (de) |
CN (1) | CN101552138B (de) |
DE (1) | DE102009000527A1 (de) |
GB (1) | GB2461765B (de) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102012205607B4 (de) | 2011-04-07 | 2024-10-10 | KYOCERA AVX Components Corporation (n. d. Ges. d. Staates Delaware) | Hermetisch versiegelter Elektrolytkondensator mit verbesserter mechanischer Stabilität |
Families Citing this family (61)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8194395B2 (en) * | 2009-10-08 | 2012-06-05 | Avx Corporation | Hermetically sealed capacitor assembly |
US8093714B2 (en) * | 2009-12-10 | 2012-01-10 | Semtech Corporation | Chip assembly with chip-scale packaging |
US8279584B2 (en) * | 2010-08-12 | 2012-10-02 | Avx Corporation | Solid electrolytic capacitor assembly |
US8199460B2 (en) * | 2010-09-27 | 2012-06-12 | Avx Corporation | Solid electrolytic capacitor with improved anode termination |
US8514547B2 (en) * | 2010-11-01 | 2013-08-20 | Avx Corporation | Volumetrically efficient wet electrolytic capacitor |
US8824122B2 (en) * | 2010-11-01 | 2014-09-02 | Avx Corporation | Solid electrolytic capacitor for use in high voltage and high temperature applications |
US8576543B2 (en) * | 2010-12-14 | 2013-11-05 | Avx Corporation | Solid electrolytic capacitor containing a poly(3,4-ethylenedioxythiophene) quaternary onium salt |
JP5995262B2 (ja) | 2011-03-06 | 2016-09-21 | ヘレウス ドイチェラント ゲーエムベーハー ウント カンパニー カーゲー | Pedot/pssを固体電解質として含有するコンデンサにおける電気パラメータをポリグリセロールによって改善するための方法 |
US8379372B2 (en) | 2011-04-07 | 2013-02-19 | Avx Corporation | Housing configuration for a solid electrolytic capacitor |
US8947857B2 (en) * | 2011-04-07 | 2015-02-03 | Avx Corporation | Manganese oxide capacitor for use in extreme environments |
US9767964B2 (en) * | 2011-04-07 | 2017-09-19 | Avx Corporation | Multi-anode solid electrolytic capacitor assembly |
US8379371B2 (en) | 2011-05-20 | 2013-02-19 | Kemet Electronics Corporation | Utilization of moisture in hermetically sealed solid electrolytic capacitor and capacitors made thereof |
CN102842699B (zh) * | 2011-06-24 | 2016-02-24 | 精工电子有限公司 | 电化学电池及其制造方法 |
IL287733B2 (en) | 2011-07-08 | 2023-04-01 | Fastcap Systems Corp | A device for storing energy at high temperatures |
US9558894B2 (en) | 2011-07-08 | 2017-01-31 | Fastcap Systems Corporation | Advanced electrolyte systems and their use in energy storage devices |
DE102013101443A1 (de) | 2012-03-01 | 2013-09-05 | Avx Corporation | Ultrahigh voltage solid electrolytic capacitor |
JP2013219362A (ja) * | 2012-04-11 | 2013-10-24 | Avx Corp | 過酷な条件下で強化された機械的安定性を有する固体電解コンデンサ |
US9548163B2 (en) | 2012-07-19 | 2017-01-17 | Avx Corporation | Solid electrolytic capacitor with improved performance at high voltages |
DE102013213720A1 (de) | 2012-07-19 | 2014-01-23 | Avx Corporation | Temperaturstabiler Festelektrolytkondensator |
DE102013213723A1 (de) | 2012-07-19 | 2014-01-23 | Avx Corporation | Festelektrolytkondensator mit erhöhter Feucht-zu-Trocken-Kapazität |
DE102013213728A1 (de) | 2012-07-19 | 2014-01-23 | Avx Corporation | Nichtionisches Tensid zur Verwendung in einem festen Elektrolyten eines Elektrolytkondensators |
JP5933397B2 (ja) | 2012-08-30 | 2016-06-08 | エイヴィーエックス コーポレイション | 固体電解コンデンサの製造方法および固体電解コンデンサ |
US8755171B2 (en) * | 2012-09-13 | 2014-06-17 | Apaq Technology Co., Ltd. | Stacked-type solid electrolytic capacitor package structure |
US20140238726A1 (en) * | 2013-02-28 | 2014-08-28 | Cooper Technologies Company | External moisture barrier package for circuit board electrical component |
GB2512480B (en) * | 2013-03-13 | 2018-05-30 | Avx Corp | Solid electrolytic capacitor for use in extreme conditions |
US9324503B2 (en) | 2013-03-15 | 2016-04-26 | Avx Corporation | Solid electrolytic capacitor |
