DD147090A5 - Verfahren zur herstellung von grobem aluminiumhydroxid - Google Patents
Verfahren zur herstellung von grobem aluminiumhydroxid Download PDFInfo
- Publication number
- DD147090A5 DD147090A5 DD79216685A DD21668579A DD147090A5 DD 147090 A5 DD147090 A5 DD 147090A5 DD 79216685 A DD79216685 A DD 79216685A DD 21668579 A DD21668579 A DD 21668579A DD 147090 A5 DD147090 A5 DD 147090A5
- Authority
- DD
- German Democratic Republic
- Prior art keywords
- vaccine
- decomposition
- per liter
- liquor
- aluminum hydroxide
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01F—COMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
- C01F7/00—Compounds of aluminium
- C01F7/02—Aluminium oxide; Aluminium hydroxide; Aluminates
- C01F7/04—Preparation of alkali metal aluminates; Aluminium oxide or hydroxide therefrom
- C01F7/14—Aluminium oxide or hydroxide from alkali metal aluminates
- C01F7/144—Aluminium oxide or hydroxide from alkali metal aluminates from aqueous aluminate solutions by precipitation due to cooling, e.g. as part of the Bayer process
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/61—Micrometer sized, i.e. from 1-100 micrometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/12—Surface area
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Inorganic Chemistry (AREA)
- Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
Abstract
Verfahren zur Herstellung von grobem Aluminiumhydroxid, enthaltend im Maximum 15 Gew.-% der Teilchen in der Korngroesze unter 45 mym, mit einer Produktivitaet, d. hoeher als 60 g ausgefaelltes Al&ind2!O&ind3! pro Liter sein kann. Das Verfahren besteht aus einer Zersetzung in zwei Stufen (Agglomerationsphase und Wachstumsphase); jede Stufe erfolgt innerhalb definierter Temperaturbereiche mit Impfstoff von unterschiedlicher Beschaffenheit. Die erste Impfstoffmenge (fein) wird zu Beginn der Zersetzung in einer Menge zugesetzt, dasz das Verhaeltnis der Uebersaettigung der Aluminatlauge zur Oberflaeche des Impfhydroxides pro Liter der zur Zersetzung gelangenden Aluminatlauge einen Wert von 7 bis 25 g/m&exp2! aufweist. Das Verfahren weist den Vorteil der hohen Produktivitaet des sogenannten europaeischen Verfahrens und den Vorteil der Gewinnung eines groben Produkthydroxides des sogenannten amerikanischen Verfahrens auf.
Description
-Λ" 2 1 6 6 ÖD 29.2.1980
56 404/18
Verfahren zur Herstellung von grobem
Anwendungsgebiet der,jEjrfijidung
Die Erfindung betrifft ein Verfahren zur Herstellung von grobem Aluminiumhydroxid, zum Beispiel via dem Bayer Prozeß, in welchem Bauxit mit wässriger Natriumaluminatlauge aufgeschlossen wird, wobei das im Bauxit enthaltene Aluminiumoxid in Lösung geht. Aus der filtrierten, übersättigten Natriumaluminatlösung erfolgt anschließend die Kristallisation (in der Folge Zersetzung genannt) des Aluminiumhydroxids., nachdem fein verteiltes Aluminiumhydroxid als Impfstoff dazugegeben worden ist,
Im besonderen handelt es sich um ein Verfahren zur Kristallisation eines Aluminiumhydroxides von grober Korngröße, welches im Maximum ca. 15 Gew.-% der Teilchen in der Korngröße unter 45 /um enthält, ausgehend von einer-z. B. nach dem bekannten Bayer-Verfahren erhaltenen übersättigten, alkalischen. Aluminatlösung. Die Zersetzung erfolgt dabei in zwei Stufen durch Zugabe von Aluminiumhydroxidimpfstoff von unterschiedlicher Beschaffenheit in die genannte übersättigte Aluminatlösung in jeweils eine der beiden Stufen«
Zwei Verfahren zur Herstellung von Aluminiumhydroxid nach Bayer kommen heute großtechnisch zur Anwendung, nämlich das in europäischen Anlagen übliche, und das in amerikanischen Anlagen praktizierte.
Das in den europäischen Anlagen übliche Verfahren wendet in der Zersetzung eine hohe kaustische NapO-Konzentration von bis 140 g per Liter an, Damit bei-dieser hohen Laugenkonzentration eine gute Produktivität der Lauge oder hohe Raumzeitausbeute. erreicht werden kann, wird die Zersetzung mit genügend viel z. B. 200 - 250 und mehr g A1(OH)3/1 feinem Impfhydroxid bei genügend tiefer Temperatur z. B. 55 0C und weniger betrieben. Es v/erden dabei Produktivitäten bis zu 80 g Aluminiumoxid pro Liter Lauge erreicht.
2166 85
Das ausgefällte Hydroxid ist in solchen Anlagen jedoch feiner als das in amerikanischen Anlagen hergestellte. Solange das feine Hydroxid aus diesen Anlagen bei hohen Temperaturen kalziniert wird, erhält man ein wenig stäubendes Oxid. Die Einführung der; trockenen Abgasreinigung bedingt jedoch ein Oxid mit
einer BET-Oberflache von .30 - 60 m /g, welches nur durch schwache Kalzination des Aluminiumhydroxides erhalten werden kann. Die schwache Kalzination des feinen, in europäischen Anlagen hergestellten Hydroxides führt jedoch zu einem stark stäubenden, vom Verbraucher schwerlich akzeptierten Oxid.
Das in den amerikanischen Anlagen praktizierte Verfahren ist darauf ausgelegt, ein grobes Hydroxid zu erhalten, welches auch bei schwacher Kalzination, wie in diesen Anlagen üblich, ein wenig stäubendes Oxid ergibt. Um ein grobes Hydrat zu erzeugen, wird beim amerikanischen Verfahren in der Zersetzung gewöhnlich eine unter 110 g pro Liter liegende kaustische Laugenkonzentration (Na„O) gewählt. Die Anfangstemperatur in der Zersetzung ist hoch, z.B. 70 C,und die Impfstoffhydratmenge gering, z.B. 50 - 120 g Al(OH)- pro Liter. Wenn die Anfangszersetzungstemperatur zu tief gewählt wird und die Impfstoffhydroxxdmenge zu gross, so wird ein feines Produkt erhalten. Die Bedingungen des amerikanischen Verfahrens für die Herstellung des gewünschten groben Produktes stehen einer guten Produktivität der Lauge entgegen. Das zeigt sich in der niedrigeren Produktivität der Lauge dieses Verfahrens von bestens ca. 55 g Aluminiumoxid pro Liter Lauge gegenüber dem europäischen von bis 80 g pro Liter. Anders ausgedrückt sind für die Produktion von einer Tonne Aluminiumoxid in der Zersetzung beim amerikanischen Verfahren 18-20m Lauge no päischen Verfahren.
3 3
18-20m Lauge notwendig, gegenüber nur ca.13 m beim euro-
Wie bereits oben erwähnt, erfordert die Herstellung eines schwach kalzinierten Aluminiumoxides mit einer BET von 30 -
60 m /g, wie es die amerikanischen Anlagen herstellen, ein
s- 2 ί-66 8 5
29.2.1980 56 404/18
grobes Aluminiumhydroxid, das in den europäischen Anlagen nicht hergestellt wird. Die europäischen Anlagen könnten wohl die amerikanische Praxis übernehmen, jedoch würde dadurch die Produktivität der europäischen Anlagen um 30 - 40 % sinken mit einem entsprechenden Anstieg des Wärmeverbrauches pro Tonne Aluminiumoxid«
Ziel der Erfindung .
