CN1950549A - 压电氧化物单晶体的电荷抑制方法及设备 - Google Patents

压电氧化物单晶体的电荷抑制方法及设备 Download PDF

Info

Publication number
CN1950549A
CN1950549A CNA2005800135351A CN200580013535A CN1950549A CN 1950549 A CN1950549 A CN 1950549A CN A2005800135351 A CNA2005800135351 A CN A2005800135351A CN 200580013535 A CN200580013535 A CN 200580013535A CN 1950549 A CN1950549 A CN 1950549A
Authority
CN
China
Prior art keywords
chip
reducing agent
charge
single crystal
alkali metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2005800135351A
Other languages
English (en)
Other versions
CN1950549B (zh
Inventor
堀田和利
菅野和也
宫川大作
仓知雅人
笹俣武治
佐桥家隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaju Ceramics Co Ltd
Original Assignee
Yamaju Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaju Ceramics Co Ltd filed Critical Yamaju Ceramics Co Ltd
Publication of CN1950549A publication Critical patent/CN1950549A/zh
Application granted granted Critical
Publication of CN1950549B publication Critical patent/CN1950549B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • C30B29/30Niobates; Vanadates; Tantalates
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/02Heat treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/04Treatments to modify a piezoelectric or electrostrictive property, e.g. polarisation characteristics, vibration characteristics or mode tuning
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • H10N30/8542Alkali metal based oxides, e.g. lithium, sodium or potassium niobates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

提供了一种处理方法,该方法可以在不损害压电性的情况下抑制钽酸锂单晶体或铌酸锂单晶体的带电。而且,提供了一种处理设备,该设备可以简单且安全地运行该处理方法。其特征在于将钽酸锂单晶体或铌酸锂单晶体制成的晶片50,和包括碱金属的还原剂60放置在处理容器2中,并将处理容器2内部保持在200-1000℃的温度和减压条件下,由此还原晶片50。

