CN1919669A - 车辆和车辆的控制方法 - Google Patents

车辆和车辆的控制方法 Download PDF

Info

Publication number
CN1919669A
CN1919669A CNA2006101118449A CN200610111844A CN1919669A CN 1919669 A CN1919669 A CN 1919669A CN A2006101118449 A CNA2006101118449 A CN A2006101118449A CN 200610111844 A CN200610111844 A CN 200610111844A CN 1919669 A CN1919669 A CN 1919669A
Authority
CN
China
Prior art keywords
vehicle
climbing gradient
braking force
climbing
drive controlling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2006101118449A
Other languages
English (en)
Other versions
CN100540374C (zh
Inventor
田畑满弘
佐藤宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Publication of CN1919669A publication Critical patent/CN1919669A/zh
Application granted granted Critical
Publication of CN100540374C publication Critical patent/CN100540374C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/52Driving a plurality of drive axles, e.g. four-wheel drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/18Conjoint control of vehicle sub-units of different type or different function including control of braking systems
    • B60W10/184Conjoint control of vehicle sub-units of different type or different function including control of braking systems with wheel brakes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/13Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18109Braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18109Braking
    • B60W30/18118Hill holding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/26Wheel slip
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/15Road slope
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Abstract

当驾驶员使爬坡道上的制动踏板回位时,动力从发动机输出到前轮的前轮制动器被释放,而后轮的制动器保持(S140),节气门的开度逐渐增加,使得发动机的转速到达根据爬坡坡度θ设定的目标转速Ne*。当能够向前轮和后轮输出的可输出扭矩Tem变得大于根据爬坡坡度θ设定的目标扭矩Td*时,释放后轮制动器(S240)以启动车辆。这使得车辆在爬坡道上平稳启动。在另一方面,当在可输出扭矩Tem到达目标扭矩Td*之前确定前轮打滑时,前轮的制动器回位到初始状态,爬坡启动控制被禁止(S260和S270),保持停车状态。这正确地解决了车辆不能平稳启动的问题。

Description

车辆和车辆的控制方法
技术领域
本发明涉及一种车辆和车辆的控制方法。
背景技术
一种已提出的车辆包括制动致动器,该制动致动器由电机驱动的液压活塞构成,并且在斜坡上停车时,加压和保持后轮的车轮制动轮缸内的压力(参见,例如,日本特开2004-210110号公报)。在这个提出的车辆中,后轮的车轮制动轮缸内的压力被加压和保持以防止车辆在斜坡上停车时下滑。
发明内容
对于防止在斜坡上下滑的车辆,如果在驾驶员释放制动器时没有输出用于爬坡的驱动力(爬坡扭矩),则取决于爬坡坡度,车辆会下滑,或驱动轮会打滑,从而阻止了车辆的平稳启动。
根据本发明的车辆和车辆的控制方法的目的是在爬坡道上平稳启动。根据本发明的车辆和车辆的控制方法目的是解决车辆不能在爬坡道上平稳启动的问题。
为了实现上述目的的至少一部分,根据本发明的车辆和车辆的控制方法包括以下描述的单元。
本发明涉及一种车辆,包括向第一轴输出动力的动力源;检测驾驶员的制动操作的制动操作检测单元;基于驾驶员制动操作向所述第一轴和不同于第一轴的第二轴施加制动力和能够不管驾驶员制动操作向所述第一轴和所述第二轴独立地施加制动力的制动力施加单元;检测车辆前后方向的道路坡度的道路坡度检测单元;设定目标操作状态(是所述用于输出的动力源的操作状态)到所述第一轴和当所述道路坡度是爬坡坡度时基于所检测的道路坡度设定的驱动力的目标操作状态设定模块;和控制模块,控制模块执行爬坡坡度驱动控制以控制所述动力源和所述制动力施加单元,使得当所述制动操作检测单元检测释放制动器的操作作为在爬坡坡度停车状态下的驾驶员制动操作时,其中车辆用由所述第一制动力施加单元的制动力停在爬坡坡度上,所述动力源的操作状态逐渐进入所述目标操作状态,在所述爬坡坡度停车状态中的制动状态逐渐被解除。
在本发明的车辆中,当车辆的前后方向的道路坡度是爬坡坡度时,设定目标操作状态,即用于向第一轴输出基于道路坡度的驱动力的动力源的操作状态,其中来自动力源的动力输出到第一轴。爬坡坡度驱动控制被执行用于控制,使得当驾驶员在爬坡坡度停车状态(其中,车辆用基于驾驶员制动操作的制动力停在爬坡坡度上)下释放制动器时,动力源的操作状态逐渐进入目标操作状态,爬坡坡度停车状态下的制动状态逐渐地释放。具体地,当驾驶员释放制动器时,从动力源向第一轴输出的动力逐渐增加,施加到第一轴和第二轴的制动力逐渐地释放。这允许车辆在爬坡坡度上平稳启动。进一步地,设定目标操作状态,使得基于道路坡度的驱动力向第一轴输出,因而,当驾驶员释放制动器时,禁止车辆下滑。动力源包括内燃机或电机。
在根据本发明的车辆中,爬坡坡度驱动控制可以是通过在爬坡坡度停车状态中释放施加到第一轴的制动力而保持施加到第二轴的制动力的中间制动力保持状态以释放爬坡坡度停车状态中的制动状态的控制。在这情况下,当在爬坡坡度停车状态中检测到释放制动器的操作时,爬坡坡度驱动控制可以控制进入中间制动力保持状态,并且在动力源的操作状态进入目标操作状态以后释放第二轴的制动力。这允许启动,同时通过施加到第二轴的制动力禁止车辆下滑。
根据本发明的车辆包括检测由第一轴的空转引起打滑的打滑检测单元,在执行爬坡坡度驱动控制过程中,当打滑检测单元检测到打滑时,控制模块可以控制进入爬坡坡度停车状态,并且禁止执行爬坡坡度驱动控制。即使当车辆不能在爬坡坡度上启动时,这阻止车辆下滑或阻止车辆的位置不稳定。