Es ist das Ziel der Erfindung, für die europäischen Anlagen ein Verfahren zu haben, welches die Herstellung von grobem Aluminiumliydroxid erlaubt, ohne dabei jedoch eine Kapazitätseinbuße der Anlagen mit einem entsprechenden spezifischen Anstieg des Wärmeverbrauches pro Tonne des erzeugten Produktes in Kauf nehmen zu müssen«
Andererseits ist es sehr erwünscht, die Produktivität der amerikanischen Anlagen auf den Stand der europäischen Anlagen unter Wahrung der groben Produktqualität zu heben· Eine solche Prozeßverbesserung innerhalb der amerikanischen Anlagen käme einer Kapazitätserhöhung dieser Anlagen gleich, begleitet von einer Senkung des spezifischen Wärmeverbrauches pro t des erzeugten Aluminiumoxides»
Bis in die nahe Vergangenheit hat es nicht an Vorschlägen gefehlt, um dieses Ziel (grobes Produkt und hohe Produktivität) zu erreichen· In der US-PS 2 657 978 wird vorgeschlagen, das amerikanische Verfahren so zu modifizieren, daß die Impfstoff zugabe in zv/ei Schritten erfolgt· Im ersten Schritt wird dabei bevorzugt nur soviel Impfstoff zugegeben, daß eine starke Vergröberung (Agglomeration) erfolgt, dem dann eine zweite Zugabe folgt, um eine gute Produktivität zu erreichen* Bei Zugrundelegung der erwähnten kaustischen Konzentration von ca,
-*- 21 66 85
29.2.1980 56 404/18
85 g/l NapO läßt sich für dieses Verfahren eine Produktivität von cao 48 g AIpO- pro Liter der zur Zersetzung gelangenden Alumininatlauge errechnen, gegenüber ca· 45 g pro Liter beim unmodifizierten Verfahren mit einmaliger Zugabe von Impfstoff, dies in beiden Fällen bei einer Rührzeit von 35 Stunden« Die Produktivitätserhöhung berechnet sich also zu etwa 6,5 %·
In der FR-PS 1 391 596 ist ein zweistufiges Verfahren mit zwei Zersetzungsstrassen beschrieben, welches eine angegebene Produktivitätserhöhung von 6,4 % und ein gröberes Produkt als das einstufige gebräuchliche amerikanische Verfahren, bei Zersetzungszeiten von 30 - 40 Stunden, erbringt. Wenn auch in dieser Patentschrift keine absoluten Zahlen der Produktivität angegeben sind, so dürften dieselben die in der vorstehend zitierten US-PS 2 657 978 nicht wesentlich übertreffen. "Das Verfahren besteht aus zwei Zersetzungsstrassen, wovon die eine Feinimpfhydrat in einer Menge und unter Bedingungen erhält, welche Agglomeration erfolgen lässt, und wobei die andere mit Grobimpfhydroxid in einer Menge und unter Bedingungen beschickt wird, dass.Wachstum der Kristalle erfolgt. Nach Abtrennung des groben Produkthydroxides und des groben Impfstoffes wird die teilweise verarmte Aluminatlauge aus beiden Strassen in der zweiten Stufe mit weiterem Feinimpfhydroxid beschickt, um die Aluminatlauge noch weiter zu verarmen und die Produktivität an gefälltem Aluminiumhydroxid zu erhöhen. Wesentliches Merkmal dieses Verfahrens ist ein grobes, abrasionsfestes Produkt bei verbesserter Produktivität.
In der US-PS 3 486 850 wird ein Verfahren geschützt, das die Produktivitätserhöhung des amerikanischen Verfahrens bei Beibehaltung der Produktion eines groben Produktes durch Zwischenkühlung während der Zersetzung (Ausrühren) erreicht. Allerdings muss dazu in einem eng begrenzten Temperaturbereich gearbeitet werden, um nicht ein feines Produkt zu erhalten. In einem Beispiel wird mit diesem Verfahren eine Produktivität von 51 g Al„CL· pro Liter der zur Zersetzung gelangenden Aluminatlauge bei einer Zersetzungszeit von ca. 40 Stunden angegeben.
In Light Metals 1978, Volume 2 (Proceedings of sessions 107th AIME Annual Meeting, Denver, Colorado, Seite 95) wird der Umbau' einer Tonerdefabrik vom europäischen Verfahren zum amerikani-. sehen Verfahren beschrieben. Das dabei gewählte Verfahren ist mit geringen Abweichungen dem in der vorstehend erwähnten FR-PS 1 391 596 ähnlich. Die Produktivität erreicht dabei
29.2.1980 5.6 404/18
56,3 g AIgO- pro Liter der zur Zersetzung gelangenden Aluminatlauge bei einer Ausrührdauer von 40 - 50 Stunden· In dieser Publikation sind auch noch andere Verfahren erwähnt, die durchwegs grobes Produkt liefern, jedoch geringere Produktivitäten als das beschriebene angewandte Verfahren aufweisen·
Zusammenfassend sind die bekannt gewordenen Vorschläge zur Verbesserung der Produktivität des amerikanischen Verfahrens nicht wesentlich über ca. 55 g AIpO- pro Liter der zur Zersetzung gelangenden Aluminatlauge hinausgekommen. Dieser Wert ist naturgemäß gewissen Abweichungen nach oben und unten unterworfen und abhängig von der Anfangsübersättigung der Aluminatlauge und der gewählten Dauer der Ausrührzeit·
Verglichen mit der Produktivität des europäischen Verfahrens von bis zu 80 g AIpO- pro Liter, besteht jedoch noch ein sehr großer Unterschied.
Die Aufgabe der Erfindungs besteht demzufolge darin, die Zersetzungsausbeute (Produktivität) an Luminiumhydroxid pro Liter der zur Zersetzung gelangenden Aluminatlauge abgeschiedene AIpO- in g, zu verbessern, indem, ausgehend von einer klarfiltrierten, übersättigten !Tat riumaluminat lauge ein Aluminiumhydroxid von grober Korngröße (amerikanischer Typus) erhalten wird, dessen Peinfraktion (K 45 /um) 15 Gew.-% nicht überschreitet und gewöhnlich 4 bis 8 Gew„-% aufweist·
Erfindungsgemäß wird diese Aufgabe durch folgende Verfahrensschritte gelöst:
1«1 Die Menge des Aluminiumhydroxidimpfstoffes '.wird wie folgt verteilt: .
-·*- 2 1 ί
29.2.1980 56 404/18
1,1 ·1 eine erste Zugabe von feinem Impfstoff (Primärimpf- stoff), zu Beginn der Zersetzung, wobei die Menge so berechnet wird, daß das Verhältnis zwischen der Übersättigung in g Al2O- pro Liter der Aluminatlauge und der Oberfläche des obengenannten Impfstoffes,
2 ausgedrückt in m pro Liter der Aluminatlauge, zwischen
2 7 und 25 g/m beträgt;
-8- 21 66 85
1.1.2 eine zweite Zugabe von gröberem Impfstoff (Sekundärimpfstoff) nach einem Intervall von mindestens ca. zwei Stunden nach der ersten Zugabe, wobei die totale Menge an Impfstoff (Primär- und Sekundärimpfstoff) mindestens 130 g Al(OH)., pro Liter Aluminatlauge beträgt und
1.2 dass die Temperatur der Zersetzung auf folgende Weise geregelt wird:
1.2.1 Die erste Stufe der erwähnten Zersetzung, die der ersten Zugabe von Impfstoff entspricht, wird in einem Temperaturbereich von 77 bis 66 C durchgeführt, und
1.2.2 die zweite Stufe der erwähnten Zersetzung, die im wesentlichen der zweiten Zugabe von Impfstoff entspricht, wird bei reduzierter Temperatur tragen kann, durchgeführt.
bei reduzierter Temperatur, die bis hinab zu ca. 4 0 C be-
Das erfindungsgemässe Verfahren ist eine Kombination von Einzeloperationen, welche mehr oder weniger an sich bekannt sind, die aber für sich oder unter ungenügenden Massnahmen angewendet noch nie (wie der Stand der Technik zeigt) die Ergebnisse ergaben, die mit der vorliegenden Erfindung erreicht werden können.
Andere Besonderheiten und Vorteile des erfindungsgemässen Verfahrens werden dem Verständnis durch die folgende Beschreibung des Verfahrens unter Bezugna'hme auf die beigelegten Zeichnungen näher gebracht, wobei:
Figur 1 schematisch die Durchführung des Verfahrens darstellt;
Figur 2 ist eine graphische Darstellung, welche den Agglomerationsgrad eines Aluminiumhydroxides nach sechs Stunden Zersetzungsdauer zeigt, in Funktion des Verhältnisses (am Anfang der Zersetzung) der Uebersättigung der Aluminiumlauge (g Al 0 pro Liter der zur Zersetzung gelangenden Aluminatlauge) zur
Oberfläche (m pro Liter der zur Zersetzung gelangenden Aluminatlauge} des Impfhydroxides;
Figur 3 ist eine graphische Darstellung, welche den Agglomera-
-a- 216685
tionsgrad des Aluminiumhydroxides in Funktion der Zersetzungsdauer für verschiedene Impfstoffmengen von teilweise unterschiedlicher Beschaffenheit zeigt.
