CN100517800C - 陶瓷容器和使用其的电池以及电双层电容器 - Google Patents

陶瓷容器和使用其的电池以及电双层电容器 Download PDF

Info

Publication number
CN100517800C
CN100517800C CNB2006100088840A CN200610008884A CN100517800C CN 100517800 C CN100517800 C CN 100517800C CN B2006100088840 A CNB2006100088840 A CN B2006100088840A CN 200610008884 A CN200610008884 A CN 200610008884A CN 100517800 C CN100517800 C CN 100517800C
Authority
CN
China
Prior art keywords
layer
ceramic
recess
metal layer
sidewall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2006100088840A
Other languages
English (en)
Other versions
CN1825664A (zh
Inventor
潮义弘
横井清孝
宫石学
安井正和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Publication of CN1825664A publication Critical patent/CN1825664A/zh
Application granted granted Critical
Publication of CN100517800C publication Critical patent/CN100517800C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Connection Of Batteries Or Terminals (AREA)
  • Secondary Cells (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

本发明公开一种陶瓷容器,备有:陶瓷基体(1),其具有由侧壁(1b)和底部(1c)所形成且将电池要素或电双层电容器要素收置于内部的凹部(1a);陶瓷涂层(3),其以围绕所述底部(1c)的面对着所述凹部(1a)的底面,从面对着所述凹部的侧壁(1b)的下端到所述底面上沿所述底面的外缘的方式形成;第一金属化层(2a),其在所述底面上从所述侧壁(1b)的正下,经由所述陶瓷涂层(3)的正下而延伸至比所述陶瓷涂层(3)的内侧端部更靠近内侧;以及导电层(2c),其以覆盖所述金属化层(2a)的延伸部(2a-B)以及其周围的所述陶瓷涂层(3)的方式形成于凹部(1a)的底面。