根据本发明的车辆进一步包括检测所述第二轴的转动的转动检测单元,其中在执行所述爬坡坡度驱动控制过程中,当所述转动检测单元检测到所述第二轴相对于正向的反向转动时,所述控制模块执行进入所述爬坡坡度停车状态控制,并且禁止所述爬坡坡度驱动控制的执行。这阻止车辆下滑。
在根据本发明的禁止执行爬坡坡度驱动控制的车辆中,当车辆移动或车辆的行驶方向被改变而执行爬坡坡度驱动控制被禁止时,所述控制模块可以解除执行爬坡坡度驱动控制的禁止。这再允许由爬坡坡度驱动控制的启动。
根据本发明的车辆进一步包括检测驾驶员加速器操作的加速器操作检测单元,其中当所述加速器操作检测单元检测到加速器操作时,所述控制模块执行加速器操作控制以控制所述制动力施加单元,使得释放施加到所述第一轴的制动力和第二轴的制动力。这允许根据驾驶员的加速器操作而控制。
根据本发明的车辆可以包括能够向第二轴输入动力和从第二轴输出动力的电机,控制模块可以基于驾驶员的加速器操作控制电机。在这情况下,当动力源的操作状态进入目标操作状态时,控制模块可以控制来自电机的动力。这阻止了当车辆还没有启动时电机的驱动控制。
本发明涉及在爬坡坡度上停车时车辆的控制方法,所述车辆包括:能够向第一轴输出动力的动力源;能够独立地调节施加到第一轴的制动力和和施加到不同于所述第一轴的第二轴的制动力的制动力施加单元,所述控制方法包括以下步骤:(a)设定目标操作状态,该目标操作状态是用于向所述第一轴输出基于道路坡度的驱动力的从爬坡坡度停车状态(其中,车辆由驾驶员的制动操作而停在爬坡坡度上)到驾驶员制动状态的释放的动力源的操作状态;和(b)执行爬坡坡度驱动控制以控制所述动力源和所述制动力施加单元,使得当释放驾驶员的制动操作时,所述动力源的操作状态逐渐地进入所述目标操作状态,并且由驾驶员的制动操作的制动状态逐渐地释放。
在本发明的车辆控制方法中,设定目标操作状态,该目标状态是用于向第一轴(来自动力源的动力向第一轴输出)输出基于道路坡度的驱动力的从爬坡坡度停车状态(其中,车辆由驾驶员的制动操作停在爬坡坡度上)输出到驾驶员的制动操作被释放动力源的操作状态,当驾驶员的制动操作被释放时,执行爬坡坡度驱动控制以控制动力源和制动力施加单元,动力源的操作状态逐渐进入到目标操作状态,由驾驶员的制动操作的制动状态逐渐被释放。具体地,当驾驶员释放制动器时,从动力源向第一轴和第二轴输出的动力逐渐增加,第一轴和第二轴的制动力逐渐释放。这允许车辆在爬坡坡度上平稳启动。进一步地,设定目标操作状态,使得基于道路坡度的驱动力向第一轴输出,由此,当驾驶员释放制动器时防止车辆下滑。动力源包括内燃机或电机。
在根据本发明的车辆的控制方法中,其中所述步骤(b)通过在所述爬坡坡度停车状态下释放施加到第一轴的制动力而保持施加到第二轴的制动力的中间制动力保持状态而控制释放在所述爬坡坡度停车状态中的制动状态。在这情况下,其中当在爬坡坡度停车状态中检测到释放制动器的操作时,所述步骤(b)可以控制进入中间制动力保持状态,并且在动力源的操作状态进入目标操作状态以后,释放施加到第二轴的制动力。这允许启动,同时由于施加到第二轴的制动力而防止车辆下滑。
在根据本发明的车辆控制方法中,其中所述步骤(b)是控制进入所述爬坡坡度停车状态的步骤,并且在执行所述爬坡坡度驱动控制过程中,当由所述第一轴的空转引起打滑时,禁止执行所述爬坡坡度驱动控制。即使当车辆不能够在爬坡坡度上启动时,这防止车辆下滑或防止车辆的位置不稳定。
在根据本发明车辆的控制方法中,其中在执行所述爬坡坡度驱动控制过程中,当所述第二轴相对于正向反向转动时,所述步骤(b)执行控制进入所述爬坡坡度停车状态和禁止执行所述爬坡坡度驱动控制。这防止车辆下滑。
在根据本发明的禁止在执行所述爬坡坡度驱动控制的车辆控制方法中,当车辆移动或车辆的行驶方向被改变而爬坡坡度驱动控制被禁止时,所述步骤(b)可以解除执行所述爬坡坡度驱动控制的禁止。这再允许由爬坡坡度驱动控制的启动。
根据本发明的车辆控制方法进一步包括检测驾驶员加速器操作的加速器操作检测单元,其中所述步骤(b)是控制所述制动力施加单元步骤,使得当驾驶员执行加速度操作,释放施加到所述第一轴的制动力和施加到所述第二轴的制动力。这允许根据驾驶员加速器操作的控制。