Die Fig. 1 stellt im wesentlichen eine Produktionseinrichtung für Aluminiumhydroxid des amerikanischen Typus dar. Sie ist entsprechend angepasst worden, um das erfindungsgemässe Verfahren durchführen zu können, und zwar unter anderem mit der Möglichkeit der Durchführung der Zersetzung in zwei stufen und der sachgemässen Verteilung des Impfstoffes.
Das schematische Fliessbild der Fig. 1 zeigt nur zwei in Serie angeordnete Zersetzer 1 und 6. Ueblicherweise werden jedoch eine Mehrzahl von "Sersetzern 1 und 6 eingesetzt, die jeweils in Serie oder auch parallel geschaltet sind und im Einzelansatzverfahren, meistens aber im kontinuierlichen Verfahren betrieben werden.
Wie schematisch dargestellt, wird der Zersetzertank 1 durch die Leitung 2 mit der mit Aluminiumoxid übersättigten Natriumaluminatlauge beschickt. Gemessene Mengen einer Feinimpfstoffsuspension gelangen über Leitung 3 in den Zersetzertank 1. Die Temperatur, Impfstoffmenge und das Molverhältnis werden so mit der Impfstoffbeschaffenheit und den Anlagebedingungen abgestimmt, dass im Zersetzertank ,1 der gewünschte Agglomerationsgrad des Feinimpfstoffes erfolgt, damit in der Anlage das Gleichgewicht des Feinimpfstoffhaushaltes nötigenfalls durch Zugabe von gewissen Mengen Grobimpfstoff über Leitung 8 --81 gewährt bleibt. ·
Diese Agglomeration erfolgt relativ rasch im Temperaturgebiet von 77° bis 66°C. Sie ist schon nach zwei Stunden Reaktionszeit erheblich fortgeschritten und praktisch nach sechs Stunden zu Ende (vgl. nachstehend). Die Suspension kann nun mittels einer Vorrichtung 4 gekühlt und anschliessend mit der Pumpe 5 in den
werden Zersetzertank 6 überführt; wo die Zersetzung zu Ende geführt
wird. In diesem Zersetzer 6 wird die gekühlte Suspension vom
Zersetzer 1 mit genügend Impfstoff von gröberer Beschaffenheit aus dem Sekundär-Eindicker 16 nachgeimpft, und nunmehr die Zersetzung mit einer grossen Impfstoffoberfläche bei erneut zu Beginn durch, die Kühlung erhöhten UeberSättigung weiter bzw. zu Ende geführt. Die Kühlung kann auch durch die Umgebung während der Verweilzeit erfolgen, wobei die Abkühlung über die unisolierte Wandung des (oder der) Zersetzertanks erfolgt. Als Impfstoff wird nach dem erfindungsgemässen Verfahren eine genügend grosse Menge Impfstoff aus dem Sekundär-Eindicker 16 über die Leitung 8 in den Zersetzertank 6 gegeben und, falls notwendig, kleinere überschüssige Mengen Feinimpfstoff aus dem Tertiär-Eindicker 19 über Leitung 3-3'. Diese zweite Verfahrensstufe lässt nunmehr das Impfhydrat weiter wachsen und je nach dem Grade der üebersättigung der Aluminatlauge erfolgt die Bildung von feinen Hydroxidteilchen durch sekundäre Keimbildung und durch mechanische Ablösung von feinen Kristallen. Durch eine relativ hohe Sekundärimpfstoffmenge wird der Effekt der sekundären Keimbildung in Grenzen gehalten.
Die Suspension wird anschliessend mit der Pumpe 7 durch die Leitung 9 in den Primär-Eindicker 10 gepumpt. In diesem Primär-Eindicker 10 besteht der eingedickte Unterlauf aus Produkthydroxid, welcher durch die Leitung 11 mit der Pumpe 12 in die Filtrierungsaniage 13 gepumpt wird, von wo aus der gewaschene Hydroxidfilterkuchen in den Kalzinationsofen gelangt (nicht dargestellt).
Der Ueberlauf des Primär-Eindickers 10 gelangt durch die Leitung 14 in den Sekundär-Eindicker 16. Der eingedickte Unterlauf des Sekundär-Eindickers 16 besteht aus dem groben Impfhydroxid, welcher mit der Pumpe 17 durch die Leitung 8 in den Zersetzertank 6 gepumpt wird. Der Ueberlauf des Sekundär-Eindickers 16 gelangt durch die Leitung 18 in den Tertiär-Eindicker 19. Der eingedickte Unterlauf des Tertiär-Eindickers 19 enthält den Feinimpfstoff, welcher "tel quel" zur Agglome-
21 66
ration in den Zersetzertank 1 mittels der Pumpe 20 durch die Leitung 3 gepumpt wird. Der Ueberlauf des Tertiär-Eindickers 19 besteht aus geklärter, zersetzter Aluminatlauge, die für eine neue Aufschlussoperation zurückgeführt wird. Die Anlage 21 gestattet eine eventuelle Waschung des Feinimpfstoffes, um seinen Gehalt an organischen Substanzen, speziell an Natriumoxalat zu entfernen bzw. zu reduzieren. Es handelt sich hierbei um eine an sich bekannte Operation.
Die Leitung 15 dient zum Rückführen von Produktionshydroxid für den Fall, dass sich ein Ausgleich im Produktionshydroxidhaushalt als notwendig erweisen sollte.
Wie schon erwähnt, wird beim kontinuierlichen Betrieb das erfindungsgemässe Verfahren anstelle von einem einzigen Zersetzer 1 in einer in Serie geschalteten Mehrzahl von Zersetzern durchgeführt und nach der Kühlvorrichtung 4 anstelle von einem einzigen Sersetzer 6 in einer in Serie geschalteten Mehrzahl von Zersetzern weitergeführt.
Die Kühlvorrichtung 4 kann bei genügender Luftkühlung wegfallen oder auch durch Innenkühlung in den Zersetzern durch Anbringen von Kühlschlangen, Kühlmänteln oder ähnliches ersetzt oder ergänzt werden.
Die Kühlung der Suspension am Ende der ersten Zersetzungsstufe (Agglomerationsphase) kann fortwährend oder schrittweise erfolgen. Für den letzteren Fall entspricht jedem Schritt eine Kühlvorrichtung . Die Endtemperatur hängt unter anderem vom angestrebten Zersetzungsgrad ab; sie kann ohne weiteres bis zu ca. 40 C gesenkt werden.
Das Feinimpfstoff-Waschsystem 21 kann bei genügender Reinheit, d.h. geringer Verunreinigung des Feinimpfstoffes mit organischen Substanzen,wegfallen. Die Art, das Verhalten und die
21
Menge dieser organischen Substanzen bestimmen über die Notwendigkeit der Waschung des Feinimpfstoffes.
In Fig. 2 ist der Agglomerationsgrad prozentual in Abhängigkeit des Quotienten, "Uebersättigung der zur Zersetzung gelangenden Lauge in g A1„O_ pro Liter Lauge zur Oberfläche des
angewandten Impfstoffes in m /1 Lauge", ausgedrückt. Die Uebersättigung der Aluminatlauge wird z.B. mit der Methode der Thermotitration bestimmt, und die spezifische Oberfläche beispielsweise durch die bekannte Methode mit dem Fisher Sub Sieve Sizer.