Description

陶瓷容器和使用其的电池以及电双层电容器
技术领域
本发明涉及用于充电式电池或电双层电容器等中的陶瓷容器以及使用其的电池或电双层电容器,更详细地说,涉及用于手机等小型电子机器中的薄型的电池、半导体存储器的备用电池、用于小型电子机器的预备电源等的电池以及电双层电容器,以及被使用于这些的陶瓷容器。
背景技术
近年来,由手机、携带型计算机、摄像机一体型视频磁带录像机等所代表的携带机器显著地发展,并存在追求进一步的小型化、轻量化的倾向。因此,伴随着作为这些携带机器的电源的电池的需要同时增加,基于提高电池的能量密度的小型轻量化的研究也正在活跃地进行着。特别是,由于锂电池是使用原子量小且离子化能量大的锂的电池,因此能够得到高能量密度且实现了小型轻量化,此外比能够作为可再充电的电池更盛行地被研究着,到现在为止,被用于从携带机器的电源开始的广范围的用途中。
另外,电双层电容器是正负电荷在不同的两相(例如固体电极和电解液)接触的界面中隔着极短的距离相对向而排列的状态的器件,是利用形成于用于其正极材和负极材的石墨(graphite),硼化石墨、活性碳、焦炭等碳素材料的表面的电解液中离子的吸附层,即形成于用于正极材和负极材石墨等的碳素材料的表面的电双层的离子的静电的吸附和脱附作用,而进行电能充电放电的电气元件。在电双层电容器的内部,由两个可极化电极和电解液构成,所述的两个可极化电极由隔着由聚烯烃纤维制的非织布和聚烯烃制的微多孔膜等构成的隔离器而配置的碳素材料构成。由于该电解液的不同,电双层电容器被分类为有机溶液系和水溶液系两种。
由于电双层电容器如此利用向形成于上述两个可极化电极和电解液的界面的电双层的电荷的聚集,只要不超过耐电压而发生电解液的电分解,就能够蓄积与可极化电极的表面积相对应的极大的电荷。
特别是,使用有机溶液系的电双层电容器,与在电解液中所使用的硫酸水溶液等水溶液的水溶液系电双层电容器相比,能够将驱动电压形成2~4倍。若假设电压为V,容量为C,则因为所蓄积的电能E由E=CV2/2所表示,所以能够得到较大的能量密度。
于是,近年来,已经提出了如图8所示的薄型的二次电池以及电双层电容器,其将由正极(或者第一可极化电极)、负极(或者第二可极化电极)以及隔离器所形成的电池要素,或者电双层电容器要素和电解液收置于陶瓷基体。
该现有的二次电池或电双层电容器,如图8所示的那样,包含:陶瓷基体11;盖体15;正极B-1或第一可极化电极板B-1;负极B-2或者第二可极化电极B-2;隔离器B-3;以及电解液B-4。隔离器基体11,具有由侧部和底部形成的凹部。在陶瓷基体11上,第一金属化层12a在面对着底部的凹部的底面上形成,第二金属化层12b在面对着凹部的侧壁上形成。另外,陶瓷基体11,由氧化铝质烧结体构成。盖体15,由铁(Fe)-镍(Ni)-钴(Co)合金等金属构成。在该陶瓷基体11和盖体15中基本地构成容器。二次电池或电双层电容器,在该容器内,设计成,将浸含电解液B-4的分离器B-3以夹置于正极B-1或第一可极化电极板B-1与负极B-2或第二可极化电极板B-2的之间的状态,配置于金属化层12a和盖体15之间的密闭型结构。金属化层12a和盖体15的充放电通过形成于陶瓷基体11的下面的第一和第二电极C、D而进行(参照例如,特开2004-227959号公报(第4-6页、图1))。
使用图8所示的陶瓷基板11的电池或电双层电容器,由于陶瓷耐药品性优异,因此陶瓷基板11很难被含有有机溶剂和酸等的电解液B-4所侵入,由于在电解液B-4中混入从基体溶出的杂质,因此不会使电解液B-4劣化,能够良好地维持电池或电双层电容器的性能。
然而,第一金属化层12a若使用高性能的电解液B-4,则存在如下问题:即因第一金属化层12a的成分在电解液B-4中溶出而使电解液B-4劣化,从而使电池或电双层电容器的性能劣化;或者因第一金属化层12a的腐蚀而损害第一金属化层12a的导电性,并且第一金属化层12a会断线等。
发明内容
因此,本发明针对上述问题点而完成,其目的为提供一种陶瓷容器,以及使用其的高性能的电池和电双层电容器,其不产生如下问题:即由电解液腐蚀导致第一金属化层的成分从电解液中溶出;对电池或电双层电容器的性能有所损害;且因腐蚀而导致的第一金属化层的导电性的较大的损伤、断线等。
本发明的陶瓷容器的特征在于,备有:陶瓷基体,其具有由侧壁和底部所形成且将电池要素或电双层电容器要素收置于内部的凹部;陶瓷涂层,其以围绕所述底部的面对着所述凹部的底面,从面对着所述凹部的侧壁的下端到所述底面上沿所述底面的外缘的方式形成;金属化层,其在所述底面上从所述侧壁的正下,经由所述陶瓷涂层的正下并延伸至比所述陶瓷涂层的内侧端部更靠近内侧;以及导电层,其以覆盖所述金属化层的延伸部以及其周围的所述陶瓷涂层的方式形成于所述底面。
根据本发明,备有:陶瓷基体,其具有由侧壁和底部所形成且将电池要素或电双层电容器要素收置于内部的凹部;陶瓷涂层,其以围绕底部的面对着凹部的底面,从面对着凹部的侧壁的下端到所述底面上沿所述底面的外缘的方式形成;金属化层,其在所述底面上从侧壁的正下,经由陶瓷涂层的正下并延伸至比陶瓷涂层的内侧端部更靠近内侧;以及导电层,其以覆盖金属化层的延伸部以及其周围的陶瓷涂层的方式形成于所述底面。因此,金属化层不接触所述电解液,能够防止金属化层的成分向电解液中溶出而使电解液劣化,和由于金属化层被电解液所腐蚀而损伤金属化层的导电性,以及金属化层断线。
此外,通过陶瓷涂层,能够防止陶瓷基体的底部和侧壁的连接部的剥离,并能够起到通过覆盖陶瓷基体的底部和侧壁间的金属化层,而确实地接合金属化层的表面和侧壁的下面的作用效果。
在本发明中,特征在于,所述陶瓷涂层,除了所述侧壁正下的所述陶瓷涂层外,还从所述延伸部的上面外周部到所述底面上在所述延伸部的全周形成。
根据本发明,所述陶瓷涂层,除了所述侧壁正下的陶瓷涂层外,还从所述延伸部的上面外周部到所述底面上在所述延伸部的全周形成。因此,通过在面对着凹部的底面上形成金属化层,能够以陶瓷涂层填埋金属化层的延伸部的外周面上产生的台阶,并能够防止出现,未在台阶的下端附近导电层上从延伸部的表面到面对着凹部的底面上形成作为连续的膜面的形成不良部位。其结果,能够防止,延伸部的外周面接触电解液,且由于金属化层的成分向电解液溶出而使电解液劣化,以及由于金属化层被电解液所腐蚀而损伤金属化层的导电性。
另外,在本发明中特征为,所述陶瓷涂层由氧化铝质烧结体构成,其厚度为3μm以上。
另外,根据本发明,陶瓷涂层有氧化铝质烧结体构成,其厚度为3μm以上。因此,金属化层难于被电解液腐蚀的陶瓷涂层作为保护层而发挥作用,并能够有效地防止金属化层的腐蚀和溶出。
另外,在本发明中特征为,所述陶瓷涂层由多层构成。
另外,根据本发明,所述陶瓷涂层由多层构成。因此能够形成作为相对于电解液难以腐蚀的信赖性高的保护层的陶瓷涂层,并能够有效地防止金属化层的腐蚀和溶出。
另外,本发明中特征为,所述导电层由从铝、锌、或者以这些金属为主要成分的合金、金、不锈钢、钛中任选的至少一种金属构成。
另外,根据本发明,导电层由从铝、锌、或者以这些金属为主要成分的合金、金、不锈钢、钛中任选的至少一种金属构成。因此,在面对着凹部的底面上的金属化层,由耐腐蚀性的导电层以及陶瓷涂层所覆盖,并从电解液中被隔离而得到保护,因此金属化层不会被腐蚀,且不会溶出到电解液中。
此外,由于由相对于电解液难以腐蚀的金属形成导电层,因此能够防止金属化层的腐蚀和溶出,并提高了陶瓷容器的可靠性。
另外,在本发明中,其特征在于,所述导电层由铝层与在该铝层上层叠的钛层构成。
另外,在本发明中,其特征在于,所述导电层由钛层与在该钛层上层叠的铝层构成。
另外,在本发明中,其特征在于,所述导电层,由在钛层上顺次层叠铝层以及钛层的层构成。
另外,根据本发明,由于导电层由在铝层上层叠钛层,在钛层上层叠铝层,或者在钛层上顺次层叠铝层和钛层的层的其中任一构成,因此相对于电解液难于腐蚀的金属形成为层状,并形成极为难以腐蚀的导电层。也就是说,与在Al层被电解液所腐蚀时以颗粒状进行腐蚀相反,在钛层被电解液所腐蚀时以柱状进行腐蚀,因此即使导电层被腐蚀了,由于以铝层和钛层进行腐蚀的方法不同,因此能够实现腐蚀难以到达金属化层。因此,能够有效地防止金属化层的腐蚀和溶出,并能够实现极度地提高陶瓷容器的可靠性。