附图说明
图1在本发明的一个实施例中示意出混合动力车辆20的构造;
图2示意性地示出发动机22的构造;
图3示意性地示出制动致动器10的构造;
图4是示出由混合动力电子控制单元70执行的爬坡启动控制程序一个示例的流程图;
图5示出目标扭矩设定图的一个示例;
图6示出目标转速设定图的一个示例;
图7是示出由混合动力电子控制单元70执行的启动处理的示例流程图;
图8是示出由混合动力电子控制单元70执行的控制禁止处理的一个示例的流程图;
图9示出制动压力、发动机22的转速Ne、电机40的扭矩和由爬坡启动控制启动车辆时车速V随时间的变化的示例;和
图10示出制动压力、发动机22的转速Ne、电机40的扭矩和当由爬坡启动控制启动车辆时前轮63a和63b空转引起打滑时车速V随时间变化的示例。
具体实施方式
现在,描述本发明优选实施例。图1在本发明的一个实施例中示意性地示出混合动力车辆20的构造。在本实施例中的混合动力车辆20构造成四轮驱动车辆,并且包括前轮驱动系统、后轮驱动系统、用于控制液压以制动前、后轮63a、63b、66a和66b的制动轮缸98a至98d的制动致动器100和控制整个装置的混合动力电子控制单元。前轮驱动系统从作为动力源的发动机22经由变矩器25、作为无级变速器的CVT 50和换档机构65将动力输出到前轴64以驱动前轮63a和63b。该后轮驱动系统从电机40经由换档机构68将动力输出到后轴67以驱动后轮66a和66b。
发动机22是消耗诸如汽油、轻质燃油的碳氢化合物燃料以输出动力的内燃机。如在图2中示出,由空气滤清器122清洁并且经由节气门124吸入的空气与由燃料喷射阀126喷射的雾化汽油混合成空气燃料混合气。空气燃料混合气经由进气阀128引入到燃烧室中。所引入的空气燃料混合气用由火花塞130产生的火花点燃以爆炸燃烧。由燃烧能量推动的活塞312的往复运动被转换成曲轴23的旋转运动。来自发动机22的废气流过催化转化单元134(填充有三元催化剂),以将废气中含有的毒性成分(即,一氧化碳(CO)、碳氢化合物(HC)和氮氧化物(NOx)转换成无害成分,并且排出到外面空气中。
发动机22受发动机电子控制单元29(以下称为发动机ECU)的控制。发动机ECU 29构造成为微处理器,该微处理器包括CPU 29a、存储处理程序的ROM 29b、暂时存储数据的RAM 29c、输入和输出端口(未示出)和通讯端口(未示出)。发动机ECU 29经由输入端口(未示出)接收来自测量和检测发动机22状态的各种传感器的信号。输出到发动机ECU 29的信号包括来自曲柄位置传感器140检测为曲柄23旋转位置的曲柄位置、来自水温传感器142测量为发动机22中的冷却水温度的冷却水温度、来自位于燃烧室内部的压力传感器143的缸内压力Pin、来自凸轮位置传感器144检测为被驱动打开和关闭用于气体吸入和排出燃烧室的进气阀128和排气阀的凸轴旋转位置、来自节气门位置传感器146检测为节气门124的开度或位置的节气门位置、来自连于空气进气管的空气流量计148的空气流量计信号AF和来自连于空气进气管的温度传感器149的进气空气温度。发动机ECU 29经由输出端口(未示出)输出多种控制信号和驱动信号以控制和驱动发动机22,例如,向燃料喷射阀126输出驱动信号、向用于调节节气门124位置的节气门电机136输出驱动信号、向与点火器集成的点火线圈输出控制信号、向可变气门正时结构150输出控制信号以改变进气阀128的开启和关闭的时间。发动机ECU 29与混合动力电子控制单元70通讯。发动机ECU 29从混合动力电子控制单元70接收控制信号以驱动和控制发动机22,同时根据要求,将关于发动机22的驱动状态的数据输出到混合动力电子控制单元70。
起动电机22a连于发动机22的曲轴23。交流发电机32和机油泵26也经由带24连接到曲轴23。交流发电机32消耗发动机22的输出功率,并且产生供应到电机40的电力。机油泵26消耗发动机22的输出功率,产生液压管路压力以致动CVT 50。