Der Agglomerationsgrad in Prozenten ist also definiert als:
I - A . 100
I = Fraktion Ί 45 um des Impfstoffes (%) A= Fraktion <45 um des Agglomerationsproduktes (%)
Das in der Fig. 2 dargestellte Diagramm umfasst einen Bereich für Temperaturen von 66 - 77 C und für Laugenkonzentrationen von 70 - 150 g Na O kaustisch pro Liter Lauge. Ausserhalb dieser Bereiche erfolgt wohl noch Agglomeration, jedoch sind die damit zu verwirklichenden Resultate des erfindungsgemässen Prozesses nur noch teilweise erreichbar. Nach einer Verweilzeit im Zersetzer 1 von 6 Stunden werden die in Fig. 2 dargestellten Agglomerationsgrade erreicht. Auch bei noch kürzeren Verweilzeiten als 6 Stunden werden noch gute Agglomerationsgrade erreicht, wie in Fig. 3 (Agglomerationsgrade in Funktion der
Verweilzeit) mit verschiedenen Impfstoffoberflächen (m Impfstoff pro Liter Lauge) dargestellt, wobei-Temperatur, Aluminatlaugenkonzentration (g/l Na O) und Uebersättigungsgrad (g/i Al_0^) praktisch gleich sind. Aus dieser Darstellung geht hervor, dass nach nur 2-3 Stunden bereits ca. 50 % des gesamten Agglomerationsgrades erreicht wird. Aus der Fig. 3 ist weiterhin ersichtlich, dass nach ca. 6 Stunden Verweilzeit annä-
hemd der maximale Agglomerationsgrad erreicht worden ist (diese Erkenntnisse wurden teilweise mit Betriebsansätzen von 600 m übersättigter Aluminatlauge gefunden). Bei der Ausführung des Verfahrens gemäss der Erfindung für die erste Verfahrensstufe, d.h. für die Durchführung der Agglomeration im Zersetzer 1,werden die in den Fig. 2 und 3 dargestellten Erenntnisse, die oben beschrieben sind, angewandt.
Das Verfahren im ersten Zersetzer wird dabei so durchgeführt, dass das eingesetzte Feinimpfhydrat gemäss den Bedingungen nach den Fig. 2 und 3 durch Agglomeration die notwendige Vergröberung erfährt, damit ein genügend grobes Produkt am Ende des gesamten Zersetzungszyklusses anfällt.
Die Untersuchungen im Labor und im Betrieb haben gezeigt, dass der notwendige Agglomerationsgrad mühelos erreicht werden " kann, indem die Menge an Feinimpfstoff in erster Zersetzungsstufe so festgelegt wird, dass das Verhältnis der Uebersätti- gung der zur Zersetzung gelangenden Aluminatlauge (g/l Al Oj
zur Oberfläche dieses Feinimpfstoffes (m /1) zwi-
2 2
sehen 7 und 25 g/m ,vorzugsweise zwischen 7 und 16 g/m , beträgt.
Die Dauer dieser ersten Verfahrensstufe wird vorteilhafterweise möglichst kurz, jedoch mindestens so lange gewählt, dass die notwendige Vergröberung erfolgt, damit für die zweite Stufe der Zersetzung eine möglichst lange Verweilszeit zur Verfügung steht. Diese zweite Zersetzungsstufe wird nach dem erfindungsgemässen Verfahren bei Bedingungen durchgeführt, die in europäischen Anlagen üblich sind und zu hohen Produktivitäten führen, also bei relativ tiefer Temperatur und grosser Impfstoffmenge. ·
Die Untersuchungen haben gezeigt, dass die Temperatur in dieser zweiten Zersetzungsstufe erniedrigt werden muss. Diese Sen-
kung der Temperatur kann fortwährend erfolgen oder in einem oder mehreren sich folgenden Schritten durchgeführt werden. Die Endtemperatur hängt von einer Vielzahl von Faktoren ab, unter anderen von der Dauer der Zersetzung, der Menge der gebildeten Feinteilchen, etc; sie kann z.B. bis auf ca. 40 C gesenkt werden. ·
Die Menge des Sekundärimpfstoffes, die bei dieser zweiten Zersetzungsstufe zugegeben wird, ist weniger kritisch als die Feinimpfstoffmenge bei der ersten Zersetzungsstufe-(Agglomerationsphase) . Sie muss jedoch genügend gross sein, um einen guten Zersetzungsendfaktor zu erreichen und die sekundäre Keimbildung in Grenzen zu halten. Die Versuche haben ergeben, dass diese Sekundärimpfstoffmenge so gross sein muss, dass, die totale Impfstoffmenge (Primär- und Sekundär-Impfstoff) mindestens 130 g/l Al(OH)- beträgt. Im allgemeinen werden 400 g/l nicht überschritten.
Man hat auch festgestellt, dass es vorteilhaft ist, den Sekundärimpfstoff, welcher wie erwähnt, gröber ist als der Primärimpfstoff, gesamthaft einmal zuzugeben. Die Beispiele, die nachstehend aufgeführt werden, sind alle nach dieser Methode durchgeführt worden. Es ist offensichtlich, dass die Zugabe des Sekundärimpfstoffes auch mehrmals, d.h. in mehreren Anteilen von der Gesamtmenge desselben, erfolgen kann, ohne vom erfindungsgemässen Verfahren abzuweichen.
Wie schon erwähnt, erfolgt während der zweiten Zersetzungsstufe (dargestellt durch Zersetzer 6) weiteres Wachstum des Aluminiumhydroxidimpfstoffes, aber auch die Bildung von feinen Hydro-' xidteilchen durch sekundäre Keimbildung und mechanische Ablösung von feinen Kristallenen als Folge der durch die Kühlung erneut erhöhten Uebersättigung der Aluminatlauge und der fortwährenden Umrührung der Suspension. Aber diese Bildung von feinen Hydratteilchen bedeutet jedoch im Gegensatz zu bisher bekannten Verfahren für das erfindungsgemässe Verfahren keinen
-ι»- 21 66 85
Nachteil, da in der ersten Verfahrensstufe in der Agglomeration im Zersetzer 1 nach dem erfindungsgemässen Verfahren die gebildeten Feinteilchen auch bei grossem Anfall durch Wahl der Agglomerationsbedingungen gemäss Fig. 2 und 3 zu grobem Hydrat verarbeitet werden können. Die Bedingungen in der zweiten Verfahrensstufe können demnach so gewählt werden, dass maximale Produktivität der Lauge erhalten wird, wobei die damit verbundene Bildung von feinen Hydratteilchen in Kauf genommen werden kann und keine Beeinträchtigung des Verfahrens darstellt.
Die Abscheidung von Aluminiumoxid erreicht bis zu 80 g Aluminiumoxid pro Liter Lauge, d.h. es wird mit dem erfindungsgemässen Verfahren die Produktivität des europäischen Verfahrens erreicht und dabei wird ein grobes Aluminiumhydroxid als Produkthydroxid im Primär-Eindicker abgeschieden, dessen Feinanteil üblicherweise bei nur 4 - 6 Gew.-% kleiner als 45 /um liegt.
Diese Produktivität (abgeschiedenes Al3O3 in g pro Liter der. zur Zersetzung gelangenden Lauge) hängt naturgemäss auch von der kaustischen Laugenkonzentration (g/l Na„O) der zur Zersetzung gelangenden Lauge ab. Wenn auch das erfindungsgemässe Verfahren für sich die Verbesserung der Produktivität einer Aluminatlauge -gleich welcher kaustischen Laugenkonzentration- in Anspruch nimmt, so sollte zur Erreichung einer hohen Produktivität auch die kaustische Laugenkonzentration der Aluminatlauge entsprechend hoch sein. Dies ist auch der Grund, weshalb es angezeigt erscheint, das Verfahren bei Konzentrationen in g/l Na O, kaustisch ausgedrückt, durchzuführen, die mindestens 100 g/l, bevorzugt mindestens 120 g/l, aufweisen.