按照本发明,提供一种电池,其特征在于,备有:如上述构成的陶瓷容器;收置在所述凹部的正极、负极,夹在这些电极之间的隔离器,以及电解液;以及盖体,其以在所述侧壁的上面塞阻所述凹部的方式被安装。
由于根据本发明的电池,备有:上述构成的陶瓷容器;收置在所述凹部内部的正极、负极,夹在这些电极板之间的隔离器和电解液;以及盖体,其以在所述侧壁的上面塞阻凹部的方式被安装。因此,成为特性难以劣化,气密可靠性高的电池。
本发明提供一种电双层电容器,其特征在于,备有:如上所述构成的陶瓷容器;收置在所述凹部内的两个可极化电极,夹在这两个可极化电极之间的隔离器,以及电解液;盖体,其以在所述侧壁的上面塞阻所述凹部的方式被安装。
根据本发明,电双层电容器备有:陶瓷容器;收置在所述凹部内的两个可极化电极,夹在这两个可极化电极之间的隔离器,以及电解液;盖体,其以在所述侧壁的上面塞阻凹部的方式被安装。因此,成为特性难以劣化,气密可靠性高的电双层电容器。
附图说明
本发明的目的、特色以及有利点,由下述的详细说明或者图面或许会更加明确。
图1A是表示本发明的实施的一个方式的陶瓷容器的俯视图,图1B是图1A的剖面图。
图2是图1B的相关部分的放大剖面图。
图3A是表示本发明实施的其他方式的陶瓷容器的俯视图;图3B是图3A的剖面图。
图4是图3B的相关部分放大剖面图。
图5是表示本发明的实施的又一其他方式的陶瓷容器的相关部分放大俯视图。
图6A和图6B是图4的金属镀膜层周边部分放大剖面图,图6A表示陶瓷涂层的厚度比金属镀层的厚度更薄的情况,图6B表示陶瓷涂层的厚度比金属镀层的厚度更厚的情况。
图7是表示本发明的实施的又一其他方式的电池或电双层电容器的剖面图。
图8是表示以往的电池和电双层电容器的剖面图。
具体实施方式
参考以下附图详细地说明本发明的最佳实施方式。
以下详细说明本发明的陶瓷容器以及使用此的电池或电双层电容器。
图1A是表示本发明的实施方式的陶瓷容器的俯视图,图1B是表示从图1A的剖切线I-I观察的剖面图。另外,图2是图1B的相关部分(左下部)放大剖面图。另外,图3A是本发明的实施的另一方式的陶瓷容器的俯视图,图3B是从图3A的剖切线II-II观察的剖面图。另外,图4是图3B的相关部分(左下部)放大剖面图。
参照该图,陶瓷容器包含:陶瓷基体1;金属化层2a;陶瓷涂层3;导电层2c。陶瓷基体1,具有:凹部1a,其由侧壁1b和底部1c构成,且将电池要素或电双层电容器要素收置于内部。陶瓷基体1,具有侧壁1b,其围绕面对着底部1c的凹部1a的底面,并对着凹部1a。也就是说,陶瓷基体1包含:底部1c,其具有包含面对着凹部1a的底面的表面;以及框状的侧壁1b,其立设于底部1c的外周缘部。也就是说,由侧部1b所包绕的底部1c的表面是面对着凹部1a的底面。金属化层(以下称为第一金属化层)2a,在面临陶瓷基体1的凹部1a的底面上形成。在所述底部1c上,从第一金属化层2a延伸到陶瓷基体1的外侧,形成连接导体(以下,称第一连接导体)2a-A。金属化层2a具有从侧壁1b的内壁面的正下向内侧延伸的延伸部2a-B。陶瓷涂层3,从侧壁1b的下端到所述底面上沿所述底面的外缘形成,并从第一金属层2a的延伸部2a-B的上面外周部到所述底面,在延伸部2a-B的全周上形成,并以包绕延伸部2a-B的方式被形成。
另外,在本实施方式中,在陶瓷基体的下面,形成第一电极C。至于第一电极C,通过第一连接导体2a-A从第一金属化层2a到第一电极C形成,而连接在第一金属化层2a上。另外,在陶瓷基体1的下面,与第一电极C电独立地形成第二电极D。在侧壁1b的上面,以包绕凹部1a的方式形成第二金属化层2b。在侧壁1b上,从第二金属化层2b到第二电极D形成第二连接导体2b-A。在图1A、图3A以及图5中,虽然为了容易地判别形成第一金属化层2a和第二金属化层2b的部位,而附加阴影,但是它们并不表示剖面。
另外,图7是表示本发明的又一实施的其他方式的电池B或电双层电容器B的剖面图。在图7中,B-1表示正极或可极化电极(第一可极化电极),B-2表示负极或可极化电极(第二可极化电极),B-3表示插在正极(或第一可极化电极)B-1和负极(或第二可极化电极)B-2之间的隔离体,B-4表示电解液。由这些正极(第一可极化电极)B-1、负极(第二可极化电极)B-2、隔离体B-3、以及电解液B-4形成的电池要素或电双层电容器要素被收置在凹部1a内部。另外,5表示在侧壁1b的上面以覆盖凹部1a而塞阻的方式被安装的盖体。与其他的图1A、图1B、图2、图3A、图3A、图4、图5、图6A以及图6B共通的部分,附加相同的符号。
在本发明的陶瓷容器中,陶瓷基体1,为由氧化铝(铝氧化物、Al2O3)质烧结体等陶瓷形成的长方体状、圆柱状、多角柱状的器件,并按照以下那样被制造。在陶瓷基体1由Al2O3质烧结体形成的情况下,在Al2O3、二氧化硅(SiO2)、氧化镁(MgO)、氧化钙(CaO)等的原料粉中添加适当的有机粘合剂、溶剂等而形成黏浆。将该黏浆用刮刀法或砑光辊法形成薄片(green sheet),并切断为所要的大小。接下来,在从中选择的多个薄片中,为了形成长方体状、圆柱状、多棱柱状的凹部1a,而实施适当的冲压加工。
接着,在这些薄片的规定位置印刷涂布以钨(W)等金属粉末为主要成分的金属膏,并形成由第一和第二金属化层2a、2b,第一和第二连接导体2a-A、2b-A,以及第一和第二电极C、D构成的金属膏层,接下来层叠形成有这些金属膏层的薄片,并在大约1600℃的温度下烧结而制作陶瓷基体1。
在图1A、图1B、图2、图3A和图4中,第一金属化层2a,经由侧壁1b的下端的比陶瓷涂层3的内侧端部更靠近内侧而形成的延伸部2a-B,以及陶瓷涂层3的正下,而被导出到侧壁1b的正下而形成。另外,第一和第二连接导体2a-A、2b-A表示,任一个均在设于陶瓷基体1的侧面的沟的内面形成导体,即所谓的齿形(castellation)导体的情况。也就是说,第一连接导体2a-A,或连接第二金属化层2b和第二电极D的第二连接导体2b-A表示通过齿形导体而实现的情况,所述第一连接导体2a-A,从第一金属化层2a在外侧面连接在第一电极C,所述第一金属化层2a为第一金属化层2a被导出到侧壁1b正下的外侧。
另外,第一和第二连接导体2a-A、2b-A,不是齿形导体,也可以仅仅是侧面导体。然而,由于是齿形导体,因此在齿形的形成后,能够通过吸引印刷法而形成导体层,并与在陶瓷基体1的侧面丝网印刷形成侧面导体的情况相比,具有能够提高生产性的效果。
另外,这些第一和第二连接导体2a-A、2b-A,也可以通过上下贯通陶瓷基体1内部的针孔导体,此时,第一金属化层2a,通过从第一金属化层2a在上下方向,即其厚度方向贯通陶瓷基体1的底部1c的针孔导体(未图示)而连接在第一电极C上。同样第二金属化层2b,通过从第二金属化层2b在上下方向即其高度方向贯通陶瓷基体1的侧部1b的针孔导体(未图示)而连接在第二电极D上。
在设为通过该针孔导体而连接的第一和第二连接导体2a-A、2b-A的情况下,第一金属化层2a和第一电极C,以及第二金属化层2b和第二电极D以最短距离连接,因此能够减小内部阻抗,从而能够抑制发热。
在第一连接导体2a-A是基于针孔导体的情况下,第一金属化层2a也未必需要在侧壁1b的近旁形成,例如,也可以,第一金属化层2a在面对着凹部1a的底面的中央部形成,并从该第一金属化层2a的下面,由基于针孔导体的第一连接导体2a-A导出,并连接在陶瓷基体1的下面的第一电极C上。此时,覆盖第一金属化层2a的外周部的陶瓷涂层3,与侧壁1的下端的陶瓷涂层3独立并以包绕第一金属层2a的周围的方式,从第一金属层2a的上面外周部到面对着凹部1a的底面上形成。因此,第一连接导体2a-A,以其上面被第一金属化层2a所覆盖的方式被形成,因此第一连接导体2a-A,不暴露于电解液B-4。
另外,虽然在图1A和图3A中,第一连接导体2a-A,以与第一金属化层2a相同的幅度被形成,并向陶瓷基体1的下面形成为直线状,但是第一连接导体2a-A,也可以作为比第一金属化层2a宽度更窄的导体而被形成。由此,在陶瓷基体1上很难产生脱离。