US9240285B2 (en) * | 2013-04-29 | 2016-01-19 | Avx Corporation | Multi-notched anode for electrolytic capacitor |
US9824826B2 (en) | 2013-05-13 | 2017-11-21 | Avx Corporation | Solid electrolytic capacitor containing conductive polymer particles |
US9892862B2 (en) | 2013-05-13 | 2018-02-13 | Avx Corporation | Solid electrolytic capacitor containing a pre-coat layer |
US9472350B2 (en) | 2013-05-13 | 2016-10-18 | Avx Corporation | Solid electrolytic capacitor containing a multi-layered adhesion coating |
CN104253884A (zh) * | 2013-06-28 | 2014-12-31 | 深圳富泰宏精密工业有限公司 | 外壳及其制造方法 |
KR101531099B1 (ko) * | 2013-09-16 | 2015-06-23 | 삼성전기주식회사 | 고체 전해 콘덴서 및 그 제조방법 |
US9236193B2 (en) | 2013-10-02 | 2016-01-12 | Avx Corporation | Solid electrolytic capacitor for use under high temperature and humidity conditions |
KR20150053425A (ko) * | 2013-11-08 | 2015-05-18 | 삼성전기주식회사 | 탄탈륨 캐패시터 및 그 제조 방법 |
US9209138B2 (en) * | 2013-12-09 | 2015-12-08 | Aeroflex Colorado Springs, Inc. | Integrated circuit shielding technique utilizing stacked die technology incorporating top and bottom nickel-iron alloy shields having a low coefficient of thermal expansion |
US9589733B2 (en) | 2013-12-17 | 2017-03-07 | Avx Corporation | Stable solid electrolytic capacitor containing a nanocomposite |
US10312028B2 (en) * | 2014-06-30 | 2019-06-04 | Avx Corporation | Electrochemical energy storage devices and manufacturing methods |
US9754730B2 (en) | 2015-03-13 | 2017-09-05 | Avx Corporation | Low profile multi-anode assembly in cylindrical housing |
US10014108B2 (en) | 2015-03-13 | 2018-07-03 | Avx Corporation | Low profile multi-anode assembly |
US10297393B2 (en) | 2015-03-13 | 2019-05-21 | Avx Corporation | Ultrahigh voltage capacitor assembly |
US9928963B2 (en) | 2015-03-13 | 2018-03-27 | Avx Corporation | Thermally conductive encapsulant material for a capacitor assembly |
US10861652B2 (en) | 2015-05-06 | 2020-12-08 | Kemet Electronics Corporation | Capacitor with volumetrically efficient hermetic packaging |
US9972444B2 (en) | 2015-05-29 | 2018-05-15 | Avx Corporation | Solid electrolytic capacitor element for use in dry conditions |
US9672989B2 (en) | 2015-05-29 | 2017-06-06 | Avx Corporation | Solid electrolytic capacitor assembly for use in a humid atmosphere |
US9991055B2 (en) | 2015-05-29 | 2018-06-05 | Avx Corporation | Solid electrolytic capacitor assembly for use at high temperatures |
US9767963B2 (en) | 2015-05-29 | 2017-09-19 | Avx Corporation | Solid electrolytic capacitor with an ultrahigh capacitance |
US9947479B2 (en) | 2015-11-16 | 2018-04-17 | Vishay Sprague, Inc. | Volumetric efficiency wet electrolyte capacitor having a fill port and terminations for surface mounting |
CN109155386A (zh) * | 2016-05-20 | 2019-01-04 | 株式会社村田制作所 | 蓄电设备 |
FR3056821B1 (fr) * | 2016-09-29 | 2018-11-23 | Paris Sciences Et Lettres - Quartier Latin | Super-condensateur a electrolyte perfectionne |
US10431389B2 (en) | 2016-11-14 | 2019-10-01 | Avx Corporation | Solid electrolytic capacitor for high voltage environments |
WO2019005535A1 (en) | 2017-06-29 | 2019-01-03 | Avx Corporation | MODULE CONTAINING HERMETICALLY SEALED CAPACITORS |
CN107731554A (zh) * | 2017-09-26 | 2018-02-23 | 华为技术有限公司 | 一种聚合物电容器及其制备方法 |
US11189431B2 (en) | 2018-07-16 | 2021-11-30 | Vishay Sprague, Inc. | Low profile wet electrolytic tantalum capacitor |
US11081288B1 (en) | 2018-08-10 | 2021-08-03 | Avx Corporation | Solid electrolytic capacitor having a reduced anomalous charging characteristic |
US11024464B2 (en) * | 2018-08-28 | 2021-06-01 | Vishay Israel Ltd. | Hermetically sealed surface mount polymer capacitor |
JP7178609B2 (ja) * | 2018-11-30 | 2022-11-28 | パナソニックIpマネジメント株式会社 | 電解コンデンサ |
US11380492B1 (en) | 2018-12-11 | 2022-07-05 | KYOCERA AVX Components Corporation | Solid electrolytic capacitor |