Die europäischen Anlagen sind gewöhnlich nicht mit Klassiervorrichtungen zur Abscheidung des Produkt-, Sekundär- und Tertiärhydroxides eingerichtet. Bei Umstellung europäischer Anlagen auf das erfindungsgemässe Verfahren sind entsprechende Klassiereinrichtungen notwendig, die jedoch nicht notwendiger-
-"Κ»- 29.2.1980
. 56 404/18
v/eise aus Schwerkraftklassierern wie beim amerikanischen Verfahren, sondern aus irgendwelchen geeigneten bekannten Klassiereinrichtungen bestehen können·
Die amerikanischen Anlagen sind mit den notwendigen Klassiereinrichtungen versehen, und die Fig.. 1 stellt in einer schematischen Darstellungsweise eine solche Anordnung dar. Die Umstellung der amerikanischen Anlagen besteht nach dem erfindungsgemäßen Verfahren somit in der Einführung der Aggiomerationsphase und der Nachimpfstufe sowie in einer allfälligen Erhöhung der kaustischen Laugenkonzentration und der Einführung der Kühlung nach dem Agglomerationsschritt»
Allenfalls könnte die aus dem letzten Zersetzer β abgezogene Zersetzungssuspension einen zu hohen Peststoffgehalt aufweisen, der die Klassierung in Primär-Eindicker 10 erschwert oder sogar verunmöglicht. Durch Verdünnen dieser Suspension, z. B* mit der Klarlauge aus dem Überlauf des Tertiär-Eindickers 19, kann der Peststoffgehalt nötigenfalls eingestellt v/erden»
Die nachfolgenden Ausführungsbeispiele illustrieren die wesentliehen Aspekte des erfindungsgemäßen Verfahrens, ohne jedoch den Umfang der Erfindung einzuschränken,
Ausführungsbeispiel· Beispiel 1
1000 Liter übersättigte Bayer-Aluminatlösung aus,einer Produktionsanlage mit einer Anfangskonzentration von 120,2 g/l ITa9O, kaustisch, und 142,3 g/l AIpO- wurden in einem 1,5 m -Gefäß mit Luftrührung vorgelegte Diese Aluminatlauge wies eine Über-
ι*- 21
29.2.1980 56 4Ö4/18
Sättigung von 69,9 g/l Al2O- auf (71 0C), Nach, der Zugabe von 50 kg Al(OH)3 Priraärimpfßtoff (60,8 Gew.% < 45/um) wurde die Reaktionsmasse einem dem Großbetrieb angepaßten Temperaturprofil von einer Ausgangstemperatur von 71 G an nachgefahren.
Der Primärimpfstoff wies eine spezifische Oberfläche von 0,1148
m pro g auf, sodass eine Oberfläche pro Liter
Aluminatlauge von ca. 5,75 in /1 zur Anwendung kam. Das angewandte Verhältnis der Uebersättigung (g/l Al„O_) zur Impf-
2 2
stoffoberfläche (m /1) betrug demnach ca.12,1 g/m .
Nach sechs Stunden wurden 156 kg Sekundärimpfstoff (16,4 Gew.. % <£ 45 yum) zur Reaktionsmasse gegeben, nachdem diese rasch um 7,5 C abgekühlt worden war. Die Zersetzung wurde während sechs Stunden weitergeführt. Danach wurde eine zweite Zwischenkühlung von 7,5 C vorgenommen und die Zersetzung anschliessend während weiteren 33 Stunden zu Ende geführt. Die ,Endtemperatur war 50 C. Die resultierende Suspension wurde filtriert und das so gewonnene Aluminiumhydroxid gewaschen und getrocknet.
Der getrocknete Filterkuchen, bestehend aus Impfstoff und abgeschiedenem Aluminiumhydroxid, enthielt einen Feinanteil von 14,9 Gew. %< 45 /um. Durch Substraktion des Impf stoff gewichtes vom Gesamtgewicht des getrockneten Filterkuchens und Umrechnung auf Al„O^ wurde eine Ausbeute von 71,1 kg A1„O_ erhalten. Das entspricht einer spezifischen Ausbeute von 71,1 g A1„O_ pro Liter der zur Zersetzung gelangten Aluminatlauge.
Die in der nachstehenden Tabelle I wiedergegebenen Versuchsresultate sind Durchschnittswerte von zwei gleichzeitig parallel durchgeführten Versuchen.
Ein weiterer Versuch, wie in Beispiel 1 beschrieben, wurde mit einer Bayer-Aluminatlauge von höherer Ausgangskonzentration (124,6 g Na O, kaustisch, und 146,4 g Al3O^ pro Liter) durchgeführt. Die Uebersättigung der Lauge war in diesem Fall 70,2 g Al„0_ pro Liter. Der Primärimpfstoff wurde in gleicher Menge und Qualität zugegeben. Dagegen war der Sekundärimpfstoff wesentlich feinerv(l5^nkgemxt 24,9 Gew. %< 45 /um) . Die Veränderung der Temperatur der Reaktionsmasse, Ausmass und Zeitpunkt
21 66*85
der Zwischenkühlungen waren ebenfalls gleich wie bei Beispiel Die Aufarbeitung der Suspension und Auswertung erfolgte in gleicher Weise wie im Beispiel 1 beschrieben. Der getrocknete Filterkuchen, bestehend aus Impfstoff und abgeschiedenem Aluminiumhydroxid/ enthielt einen Feinanteil von 20,1 Gew.% von -<c45 /um. Die spezifische Ausbeute erreichte einen Wert von 72,3 g A1„O pro Liter der zur Zersetzung gelangten Aluminatlauge. Diese Werte sind Durchschnitte aus drei parallelen Versuchen.
In diesem Versuch wurde eine Bayer-Aluminatlauge mit einer Konzentration von 120,3 g Na„O kaustisch und 142,4 g Al„O_ pro Liter eingesetzt. Die Reaktionsmasse wurde mechanisch gerührt. Der Primärimpfstoff enthielt 54,3 Gew. % *£ 4 0 yum und seine spe-
zifische Oberfläche war 0,1148 m /g und der Sekundärimpfstoff 23,5 Gew. % <40 /am. Die Menge an Primärimpfstoff betrug 50 kg. an Sekundär 156 kg. Die Uebersättigung der Aluminatlauge betrug 69,9 g A1_O>./1, sodass sich ein Verhältnis der Uebersättigung
zur Primärimpfstoffoberflache von.12,1 g/m berechnet. Der Temperaturverlauf unterschied sich von Beispiel 1 dadurch, dass die Zwischenkühlung in einem Schritt von 15°C vor der Zugabe des Sekundärimpfstoffes ausgeführt wurde. Die Endtemperatur war 49 C. Die Aufarbeitung und Auswertung erfolgten in gleicher Weise wie im Beispiel 1 beschrieben.
Der getrocknete Filterkuchen, bestehend aus Impfstoff und abgeschiedenem Aluminiumhydroxid,enthielt einen Feinanteil von 18,9 Gew.% <40 /um. Die spezifische Ausbeute erreichte einen Wert von 72,1 g Al^O-. pro Liter der zur Zersetzung gelangten Aluminatlauge.
In diesem Versuch wurde Aluminatlauge mit einer niedrigeren Konzentration als in den Versuchen 1-3, nämlich von 111,7 g Na„O, kaustisch, und 130,5 g Al O pro Liter,eingesetzt. Die
Uebersättigung der Aluminatlauge betrug 65,6 g Al O. pro Liter. Primär- und Sekundärimpfstoff bezüglich Menge und Qualität waren gleich wie im Beispiel 2, sodass sich ein Verhältnis der
Uebersättigung zur Primärimpfstoffoberfläche von 11,4 g/m berechnet. Der Temperaturverlauf wurde wie im Beispiel 3 gewählt, mit der Zwischenkühlung in einem Schritt um 15°C vor der Zugabe des Sekundärimpfstoffes. Die Endtemperatur war 49 C. Der getrocknete Filterkuchen,bestehend aus Impfstoff und abgeschiedenem Aluminiumhydroxid, enthielt einen Feinanteil von 19,5 Gew.%<45,um. Die spezifische Ausbeute erreichte einen Wert von 67,8 g Al 0 pro Liter der zur Zersetzung gelangten Aluminatlauge.
Dieser Versuch wurde, wie in Beispiel 1 beschrieben, mit einer Bayer-Aluminatlauge mit einer Ausgangskonzentration von 130,6 g Na O und 163,2 g Al O pro Liter durchgeführt. Die üebersättigung der Lauge betrug in diesem Falle 80,6 g Al„O^ pro Liter (70°C). Der Primärimpfstoff betrug 125 kg (38,6 Gew.% 4 45 um). Die Ausgangstemperatur betrug 70 C.
Der Primärimpfstoff wies eine spezifische Oberfläche von
2 0,0885 m pro g auf, sodass eine Oberfläche pro Liter von ca.