变矩器25是公知的具有锁止离合器的液压变矩器,并且在混合动力车辆20启动时或在混合动力车辆20的低速驱动过程中向CVT 50输出对应于发动机22转速的扭矩。变矩器25的锁止离合器受CVTECU 59(以下论述)的控制。
CVT 50包括具有可变槽宽并且连接到输入轴51的初级滑轮53、具有可变槽宽并且连接到输出轴52或驱动轴的二级滑轮54、设置在初级滑轮53和二级滑轮54的槽中的带55、和分别改变初级滑轮53和二级滑轮54的槽宽的第一致动器56和第二液压致动器57。通过第一致动器56和第二致动器57改变初级滑轮53和二级滑轮54的槽宽获得无级变速以转换输入轴51的功率,并且向输出轴52输出所转换的功率。CVT电子控制单元59(此后称为CVTECU 59)负责CVT 50的变速控制。CVTECU 59从连于输入轴51的转速传感器61接收输入轴51的转速Nin和从连于输出轴52的转速传感器62接收输出轴52的转速Nout。CVTECU 59向第一致动器56和向第二致动器57输出驱动信号。CVTECU 59与混合动力电子控制单元70通讯。CVTECU 59从混合动力电子控制单元接收控制信号以调节CVT 50的速比,同时根据要求向混合电子控制单元70输出CVT 50工况的数据,例如,输入轴51的转速Nin和输出轴52的转速Nout。
电机40构造成可以作为发电机和电机而被致动的公知同步电动发电机。电机40经由反相器从高压电池31接收电力和向高压电池31传输电力,并且从交流发电机32接收电力供应。电机40在电机电子控制单元42(此后称为电机ECU 42)的操作控制下。电机ECU 42接收要求用于操作和控制电机40的各种信号,例如来自检测电机40中的转子旋转位置的旋转位置检测传感器43的信号,和来自电流传感器(未示出)表示施加到电机40相电流的信号。电机ECU 42还与混合动力电子控制单元70建立通讯。电机ECU 42响应于从混合动力电子控制单元70接收的控制信号向反相器41输出切换控制信号以操作和控制电机40,同时根据要求向混合动力电子控制单元70输出关于电机40工况的数据。
高压电池31是具有额定电压Vh(例如,42V)的二次电池,并且其作用是储蓄发电机32供应的电力,和将电力传输进出电机40。高压电池31经由DC-DC转换器34连接到低压电池35和辅助机构36以将电力供应到低压电池35和辅助机构36。低压电池35是具有比高压电池31的额定电压Vh低的额定电压V1(例如,12V)的二次电池。高压电池31、低压电池35和DC-DC转换器34在电池电子受控制单元34(此后称为电池ECU 30)的管理和控制。电池ECU 30接收要求用于高压电池31和低压电池35的控制和管理的不同信号,例如,端点之间电压、充放电流和由有关传感器(未示出)测量的各电池31和35的电池温度。电池ECU 30还建立与混合动力电子控制单元70的通讯,并且根据要求向混合动力电子控制单元70输出关于各电池31和35工况的数据。电池ECU 30从充放电流的积分值计算高压电池31和低压电池35的荷电状态(SOC)以用于各电池31和35的管理。
如在图3中所示出,制动致动器100由前轮致动器101和后轮制动致动器111构成。前轮制动致动器101包括经由供油管102连接到制动主缸90和经由增压和减压油管103a和103b连接到前轮63a和63b的制动轮缸98a和98b的左、右保持电磁阀104a和104b、类似地经由增压和减压油管103a和103b连接到前轮63a和63b的制动轮缸98a和98b和经由减压油管105和油泵108连接到储油箱107的减压电磁阀106a和106b和对储油箱107中的油进行加压,并且向供油管102供油的油泵108。两个用于防止回流的回流阀109a和109b设置在油泵108的上游和下游。