Description

压电氧化物单晶体的电荷抑制方法及设备
技术领域
本发明涉及用于弹性表面声波过滤器的压电基底等的压电氧化物单晶体的电荷抑制方法,并涉及用于该目的的电荷抑制设备。
背景技术
钽酸锂(LiTaO3)单晶体及铌酸锂(LiNbO3)单晶体作为压电氧化物单晶体已为人所熟知,且已用于弹性表面波过滤器(SAW过滤器)的压电基底等。此外,两种单晶体还以非线性光学晶体的形式被用于应用光学产品中,如光调制器及波长转换器件,这些器件是大容量高速通信网络的基本组成部分。两种单晶体均具有热电系数大及阻抗高的特性。因此,轻微的温度变化即可在其表面产生电荷。同时,一旦所产生的电荷在其上累积,除非从外部进行去电荷操作,否则带电状态会持续下去。
例如,光调制器使光在光导中传输或直接在单晶体内传输。当调制光时,可通过向单晶体施加电场进行控制。在这种情况下,即使当电场关闭时,如果单晶体表面残存有电场,则光会受到残留电场的调制。此外,温度的变化会在单晶体表面上产生电荷,因此使折射率改变。
另一方面,在弹性表面声波过滤器的加工步骤中,存在伴随压电基底温度变化的处理,如在压电基底表面上形成电极薄膜,及光刻中的前烘和后烘等。因此,当采用钽酸锂单晶体或铌酸锂单晶体作为压电基底时,在弹性表面声波过器的加工过程中压电基底物质上会产生静电。
当压电基底带电时,在压电基底内会产生静电放电,这成为开裂或破损的起因。此外,存在压电基底上形成的电极可能会因静电而短路的风险。此外,加工步骤中产生的微细金属粉、灰尘、污物等,会被静电吸引到压电基底的表面上使其电极短路,而且存在使电极处于暴露状态遭到损坏的风险。
考虑到压电基底的这种带电问题,在加工弹性表面声波过滤器中采取了多种对策。例如,可以设置去电荷设备,如用于中和压电基底表面上的电荷的电离器(ionizer),并设置附加设备,如粒子计数器或用于检测灰尘的显微镜,等等。此外,在弹性表面声波过滤器的加工步骤中,在形成电极薄膜之前增加形成导电膜的步骤,其中预先在压电基底的后表面上形成用于消除带电的导电膜,或增加形成电极薄膜之后的再次清理步骤。
此外,考虑到抑制钽酸锂单晶体和铌酸锂单晶体自身带电,在专利文献1中,公开了一种方法,其中在还原气氛中对这些单晶体制成的晶片进行热处理。此外,在专利文献2中,公开了一种方法,其中在相同的晶片中扩散金属。
专利文献1:日本未审查专利公开(KOKAI)No.11-92,147。
专利文献2:日本未审查专利公开(KOKAI)No.2004-35,396。
发明内容
例如,钽酸锂单晶体的居里点约为603℃。因此,当钽酸锂单晶体暴露于高于600℃的温度时,恐怕会丧失其压电性。也就是说,当考虑钽酸锂单晶体的压电性时,不可能在高温下进行热处理。另一方面,即使在约400-600℃的相对低的温度下对钽酸锂单晶体制成的晶片进行处理时,也只有晶片表面被还原。也就是说,通过上述专利文献1中所述的还原气体中的热处理,难以在不损害钽酸锂单晶体压电性的情况抑制带电。
此外,如专利文献2所述,当在单晶体中扩散金属(如锌)时,其它元素的混合会改变居里点,从而压电性发生改变。另外,由于金属沉积在晶片上,需要在处理后去除该沉积物。此外,当使用具有强反应性的金属时,不可能调整还原程度。
针对这些情形产生了本发明,本发明的一个任务是提供一种处理方法,该方法可以抑制钽酸锂单晶体或铌酸锂单晶体的带电。此外,本发明的一个任务提供一种处理设备,该设备可以简单且容易地执行该处理方法。
解决任务的措施
(1)依照本发明的压电氧化物单晶体的电荷抑制方法,其特征在于它包括:在处理设备中提供由钽酸锂单晶体或铌酸锂单晶体制成的晶片,和包括碱金属化合物的还原剂;和通过将处理设备内部保持在200-1000℃的温度和减压条件下以还原晶片。
本电荷抑制方法中,在减压条件下将钽酸锂单晶体或铌酸锂单晶体制成的晶片与还原剂一起加热到预定的温度并保持该温度。构成还原剂的碱金属化合物在预定条件下蒸发,并转变成具有高还原能力的蒸气。当暴露于这种蒸气中时,晶片会由表面开始被依次还原。同时,通过不断供应该还原剂,可以继续进行还原反应,因此,可以均匀地还原整个晶片。此外,根据本电荷抑制方法,由于处理时间可以减少到通常的1/10或更少因此生产率提高。
还原降低了晶片的阻抗。因此,还原后的晶片不大可能产生电荷,即便温度改变时也是如此。而且,即使晶片表面暂时产生电荷,也会快速自中和,因此可以除去电荷。因此,依照本发明的电荷抑制方法,可以有效抑制钽酸锂单晶体或铌酸锂单晶体制成的晶片带电。
在本电荷抑制方法中,采用反应相对温和的碱金属化合物作为还原剂。因此,易于操作还原剂,且安全性高。此外,通过适当调整还原剂的类型、使用量、处理形式、处理容器内的真空度、温度和处理时间,可以控制晶片的还原程度。
由于通过本电荷抑制法处理的晶片不大可能带电,因此容易处理且较安全。而且,当使用相同的晶片作为压电基底制造弹性表面声波过滤器时,无需设置去电荷设备,从而可以显著降低成本。此外,由于去电荷的处理过程也不再是必需的,从而生产率提高。此外,通过使用相同的晶片制作压电基底,可以组成弹性表面波过滤器,该过滤器在保存和使用中因静电产生缺陷的情况较少。此外,将相同的晶片用于应用光学产品时,如光调制器和波长转换器件,可抑制由残余电荷引起的调制和由电荷产生引起的折射率改变。因此,应用光学产品的可靠性提高。
(2)在本发明的电荷抑制方法中,当由钽酸锂单晶体制造晶片时,可以在200-600℃的温度下理想地进行晶片的还原。
如上所述,当钽酸锂单晶体暴露于600℃以上的高温时,恐怕会丧失其压电性。因此,当还原钽酸锂单晶体制成的晶片时,可以在600℃或更低的相对低的温度下理想地对其进行处理。在本电荷抑制方法中,由于使用了具有高还原性的碱金属化合物,可以在600℃或更低的温度下将整个晶片充分还原。因此,通过在相对低的温度下进行还原处理,可以在不损害压电性的情况下抑制钽酸锂单晶体或铌酸锂单晶体的带电。
(3)在本电荷抑制方法中,可以在133×10-1-133×10-7Pa的减压条件下理想地进行晶片的还原。提高处理容器内的真空度,可以在相对低的温度下将碱金属化合物转变为具有高还原能力的蒸气。
(4)钽酸锂单晶体或铌酸锂单晶体中的氧表现出与锂的高结合力。因此,在还原处理中,氧可能以与锂结合的状态、即以氧化锂的状态被放出。结果,单晶体中的锂浓度下降从而改变锂∶钽(铌)的比率,因此恐怕会改变其压电性。
因此,可以将用作还原剂的碱金属化合物理想地制成锂化合物。从而,可以使单晶体中的氧与还原剂中的锂原子反应。因此,单晶体中的锂原子不大可能被释放。因此,锂∶钽(铌)比率不会改变,从而压电性不会下降。此外,由于锂是单晶体的组成成分,不用担心因其它成分的混合引起的污染。
(5)在本电荷抑制方法中,可以使用一种实施方案,其中使用包含碱金属化合物的还原剂;通过分开放置还原剂和晶片,或者通过将晶片埋在还原剂中进行晶片的还原。在本实施方案中,可以使用碱金属化合物的粉末、丸粒等作为还原剂。由于可以使用碱金属化合物本身的粉末、丸粒等,本实施方案易于实施。此外,当将晶片埋在还原剂中时,还原剂以高的浓度与晶片表面接触。因此,可进一步促进晶片的还原。
(6)此外,当使用碱金属化合物溶解或分散于溶剂中的碱金属化合物溶液作为还原剂时,可以使用一种实施方案,其中通过分开放置还原剂和晶片、或者通过将晶片浸入还原剂中、或者通过将还原剂涂抹到晶片表面上进行晶片的还原。
在本实施方案中,使用碱金属化合物溶液作为还原剂。例如,碱金属化合物溶解或分散于有机溶剂中的碱金属化合物溶液,该溶液被加热时产生有机气体。通过将碱金属化合物蒸气充入这种有机气体中,可以提高碱金属与晶片之间的反应。从而,将整个晶片均匀地还原。此外,将晶片浸入相同的溶液中时,或者将相同的溶液涂抹在晶片表面时,还原剂会以高的浓度与晶片表面接触。因此,可以进一步促进晶片的还原。
(7)根据本发明的用于压电氧化物单晶体的电荷抑制设备,包括:用于容纳晶片和还原剂的处理容器,其中晶片由钽酸锂单晶体或铌酸锂单晶体制成,还原剂包括碱金属化合物;将处理容器内部加热到200-1000℃温度的装置;和降低处理容器内部压力的装置。