11 m /1 zur Anwendung kam. Das angewandte Verhältnis der
Uebersättigung (g/l Al O) zur Impfstoffoberfläche (m /1) betrug demnach ca. 7,3 g/m .
Nach 6 Stunden wurde die Reaktionsmasse um 7,5 C gekühlt und daraufhin 105 kg gröberer Sekundärimpfstoff (14,1% <.45 um) zugegeben. Die Zersetzung wurde während 3 Stunden weitergeführt, danach erfolgte eine zweite Zwischenkühlung um 7,5 C und eine Fortsetzung der Zersetzung bei dieser Temperatur um wiederum 3 Stunden. Nun erfolgte eine letzte Zwischenkühlung um 7,5 C. Danach wurde die Zersetzung während weiteren 58 Stunden zu Ende geführt. Die Endtemperatur war 41 C. Die resultierende Suspension, wurde filtriert und das so gewonnene Aluminiumhydroxid
gewaschen und getrocknet. Der getrocknete Filterkuchen bestehend aus Impfstoff und abgeschiedenem Aluminiumhydroxid enthält einen Feinanteil von 18,6% 4.45 um. Durch Subtraktion des Impfstoff.gewichtes vom Gesamtgewicht des getrockneten Filterkuchens und Umrechnung auf Al 0 wurde eine Ausbeute von 83 kg Al„O erhalten. Das entspricht einer spezifischen Ausbeute von 83 g A1_.O pro Liter der zur Zersetzung gelangten Aluminatlauge.
Beispiel 6 . . .
In diesem Versuch wurde eine ähnliche Versuchsdurchführung gewählt wie in Beispiel 5. Die Bayer-Aluminatlauge hatte eine Ausgangskonzentration von 136,8 g Na 0 und 174,5 g Al 0 pro Liter. Die Uebersättigung der Lauge betrug in diesem Falle 84,6 g Al 0 pro Liter (70 C). Der.Primärimpfstoff betrug 125 kg (38,6 Gew.% J45 um). Die Ausgangstemperatur betrug 70 C.
Der Primärimpfstoff wies eine spezifische Oberfläche von 0,0885
2 2
m pro g auf, sodass eine Oberfläche pro Liter von ca. 11 m /1 zur Anwendung kam. Das angewandte Verhältnis der Uebersätti-
2 gung (g/l Al O) zur Impfstoff^oberflache (m /1) betrug dem-
2 nach ca. 7,7 g/m .
Nach 6 Stunden wurde die Reaktionsmasse um 7,5 C gekühlt und daraufhin 105 kg grober Sekundärimpfstoff (14,1% <4 5 ^um) zugegeben. Die Zersetzung wurde während 3 Stunden weitergeführt, danach erfolgte eine zweite Zwischenkühlung um 7,5 C und eine Fortsetzung der Zersetzung bei dieser Temperatur um wiederum 3 Stunden. Nun erfolgte eine letzte dritte Zwischenkühlung um 7,5 C. Danach wurde die Zersetzung während weiteren 8 8 Stunden zu Ende geführt. Die Endtemperatur war 41 C. Die resultierende Suspension wurde filtriert und das so gewonnene Aluminiumhydroxid gewaschen und getrocknet. Der getrocknete Filterkuchen bestehend aus Impfstoff und abgeschiedenem Aluminiumhydroxid enthielt einen Feinanteil von 16,5% <45 ^m. Durch Subtraktion
21 66
des Impfstoffgewichtes vom Gesamtgewicht des getrockneten Filterkuchens und Umrechnung auf Al 0 wurde eine Ausbeute von 91,7 kg K\S> erhalten. Das entspricht einer spezifischen Ausbeute von 91,7 g Al3O3 pro Liter der zur Zersetzung gelangten Aluminatlauge.
Die Vergröberung und die hohen Ausbeuten, die das Verfahren auszeichnen, sind in der folgenden Tabelle I nochmals zusammengestellt.
Aus | Feinanteil<£ 45 | Primär | % | Al(OH) 3 | Sekundär | Al(OH) , | fum | Σ | Produkt x | M(OH)3 | |
Bei | beute | Impfstoff | 60.8 | g/i | g/i | Al(OH)3 | g/i | ||||
spiel | Al O | 60.8 | 30.4 | % | 25.6 | g/i | i"4 5um | 46.9 | |||
g/i | +54.2 | 30.4 | 16.4 | 38.8 | 56.0 | 63.6 | |||||
60.8 | + 27.1 | 24.9 | +36.7 | 69.2 | % ' | +59.8 | |||||
71.1 | 38.6 | 30.4 | +23.5 | 38.8 | +63.8 | 14.9 | 60.4 | ||||
1 | 72.3 | 38.6 | 48.2 | 24.9 | 14.8 | 69.2 | 20.1 | 66.3 | |||
2 | +72.1 | 48.2 | 14.1 | 14.8 | 63.0 | *"l8.9 | 61.0 | ||||
3 | 67.8 | .14.1 | 63.0 | 19.5 | |||||||
4 | 83.0 | 18.6 | |||||||||
5 | 91.5 | 16.5 | |||||||||
6 | |||||||||||
+ Fraktion < 40 /um
χ getrocknete Filterkuchen (Impfstoff + abgeschiedenes
Aluminiumhydroxid)
Aus der Tabelle geht hervor, dass nach Rückführung eines Primär- und Sekundärimpfstoffhydroxides von gleicher Menge und ähnlicher Beschaffenheit wie zur Anwendung gelangt ein Produktionshydroxid mit sehr geringem (z.B. 3-5 Gew.% <45 um) Feinanteil produziert werden kann, wie dieses bei der Produktion von sandigem Aluminiumoxid verlangt wird. Ausserdem ist die
Produktivität (Ausbeute) der Aluminatlaugen ausserordentlich hoch und praktisch bei der Fabrikation von Aluminiumhydroxid von grober Korngrösse noch nie erreicht worden.
Selbstverständlich ist der Fachmann befähigt, Aenderungen an den beschriebenen Verfahrensschritten und Vorrichtungen vorzunehmen, ohne den Rahmen der Erfindung zu verlassen, da das Vorstehende einzig und allein ohne Beschränkung an Hand von Beispielen dargelegt worden ist.