DE112020002428T5 (de) | 2019-05-17 | 2022-01-27 | Avx Corporation | Festelektrolytkondensator |
US11756742B1 (en) | 2019-12-10 | 2023-09-12 | KYOCERA AVX Components Corporation | Tantalum capacitor with improved leakage current stability at high temperatures |
US11763998B1 (en) | 2020-06-03 | 2023-09-19 | KYOCERA AVX Components Corporation | Solid electrolytic capacitor |
US11742149B2 (en) | 2021-11-17 | 2023-08-29 | Vishay Israel Ltd. | Hermetically sealed high energy electrolytic capacitor and capacitor assemblies with improved shock and vibration performance |
Citations (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3345545A (en) | 1964-11-27 | 1967-10-03 | Johnson Matthey & Mallory Ltd | Solid electrolytic capacitor having minimum anode impedance |
US4085435A (en) | 1976-06-14 | 1978-04-18 | Avx Corporation | Tantalum chip capacitor |
US4945452A (en) | 1989-11-30 | 1990-07-31 | Avx Corporation | Tantalum capacitor and method of making same |
US5198968A (en) | 1992-07-23 | 1993-03-30 | Avx Corporation | Compact surface mount solid state capacitor and method of making same |
US5314606A (en) | 1993-02-16 | 1994-05-24 | Kyocera America, Inc. | Leadless ceramic package with improved solderabilty |
US5357399A (en) | 1992-09-25 | 1994-10-18 | Avx Corporation | Mass production method for the manufacture of surface mount solid state capacitor and resulting capacitor |
US5394295A (en) | 1993-05-28 | 1995-02-28 | Avx Corporation | Manufacturing method for solid state capacitor and resulting capacitor |
US5457862A (en) | 1993-11-10 | 1995-10-17 | Nec Corporation | Method of manufacturing solid electrolytic capacitor |
US5473503A (en) | 1993-07-27 | 1995-12-05 | Nec Corporation | Solid electrolytic capacitor and method for manufacturing the same |
US5495386A (en) | 1993-08-03 | 1996-02-27 | Avx Corporation | Electrical components, such as capacitors, and methods for their manufacture |
US5729428A (en) | 1995-04-25 | 1998-03-17 | Nec Corporation | Solid electrolytic capacitor with conductive polymer as solid electrolyte and method for fabricating the same |
US5812367A (en) | 1996-04-04 | 1998-09-22 | Matsushita Electric Industrial Co., Ltd. | Solid electrolytic capacitors comprising a conductive layer made of a polymer of pyrrole or its derivative |
US5949639A (en) | 1996-09-27 | 1999-09-07 | Rohm Co., Ltd. | Capacitor element for solid electrolytic capacitor, device and process for making the same |
US6191936B1 (en) | 1999-04-12 | 2001-02-20 | Vishay Sprague, Inc. | Capacitor having textured pellet and method for making same |
US6197252B1 (en) | 1997-01-13 | 2001-03-06 | Avx Limited | Binder removal |
US6322912B1 (en) | 1998-09-16 | 2001-11-27 | Cabot Corporation | Electrolytic capacitor anode of valve metal oxide |
US6391275B1 (en) | 1998-09-16 | 2002-05-21 | Cabot Corporation | Methods to partially reduce a niobium metal oxide and oxygen reduced niobium oxides |
US6416730B1 (en) | 1998-09-16 | 2002-07-09 | Cabot Corporation | Methods to partially reduce a niobium metal oxide oxygen reduced niobium oxides |
US6576099B2 (en) | 2000-03-23 | 2003-06-10 | Cabot Corporation | Oxygen reduced niobium oxides |
US6639787B2 (en) | 2000-11-06 | 2003-10-28 | Cabot Corporation | Modified oxygen reduced valve metal oxides |
US6674635B1 (en) | 2001-06-11 | 2004-01-06 | Avx Corporation | Protective coating for electrolytic capacitors |
US7304832B2 (en) | 2005-02-23 | 2007-12-04 | Kyocera Corporation | Ceramic container and battery and electric double layer capacitor using the same |
Family Cites Families (86)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1069685A (en) | 1965-08-31 | 1967-05-24 | Mallory & Co Inc P R | Atmosphere control within the hermetic enclosure of electrolytic-capacitor assemblies |