在本电荷抑制设备中,处理容器中的晶片和还原剂被加热装置加热。此外,处理容器的内部由减压装置减压。从而,根据本电荷抑制设备,可以容易且简单地进行上述的电荷抑制方法。而且,由于使用化学反应相对温和的碱金属化合物作为还原剂,本电荷抑制设备具有高的安全性。应当说明的是,本电荷抑制设备的优选方案与上述本电荷抑制方法的优选实施方案一致。
本电荷抑制方法中,使用还原剂在预定条件下还原晶片。由于整个晶片可以被充分还原,因此可以有效地抑制晶片带电。此外,通过适当调整还原剂、处理条件等,可以控制晶片的还原程度。
本电荷抑制设备包括用于容纳晶片和还原剂的处理容器、加热装置和减压装置。根据本电荷抑制设备,可以容易且简单地进行上述的电荷抑制方法。
附图说明
图1为电荷抑制设备的示意图,根据本发明的第一实施方案。
图2为说明如何将在处理容器中放置晶片的模型图(第一实施方案)。
图3是说明如何在处理容器中放置晶片和还原剂的模型图(第二
实施方案)。
图4是说明处理温度和体电阻率之间的关系的曲线图(实施例11-15)。
图5是说明处理温度和体电阻率之间的关系的曲线图(实施例16和实施例17)。
图6是显示处理压力和体电阻率之间的关系的曲线图(实施例21-22)。
图7是说明处理时间和体电阻率之间的关系的曲线图(实施例31-34)。
标记说明
1:电荷抑制设备
2:处理容器
3:加热器(加热装置)
4:真空泵(减压装置)
50:晶片
51:晶片盒
52:容器
60:氯化锂粉末(还原剂)
61:皮氏培养皿(petri dish)
62:碳酸锂溶液(还原剂)
具体实施方式
下文中,将详细描述根据本发明的电荷抑制设备的实施方案。而且,当描述本电荷抑制设备的实施方案时,将同时描述根据本发明的电荷抑制方法。
(1)第一实施方案
首先,描述本实施方案中的电荷抑制设备的配置。在图1中,图示了电荷抑制设备的概图。而且,图2中利用模型显示了如何在处理容器放置晶片。如图1所示,电荷抑制设备1包括处理容器2,加热器3,和真空泵4。
处理容器2由石英玻璃制成。处理容器2相对端中的一个与管道连接。通过该连接管道,对处理容器2进行抽真空。在处理容器2中,装有晶片50和氯化锂粉末60。
晶片50由石英晶片盒51支撑。晶片50由42°的Y-X切割的钽酸锂单晶体构成。晶片50的直径为4英寸(约10.16cm),厚度为0.5mm。以50片的数量、约5mm的间距放置晶片50。
将氯化锂粉末60独立于晶片50放置在石英玻璃制成的皮氏培养皿61中。氯化锂粉末60是本发明的还原剂。待提供的氯化锂粉末60的量为100g。
设置加热器3以便使其覆盖处理容器2的周围。加热器3包含在构成本电荷抑制设备的加热装置之中。
真空泵4通过管道与处理容器2相连。真空泵4将处理容器2中气体抽出,以便将处理容器2内部抽真空。真空泵4包含在构成本电荷抑制设备的减压装置之中。
下面,通过本实施方案的电荷抑制设备描述电荷抑制处理的示例流程。首先,通过真空泵4,将处理容器2内部转变为约1.33Pa的真空气氛。然后,通过加热器3,加热处理容器2以便在3小时内将处理容器2内部的温度升高到550℃。当处理容器2内的温度达到550℃时,保持这种状态18小时。此后,关闭加热器3,自然冷却处理容器2的内部。
根据本实施方案,可得到下面所述的优势。也就是说,在本实施方案中,使用氯化锂粉末60作为还原剂。因此,可以使钽酸锂单晶体中的氧与还原剂提供的锂原子发生反应。因此,钽酸锂单晶体中的锂原子不大可能被释放。所以,钽酸锂单晶体中的锂∶钽比率不会改变,从而压电性不下降。而且,由于锂是钽酸锂单晶体的组成成分,不用担心因混入其它成分造成的污染。此外,氯化锂粉末60易于处理,因此可以安全地运行电荷抑制设备。
在本实施方案中,氯化锂粉末60的用量为100g。根据预备实验,在上述的处理条件下(550℃和18小时),氯化锂粉末的消耗量约为40g。因此,在本实施方案中,可以连续地进行还原反应,因此可以将整个晶片50均匀地还原。结果,可以有效地抑制晶片50的带电。
在本实施方案中,由于处理容器2的内部变成约1.33Pa的真空气氛,氯化锂粉末60变成高还原能力的蒸气。因此,可以在550℃下进行还原处理,从而可以在不损害压电性的情况下进行整个晶片50的还原。
(2)第二实施方案
第二实施方案与第一实施方案的不同在于改变了还原剂的类型和放置形式。由于其它的配置与第一实施方案相同,所以这里将描述不同之处。
图3中,以模型说明了如何在本实施方案中放置晶片与还原剂。图3中,与图2中对应的组成部分用相同的参考数字标出。如图3所示,晶片50的两个相对表面涂覆有碳酸锂溶液62,溶液62是将100g的碳酸锂粉末溶入聚乙烯醇。在本发明中碳酸锂溶液62是还原剂。通过将晶片50浸入碳酸锂溶液62中,将碳酸锂溶液62涂抹到晶片50的表面,实施对晶片50的涂覆,随后在温室和200℃下将它们干燥。在处理容器2中,仅放置其中装有晶片50的晶片盒51。而且,以与第一实施方案相同的方式进行电荷抑制处理。
根据本实施方案,除第一实施方案所描述的操作和优势之外,可得到下面所述的优势。也就是说,在本实施方案中使用碳酸锂溶液62作为还原剂。碳酸锂溶液62被加热时产生有机气体。通过将碳酸锂蒸气充入该有机气体中,可促进晶片50的还原。此外,由于设置酸锂溶液62使其与晶片50的表面相接触,进一步促进了晶片50的还原。
(3)其它实施方案
到目前为止,已经描述了根据本发明的电荷抑制设备的几个实施方案。然而,本电荷抑制设备的实施方案不限于上述实施方案,而且在本领域技术人员的知识的基础上,可以以经过多种改变和修改的多种形式实施。
例如,在上述的实施方案中,在钽酸锂单晶体制成的晶片上进行电荷抑制处理。然而,可以对铌酸锂单晶体制成的晶片进行处理,而且,可以同时对由各个单晶体制成的晶片进行处理。另外,可以对加入金属(如铁)的钽酸锂单晶体或铌酸锂单晶体制成的晶片进行处理。在这种情形中,添加的金属可以列举出铁、铜、锰、钼、钴、镍、锌、碳、镁、钛、钨、铟、锡、稀土元素,等等。而且,当取单晶体的总重量为100%时,添加量以重量计可为0.01%或更多至1.00%或更少。添加有金属(如铁)的钽酸锂晶体等具有电荷中和特性,可以将表面电荷自中和并将它们除去。通过还原由这种单晶体制成的晶片,可以更有效地抑制晶片带电。应当指出,所用晶片的形状、抛光状态等没有特别的限制。例如,建议使用从单晶体切至预定厚度的切割状态的晶体块,此外,可以使用表面进行镜面抛光的这种晶体块。
构成还原剂的碱金属化合物的类型不受上述实施方案的限制。例如,在锂化合物的情形中,除上述实施方案中使用的氯化锂和碳酸锂之外,可以使用氢氧化锂等。此外,建议使用锂化合物以外的碱金属化合物,具体而言有钠化合物,如碳酸钠和氢氧化钠,钾化合物,如碳酸钾、氢氧化钾和氯化钾。建议独立使用这些碱金属化合物中的每一种,或建议结合使用使用它们中的两种或多种。
在第一实施方案中,将还原剂和晶片分开放置,然而,可以将晶片埋在还原剂中来运行电荷抑制处理。而且,可建议使用包含碱金属化合物的气体作为还原剂。在这种情况下,建议将包含碱金属化合物的气体引入到保持在预定条件下的处理容器中的同时,进行电荷抑制处理。或者,建议在将包含碱金属化合物的气体引入处理容器并将其连续从中抽出的同时,进行电荷抑制处理。
如同第二实施方案,当使用碱金属化合物溶液作为还原剂时,希望使用一种不会在真空气氛中产生氧的液体作为溶剂。例如,除上述的聚乙烯醇之外,也可以使用诸如甘油的有机溶剂,甘油是一种易于得到有机溶剂。此外,当使用碱金属化合物溶液作为还原剂时,考虑到进一步促进晶片的还原,可建议使碱金属化合物的浓度尽可能地高。另外,当使用碱金属化合物的溶液时,建议在容器中提供相同的溶液,并将其与晶片分开放置,或建议将晶片浸入相同的溶液中。
在上述的实施方案中,在约1.33Pa的真空气氛中进行处理。然而,处理压力没有具体的限制。低于1.33Pa的压力下,即更高的真空气氛中的处理较为合适。
此外,处理时间没有具体的限制,但当考虑处理温度等条件时,可近似确定处理时间。因此通过调整还原剂的类型、使用量、放置形式、处理容器内的真空度、处理温度和处理时间,可以控制晶片的还原程度。
实验实施例