另外,也可以调节金属膏的印刷厚度以使得第一金属化层2a和第二金属化层2b烧结后的厚度为5~15μm。也可以设为干燥厚度是7~20μm。若烧结后的厚度低于5μm,则在其表面容易产生玻璃质的皮膜,因此接下来容易损伤所覆布的导电层的紧密性,并产生导电层剥离的问题。另外,若其厚度超过15μm,则由于陶瓷涂层3和陶瓷基体1形成的薄片的烧结速度与金属膏层的烧结速度通常不同,因此存在在基体1上会产生翘曲的情况。
另外,虽然在图1A和图3A中,示出了第一金属化层2a和第二金属化层2b连接在第一和第二连接导体2a-A、2a-B,并在陶瓷基体1的下面延伸而形成的例子,但是也可以是,第一连接体2a-A和第二金属化层2b,延伸出到陶瓷基体1的侧面并止于侧壁1b的外侧面。此时,向完成后的电池或电双层电容器的外部电路(未图示)的连接,通过连接在被导出到侧壁1b的外侧面的这些第一连接体2a-A和第二金属化层2b,而进行。
另一方面,在第一连接导体2a-A和第二连接导体2b-A,以从陶瓷基体1的下面延伸出并各自连接在第一电极C和第二电极D上的方式形成的情况下,具有如下有利点:即在平板状的外部电路基板的上面载置陶瓷容器,能够通过附加焊锡等表面安装法而更加容易地将第一和电极二电极C、D连接在外部电路。
另外,在第一金属化层2a和第二金属化层2b被延伸到陶瓷基体1的外侧面而形成,并通过第一和第二连接导体2a-A、2b-A而未被导出到陶瓷基体1的底面的情况下,通过以在外部电路基板的布线导体上设置突起部,并将该突起部抵接在第一连接导体2a-A和第二连接导体2b-B的方式而连接,能够容易且确实地连接在外部电路基板上,且位置重合较为容易。
另外,在如此制作的基体1上所形成的这些第一金属层2a和第二金属层2b、第一连接导体2a-A、第二连接导体2b-A、第一电极C以及第二电极D的各导体层的露出的表面上,可以利用镀敷法等,覆布耐蚀性优异且与焊锡的润湿性优异的金属,具体地是厚度为1~12μm的Ni层和厚度为0.05~5μm的金(Au)层。藉此,特别是能够有效地抑制露出陶瓷容器内部的第一金属化层2a因充放电的电压而较易析出的情况,并且在第二金属化层2b的延伸部2a-B上形成导电层2c时,导电层2层的强固的附着是可能的。另外,在延伸部2a-B的形成后暴露于大气等外部气氛气的时,能够有效地防止氧化等。并且,在露出到外部的各导体层中,与焊锡的润湿性变得良好,并与外部电路基板上的布线导体的连接强度变得更为强固,并能够防止生锈等氧化腐蚀。
若Ni层的厚度低于1μm,则由于防止各导体层的氧化腐蚀以及金属成分从各导体层析出变得困难,因此电池性能容易劣化。另外,若Ni层的厚度超过12μm,则由于镀形成中花费时间过大,因此量产性容易降低。
另外,若Au的厚度低于0.05μm,则难于形成均匀厚度的Au层,容易产生Au层极薄的部位或Au层不形成的部位,氧化腐蚀的效果以及与焊锡的润湿性容易降低。另外,若Au层的厚度超过5μm,则镀形成花费较长的时间,量产性容易降低。
虽然未图示,但优选为,也可以在第二金属化层2b的表面预先熔敷焊料材。按照这种结构,焊接结合盖体5时该被熔敷的焊料材熔融,在第二金属化层2b与盖体5被焊接的同时,焊料材沿盖体5和第二金属化层2b之间润湿扩展,并根据第二金属化层2b的厚度或侧壁1b的上表的起伏,填埋盖体5和侧壁1b的上面之间的间隙,并且电解液B-4不易进入该间隙。另外,能够将盖体5和第二金属化层2b的连接形成得更强固。由此,能够提高盖体5和陶瓷基体1的连接的信赖性。
更优选的是,焊料材最好是Al焊料,由此,具有焊料材难于被封入凹部1a内部的电解液B-4腐蚀的效果。其结果,能够实现气密信赖性极为优异的电池B或电双层电容器B。
另外,虽然未图示,但是在陶瓷基体1的侧壁1b的上面中以围绕凹部1a的方式由Fe-Ni-Co合金或Al合金等形成的金属制的框状根据通过银(Ag)焊料、Al焊料等焊料材,而被焊接于第二金属化层2b。
接下来,陶瓷涂层3,通过在层叠成为上述陶瓷基体1的薄片时,在层叠成为侧壁1b的薄片前,在成为侧壁1b的内侧下端部的部分上涂布陶瓷膏而形成。成为该陶瓷涂层3的陶瓷膏,为在平均颗粒直径大约是1~3μm的Al2O3粉末中,适量加入SiO2、MgO、CaO等的烧结助材,并在其中与甲苯等有机溶剂一并添加由丙烯酸树脂等形成的粘接剂、二丁邻苯二甲酸盐(酯)之类的可塑剂、以及分散剂等添加物,并用球磨机混炼,从而制作成粘度为数千泊的膏料。
由于在侧壁1b的内侧下端部形成陶瓷涂层3,因此薄片通过与薄片相比比较柔软的成为陶瓷涂层3的陶瓷膏而相互连接,防止了连接部的剥离,并通过覆盖陶瓷基体1的底部1c和侧部1b之间的第一金属化层2a而确实地连接第一金属化层2a的表面和侧壁1b的下面。
另外,更优选为,陶瓷涂层3是在与第一金属化层2a的界面形成玻璃质层的陶瓷涂层3。该玻璃质层是SiO2、MgO、CaO等的烧结助材与Al2O3进行反应而生成的。由于Al2O3作为玻璃的成分而被包含,因此玻璃质的层不易被电解液B-4腐蚀。
另外,在图3A和图3B所示的本发明的实施方式的其他方式中,优选为,除了涂布上述侧壁1b正下的陶瓷膏外,从第一金属化层2a的延伸部2a-B的上面的外周部至面对着凹部1a的底面,并在全周涂布成为陶瓷涂层3的陶瓷膏。此时,在陶瓷涂层3上,在面对着第一金属化层2a的延伸部2a-B的中央部的位置,形成作为陶瓷涂层3的非形成部的开口3a,并通过该开口3a,第一金属化层2a和导电层2c电连接。
通过该结构,通过在面对着凹部1a的底面上形成第一金属化层2a,而以陶瓷涂层3填埋在第一金属化层2a的延伸部2a-B的外周面所产生的台阶,而将台阶的倾斜面平缓化。并在台阶的下端附近,导电层2c从第一金属化层2a的表面到面对着凹部1a的底面上不形成连续的膜面,并能够防止在导电层2c出现不良形成部的情况。其结果,能够防止通过第一金属化层2a的外周面接触电解液B-4,第一金属化层2a的成分溶出到电解液B-4中,从而使电解液B-4劣化。防止通过由于第一金属化层2a被电解液B-4腐蚀,而产生对第一金属化层2a的导电性的损伤。
另外,根据该结构,由于以陶瓷涂层3覆盖第一金属化层2a的外周部,因此第一金属化层2a难于从陶瓷基体上剥离,并能够抑制在延伸部2a-B的中央部未由陶瓷涂层3所覆盖的陶瓷层3的非形成部2a的第一陶瓷涂层2a和导电层2c的电连接中产生问题。
另外,优选为,如图5所示的那样,也可以,第一金属化层2a的延伸部2a-B仅在前端部幅度较宽地形成,并以覆盖延伸部2a-B的前端部的外周部以及除去前端部的剩余部分的整个面的方式而形成陶瓷涂层3。通过该结构,在第一金属化层2a和正极或(第一)可极化电解B-1所电连接的延伸部2a-B的前端部,能够确保与正极或(第一)可极化电极B-1的连接面积,能够确保电连接,由于剩余部分作为以幅度较窄的方式而被陶瓷涂层3所覆盖,因此能够极力降低第一金属化层2a被电解液B-4所侵入的可能性。另外,延伸部2a-B的前端的俯视形状,能够设计为如图5所示的圆形或四边形等各种形状。
另外,当在延伸部2a-B上实施由Ni层和Au层所形成的金属镀层4的情况下,为了有效地防止延伸部2a-B氧化等,而优选为仅使镀层4的厚度至少为3μm左右以上。虽然设计为此时的陶瓷涂层3的第一金属化层2a上的厚度比其上所涂覆的金属镀层4的厚度更厚,但是这是通过调整陶瓷膏的粘度而实现。
将覆盖第一金属化层2a的外周部的陶瓷涂层3的设计得比金属镀层4更厚的理由是,附着在非形成部3a上的金属镀层4,如图6所示的那样,通常具有其侧部在横方向膨胀的形状,并且此时若覆盖第一金属化层2a的外周部的陶瓷涂层3的厚度比金属镀层4的厚度更薄,则由于金属镀层4的侧部在横方向膨胀并且金属镀层4以覆盖陶瓷涂层3的方式形成,因此其后通过溅射法等形成导电层2c时,在垂直方向从上方飞来的金属原子在金属镀层4侧部被阻碍,而在金属镀层4的下方侧生成成为无法达到的阴影的部位,导电层2c从金属镀层4的上面到其周围的陶瓷涂层3的上面,而难于作为连续的膜而形成。因为如此,浸透在该部位的电解液B-4易于到达第一金属化层2a,并且恐怕会腐蚀第一金属化层2a。