保持电磁阀104a和104b构造成当供给能量时关闭的常开电磁阀(开启),并且包括单向阀,其用于当在制动轮缸98a和98b中的缸液压高于供油管102中的液压时,即使电磁阀开启然后闭合,该单向阀将制动油回流到供油管102。减压电磁阀106a和106b构造成当供给能量时打开的常闭电磁阀(开启)。如同前轮制动致动器101,后轮制动致动器111包括经由供油管112连接到制动主缸90和经由增压和减压油管113a和113b连接到后轮66a和66b的制动轮缸98c和98d的左、右保持电磁阀114a和114b、类似地经由增压和减压油管113a和113b连接到后轮66a和66b的轮缸98c和98d和经由减压油管115连接到储油箱107的减压电磁阀106a和106b、对储油箱117中的油进行加压,并且向供油管112供油的油泵118和两个回流阀109a和109b。后轮制动致动器111的保持电磁阀114a和114b和减压电磁阀116a和116b具有与前轮制动致动器101的保持电磁阀104a和104b和减压电磁阀106a和106b相同的构造。以下关于前轮制动致动器101操作的描述应用到后轮制动致动器111的操作的描述。现在,将简要地描述前轮制动致动器101的操作。
当驾驶员踩踏制动踏板85,且保持电磁阀104a和104b和减压电磁阀106a和106b都关闭(在图3中的状态)时,在制动主缸90中产生根据踩踏量的主压力,因而,制动油经由供油管102、保持电磁阀104a和104b和增压和减压油管103a和103b供应到制动轮缸98a和98b,对制动轮缸98a和98b中的缸液压力加压以将根据缸液压力的制动力施加到前轮63a和63b。当驾驶员使在这个状态中的制动踏板85回位时,制动轮缸98a和98b中的制动油经由增压和减压油管103a和103b、保持电磁阀104a和104b和供油管102回流到制动轮缸98a和98b,缸液压力响应于该回流而降低以释放施加到前轮63a和63b的制动力。除了这种正常的操作,前轮制动致动器101能够通过开启保持电磁阀104a和104b而保持制动轮缸98a和98b内的缸液压力。此时,如果减压电磁阀106a和106b开启(打开),则在制动轮缸98a和98b中的制动油能够经由增压和减压油管103a和103b、减压电磁阀106a和106b和减压油管路105导入到储油箱107中,以减少制动轮缸98a和98b的缸液压力。缸液压力减少程度能够根据时间调节,在该时间,减压电磁阀106a和106b开启(打开)。驱动油泵108将加压的制动油经由供油管102、保持电磁阀104a和104b和增压和减压油管103a和103b供应到制动轮缸98a和98b,以加压制动轮缸98a和98b中的缸液压力。此时,保持电磁阀104a和104b开启(关闭)以停止对缸液压力的加压,因而在保持电磁阀104a和104b开启(关闭)之前,能够根据时间调节缸液压力的增加的程度。开启(关闭)保持电磁阀104a和104以进入保持缸液压力的上述状态,因而,减压电磁阀106a和106b可以开启(打开)以减少压力。具体地,驱动油泵108,开启/关闭保持电磁阀104a和104b和减压电磁阀106a和106b,因而允许在制动轮缸98a和98b中的缸液压力自由地调节。保持电磁阀104a和104b和减压电磁阀106a和106b能够独立地开启/关闭。因而制动轮缸98a和98b中的缸液压力能够独立地自由调节。
制动致动器100由制动器电子控制单元(此后称为制动器ECU)120驱动和控制。制动器ECU 120接收诸如来自车轮速度传感器69a至69d的车轮速度Vw1至Vw4或来自未示出的转向角传感器的转向角通过未示出的信号线的信号输入,并且执行防抱死制动系统(ABS)功能,以防止当驾驶员踩踏制动踏板85时,前轮63a和63b和后轮66a和66b由锁定引起的任何打滑、执行牵引控制(TRC),以防止当驾驶员踩踏加速踏板83时,由作为驱动轮的前轮63a和63b和后轮66a和66b空转而引起的任何打滑、或执行车辆稳定性控制(VSC),以当转弯时保持车辆的位置。制动器ECU 120与混合动力电子控制单元70通讯,根据来自混合动力电子控制单元70的控制信号驱动和控制制动致动器100,并且按需要向混合动力电子控制单元70输出关于电机40工作状态的数据。