(1)通过第一实施方案进行的电荷抑制处理
通过使用依照上述第一实施方案的电荷抑制设备,可在下表1和表2所示的条件下进行不同的电荷抑制处理。按照根据第一实施方案的电荷抑制处理流程进行电荷抑制处理。如表1所示,将处理压力为8.38×10-1Pa且处理时间为18小时但改变其处理温度的多个电荷抑制处理标记为实施例11到15。此外,将处理压力相同且处理时间为6小时但改变其处理温度的多个电荷抑制处理标记为实施例16和17。如表2所示,将处理温度为550℃且处理时间为18小时但改变其处理压力的电荷抑制处理标记为实施例21到25。应当指出,为了比较,根据各自的条件将不使用还原剂进行的电荷抑制处理标记为比较例11到15和21到23。
                                     表1
  还原剂   处理时间(小时)   处理温度(℃)
  250   350   450   550   600
  氯化锂粉末   18   实施例11   实施例12   实施例13   实施例14   实施例15
  无   18   比较例11   比较例12   比较例13
  氯化锂粉末   6   实施例16   实施例17
  无   6   比较例14   比较例15
*处理压力:8.38×10-1Pa
                                                 表2
  还原剂   处理压力(Pa)
  133×10-1   133×10-2   133×10-3   133×10-6   133×10-7
  氯化锂粉末   实施例21   实施例22   实施例23   实施例24   实施例25
  无   比较例21   比较例22   比较例23
处理温度:550℃,处理时间:18小时
对于进行电荷抑制的各个晶片,测量其体电阻率和透射率。使用TOA DKK公司生产的“DSM-8103”测量其体电阻率。使用紫外-可见光分光光度计(NIHON BUNKOU公司生产的“V570”)测量其透射率。此外,将晶片置于设定为80±5℃的托盘上,测量随后表面电压随时间的变化。并且测量表面电压变到0kV所需的时间(电荷中和时间)。在表3和表4中,列出了分别根据实施例和比较例进行电荷抑制处理的晶片的测量结果,以及未处理晶片的测量结果。应当指出,表3和表4中的表面电压是将晶片置于80±5℃的托盘上后随即得到的值。此外,在图4中,显示了处理温度与体电阻率以及电荷中和时间(处理时间18小时,实施例11-15)之间的关系。在图5中,显示了处理温度与体电阻率以及电荷中和时间(处理时间为6小时,实施例16和17)之间的关系。在图6中,显示了处理压力与体电阻率以及电荷中和时间(实施例21-25)之间的关系。
                                                                     表3
  实施例11   实施例12   实施例13   实施例14   实施例15   比较例11   比较例12   比较例13
  体电阻率(Ω·cm)   3.8×1013   4.9×1012   7.3×1011   5.2×1011   3.9×1011   3.3×1014   2.3×1013   2.6×1013
  表面电压(kV)   3.83   1.12   0.52   0.20   0.15   4.14   2.41   2.36
  电荷中和时间(秒)   42   11.7   6.8   1.0   0.5   ∞   45   46
  实施例16   实施例17   比较例14   比较例15   未处理
  体电阻率(Ω·cm)   9.8×1011   6.9×1011   6.1×1014   8.9×1013   2.3×1015
  表面电压(kV)   0.79   0.30   4.43   3.95   4.31
  电荷中和时间(秒)   8.4   5.0   ∞   ∞   ∞
                                                                       表4
  实施例21   实施例22   实施例23   实施例24   实施例25   比较例21   比较例22   比较例23
  体电阻率(Ω·cm)   3.8×1014   4.5×1011   3.3×1011   5.2×1011   3.5×1011   3.3×1013   2.3×1013   2.6×1014
  表面电压(kV)   4.1   0.41   0.16   0.20   0.7   2.34   1.5   -
  电荷中和时间(秒)   ∞   4.2   0.9   1.0   8.7   45   19.7   -
如表3所示,当比较依照实施例的晶片与依照比较例的晶片时,在相同温度下处理的晶片,所有依照实施例的晶片中体电阻率和表面电压均降低,且电荷中和时间缩短。此外,可以证实透射率也降低。因此,可以清楚还原剂有效地还原了晶片,所以抑制了带电。此外,如图4和图5所示,处理温度越高,晶片的体电阻率降低越多,且电荷中和时间缩短越多。类似地,也降低了透射率和表面电压。另外,当单独比较处理时间时,那些处理18小时的晶片的电荷抑制效果提高更大。因此,根据本发明的电荷抑制处理,据证实可以有效抑制晶片的带电。另外,通过调整处理温度或处理时间,据证实可以控制还原程度。而且,在250-600℃的范围内,可以清楚的是处理温度越高,还原程度越大,因此显著产生电荷抑制效果。
如表4所示,当比较依照实施例的晶片和依照比较例的晶片时,在相同压力下处理的晶片,所有依照实施例的晶片中体电阻率和表面电压均降低,电荷中和时间缩短。此外,据证实透射率也降低。因此,如上所述,可以清楚还原剂有效地还原了晶片,所以抑制了带电。此外,如图6所示,当处理压力从133×10-1下降到133×10-2Pa时,晶片的体电阻率降低,特别是电荷中和时间显著降低。同样透射率和表面电压也降低。应当指出,在133×10-7Pa时,体电阻率等会轻微上升。因此,在本发明的电荷抑制处理中,可以通过调整处理压力来控制还原程度。在本实施方案中,可以认为适宜的处理压力是133×10-2-133×10-6Pa。
(2)通过第二实施方案进行的电荷抑制处理
通过使用依照上述第二实施方案的电荷抑制设备,在下表5所示的条件下进行电荷抑制处理。也就是说,将处理温度为550℃且处理压力为10.5×10-1Pa但改变其处理时间的电荷抑制处理标记为实施例31-34。
                              表5
  还原剂   处理时间(分)
  碳酸锂溶液   30   45   60   120
  实施例31   实施例32   实施例33   实施例34
*处理温度:550℃,处理压力:10.5×10-1Pa
对于进行电荷抑制的各个晶片,以与上述(1)相同的方式测量体电阻率、透射率、表面电压随时间的变化和电荷中和时间。在表6中,列出了依照实施例31-34进行电荷抑制处理的各个晶片的测量结果。此外,在图7中,显示了处理时间与体电阻以及电荷中和时间之间的关系。
                                      表6
  实施例31   实施例32   实施例33   实施例34
  体电阻率(Ω·cm)   1.8×1011   4.5×1010   1.3×1010   8.2×109
  表面电压(kV)   0.06   0.04   <0.02   <0.01
  电荷中和时间(秒)   2.1   0.7   <0.1   <0.1
如表6和图7所示,处理时间越长,晶片的体电阻率和表面电压降低越多,并且电荷中和时间缩短越多。此外,据证实透射率也降低。因此,在本发明的电荷抑制处理中,通过调整处理时间可以控制还原程度。在本实施方案中,当调整处理时间至60分钟或更长时,可以清楚显著产生了电荷抑制效果。