因此,优选为,覆盖第一金属化层2a的外周部的陶瓷涂层3的厚度比金属镀层4的厚度更厚。由此,如图6B所示的那样,金属镀层4的边缘沿陶瓷涂层3的边缘,并以金属镀层4和陶瓷涂层3相接的方式形成。
另外,在图1A、图1B和图3A、图3B的本发明的实施方式中,优选为,陶瓷涂层3由Al2O3质烧结体形成,其厚度可以是3μm以上。
此时,通过实验已经确认,陶瓷涂层3根据烧成时的温度,以所包含的Al2O3颗粒彼此主要在横方向上连接的方式形成为扁平的结晶。此时数个乃至数十个程度的结晶通过烧成温度而互相融合,但是若陶瓷涂层3的厚度为3μm以下,则构成层的平均颗粒直径是1~3μm的扁平的结晶重叠非一层地形成或完全不形成,因此,有可能在陶瓷涂层3上产生缺陷,其结果导致如下情况,即引起电解液浸透并侵入第一金属化层2a的问题。因此,陶瓷涂层3由Al2O3质烧结体构成,其厚度可以是3μm以上。
另外,陶瓷涂层3的厚度,最好设为15μm以下。若厚度超过15μm,则在陶瓷涂层3的端缘部和第一金属化层2a的表面相交的部位,容易在陶瓷涂层3的侧面而形成近于垂直方向的台阶,并在该近于垂直方向的台阶面上所形成由蒸发或溅射所制备的导电层2c很难形成足够的厚度。因此,在该部位导电层2c被中途切断,并且存在变得极薄之类的导电层2c产生缺陷的情况。结果发生如下问题的情况,即由于从该部位浸入电解液B-4,因而第一金属化层2a被腐蚀。
另外,在陶瓷涂层3由Al2O3质烧结体形成的情况下,在陶瓷涂层3的表面形成玻璃质层,该玻璃质层是SiO2、MgO、CaO等烧结助材和Al2O3烧结反应而生成的物质,由于Al元素作为玻璃的成分而包含,因此玻璃质的层难以被电解液B-4所腐蚀。
另外,在图1A、图1B和图3A、图3B的本发明的实施方式中,优选为,陶瓷涂层3由多数层形成较好。通过该结构,构成陶瓷涂层3的平均颗粒直径是1~3μm的扁平的结晶重叠以至少两层以上形成。其结果,能够形成更难以被电解液B-4所腐蚀的高可靠性的保护层,并能够有效地防止第一金属化层2a的腐蚀和溶出。
如图1A、图1B和图3A、图3B所示的那样,对于第一金属化层2a形成到陶瓷基体1的外侧面的情况下,也可以,在由陶瓷基体1的底部和侧壁1b所夹持的第一金属化层2a的上面,涂布陶瓷膏。由此,确实防止了陶瓷基体1的底部和侧壁1b的连接部剥离。
因此,以通过陶瓷涂层3的非形成部3a覆盖第一金属化层2a露出的延伸部2a-B及其周围的陶瓷层3的方式,利用周知的溅射法等,在面对着凹部1a的底面上形成导电层2c。该导电层2c和第一电极C之间的电连接,可以通过第一金属化层2a和第一连接导体层2a-A被连接而进行,延伸部2a-B的露出部的面积具有能够达到与正极(或者第一可极化电极)B-1电连接的目的的最小面积即可,由此即使导电层2c具有针眼等缺陷,在第一金属化层2a的延伸部2a-B的上部的导电层2c上形成针眼的可能性也很小,能够减小第一金属化层2a被电解液B-4侵入的可能性。另外,也可以说,也可以以覆盖面对着凹部1a的底面的整个面的方式形成延伸部2a-B。
另外,在图1A、图1B和图3A、图3B的本发明的实施方式中,优选为,导电层2c,可以由从铝(Al)、锌(Zn)、或者以这些金属为主要成分的合金、Au、不锈钢(SUS)、钛(Ti)中选出的至少一种的金属形成。根据该结构,面对着凹部1a的底面上的第一金属化层2a,由导电层2c和陶瓷涂层3所覆盖而被保护免受电解液腐蚀。因此,第一金属化层2a不腐蚀,其成分也不溶出到电解液B-4。
此外,由于用难于被电解液B-4辐射的金属形成导电层2c,因此能够防止第一金属化层2a的腐蚀和溶出,陶瓷容器的信赖性变高。
另外,导电层2c可以有多层金属层构成。
另外,若在第二金属化层2b的表面在形成导电层2c的同时,形成由与导电层相同的材质构成的金属层,则第二金属化层2b也难于被电解液B-4所腐蚀。
至于导电层2c的形成,可以以如下方式用真空蒸镀法或溅射法以0.2~50μm的厚度形成导电层2c:即使例如面对凹部1a的底面的规定范围露出,通过用磁力吸附屏蔽构件而对面对凹部1a的侧面(侧壁1b的内侧面)屏蔽,而使面对凹部1a的导电层2从和第二金属化层2b不至于导通。另外,也可以,导电层2c由多层的金属层构成,最上层由从铝(Al)、锌(Zn)、或者以这些金属为主要成分的合金、Au、SUS、Ti中选出的至少一种的金属所覆盖。
若导电层2c的厚度低于0.2μm,则产生未以足够的厚度完全覆盖陶瓷涂层3的边缘的部位,并存在不能完全覆盖从第一金属化层2a的延伸部2a-B的表面至陶瓷涂层3的表面连续的导电层2c的膜面的情况,并由于用于电池或电气双层电容器的电解液B-4,第一金属化层2a恐怕会腐蚀。另外,在导电层2c的厚度超过50μm的情况下,产生形成中花费较大时间的问题。
由于Al、Zn、或者以这些金属为主要成分的合金、Au、SUS,不溶出到有机溶液系的电解液B-4中,因此作为电池B或电双层电容器的B的导电层2c较为合适。另外,优选为,以Al为主要成分,也可以使用含有0.5~10%的硅(Si)的金属。通过使用以Al为主要成分的Al-Si合金,与含有碳颗粒的素树脂等导电材E的连接强度增加,并能够强固地将正极B-1或可极化电极连接在导电层2c上,并能够良好地电连接。
另外,在图1A、图1B和图3A、图3B的本发明的实施方式中,导电层2c可以由如下膜层的其中之一形成:即在Al层上层叠Ti、在Ti层上层叠Al、或者在Ti层上顺次层叠Al层和Ti层。也就是说,导电层2c,由Al层和钛层构成,并由以下的三个结构的其中之一实现。作为第一结构,导电层2c由铝层和该铝层上层叠的钛层而构成。作为第二结构,导电层2c由钛层和该钛层上层叠的铝层而构成。作为第三结构,导电层2c,由第一钛层、该第一钛层上层叠的铝层、该铝层上层叠的第二钛层构成。通过难于被电解液腐蚀的金属形成为层状而形成导电层2c。另外,与在Al层被电解液B-4腐蚀时以粒状进行腐蚀相反,在Ti层被电解液B-4腐蚀时以柱状进行腐蚀,因此即使导电层2c被腐蚀,由于Al层和Ti层中腐蚀的进行方法不同,腐蚀难于进行到第一金属化层2a。因此,能够有效地防止第一金属化层2a的腐蚀和溶出,并能够极大地提高陶瓷容器的可靠性。特别是,可以在Ti层上顺次层叠Al层和Ti层的三层结构,特别是能够提高信赖性。
于是,该导电层2c作为与电池要素或电双层电容器元素连接的内部电极(集电体)而发挥作用,所述电池要素,由正极B-1、负极B-2、隔离器B-3和电解液B-4构成,所述电双层电容器要素,由两个的可极化电极B-1、B-2、隔离器B-3、电解液B-4构成。
接下来,对本发明的电池B或电双层电容器B在以下进行详细说明。图7是表示本发明的实施的又一其他方式的电池B或电双层电容器B的剖面图。图7是表示使作为陶瓷容器使用图3A和图3B所示的器件时的情况的例子。B-1是正极(或者可极化电极(第一可极化电极)),B-2是负极(或者可极化电极(第二可极化电极)),B-3是隔离器,B-4是电解液,5是在侧壁1b的上面以覆盖凹部1a的方式安装的盖体,B是电池或电双层电容器。
本发明的电池B收置有由如下构件构成的电池要素:即正极B-1,其与覆盖在面对着上述陶瓷容器的凹部1a的底面的导电层2c电连接;负极B-2,其在该正极B-1的上面通过含浸电解液B-4的隔离器3而被载置;以及电解液B-4,并且以盖体5抵接该负极B-2的上面并塞阻凹部1a的开口部的方式在侧壁1b的上面被焊接而构成。盖体5,至少其下面设计为导电性,并抵接在负极B-2,而与负极B-2电连接,同时在框状构件的上面或直接在第二金属化层2b的上面由焊料材等连接,从而电连接负极B-2和第二金属化层2b。
另外,虽然在图7中示出了,正极B-1以覆盖导电层2c的方式被配置,负极B-2以在其上通过隔离器B-3而覆盖的方式而被配置的例子,但是也可以以覆盖导电层2c的方式配置负极B-2,也可以在其上通过隔离器B-3而配置正极B-1。