混合动力电子控制单元70构造为包括CPU 72、存储处理程序的ROM 74、暂时存储程序的ROM 74、输入和输出端口(未示出)、通讯端口(未示出)的微处理器。混合动力电子控制单元70经由输入端口接收来自点火开关80的点火信号、来自档位传感器82的变数杆81的档位SP或电流设定位置、来自加速器踏板位置传感器84的加速器开度Acc或加速器踏板83的驾驶员踩踏量、来自制动踏板位置传感器86的制动踏板位置BP或制动踏板85的驾驶员踩踏量、来自车速传感器87的车速V和来自G传感器88的纵向加速度G(沿着混合动力车辆20从前到后的纵向加速度)、来自连于制动主缸90(响应于驾驶员对制动踏板85的操作向制动油施加液压(主缸压力))的压力传感器91的制动压力Pb、和分别来自连于前轮63a和63b和后轮66a和66b的车轮速度传感器69a至69d的车轮速度Vw1至Vw4。混合动力电子控制单元70经由输出端口向交流发电机32输出控制信号,向辅助机构36输出驱动信号。混合动力电子控制单元70传输各种控制信号和数据进出发动机ECU 29、电池ECU 30、电机ECU 42和CVTECU 59。
现在描述涉及具有上述构造的混合动力车辆20的操作,更具体地,在具有预定爬坡坡度θ(例如,5度以上)的坡道上混合动力车辆20启动时的操作。图4是示出由混合动力电子控制单元70在爬坡道上停车时执行的爬坡启动控制程序的流程图。该程序重复执行直到车辆的启动完成。
当执行爬坡启动控制程序时,混合动力电子控制单元70的CPU 72判断该控制是否被禁止(步骤100)。在这个控制中,执行控制的禁止。控制的禁止将在下面描述。当爬坡启动控制没有禁止时,通过驾驶员踩踏制动踏板85而保持前轮63a和63b和后轮66a和66b的制动轮缸98a至98d中的缸压力(步骤S110),并等待驾驶员基于来自制动踏板位置传感器86的制动踏板位置BP而释放踩踏制动踏板85(步骤S120和S130)。制动轮缸98a至98d能够通过开启(关闭)保持电磁阀104a、104b、114a和114b而保持。具体地,制动轮缸98a至98d能够通过将控制信号从混合动力电子控制单元70传输到制动器ECU 120而保持,制动器ECU 120基于以上开启保持电磁阀104a、104b、114a和114b。
当驾驶员释放踩踏制动踏板85时,仅释放前轮63a和63b的制动轮缸98a和98b中的缸压力,而保持后轮66a和66b的制动轮缸98c和98d的缸压力(步骤S140)。通过向制动器ECU 120传输控制信号以开启(打开)减压电磁阀106a和106b而能够释放前轮63a和63b的制动器。输入车辆的前、后方向上的爬坡坡度θ(步骤S150),基于爬坡坡度θ设定待向前轮63a和63b和后轮66a和66b输出的目标扭矩Td*和发动机22的目标转速Ne*(步骤S160和S170)。所输入的车辆的前、后方向上的爬坡坡度θ是从G传感器88的前、后方向上的加速度G计算,并且写在RAM76的预定区中。目标扭矩Td*设定为允许车辆在爬坡坡度θ的情况下以相对低的恒定车速(例如,4km/h)行驶的驱动力。在该实施例中,爬坡坡度θ和目标扭矩Td*之间的关系在之前确定,并且存储在ROM 74中作为目标扭矩设定图,当提供爬坡坡度θ,从图中推导并且设定对应的目标扭矩Td*。图5示出目标扭矩设定图的一个示例。发动机22的目标转速Ne*是当目标扭矩Td*以预定前后分布向前轮63a和63b输出时,允许待向前轮63a和63b输出扭矩的转速。在该实施例中,爬坡坡度θ和目标转速Ne*之间的关系在之前确定,并且存储在ROM 74中作为目标转速设定图,当提供爬坡坡度θ时,对应的目标转速Ne*从图中推导并且设定。图6示出目标转速设定图的一个示例。