Claims (7)

1.一种压电氧化物单晶体的电荷抑制方法,其特征在于它包括:将钽酸锂单晶体或铌酸锂单晶体制成的晶片和包含碱金属化合物的还原剂置于处理设备中;和
通过将处理设备内部保持在200-1000℃的温度和减压条件下,还原晶片。
2.根据权利要求1所述的压电氧化物单晶体的电荷抑制方法,其中该晶片由钽酸锂单晶体制成;并在200-600℃的温度下进行晶片的还原。
3.根据权利要求1所述的压电氧化物单晶体的电荷抑制方法,其中在133×10-1-133×10-7Pa的减压条件下进行晶片的还原。
4.根据权利要求1所述的压电氧化物单晶体的电荷抑制方法,其中碱金属化合物为锂化合物。
5.根据权利要求1所述的压电氧化物单晶体的电荷抑制方法,其中该还原剂包括碱金属化合物;并通过分开放置还原剂和晶片,或将晶片埋在还原剂中进行晶片的还原。
6.根据权利要求1所述的压电氧化物单晶体的电荷抑制方法,其中该还原剂是碱金属化合物的溶液,其中碱金属化合物溶解或分散于溶剂中;和
通过分开放置还原剂和晶片,或将晶片浸入还原剂中,或将还原剂涂抹在晶片表面进行晶片的还原。
7.一种用于压电单晶体的电荷抑制设备,包括:
容纳晶片和还原剂的处理容器,该晶片由钽酸锂单晶体或铌酸锂单晶体制成,该还原剂包含碱金属化合物;
将处理容器内部加热到200-1000℃的温度的装置;和
使处理容器内部减压的装置。
CN2005800135351A 2004-04-27 2005-04-27 压电氧化物单晶体的电荷抑制方法及设备 Expired - Fee Related CN1950549B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP131733/2004 2004-04-27
JP2004131733A JP4301564B2 (ja) 2004-04-27 2004-04-27 圧電性酸化物単結晶の帯電抑制処理方法、および帯電抑制処理装置
PCT/JP2005/008474 WO2005103343A1 (ja) 2004-04-27 2005-04-27 圧電性酸化物単結晶の帯電抑制処理方法、および帯電抑制処理装置