本发明的电双层电容器B收置有由如下构件构成的电双层电容器要素:即第一可极化电极B-1,其与覆盖在面对着上述陶瓷容器的凹部1a的底面的导电层2c电连接;第二可极化电极B-2,其在该第一可极化电极B-1的上面通过含浸电解液B-4的隔离器3而被载置;以及电解液B-4。并以盖体5抵接在该第二可极化电极B-2的上面且塞阻凹部1a的开口部的方式在侧壁1b的上面被焊接而构成。盖体5,至少其下面设计为导电性,并抵接在第二可极化电极B-2,并与第二可极化电极B-2电连接,同时在框状构件的上面或直接在第二金属化层2b的上面由焊料材等连接,从而电连接负电极板B-2和第二金属化层2b。
另外,在图7所示的电池B或电双层B电容器中,也可以是,导电层2c与正极(第一可极化电极)B-1,以及负极(第二可极化电极)B-2与盖体5,通过由在树脂中含有碳粒子而形成的碳膏等导电材E而电连接。由于导电材E是将碳素粉末分散到例如素树脂中材料,因此由于碳粉彼此相互接触而具有较高的导电性。
根据该结构,可以使导电层2c和正极(第一可极化电极)B-1、以及负极(第二可极化电极)B-2和盖体5弹性地接触,并能够进一步提高电连接的可靠性。另外,通过由导电材E覆布导电材2c和盖体5,而保护它们免受电解液腐蚀。
于是,能够得到,使用本发明的陶瓷容器的气密可靠性提高且批量生成性优异的电池B或电双层电容器B。
电池B的正极B-1是含有LiCoO2或LiMn2O4等正极活性物质和乙炔黑或石墨等导电物质的板状或片状。另外,负极B-2是包含由焦炭或碳素纤维等碳素材料形成的负极活性物质的板状或片状。
正极B-1和负极B-2以以下方式而制作:即在这些正极活性物质或负极活性物质上添加上述导电性物质,并添加混合聚四氟乙烯,聚氟化聚偏氯乙烯等粘结剂,而形成黏浆状,并用周知的刮刀法成型为薄片状,接着将这些薄片裁断为例如圆形状或多边形状。
另外,隔离器B-3,由聚烯烃纤维制的非织布或聚烯烃制的微多孔膜而构成,使之含浸电解液B-4,并置于正极B-1和负极B-2之间,防止正极B-1和负极B-2的接触,并能够在正极B-1和负极B-2之间移动电解液。
电池B的电解液B-4,是将四氟化硼酸锂等锂盐酸溶解在二甲氧基乙烷或丙烯碳酸盐等有机溶质中的物质。
由于在电池或电双层电容器的制造工序中以压扁被涂布的导电材E的方式结合盖体5,因此成为维持高导电性的状态,另外,能够构成可靠性高的电池或电双层电容器。
接下来,本发明的电双层电容器B的第一可极化电极B-1以及第二可极化电极B-2,是例如将石碳酸纤维(诺沃洛伊德(novoloid)纤维)碳化并赋予活性而得到的,赋予活性是使之在800~1000℃的高温气氛下接触高温水蒸气等附以活性气体而进行的,将碳化物中的挥发成分或者碳素原子的一部气体化,主要是通过使1~10nm的微细结构发展并使内部表面积为1×106m2/kg以上的工艺制作的。本发明的电双层电容器中,可以是第一和第二电极C、D没有极性,也可以将第一电极C侧作为阳极,将第二电极D侧作为阴极而使用,也可以以其相反的极性而使用。
电双层电容器B的电解液B-4,是将六氟化磷酸锂(LiPF6)等锂盐,或者四氟硼酸四乙基铵((C2H5)4NBF4)等第四级铵盐溶解于丙烯碳酸盐(PC)或环丁砜(SLF)等溶剂中。
另外,在隔离器B-3中,使用例如玻璃纤维和聚苯硫醚、聚对苯二甲酸乙二醇酯、聚酰胺等具有耐热性的多孔质树脂。
于是,在将可极化电极B-1、B-2、隔离器B-3收置于陶瓷容器内后,使用例如注射器等注入机构,将电解液B-4从凹部1a的开口部注入陶瓷容器的内部,并通过在注入后在侧壁1b的上面气密地焊接接合盖体5,而能够得到陶瓷容器内部被气密密封的电双层电容器B。
虽然这种电解液B-4具有较高的腐蚀性和溶解性,但是由于使用本发明的陶瓷容器,因而陶瓷基体1、陶瓷陶瓷3以及导电材2c对电解液B-4具有优异的耐腐蚀性,并难以被包含有机溶剂和酸等的电解液B-4所侵入,也不会因为在电解液中混入从陶瓷容器溶出的杂质而使电解液B-4劣化,能够良好地维持电池B或电双层电容器B的性能。
盖体5,由Fe-Ni-Co合金或Al合金等金属构成。并以在侧壁1b的上面覆盖陶瓷基体1的凹部1a的方式载置该盖体5。如上述所说明的那样,由焊料材通过钎焊,或者通过沿盖体5的上面的边缘轻轻地压附通电的辊,同时使之旋转移动从而利用所产生的热接合该盖体的滚焊(seamwelding)法,或者利用超声波焊接法,在盖体5的下面和第二金属化层2b的各表面上预先覆盖的Ni镀膜和Al膜等互相熔融。由此,在侧壁1b的上面的第二金属化层2b上接合盖体5,并制作电池B或电双层电容器B。
另外,盖体5也可以作为由陶瓷板等绝缘体形成的器件,此时至少以其下侧主面为导电性的方式制作,由此作为电池B或电双层电容器B的另一方的内部电极(集电体)而发挥作用。
另外,若将盖体5作为由Al形成的器件,并在与以第二金属化层2b状形成有Al层的陶瓷基体1的接合中采用超声波焊接法,则在Ni镀膜几乎不熔融的状态中盖体5被接合在第二金属化层2b上的Al层上,也就是说,由于盖体5和陶瓷容器通过Al而被接合,因此能够得到极难被电解液腐蚀接合部。
也就是说,根据该结构,能够在表面形成第二金属化层2b和盖体5的接合部耐蚀性优异的惰性皮膜,并能够极有效地防止被电解液B-4或外部气氛所腐蚀,能够使电池B或电双重层电容器B内部的密封信赖性非常优异。
盖体5也可以是由Al形成的板材或在陶瓷的下面形成Al层的板材,或是在Fe-Ni-Co合金或Ni-Co合金等板材下面形成有Al层的器件。另外,优选为,在盖体5的下面的外周部在全周形成突条(突出为线状的部位)。至于该突条,设计为若盖体5是由Al形成的板材,在用冲压机冲压盖体5时同时形成突条,或通过在冲压后利用所谓冲制法形成为高度大约为0.1mm且剖面为向下凸的三角形状。另外,所谓冲制法是将被加工物的侧方拘束且限定内容物的逃离场所,并将在模型面上形成凹凸部的模具与被加工材料叠合并从上下按压,从而将模具的凹凸模样转印在被加工材的表面上的方法。
另外,若盖体5是在Fe-Ni-Co合金等的下面形成有Al层的板材构成,则可以设计为通过将这些金属的块锭压延而形成厚度为0.2~0.5mm的板材时,在其表面包覆接合例如厚度为0.1mm的Al板,其后,能够通过由上述冲制法形成所述突条。
于是,通过在陶瓷基体1的上面的侧壁1b的上面抵接形成于盖体5的外周部的突条而载置盖体5,并通过从盖体5的上面投射数十Hz的超声波,使得盖体5下面的突条,沿侧壁1b的上面的第二金属化层2b的凹凸失去原形的同时接合在侧壁1b的表面的Al层上。此时,即使在陶瓷基体1的侧壁1b上面向后弯曲并起伏的情况下,也能够因突条的失去原形程度的不同而连接。因此,通过该超声波连接方法,能够在不损害凹部1a内的气密性的情况下,强固地接合盖体5。
更详细地说,超声波接合法以例如如下方式实施。即,将作为连接对象物的陶瓷基体1和盖体5,在其末端下部具有成为振动介质的小片的喇叭(有角的固定台)和砧(锤砧)之间设置,并且一边通过小片垂直地施加例如大约30~50N程度的压力,一边沿盖体5的外周连续地移动而施加15~30KHz的超声波振动。另外,也可以是通过将小片的形状形成线状而增大垂直方向的压力,而在短时间内进行一定长度接合的方法。
在超声波接合法中,在施加超声波振动的初期阶段,接合部表面的氧化皮膜和污染被压出到接合部的外侧方向,并且盖体5和侧壁1b上的Al结晶颗粒彼此接近到原子间距离,由此通过在原子间相互引力作用而得到强固的接合。此时,在熔融接合通常的金属的方法中,虽然在局部产生金属的熔点的1/3以下的温度,但是若是该程度的热,则电解液B-4几乎不变质,因此能够延长电池B或电双层电容器B的寿命。
此外,按照超声波接合法,在Al中其他金属大致不被扩散,因此能够形成对电解液B-4更耐腐蚀的接合部。
另外,本发明不限于上述实施方式的例子,在不脱离本发明的要旨的范围内的种种变形均是可能的。例如,虽然本发明的陶瓷容器的陶瓷基体1的材质作为Al2O3质烧结体进行了说明,但是也可以由氮化铝(AlN)质烧结体和玻璃陶瓷等其他的陶瓷构成,在由AIN质烧结体构成的情况下,能够更高效地将工作时的热放散到外部。
本发明能够在不脱离其精神或主要的特征的情况下以其他各种方式实施。因此,前述的实施方式不过是所有点中的简单例示,本发明的范围是权利要求的范围所示的内容,不受说明书本文任何限制。此外,在属于专利请求的范围的种种变形和变更,全部在本发明的范围内。