US3922773A (en) * | 1974-07-17 | 1975-12-02 | Corning Glass Works | Method of forming a hermetic enclosure |
US4479168A (en) * | 1983-12-19 | 1984-10-23 | Sprague Electric Company | Electrolytic capacitor with a hermetic seal |
US4755908A (en) * | 1987-08-17 | 1988-07-05 | Gardner Edward P | Capacitor |
DE3843412A1 (de) * | 1988-04-22 | 1990-06-28 | Bayer Ag | Neue polythiophene, verfahren zu ihrer herstellung und ihre verwendung |
DE3814730A1 (de) * | 1988-04-30 | 1989-11-09 | Bayer Ag | Feststoff-elektrolyte und diese enthaltende elektrolyt-kondensatoren |
JPH03127813A (ja) | 1989-10-13 | 1991-05-30 | Kao Corp | 固体電解コンデンサの製造方法 |
EP0440957B1 (de) * | 1990-02-08 | 1996-03-27 | Bayer Ag | Neue Polythiophen-Dispersionen, ihre Herstellung und ihre Verwendung |
US5111327A (en) * | 1991-03-04 | 1992-05-05 | General Electric Company | Substituted 3,4-polymethylenedioxythiophenes, and polymers and electro responsive devices made therefrom |
JP3070408B2 (ja) * | 1993-12-28 | 2000-07-31 | 日本電気株式会社 | 固体電解コンデンサおよびその製造方法 |
US5638253A (en) * | 1994-04-28 | 1997-06-10 | Rohm Co. Ltd. | Package-type solid electrolytic capacitor |
JP2770746B2 (ja) * | 1994-09-02 | 1998-07-02 | 日本電気株式会社 | 固体電解コンデンサ及びその製造方法 |
JP2778495B2 (ja) * | 1994-12-28 | 1998-07-23 | 日本電気株式会社 | 耐熱性導電性高分子並びにその導電性高分子を用いた固体電解コンデンサ及びその製造方法 |
US5608261A (en) * | 1994-12-28 | 1997-03-04 | Intel Corporation | High performance and high capacitance package with improved thermal dissipation |
JPH113840A (ja) * | 1997-04-15 | 1999-01-06 | Sanyo Electric Co Ltd | 固体電解コンデンサ |
TW388043B (en) * | 1997-04-15 | 2000-04-21 | Sanyo Electric Co | Solid electrolyte capacitor |
JPH1167945A (ja) * | 1997-08-26 | 1999-03-09 | Kyocera Corp | 電子回路モジュール |
JPH11112157A (ja) | 1997-09-30 | 1999-04-23 | Kyocera Corp | 電子部品用ケースとこれを用いた電子部品及び電解コンデンサ |
DE10004725A1 (de) * | 2000-02-03 | 2001-08-09 | Bayer Ag | Verfahren zur Herstellung von wasserlöslichen pi-konjugierten Polymeren |
JP3959220B2 (ja) * | 2000-02-04 | 2007-08-15 | 株式会社エスアイアイ・マイクロパーツ | 表面実装用非水電解電池および表面実装用電気二重層キャパシタ |
DE10016723A1 (de) * | 2000-04-04 | 2001-10-11 | Bayer Ag | Verfahren zur Herstellung von Dialkoxythiophenen und Alkylendioxythiophenen |
DE10029075A1 (de) * | 2000-06-13 | 2001-12-20 | Bayer Ag | Verfahren zur Herstellung von 3,4-Alkylendioxythiophen-2,5-dicarbonsäurederivaten |
JP2002025858A (ja) * | 2000-07-05 | 2002-01-25 | Rohm Co Ltd | 固体電解コンデンサおよびその製法 |
JP4095894B2 (ja) * | 2000-11-22 | 2008-06-04 | バイエル・ベタイリグングスフェアヴァルトゥング・ゴスラー・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング | 分散性ポリマー粉末 |
JP4014819B2 (ja) * | 2001-05-14 | 2007-11-28 | Necトーキン株式会社 | チップ型コンデンサおよびその製造方法 |
KR20040054674A (ko) * | 2001-08-22 | 2004-06-25 | 쇼와 덴코 가부시키가이샤 | 콘덴서 |
DE10164260A1 (de) * | 2001-12-27 | 2003-07-17 | Bayer Ag | Verfahren zur Herstellung von undotiertem, neutralem Polyethylendioxythiophen, sowie entsprechende Polyethylendioxythiophene |
US6989982B2 (en) * | 2002-06-18 | 2006-01-24 | Tdk Corporation | Solid electrolytic capacitor, circuit board having built-in solid electrolytic capacitor and methods for manufacturing them |
DE10229218A1 (de) * | 2002-06-28 | 2004-01-22 | H.C. Starck Gmbh | Alkylendioxythiophen-Dimere und Trimere |
DE10237577A1 (de) * | 2002-08-16 | 2004-02-26 | H.C. Starck Gmbh | Substituierte Poly(alkylendioxythiophene) als Feststoffelektrolyte in Elektrolytkondensatoren |
JP2004111460A (ja) * | 2002-09-13 | 2004-04-08 | Matsushita Electric Ind Co Ltd | 固体電解コンデンサ |
DE10257539A1 (de) * | 2002-12-10 | 2004-07-01 | H.C. Starck Gmbh | Verfahren zur Herstellung von 2,2'-Di(3,4-ethylendioxythiophen)en |
DE10302086A1 (de) * | 2003-01-21 | 2004-07-29 | Bayer Ag | Alkylendioxythiophene und Poly(alkylendioxythiophene) mit mesogenen Gruppen |