Publications (2)

Publication Number Publication Date
CN1950549A true CN1950549A (zh) 2007-04-18
CN1950549B CN1950549B (zh) 2010-05-12

Family

ID=35197018

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2005800135351A Expired - Fee Related CN1950549B (zh) 2004-04-27 2005-04-27 压电氧化物单晶体的电荷抑制方法及设备

Country Status (8)

Country Link
US (1) US20050284359A1 (zh)
EP (1) EP1741809B1 (zh)
JP (1) JP4301564B2 (zh)
KR (1) KR100826995B1 (zh)
CN (1) CN1950549B (zh)
DE (1) DE602005027450D1 (zh)
TW (1) TWI378160B (zh)
WO (1) WO2005103343A1 (zh)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105463581A (zh) * 2015-11-30 2016-04-06 上海召业申凯电子材料有限公司 钽酸锂晶体基片的黑化处理方法
CN106048735A (zh) * 2016-08-12 2016-10-26 天通控股股份有限公司 一种钽酸锂或铌酸锂晶体基片黑化方法
CN106591951A (zh) * 2017-02-15 2017-04-26 宁夏钜晶源晶体科技有限公司 钽酸锂晶片的还原方法
CN106929916A (zh) * 2017-04-21 2017-07-07 中国电子科技集团公司第二十六研究所 一种铌酸锂黑片的制作方法
CN106948005A (zh) * 2016-01-07 2017-07-14 信越化学工业株式会社 钽酸锂单晶基板的制造方法
CN107201544A (zh) * 2016-03-16 2017-09-26 信越化学工业株式会社 钽酸锂单晶基板的制造方法
CN107604443A (zh) * 2017-09-30 2018-01-19 中电科技德清华莹电子有限公司 一种黑化铌酸锂晶片的处理方法
CN107620124A (zh) * 2017-09-30 2018-01-23 中电科技德清华莹电子有限公司 一种钽酸锂晶片的黑化处理方法
CN107620125A (zh) * 2017-09-30 2018-01-23 中电科技德清华莹电子有限公司 一种钽酸锂或铌酸锂晶片的黑化处理方法
CN107675261A (zh) * 2017-09-30 2018-02-09 中电科技德清华莹电子有限公司 一种铌酸锂晶片的黑化处理方法
CN107740190A (zh) * 2017-09-30 2018-02-27 中电科技德清华莹电子有限公司 一种黑化钽酸锂晶片的处理方法
CN110129891A (zh) * 2018-02-02 2019-08-16 福建晶安光电有限公司 一种晶片的黑化方法及黑化后晶片