Claims (7)
1,2,2 die zweite Stufe der erwähnten Zersetzung, die im wesentlichen der zweiten Zugabe von Impfstoff entspricht, wird bei reduzierter Temperatur, die bis hinab zu ca· 40 0C betragen kann, durchgeführt·
2e Verfahren nach Punkt 1, gekennzeichnet dadurch, daß die Dauer der ersten Zersetzungsstufe, d. h. das Intervall zwischen erster und zweiter Impfstoffzugabe, ca« sechs Stunden beträgt0
1·2,1 Die erste Stufe der erwähnten Zersetzung, die der ersten Zugabe von Impfstoff entspricht, wird in einem Temperaturbereich von 77 bis 66 0C durchgeführt, und
1,2 daß die Temperatur der Zersetzung auf folgende Weise geregelt wird:
-κ- 2166 85
29.2.1980 5ο 404/18
1,1.2 eine zweite Zugabe von gröberem Impfstoff (Sekundärimpfstoff) nach einem Intervall von mindestens ca· zwei Stunden nach der ersten Zugabe, wobei die totale Menge an Impfstoff (Primär- und Sekundärimpfstoff) mindestens 130 g Al(OH)3 pro Liter Aluminatlauge beträgt, und
1·1·1 eine erste Zugabe von feinem Impfstoff (Primärimpfstoff), zu Beginn der Zersetzung, wobei die Menge so berechnet wird, daß das Verhältnis zwischen der Übersättigung in g AIpO- pro Liter der Aluminatlauge und der Oberfläche des obengenannten Impfstoffes,
1«1 daß die Menge des Aluminiumhydroxidimpfstoffes wie folgt verteilt'wird:
1„ Verfahren zur Herstellung von grobem Aluminiumhydroxid, durch welches im Maximum 15 Gew«-% der Teilchen dessel- - ben mit einem Durchmesser unter 45/um durch eine zweistufige Zersetzung einer alkalischen, übersättigten, konventionellen Aluminatlösung erhalten werden, und zwar durch Zugabe von Aluminiumhydroxidimpfstoff unterschiedlicher Beschaffenheit in die genannte Aluminatlösung in jeweils eine der beiden Stufen, gekennzeichnet dadurch,
2
ausgedrückt in m pro Liter der Aluminatlauge, zwisehen 7 und 25 g/m beträgt;
ausgedrückt in m pro Liter der Aluminatlauge, zwisehen 7 und 25 g/m beträgt;
3, Verfahren nach Punkt 1 oder 2, gekennzeichnet dadurch, daß die kaustische Laugenkonzentration, ausgedrückt in g NapO kaustisch pro Liter Lauge, mindestens 100 g/l beträgt·
4· Verfahi'en nach Punkt 1 oder 3» gekennzeichnet dadurch, daß der Kühlvorgang, angewendet bei Beginn der zweiten Zersetzungsstufe, fortwährend erfolgt,
5, Verfahren nach Punkt 1 oder 3» gekennzeichnet dadurch, daß der Kühlvorgang, angewendet bei Beginn der zweiten Zersetzungsstufe, in einem oder mehreren Schritten erfolgt. ;-
6· Verfahren nach Punkt 5» gekennzeichnet dadurch, daß die zweite Impfstoffzugabe gerade vor, während, oder gerade nach dem Kühlvorgang erfolgt, durch welchen die zweite Zersetzungsstufe eingeleitet wird,
7. Verfahren nach Punkt 1, gekennzeichnet dadurch, daß das Verhältnis der Übersättigung der Lauge zur Oberfläche des
' "2
Primärimpfstoffes zwischen 7 .und 16 g/m beträgt.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH1142878A CH644332A5 (de) | 1978-11-07 | 1978-11-07 | Verfahren zur herstellung von grobem aluminiumhydroxid. |
Publications (1)
Publication Number | Publication Date |
---|---|
DD147090A5 true DD147090A5 (de) | 1981-03-18 |
Family
ID=4373391
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DD79216685A DD147090A5 (de) | 1978-11-07 | 1979-11-05 | Verfahren zur herstellung von grobem aluminiumhydroxid |
Country Status (23)
Country | Link |
---|---|
US (1) | US4234559A (de) |
JP (1) | JPS5571624A (de) |
AU (1) | AU527500B2 (de) |
BR (1) | BR7907183A (de) |
CA (1) | CA1111624A (de) |
CH (1) | CH644332A5 (de) |
CS (1) | CS242851B2 (de) |
DD (1) | DD147090A5 (de) |
DE (1) | DE2941335C2 (de) |
ES (1) | ES485553A1 (de) |
FR (1) | FR2440916A1 (de) |
GB (1) | GB2034681B (de) |
GR (1) | GR66662B (de) |
HU (1) | HU184525B (de) |
IE (1) | IE49108B1 (de) |
IN (1) | IN151768B (de) |
IT (1) | IT1127201B (de) |
MY (1) | MY8400318A (de) |
NL (1) | NL7908153A (de) |
RO (1) | RO78670A (de) |
SG (1) | SG45183G (de) |
TR (1) | TR21679A (de) |
YU (1) | YU40765B (de) |
Families Citing this family (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5951489B2 (ja) * | 1979-08-13 | 1984-12-14 | 住友アルミニウム製錬株式会社 | 粗大粒子水酸化アルミニウムの製造方法 |
US4305913A (en) * | 1980-08-06 | 1981-12-15 | Kaiser Aluminum & Chemical Corporation | Alumina hydrate production from Bayer liquor by seeding |
JPS57140316A (en) * | 1981-02-20 | 1982-08-30 | Sumitomo Alum Smelt Co Ltd | Manufacture of coarse granular aluminum hydroxide |
DE3131088C2 (de) * | 1981-08-06 | 1984-11-29 | Vereinigte Aluminium-Werke AG, 1000 Berlin und 5300 Bonn | Verfahren zur Herstellung von Aluminiumhydroxid |
DE3219288C1 (de) * | 1982-05-22 | 1983-06-01 | Vereinigte Aluminium-Werke Ag, 5300 Bonn | Verfahren zur Herstellung von grobem Aluminiumhydroxid |
FR2529877A1 (fr) * | 1982-07-08 | 1984-01-13 | Pechiney Aluminium | Procede de production d'un trihydroxyde d'aluminium de grosse granulometrie |
EP0102403B1 (de) * | 1982-09-02 | 1986-03-05 | Alcoa Chemie GmbH | Verbessertes Verfahren zur Gewinnung von Tonerde |
FR2534898B1 (fr) * | 1982-10-20 | 1985-07-19 | Pechiney Aluminium | Procede d'obtention de trihydroxyde d'aluminium de diametre median regle a la demande dans l'intervalle de 2 a 100 microns |
FR2551429B2 (fr) * | 1983-09-05 | 1985-10-18 | Pechiney Aluminium | Procede de production d'un trihydroxyde d'aluminium de granulometrie grosse et reguliere |
JPS60246220A (ja) * | 1984-05-19 | 1985-12-05 | Showa Alum Ind Kk | α線放射量の低いアルミナ水和物またはアルミナの製造方法 |
US4511542A (en) * | 1984-05-24 | 1985-04-16 | Kaiser Aluminum & Chemical Corporation | Bayer process production of alumina hydrate |
US4568527A (en) * | 1984-11-06 | 1986-02-04 | Kaiser Aluminum & Chemical Corporation | Utilization of partially calcined alumina as precipitation aid in the Bayer process |
FR2573414B1 (fr) * | 1984-11-22 | 1989-12-01 | Pechiney Aluminium | Procede de mise en oeuvre d'un amorcage en deux temps pour l'obtention d'alumine a gros grains |
GB8617387D0 (en) * | 1986-07-16 | 1986-08-20 | Alcan Int Ltd | Alumina hydrates |
US5306480A (en) * | 1986-07-16 | 1994-04-26 | Alcan International Limited | Alumina hydrates |
US4900537A (en) * | 1986-12-11 | 1990-02-13 | Biotage, Inc. | Control of form of crystal precipitation of aluminum hydroxide using cosolvents and varying caustic concentration |
US4822593A (en) * | 1986-12-11 | 1989-04-18 | Aluminum Company Of America | Control of form of crystal precipitation of aluminum hydroxide using cosolvents and varying caustic concentration |
US5385938B1 (en) * | 1986-12-23 | 1997-07-15 | Tristrata Inc | Method of using glycolic acid for treating wrinkles |
EP0344469A3 (de) * | 1988-06-03 | 1990-06-06 | Vereinigte Aluminium-Werke Aktiengesellschaft | Verfahren zur Herstellung von grobkörnigen Agglomeraten des Aluminiumhydroxids |
US5127950A (en) * | 1989-09-14 | 1992-07-07 | Lonza Ltd. | Short-prismatic aluminum hydroxide, process for preparing same from supersaturated sodium aluminate-liquor, and compositions containing same |
US5163973A (en) * | 1990-02-14 | 1992-11-17 | Alcan Internatinal Limited | Process for producing low soda alumina |