US7972534B2 (en) * | 2003-04-02 | 2011-07-05 | H. C. Starck Gmbh | Retarding oxidants for preparing conductive polymers |
JP2005039168A (ja) * | 2003-06-27 | 2005-02-10 | Kyocera Corp | セラミック容器およびそれを用いたタンタル電解コンデンサ |
DE10331673A1 (de) * | 2003-07-14 | 2005-02-10 | H.C. Starck Gmbh | Polythiophen mit Alkylenoxythiathiophen-Einheiten in Elektrolytkondensatoren |
DE502004011120D1 (de) * | 2003-07-15 | 2010-06-17 | Starck H C Gmbh | Niobsuboxidpulver |
DE10333156A1 (de) * | 2003-07-22 | 2005-02-24 | H.C. Starck Gmbh | Verfahren zur Herstellung von Niobsuboxid |
DE10343873A1 (de) * | 2003-09-23 | 2005-04-21 | Starck H C Gmbh | Verfahren zur Reinigung von Thiophenen |
DE10347702B4 (de) * | 2003-10-14 | 2007-03-29 | H.C. Starck Gmbh | Sinterkörper auf Basis Niobsuboxid |
DE502004009915D1 (de) * | 2003-10-17 | 2009-10-01 | Starck H C Gmbh | Elektrolytkondensatoren mit polymerer Aussenschicht |
CN1883021B (zh) * | 2003-11-13 | 2011-04-06 | 昭和电工株式会社 | 固体电解电容器 |
DE10357571A1 (de) * | 2003-12-10 | 2005-07-28 | H.C. Starck Gmbh | Multifunktionelle 3,4-Alkylendioxythiophen-Derivate und diese enthaltende elektrisch leitfähige Polymere |
US7948069B2 (en) * | 2004-01-28 | 2011-05-24 | International Rectifier Corporation | Surface mountable hermetically sealed package |
JP2005217129A (ja) | 2004-01-29 | 2005-08-11 | Kyocera Corp | セラミック容器およびそれを用いたタンタル電解コンデンサ |
US7116548B2 (en) * | 2004-04-23 | 2006-10-03 | Kemet Electronics Corporation | Fluted anode with minimal density gradients and capacitor comprising same |
DE102004022110A1 (de) * | 2004-05-05 | 2005-12-01 | H.C. Starck Gmbh | Verfahren zur Herstellung von Elektrolytkondensatoren |
JP2006028214A (ja) * | 2004-07-12 | 2006-02-02 | Nagase Chemtex Corp | ポリ(3,4−ジアルコキシチオフェン)とポリ陰イオンとの複合体の水分散体の製造方法 |
JP4550519B2 (ja) * | 2004-08-10 | 2010-09-22 | セイコーインスツル株式会社 | 電気化学セルおよびその製造方法 |
CN1737072B (zh) * | 2004-08-18 | 2011-06-08 | 播磨化成株式会社 | 导电粘合剂及使用该导电粘合剂制造物件的方法 |
JP4450378B2 (ja) * | 2004-10-27 | 2010-04-14 | Necトーキン株式会社 | 表面実装型コンデンサ及びその製造方法 |
CN100517800C (zh) * | 2005-02-23 | 2009-07-22 | 京瓷株式会社 | 陶瓷容器和使用其的电池以及电双层电容器 |
JP2006269864A (ja) * | 2005-03-25 | 2006-10-05 | Nec Tokin Corp | 固体電解コンデンサ |
JP2006278875A (ja) * | 2005-03-30 | 2006-10-12 | Sanyo Electric Co Ltd | 固体電解コンデンサ |
DE102005016727A1 (de) * | 2005-04-11 | 2006-10-26 | H.C. Starck Gmbh | Elektrolytkondensatoren mit polymerer Außenschicht und Verfahren zu ihrer Herstellung |
US20060260713A1 (en) * | 2005-04-22 | 2006-11-23 | Pyszczek Michael F | Method and apparatus for providing a sealed container containing a detectable gas |
DE102005033839A1 (de) * | 2005-07-20 | 2007-01-25 | H.C. Starck Gmbh | Elektrolytkondensatoren mit polymerer Außenschicht und Verfahren zur ihrer Herstellung |
DE102005043828A1 (de) * | 2005-09-13 | 2007-03-22 | H.C. Starck Gmbh | Verfahren zur Herstellung von Elektrolytkondensatoren |
DE102005043829A1 (de) * | 2005-09-13 | 2007-04-05 | H.C. Starck Gmbh | Verfahren zur Herstellung von Elektrolytkondensatoren mit hoher Nennspannung |
DE102005053646A1 (de) * | 2005-11-10 | 2007-05-16 | Starck H C Gmbh Co Kg | Polymerbeschichtungen mit verbesserter Lösungsmittelbeständigkeit |
KR101327242B1 (ko) * | 2005-11-17 | 2013-11-12 | 헤레우스 프레셔스 메탈스 게엠베하 운트 코. 카게 | 폴리(3,4-디알콕시티오펜)과 폴리음이온의 복합체의수분산체의 제조방법 |
US7582958B2 (en) * | 2005-12-08 | 2009-09-01 | International Rectifier Corporation | Semiconductor package |
DE102006002797A1 (de) * | 2006-01-20 | 2007-08-02 | H. C. Starck Gmbh & Co. Kg | Verfahren zur Herstellung von Polythiophenen |
JP2007200950A (ja) * | 2006-01-23 | 2007-08-09 | Fujitsu Media Device Kk | 積層型固体電解コンデンサ |
JP5013772B2 (ja) * | 2006-01-31 | 2012-08-29 | 三洋電機株式会社 | 電気二重層キャパシタ |