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040221810A1 (en) * 2002-06-28 2004-11-11 Miles Ronald O. Process boat and shell for wafer processing
US6932957B2 (en) * 2002-06-28 2005-08-23 Silicon Light Machines Corporation Method and apparatus for increasing bulk conductivity of a ferroelectric material
US20040222273A1 (en) * 2002-06-28 2004-11-11 Galambos Ludwig L. Method and apparatus for increasing bulk conductivity of a ferroelectric material
JP4789281B2 (ja) * 2005-10-19 2011-10-12 株式会社山寿セラミックス 弾性表面波フィルタ及びその製造方法
US7728697B2 (en) * 2006-09-26 2010-06-01 Mg Materials Corporation Systems and methods for electrically reducing ferroelectric materials to increase bulk conductivity
JP5018423B2 (ja) * 2007-11-20 2012-09-05 住友電気工業株式会社 Iii族窒化物半導体結晶基板および半導体デバイス
JP5045388B2 (ja) * 2007-11-20 2012-10-10 住友電気工業株式会社 Iii族窒化物半導体結晶の成長方法およびiii族窒化物半導体結晶基板の製造方法
JP4937178B2 (ja) * 2008-04-09 2012-05-23 信越化学工業株式会社 タンタル酸リチウム結晶の製造方法
JP4995847B2 (ja) * 2009-01-27 2012-08-08 信越化学工業株式会社 タンタル酸リチウム結晶の製造方法
JP5133279B2 (ja) * 2009-01-27 2013-01-30 信越化学工業株式会社 タンタル酸リチウム結晶の製造方法
JP5358224B2 (ja) * 2009-03-05 2013-12-04 日本碍子株式会社 波長変換素子の製造方法
JP5074436B2 (ja) 2009-03-06 2012-11-14 日本碍子株式会社 高調波発生素子
DE102009013336A1 (de) 2009-03-16 2010-09-23 Perkinelmer Optoelectronics Gmbh & Co.Kg Pyroelektrisches Material, Strahlungssensor, Verfahren zur Herstellung eines Strahlungssensors und Verwendung von Lithiumtantalat und Lithiumniobat
JP5967830B2 (ja) * 2013-02-07 2016-08-10 信越化学工業株式会社 弾性波素子用基板
JP6477282B2 (ja) * 2015-06-18 2019-03-06 住友金属鉱山株式会社 ニオブ酸リチウム単結晶基板とその製造方法
JP6721948B2 (ja) * 2015-06-18 2020-07-15 住友金属鉱山株式会社 ニオブ酸リチウム単結晶基板とその製造方法
JP6507877B2 (ja) * 2015-06-18 2019-05-08 住友金属鉱山株式会社 ニオブ酸リチウム単結晶基板とその製造方法
CN107636212B (zh) * 2015-06-18 2020-07-17 住友金属矿山株式会社 铌酸锂单晶基板及其制造方法
JP6485307B2 (ja) * 2015-09-29 2019-03-20 住友金属鉱山株式会社 タンタル酸リチウム単結晶及びその製造方法
JP6493151B2 (ja) * 2015-10-23 2019-04-03 住友金属鉱山株式会社 ニオブ酸リチウム単結晶基板の製造方法
JP6598378B2 (ja) * 2016-11-17 2019-10-30 信越化学工業株式会社 タンタル酸リチウム単結晶基板の製造方法
JP2019135198A (ja) * 2018-02-05 2019-08-15 京セラ株式会社 結晶の製造方法
JP6926022B2 (ja) * 2018-03-30 2021-08-25 京セラ株式会社 結晶の製造方法
JP2020145530A (ja) * 2019-03-05 2020-09-10 京セラ株式会社 弾性波装置
JP7271845B2 (ja) * 2019-10-25 2023-05-12 住友金属鉱山株式会社 タンタル酸リチウム基板の製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2033444C3 (de) * 1970-07-06 1979-02-15 Siemens Ag Vorrichtung zum Eindiffundieren von Dotierstoffen in Scheiben aus Halbleitermaterial
US3932299A (en) * 1972-10-30 1976-01-13 Rca Corporation Method for the reduction of iron in iron-doped lithium niobate crystals
US4071396A (en) * 1976-10-08 1978-01-31 Xerox Corporation Controlled atmosphere process for altering the nonstoichiometry of crystalline members
US4196963A (en) * 1978-05-30 1980-04-08 Hughes Aircraft Company Method for eliminating Li2 O out-diffusion in LiNbO3 and LiTaO3 waveguide structures
US4725330A (en) * 1985-05-06 1988-02-16 American Telephone And Telegraph Company, At&T Bell Laboratories Equilibration of lithium niobate crystals
JP3132956B2 (ja) * 1993-12-27 2001-02-05 信越化学工業株式会社 酸化物単結晶の製造方法
DE69819971T2 (de) * 1997-07-25 2004-09-02 Crystal Technology, Inc., Palo Alto Vorbehandelte Kristalle aus Lithiumniobat und Lithiumtantalat und das Verfahren zu ihrer Herstellung
US6319430B1 (en) * 1997-07-25 2001-11-20 Crystal Technology, Inc. Preconditioned crystals of lithium niobate and lithium tantalate and method of preparing the same
CN1362546A (zh) * 2001-12-17 2002-08-07 南开大学 近化学计量比铌酸锂晶片及其制备方法
JP4063191B2 (ja) * 2003-10-16 2008-03-19 住友金属鉱山株式会社 タンタル酸リチウム基板の製造方法
US7153487B2 (en) * 2004-05-25 2006-12-26 Crystal Technology, Inc. Using condensed chemicals to precondition lithium niobate and lithium tantalate crystals