Claims (18)

1.一种陶瓷容器,其特征在于,备有:
陶瓷基体(1),其具有由侧壁(1b)和底部(1c)所形成且将电池要素或电双层电容器要素收置于内部的凹部(1a);
陶瓷涂层(3),其在所述侧壁(1b)的下端和所述凹部(1a)的底面之间,以围绕所述凹部(1a)的底面的方式形成;
金属化层(2a),其具有在所述凹部(1a)的底面,从所述侧壁(1b)的正下经由所述陶瓷涂层(3)的正下延伸至由所述陶瓷涂层(3)围成的区域内的延伸部(2a-B);以及
导电层(2c),其以覆盖所述金属化层(2a)的延伸部(2a-B)以及该延伸部的外周的所述陶瓷涂层(3)的方式形成于所述底面。
2.根据权利要求1所述的陶瓷容器,其特征在于,
所述陶瓷涂层(3)由氧化铝质烧结体构成,其厚度为3μm以上。
3.根据权利要求1所述的陶瓷容器,其特征在于,
所述陶瓷涂层(3)多层地构成。
4.根据权利要求1所述的陶瓷容器,其特征在于,
所述导电层(2c),由从铝、锌、或者以这些金属为主要成分的合金、金、不锈钢、钛中任选的至少一种金属构成。
5.根据权利要求1所述的陶瓷容器,其特征在于,
所述导电层(2c),由铝层与在该铝层上层叠的钛层构成。
6.根据权利要求1所述的陶瓷容器,其特征在于,
所述导电层(2c),由钛层与在该钛层上层叠的铝层构成。
7.根据权利要求1所述的陶瓷容器,其特征在于,
所述导电层(2c),由在钛层上依次地层叠有铝层以及钛层的层构成。
8.一种电池,其特征在于,
备有:
陶瓷容器,其如权利要求1所述;
收置在所述凹部(1a)的正极(B-1)、负极(B-2)、夹在这些电极(B-1,B-2)之间的隔离器(B-3)以及电解液(B-4);
盖体(5),其以在所述侧壁(1b)的上面塞住所述凹部(1a)的方式被安装。
9.一种电双层电容器,其特征在于,
备有:
陶瓷容器,其如权利要求1所述;
收置在所述凹部(1a)内的两个可极化电极(B-1、B-2)、夹在这两个可极化电极(B-1、B-2)之间的隔离器(B-3)以及电解液(B-4);
盖体(5),其以在所述侧壁(1b)的上面塞住所述凹部(1a)的方式被安装。
10.一种陶瓷容器,其特征在于,备有:
陶瓷基体(1),其具有由侧壁(1b)和底部(1c)所形成且将电池要素或电双层电容器要素收置于内部的凹部(1a);
金属化层(2a),其具有在所述凹部(1a)的底面,从所述侧壁(1b)的正下延伸至所述凹部(1a)的底面的延伸部(2a-B);
陶瓷涂层(3),其在所述侧壁(1b)的下端和所述凹部(1a)的底面之间,以围绕所述凹部(1a)的底面的方式形成,并且,以在所述延伸部(2a-B)上形成开口(3a)的方式从所述延伸部(2a-B)的上表面外周部到所述底面形成,覆盖所述延伸部(2a-B);
导电层(2c),其以覆盖位于所述开口(3a)的延伸部(2a-B)以及该延伸部的外周的所述陶瓷涂层(3)的方式形成于所述凹部(1a)的底面,并且,在所述开口(3a)与所述金属化层(2a)电连接。
11.根据权利要求10所述的陶瓷容器,其特征在于,
所述陶瓷涂层(3)由氧化铝质烧结体构成,其厚度为3μm以上。
12.根据权利要求10所述的陶瓷容器,其特征在于,
所述陶瓷涂层(3)多层地构成。
13.根据权利要求10所述的陶瓷容器,其特征在于,
所述导电层(2c),由从铝、锌、或者以这些金属为主要成分的合金、金、不锈钢、钛中任选的至少一种金属构成。
14.根据权利要求10所述的陶瓷容器,其特征在于,
所述导电层(2c),由铝层与在该铝层上层叠的钛层构成。
15.根据权利要求10所述的陶瓷容器,其特征在于,
所述导电层(2c),由钛层与在该钛层上层叠的铝层构成。
16.根据权利要求10所述的陶瓷容器,其特征在于,
所述导电层(2c),由在钛层上依次地层叠有铝层以及钛层的层构成。
17.一种电池,其特征在于,
备有:
陶瓷容器,其如权利要求10所述;
收置在所述凹部(1a)的正极(B-1)、负极(B-2)、夹在这些电极(B-1,B-2)之间的隔离器(B-3)以及电解液(B-4);
盖体(5),其以在所述侧壁(1b)的上面塞住所述凹部(1a)的方式被安装。
18.一种电双层电容器,其特征在于,
备有:
陶瓷容器,其如权利要求10所述;
收置在所述凹部(1a)内的两个可极化电极(B-1、B-2)、夹在这两个可极化电极(B-1、B-2)之间的隔离器(B-3)以及电解液(B-4);
盖体(5),其以在所述侧壁(1b)的上面塞住所述凹部(1a)的方式被安装。
CNB2006100088840A 2005-02-23 2006-02-23 陶瓷容器和使用其的电池以及电双层电容器 Expired - Fee Related CN100517800C (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005047786 2005-02-23
JP2005047786 2005-02-23
JP2005156300 2005-05-27
JP2005340440 2005-11-25