US7352563B2 (en) * | 2006-03-13 | 2008-04-01 | Avx Corporation | Capacitor assembly |
US7468882B2 (en) * | 2006-04-28 | 2008-12-23 | Avx Corporation | Solid electrolytic capacitor assembly |
DE102006020744A1 (de) * | 2006-05-04 | 2007-11-08 | H. C. Starck Gmbh & Co. Kg | Verfahren zur Stabilisierung von Thiophenderivaten |
US7563290B2 (en) * | 2006-07-06 | 2009-07-21 | Kemet Electronics Corporation | High voltage solid electrolytic capacitors using conductive polymer slurries |
DE102006044067A1 (de) * | 2006-09-20 | 2008-03-27 | H.C. Starck Gmbh | Verfahren zur Herstellung von Polythiophenen |
KR100878412B1 (ko) * | 2006-09-28 | 2009-01-13 | 삼성전기주식회사 | 탄탈륨 캐패시터 |
JP2008098394A (ja) * | 2006-10-12 | 2008-04-24 | Nec Tokin Corp | 固体電解コンデンサ |
JP4440911B2 (ja) * | 2006-10-13 | 2010-03-24 | ニチコン株式会社 | 固体電解コンデンサ |
US7554793B2 (en) * | 2006-11-16 | 2009-06-30 | Kemet Electronics Corporation | Low temperature curable conductive adhesive and capacitors formed thereby |
US7515396B2 (en) * | 2007-03-21 | 2009-04-07 | Avx Corporation | Solid electrolytic capacitor containing a conductive polymer |
DE102007041722A1 (de) | 2007-09-04 | 2009-03-05 | H.C. Starck Gmbh | Verfahren zur Herstellung von leitfähigen Polymeren |
DE102007046904A1 (de) | 2007-09-28 | 2009-04-09 | H.C. Starck Gmbh | Partikel mit Kern-Schale-Struktur für leitfähige Schichten |
DE102007048212A1 (de) | 2007-10-08 | 2009-04-09 | H.C. Starck Gmbh | Verfahren zur Herstellung von Elektrolytkondensatoren mit polymerer Zwischenschicht |
DE102008023008A1 (de) | 2008-05-09 | 2009-11-12 | H.C. Starck Gmbh | Neuartige Polythiophene-Polyanion-Komplexe in unpolaren organischen Lösungsmitteln |
DE102008024805A1 (de) | 2008-05-23 | 2009-12-03 | H.C. Starck Gmbh | Verfahren zur Herstellung von Elektrolytkondensatoren |
DE102008032578A1 (de) | 2008-07-11 | 2010-01-14 | H.C. Starck Gmbh | Verfahren zur Herstellung von Elektrolytkondensatoren |
DE102008036525A1 (de) | 2008-08-06 | 2010-02-11 | H.C. Starck Gmbh | Verfahren zur Herstellung von Polythiophenen |
DE102009007594A1 (de) | 2009-02-05 | 2010-08-12 | H.C. Starck Clevios Gmbh | Verfahren zur Herstellung von Elektrolytkondensatoren mit polymerer Außenschicht. |
DE102009012660A1 (de) | 2009-03-13 | 2010-09-16 | H.C. Starck Clevios Gmbh | Polymerbeschichtungen mit verbesserter Temperaturstabilität |
US8310815B2 (en) * | 2009-04-20 | 2012-11-13 | Kemet Electronics Corporation | High voltage and high efficiency polymer electrolytic capacitors |
US8194395B2 (en) | 2009-10-08 | 2012-06-05 | Avx Corporation | Hermetically sealed capacitor assembly |
-
2008
- 2008-04-01 US US12/060,354 patent/US8094434B2/en active Active
-
2009
- 2009-01-30 DE DE102009000527A patent/DE102009000527A1/de active Pending
- 2009-02-02 GB GB0901684.1A patent/GB2461765B/en not_active Expired - Fee Related
- 2009-03-12 JP JP2009059683A patent/JP2009253278A/ja active Pending
- 2009-03-19 CN CN2009101276906A patent/CN101552138B/zh active Active
- 2009-03-31 KR KR1020090027832A patent/KR101579979B1/ko active IP Right Grant
-
2012
- 2012-01-09 US US13/345,899 patent/US8576544B2/en active Active
-
2013
- 2013-04-25 JP JP2013092544A patent/JP2013145924A/ja active Pending
-
2016
- 2016-02-16 JP JP2016027242A patent/JP2016086193A/ja active Pending
-
2018
- 2018-11-16 JP JP2018215425A patent/JP2019047130A/ja active Pending
-
2020
- 2020-04-09 JP JP2020070294A patent/JP2020109876A/ja active Pending
Patent Citations (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3345545A (en) | 1964-11-27 | 1967-10-03 | Johnson Matthey & Mallory Ltd | Solid electrolytic capacitor having minimum anode impedance |
US4085435A (en) | 1976-06-14 | 1978-04-18 | Avx Corporation | Tantalum chip capacitor |