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105463581A (zh) * 2015-11-30 2016-04-06 上海召业申凯电子材料有限公司 钽酸锂晶体基片的黑化处理方法
CN106948005A (zh) * 2016-01-07 2017-07-14 信越化学工业株式会社 钽酸锂单晶基板的制造方法
CN106948005B (zh) * 2016-01-07 2022-02-25 信越化学工业株式会社 钽酸锂单晶基板的制造方法
CN107201544A (zh) * 2016-03-16 2017-09-26 信越化学工业株式会社 钽酸锂单晶基板的制造方法
CN107201544B (zh) * 2016-03-16 2023-03-28 信越化学工业株式会社 钽酸锂单晶基板的制造方法
CN106048735A (zh) * 2016-08-12 2016-10-26 天通控股股份有限公司 一种钽酸锂或铌酸锂晶体基片黑化方法
CN106591951B (zh) * 2017-02-15 2019-02-19 宁夏钜晶源晶体科技有限公司 钽酸锂晶片的还原方法
CN106591951A (zh) * 2017-02-15 2017-04-26 宁夏钜晶源晶体科技有限公司 钽酸锂晶片的还原方法
CN106929916A (zh) * 2017-04-21 2017-07-07 中国电子科技集团公司第二十六研究所 一种铌酸锂黑片的制作方法
CN107604443A (zh) * 2017-09-30 2018-01-19 中电科技德清华莹电子有限公司 一种黑化铌酸锂晶片的处理方法
CN107740190A (zh) * 2017-09-30 2018-02-27 中电科技德清华莹电子有限公司 一种黑化钽酸锂晶片的处理方法
CN107675261A (zh) * 2017-09-30 2018-02-09 中电科技德清华莹电子有限公司 一种铌酸锂晶片的黑化处理方法
CN107620125A (zh) * 2017-09-30 2018-01-23 中电科技德清华莹电子有限公司 一种钽酸锂或铌酸锂晶片的黑化处理方法
CN107620124A (zh) * 2017-09-30 2018-01-23 中电科技德清华莹电子有限公司 一种钽酸锂晶片的黑化处理方法
CN110129891A (zh) * 2018-02-02 2019-08-16 福建晶安光电有限公司 一种晶片的黑化方法及黑化后晶片

Also Published As

Publication number Publication date
EP1741809A1 (en) 2007-01-10
KR100826995B1 (ko) 2008-05-02
TWI378160B (en) 2012-12-01
DE602005027450D1 (de) 2011-05-26
US20050284359A1 (en) 2005-12-29
KR20070008657A (ko) 2007-01-17
JP4301564B2 (ja) 2009-07-22
EP1741809A4 (en) 2009-04-29
EP1741809B1 (en) 2011-04-13
TW200535284A (en) 2005-11-01
CN1950549B (zh) 2010-05-12
JP2005314137A (ja) 2005-11-10
WO2005103343A1 (ja) 2005-11-03

Similar Documents

Publication Publication Date Title
CN1950549A (zh) 压电氧化物单晶体的电荷抑制方法及设备
KR101873583B1 (ko) 액정표시장치용 어레이 기판의 제조방법
WO2010002803A2 (en) Treatment of gate dielectric for making high performance metal oxide and metal oxynitride thin film transistors
CN1494955A (zh) 清洁方法
CN1958878A (zh) 成膜装置的使用方法
CN110205111B (zh) 量子点、量子点配体的制备方法、量子点的改性方法和光电器件
CN103081085A (zh) 支撑基板
KR102517903B1 (ko) 식각액 조성물, 및 식각액 조성물을 이용한 식각 방법
CN1877854A (zh) 化合物半导体衬底、外延衬底、制造化合物半导体衬底和外延衬底的方法
CN104701255B (zh) 液晶显示器下基板的制备方法
CN1251331C (zh) 半导体器件
CN100336189C (zh) 薄膜晶体管的制造方法
CN104157560B (zh) 石墨烯电极的制备方法
KR102049806B1 (ko) 특정 파장의 광원 및 반응성 가스를 이용하여 대상물의 표면을 평탄화하는 방법 및 장치
CN114220732B (zh) 一种磷化铟晶片的超洁净清洗方法及应用
CN101034659A (zh) 基板的制造方法及基板处理装置
CN114497197A (zh) 一种具有捕获结构的复合衬底及其制备方法及电子元器件
CN104157554A (zh) 一种锗材料表面稳定钝化的方法
US9390942B2 (en) Method, system, and apparatus for preparing substrates and bonding semiconductor layers to substrates
JP6926022B2 (ja) 結晶の製造方法
CN102755969A (zh) 提高反应装置表面清洁能力的方法
KR101796784B1 (ko) 액정표시장치용 어레이 기판의 제조방법
CN1352703A (zh) 具有含铜表面的电子元器件的湿法处理方法
JP6999498B2 (ja) 結晶の製造方法および導電率の制御方法
CN1741251A (zh) 杂质导入方法和杂质导入装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20100512

Termination date: 20140427