Publications (2)

Publication Number Publication Date
CN1825664A CN1825664A (zh) 2006-08-30
CN100517800C true CN100517800C (zh) 2009-07-22

Family

ID=36936179

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2006100088840A Expired - Fee Related CN100517800C (zh) 2005-02-23 2006-02-23 陶瓷容器和使用其的电池以及电双层电容器

Country Status (1)

Country Link
CN (1) CN100517800C (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8094434B2 (en) * 2008-04-01 2012-01-10 Avx Corporation Hermetically sealed capacitor assembly
JP5777001B2 (ja) * 2010-08-23 2015-09-09 セイコーインスツル株式会社 電子部品、電子装置、及び電子部品の製造方法
CN102842699B (zh) * 2011-06-24 2016-02-24 精工电子有限公司 电化学电池及其制造方法

Also Published As

Publication number Publication date
CN1825664A (zh) 2006-08-30

Similar Documents

Publication Publication Date Title
KR100742598B1 (ko) 세라믹 용기, 이것을 사용한 전지 및 전기 이중층 커패시터
JP5240620B2 (ja) 電気化学セル
JP5112885B2 (ja) 蓄電体用容器ならびにそれを用いた電池および電気二重層キャパシタ
JP4817778B2 (ja) 電池用ケースおよび電池ならびに電気二重層キャパシタ用ケースおよび電気二重層キャパシタ
JP2006049289A (ja) 電池用ケースおよび電池ならびに電気二重層キャパシタ用ケースおよび電気二重層キャパシタ
US7651813B2 (en) Container, battery and electric double layer capacitor
JP5099964B2 (ja) 電気化学セル及びその製造方法
JP4694855B2 (ja) 電気化学セル及びその製造方法
CN105591047B (zh) 电化学电池
CN100517800C (zh) 陶瓷容器和使用其的电池以及电双层电容器
JP4671651B2 (ja) 電池用ケースおよび電池ならびに電気二重層キャパシタ用ケースおよび電気二重層キャパシタ
JP4373743B2 (ja) 電池用ケースおよび電池
JP5032636B2 (ja) 電気化学セル及びその製造方法
US20070182379A1 (en) Container, Battery or Electric Double Layer Capacitor Using the Same, and Electronic Device
JP4606066B2 (ja) 電池用ケースおよび電池
JP2006156124A (ja) セラミック容器ならびに電池または電気二重層キャパシタ
JP4694826B2 (ja) 電気化学セル及びその製造方法
JP2005158678A (ja) 電池用ケースおよび電池ならびに電池の製造方法
JP2006216645A (ja) 電気化学セル及びその製造方法
JP2005209640A (ja) 電池用ケースおよび電池ならびに電気二重層キャパシタ用ケースおよび電気二重層キャパシタ
JP2005123154A (ja) 電池用ケースおよび電池
JP6825882B2 (ja) 電気化学セル用パッケージ、これを用いた電気化学セル、電気化学セル用パッケージの製造方法
JP2013012762A (ja) 電気化学セル
JP2005050593A (ja) 電池用ケースおよび電池

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090722

Termination date: 20210223

CF01 Termination of patent right due to non-payment of annual fee