US4945452A (en) | 1989-11-30 | 1990-07-31 | Avx Corporation | Tantalum capacitor and method of making same |
US5198968A (en) | 1992-07-23 | 1993-03-30 | Avx Corporation | Compact surface mount solid state capacitor and method of making same |
US5357399A (en) | 1992-09-25 | 1994-10-18 | Avx Corporation | Mass production method for the manufacture of surface mount solid state capacitor and resulting capacitor |
US5314606A (en) | 1993-02-16 | 1994-05-24 | Kyocera America, Inc. | Leadless ceramic package with improved solderabilty |
US5394295A (en) | 1993-05-28 | 1995-02-28 | Avx Corporation | Manufacturing method for solid state capacitor and resulting capacitor |
US5473503A (en) | 1993-07-27 | 1995-12-05 | Nec Corporation | Solid electrolytic capacitor and method for manufacturing the same |
US5495386A (en) | 1993-08-03 | 1996-02-27 | Avx Corporation | Electrical components, such as capacitors, and methods for their manufacture |
US5457862A (en) | 1993-11-10 | 1995-10-17 | Nec Corporation | Method of manufacturing solid electrolytic capacitor |
US5729428A (en) | 1995-04-25 | 1998-03-17 | Nec Corporation | Solid electrolytic capacitor with conductive polymer as solid electrolyte and method for fabricating the same |
US5812367A (en) | 1996-04-04 | 1998-09-22 | Matsushita Electric Industrial Co., Ltd. | Solid electrolytic capacitors comprising a conductive layer made of a polymer of pyrrole or its derivative |
US5949639A (en) | 1996-09-27 | 1999-09-07 | Rohm Co., Ltd. | Capacitor element for solid electrolytic capacitor, device and process for making the same |
US6197252B1 (en) | 1997-01-13 | 2001-03-06 | Avx Limited | Binder removal |
US6322912B1 (en) | 1998-09-16 | 2001-11-27 | Cabot Corporation | Electrolytic capacitor anode of valve metal oxide |
US6391275B1 (en) | 1998-09-16 | 2002-05-21 | Cabot Corporation | Methods to partially reduce a niobium metal oxide and oxygen reduced niobium oxides |
US6416730B1 (en) | 1998-09-16 | 2002-07-09 | Cabot Corporation | Methods to partially reduce a niobium metal oxide oxygen reduced niobium oxides |
US6527937B2 (en) | 1998-09-16 | 2003-03-04 | Cabot Corporation | Method of making a capacitor anode of a pellet of niobium oxide |
US6592740B2 (en) | 1998-09-16 | 2003-07-15 | Cabot Corporation | Methods to make capacitors containing a partially reduced niobium metal oxide |
US6191936B1 (en) | 1999-04-12 | 2001-02-20 | Vishay Sprague, Inc. | Capacitor having textured pellet and method for making same |
US6576099B2 (en) | 2000-03-23 | 2003-06-10 | Cabot Corporation | Oxygen reduced niobium oxides |
US6639787B2 (en) | 2000-11-06 | 2003-10-28 | Cabot Corporation | Modified oxygen reduced valve metal oxides |
US7220397B2 (en) | 2000-11-06 | 2007-05-22 | Cabot Corporation | Modified oxygen reduced valve metal oxides |
US6674635B1 (en) | 2001-06-11 | 2004-01-06 | Avx Corporation | Protective coating for electrolytic capacitors |
US7304832B2 (en) | 2005-02-23 | 2007-12-04 | Kyocera Corporation | Ceramic container and battery and electric double layer capacitor using the same |
Non-Patent Citations (1)
Title |
---|
(B. E. T.) nach Braunauer, Emmet und Teller, Journal of American Chemical Society, Bd. 60, 1938, S. 309 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102012205607B4 (de) | 2011-04-07 | 2024-10-10 | KYOCERA AVX Components Corporation (n. d. Ges. d. Staates Delaware) | Hermetisch versiegelter Elektrolytkondensator mit verbesserter mechanischer Stabilität |
Also Published As
Publication number | Publication date |
---|---|
GB2461765A (en) | 2010-01-20 |
JP2020109876A (ja) | 2020-07-16 |
JP2013145924A (ja) | 2013-07-25 |
KR101579979B1 (ko) | 2015-12-24 |
US8094434B2 (en) | 2012-01-10 |
GB2461765B (en) | 2012-06-20 |
GB0901684D0 (en) | 2009-03-11 |