US5102426A (en) * | 1990-02-14 | 1992-04-07 | Alcan International Limited | Process for precipitating alumina from bayer process liquor |
US5158577A (en) * | 1990-02-14 | 1992-10-27 | Alcan International Limited | Process for precipitating alumina from Bayer process liquor |
BR9305905A (pt) * | 1992-02-19 | 1997-10-21 | Comalco Alu | Aperfeiçoamentos em plantas de alumina |
DE4231874A1 (de) * | 1992-09-23 | 1994-03-24 | Martinswerk Gmbh | Verfahren zur Herstellung eines Aluminiumhydroxids Al(OH)¶3¶ mit abgerundeter Kornoberfläche |
EP0714852B1 (de) | 1994-11-30 | 1999-08-18 | Billiton Intellectual Property B.V. | Verfahren zur Ausfällung von Aluminiumhydroxid aus einer übersättigten Natriumaluminatlösung |
CA2163826C (en) * | 1994-11-30 | 2006-03-14 | Iwan Dilip Kumar Hiralal | Process for the precipitation of aluminum trihydroxide from a supersaturated sodium aluminate solution |
FR2782710B1 (fr) * | 1998-09-02 | 2000-10-06 | Pechiney Aluminium | Procede de controle granulometrique dans une chaine de decomposition du circuit bayer, incluant une phase d'agglomeration |
DE69836962T2 (de) | 1998-10-28 | 2007-11-15 | Alcan Technology & Management Ag | Verfahren zur Herstellung von grobkörnigem Aluminiumhydroxyd |
US6762556B2 (en) | 2001-02-27 | 2004-07-13 | Winsor Corporation | Open chamber photoluminescent lamp |
JP5285317B2 (ja) * | 2008-03-28 | 2013-09-11 | 住友化学株式会社 | 水酸化アルミニウムの製造方法 |
RU2638847C1 (ru) * | 2016-12-29 | 2017-12-18 | федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский горный университет" | Способ получения гидроксида алюминия |
CN113371742A (zh) * | 2021-05-27 | 2021-09-10 | 中铝山西新材料有限公司 | 一种超细氢氧化铝的工业生产方法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2657978A (en) * | 1948-09-08 | 1953-11-03 | Kaiser Aluminium Chem Corp | Alumina hydrate crystallization |
US2707669A (en) * | 1951-02-06 | 1955-05-03 | Kaiser Aluminium Chem Corp | Alumina production |
FR1391596A (fr) * | 1964-05-04 | 1965-03-05 | Aluminium Lab Ltd | Procédé de préparation du trihydrate d'alumine |
US3486850A (en) * | 1967-02-16 | 1969-12-30 | Kaiser Aluminium Chem Corp | Flash cooling of liquor during the continuous precipitation of alumina hydrate from bayer process liquor |
US3649184A (en) * | 1969-05-29 | 1972-03-14 | Reynolds Metals Co | Precipitation of alumina hydrate |
US3906084A (en) * | 1971-09-21 | 1975-09-16 | Alcan Res & Dev | Precipitation of alumina trihydrate from bayer pregnant liquors |
-
1978
- 1978-11-07 CH CH1142878A patent/CH644332A5/de not_active IP Right Cessation
-
1979
- 1979-10-12 DE DE2941335A patent/DE2941335C2/de not_active Expired
- 1979-10-22 GR GR60315A patent/GR66662B/el unknown
- 1979-10-23 HU HU79SCHE700A patent/HU184525B/hu unknown
- 1979-10-24 US US06/087,663 patent/US4234559A/en not_active Expired - Lifetime
- 1979-10-26 AU AU52234/79A patent/AU527500B2/en not_active Expired
- 1979-10-28 IN IN1102/CAL/79A patent/IN151768B/en unknown
- 1979-10-30 ES ES485553A patent/ES485553A1/es not_active Expired
- 1979-11-05 CS CS797530A patent/CS242851B2/cs unknown
- 1979-11-05 DD DD79216685A patent/DD147090A5/de unknown
- 1979-11-06 IE IE2134/79A patent/IE49108B1/en not_active IP Right Cessation
- 1979-11-06 BR BR7907183A patent/BR7907183A/pt not_active IP Right Cessation
- 1979-11-06 CA CA339,243A patent/CA1111624A/en not_active Expired
- 1979-11-06 TR TR21679A patent/TR21679A/xx unknown
- 1979-11-06 YU YU2715/79A patent/YU40765B/xx unknown
- 1979-11-06 GB GB7938461A patent/GB2034681B/en not_active Expired
- 1979-11-07 NL NL7908153A patent/NL7908153A/nl not_active Application Discontinuation
- 1979-11-07 RO RO7999170A patent/RO78670A/ro unknown
- 1979-11-07 IT IT27105/79A patent/IT1127201B/it active
- 1979-11-07 FR FR7927487A patent/FR2440916A1/fr active Granted
- 1979-11-07 JP JP14428179A patent/JPS5571624A/ja active Pending
-
1983
- 1983-07-30 SG SG45183A patent/SG45183G/en unknown
-
1984
- 1984-12-30 MY MY318/84A patent/MY8400318A/xx unknown
Also Published As
Publication number | Publication date |
---|---|
GR66662B (de) | 1981-04-07 |
ES485553A1 (es) | 1980-07-01 |
IE49108B1 (en) | 1985-08-07 |
DE2941335C2 (de) | 1982-06-24 |
GB2034681B (en) | 1982-08-11 |
IT1127201B (it) | 1986-05-21 |
RO78670A (ro) | 1982-08-17 |
IT7927105A0 (it) | 1979-11-07 |
AU5223479A (en) | 1980-05-15 |
YU40765B (en) | 1986-06-30 |
SG45183G (en) | 1984-02-17 |
GB2034681A (en) | 1980-06-11 |
YU271579A (en) | 1982-10-31 |
DE2941335A1 (de) | 1980-05-14 |
FR2440916B1 (de) | 1984-05-25 |
MY8400318A (en) | 1984-12-31 |
BR7907183A (pt) | 1980-07-08 |
FR2440916A1 (fr) | 1980-06-06 |
TR21679A (tr) | 1985-01-29 |
IN151768B (de) | 1983-07-23 |
US4234559A (en) | 1980-11-18 |
HU184525B (en) | 1984-09-28 |
NL7908153A (nl) | 1980-05-09 |
CH644332A5 (de) | 1984-07-31 |
JPS5571624A (en) | 1980-05-29 |
CS242851B2 (en) | 1986-05-15 |
IE792134L (en) | 1980-05-07 |
CA1111624A (en) | 1981-11-03 |
AU527500B2 (en) | 1983-03-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DD147090A5 (de) | Verfahren zur herstellung von grobem aluminiumhydroxid | |
DE3486433T2 (de) | Bayer-Verfahren zur Herstellung von Aluminiumhydroxid | |
DE2559219C2 (de) | ||
DE2518431C3 (de) | Verfarhen zur Entfernung der schädlichen organischen Verbindungen aus der bei der Tonerdegewinnung nach dem Bayer-Verfarhen anfallenden Aluminatlauge | |
DE3030631A1 (de) | Verfahren zur herstellung von aluminiumhydroxid | |
DE3206110C2 (de) | Verfahren zur Herstellung von grobkörnigem Aluminiumhydroxid | |
DE2743812C2 (de) | Verfahren zur Aufarbeitung von Buntmetallhydroxidschlamm-Abfallen | |
DE2219674B2 (de) | Verfahren zur Laugung von oxidischen Magnesium enthaltenden Nickelerzen | |
DE2826941C2 (de) | Verfahren zur Herstellung von Eisenoxidrotpigmenten | |
DE3490383C2 (de) | ||
DE3432473C2 (de) | ||
DE2922235A1 (de) | Verfahren zum herstellen von kobaltmetallpulver in extrafeiner koernchengroesse | |
DE69600868T2 (de) | Verfahren zur behandlung von bauxit mit aluminium-hydroxid mit niedrigem gehalt an reaktivem siliciumoxid | |
DE3437859A1 (de) | Verfahren zur erzeugung von mangansulfatloesungen mit verbesserter reinheit | |
DE2005832C2 (de) | Verfahren zur Herstellung eines Titandioxidkonzentrats | |
DE69836962T2 (de) | Verfahren zur Herstellung von grobkörnigem Aluminiumhydroxyd | |
DE2807245A1 (de) | Verfahren und vorrichtung zur herstellung von grobem aluminiumoxid | |
DE3308008C1 (de) | Verfahren zur Herstellung feinverteilter Dispersionen von Metalloxiden in Aluminiumhydroxid | |
DE2264541A1 (de) | Nassmetallurgisches verfahren zur trennung von eisen und nickel | |
DE2807209C3 (de) | Verfahren zur Herstellung von grobem Aluminiumhydroxid | |
DE3601304A1 (de) | Verfahren zur herstellung von ammoniumparawolframat | |
DE2807394C2 (de) | Verfahren zum Konzentrieren und Reinigen von wäßrigen Schwefelsäurelösungen | |
DE3324378A1 (de) | Verfahren zur herstellung eines aluminiumtrihydroxids grober korngroesse | |
DE2721574C3 (de) | Verfahren zur Herstellung von Magnesiumspinell | |
DE1592186B2 (de) | Verfahren zum entfernen von eisen aus beim alkalischen aufschluss von aluminiumerzen anfallender aluminatlauge |