KR20090105845A (ko) | 2009-10-07 |
US20090244812A1 (en) | 2009-10-01 |
JP2009253278A (ja) | 2009-10-29 |
US20120113567A1 (en) | 2012-05-10 |
JP2016086193A (ja) | 2016-05-19 |
US8576544B2 (en) | 2013-11-05 |
JP2019047130A (ja) | 2019-03-22 |
CN101552138B (zh) | 2013-06-12 |
CN101552138A (zh) | 2009-10-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE102009000527A1 (de) | Hermetisch abgedichtete Kondensatoranordnung | |
DE102008041111B4 (de) | Laser-geschweißter Kondensator mit festem Elektrolyten | |
DE102008043235A1 (de) | Gesinterter, mit einem Netzmittel behandelter Anodenpressling zur Verwendung in einem Elektrolytkondensator | |
DE102009027173A1 (de) | Kondensator mit festem Elektrolyten zum Einbetten in eine Leiterplatte | |
DE102008043236A1 (de) | Elektrolytkondensatoranode, mit einer metallorganischen Verbindung behandelt | |
DE102009043508A1 (de) | Kondensatoranode, gebildet aus einem Pulver, das grobe Agglomerate und feine Agglomerate enthält | |
DE102008043238A1 (de) | Gesinterter, mit einer organischen Säure geätzter Anodenpressling zur Verwendung in einem Elektrolytkondensator | |
DE102010008506A1 (de) | Anode für einen Festelektrolytkondensator, die eine nichtmetallische Oberflächenbehandlung enthält | |
DE102008054619A1 (de) | Elektrolytkondensator-Anordnung mit einer rücksetzbaren Sicherung | |
DE102008000323A1 (de) | Kondensator mit festem Elektrolyten, der eine schützende Haftschicht enthält | |
DE102013101443A1 (de) | Ultrahigh voltage solid electrolytic capacitor | |
DE102010021361A1 (de) | Festelektrolytkondensator mit Facedown-Enden | |
DE102007012559A1 (de) | Kondensatoranordnung | |
DE102008000320A1 (de) | Kondensator mit festem Elektrolyten, der eine Sperrschicht enthält | |
DE102008000024A1 (de) | Abgesicherte Elektrolytkondensator-Anordnung | |
DE102011087197A1 (de) | Mehrschichtige leitfähige Polymerbeschichtungen zur Verwendung in Hochspannungs-Festelektrolytkondensatoren | |
DE102010044585A1 (de) | Elektrolytkondensatorbaugruppe und Verfahren mit vertieftem Leiterrahmenkanal | |
DE102008041169A1 (de) | Dotiertes Keramikpulver zur Verwendung beim Ausbilden von Kondensator-Anoden | |
DE102010021337A1 (de) | Feuerfeste Metallpaste für Festelektrolytkondensatoren | |
DE102016204380A1 (de) | Integrierter Microchip aus Tantal | |
DE102011107118A1 (de) | Festelektrolytkondensator-Baugruppe mit mehreren Kathoden-Endteilen | |
DE102011113950A1 (de) | Festelektrolytkondensator mit verbessertem Anoden-Endteil | |
DE102012203416A1 (de) | Festelektrolytkondensator mit verbesserter mechanischer Stabilität | |
DE102014208938A1 (de) | Festelektrolytkondensator, der eine mehrschichtige Haftbeschichtung enthält | |
DE102013206384A1 (de) | Festelektrolytkondensator, der mehrere festgesinterte Anodenanschlussdrähte enthält |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R082 | Change of representative |
Representative=s name: CANZLER & BERGMEIER PATENTANWAELTE, DE |
|
R081 | Change of applicant/patentee |
Owner name: AVX CORPORATION, FOUNTAIN INN, US Free format text: FORMER OWNER: AVX CORPORATION, MYRTLE BEACH, S.C., US Effective date: 20120711 Owner name: AVX CORPORATION, US Free format text: FORMER OWNER: AVX CORPORATION, MYRTLE BEACH, US Effective date: 20120711 |
|
R082 | Change of representative |
Representative=s name: PATENTANWAELTE CANZLER & BERGMEIER PARTNERSCHA, DE Effective date: 20120711 Representative=s name: CANZLER & BERGMEIER PATENTANWAELTE, DE Effective date: 20120711 |
|
R012 | Request for examination validly filed | ||
R081 | Change of applicant/patentee |
Owner name: KYOCERA AVX COMPONENTS CORPORATION (N. D. GES., US Free format text: FORMER OWNER: AVX CORPORATION, FOUNTAIN INN, SC, US |
|
R016 | Response to examination communication |