接着,当节气门开度TH增加小量ΔTH,并且传输到发动机ECU 24(步骤S180)时,输入发动机22的转速Ne(步骤S190),可输出扭矩Tem计算为基于发动机22的输入转速Ne从发动机22向前轮63a和63b输出的扭矩(在图4中表示为f(Ne))和可从电机40输出的扭矩(在图4中表示为Tmset)之和(步骤S200),检查没有由前轮63a和63b的空转引起的打滑(步骤S210和S220),重复步骤S180到S220的处理直到所计算的可输出的扭矩Tem变得大于设定的目标扭矩Td*(步骤S230)。已经接收节气门开度TH的发动机ECU 24驱动节气门电机136,使得具有设定的开度。通过判断来自车轮速度传感器69a和69b的车轮速度Vw1和Vw2的变化量是否超过阈值而能够确定由前轮63a和63b的空转引起的打滑。因而,节气门开度TH逐渐增加,同时检查没有由前轮63a和63b的空转引起的打滑直到可输出扭矩Tem变得大于目标扭矩Td*,由此,允许车辆平稳地启动而没有任何前轮63a和63b的打滑。
当可输出扭矩Tem变得大于目标扭矩Td*时,后轮66a和66b的制动轮缸98c和98d中的缸压力被释放,后轮66a和66b的制动器也被释放(步骤S240),执行图7中示出的启动处理(步骤S250),程序完成。当在可输出扭矩Tem变得大于目标扭矩Td*之前,确定有由前轮63a和63b的空转引起的打滑,在前轮63a和63b的制动轮缸98a和98b中产生缸压力(步骤S260),爬坡启动控制被禁止(步骤S270),程序结束。
为了简化描述,中止关于爬坡启动控制程序的描述,将描述图7中的启动处理。在启动处理中,首先输入发动机22的转速Ne(步骤S300),判断输入转速Ne是否低于目标转速Ne*(步骤S310)。当转速Ne低于目标转速Ne*时,节气们开度TH增加小量ΔTH,并且传输到发动机ECU24(步骤S320)。具体地,节气门开度TH逐渐增加直到转速Ne到达目标转速速度Ne*。接着,电机40的扭矩命令Tm*计算为目标扭矩Td*减去基于转速Ne计算并且从发动机22向前轮63a和63b输出的扭矩而获得的值,所计算的扭矩命令Tm*传输到电机ECU 42(步骤S330)。已经接收扭矩命令Tm*的电机ECU 42切换和控制反相器41的开关元件,使得扭矩命令Tm*从电机40输出。这允许向前轮63a和63b和后轮66a和66b作为整体输出目标扭矩Td*,并且即使在爬坡道上车辆也能够启动。接着,检查没有由前轮63a和63b的空转引起的打滑(步骤S340和S350),检查后轮66a和66b没有反向转动(步骤S360和S370),程序返回到步骤S300,使得重复步骤S300到S390的处理直到车速V达到阈值Vref或更高(步骤S380和S390)。由前轮63a和63b的空转引起的打滑的判断已经在上面描述。后轮66a和66b是否反向转动可以通过判断后轮66a和66b是否相对于正向转动的反向转动而进行,该正向转动由来自安装到后轮66a和66b的车轮速度传感器69c和69d的车轮速度Vw3和Vw4从档位SP确定,或通过基于电机40的转动位置检测传感器43判断电机40是否反向转动。阈值Vref是用于确定启动完成的车速V,例如,可以使用3km/h或4km/h的值。当车速V到达阈值Vref或更高而确定没有前轮63a和63b的空转引起的打滑和后轮66a和66b的反向转动时,可以确定启动完成。启动处理完成。当在车速V到达阀值Vref或更高之前确定有前轮63a和63b的空转引起的打滑和后轮66a和66b的反向转动时,在制动轮缸98a到98d中产生缸压力以使启动停止(步骤S400),爬坡启动控制被禁止(步骤S410),启动处理完成。
返回描述关于图4中爬坡启动控制程序的描述。当在本程序的步骤S100中确定爬坡启动控制被禁止时,执行图8中的控制禁止处理(步骤S280),程序完成。在控制禁止处理中,首先输入来自档位传感器82的档位SP(步骤S500),并且判断档位SP是否改变(步骤S510)。当档位SP改变时,爬坡启动控制的禁止被解除(步骤S570),程序完成。例如,爬坡启动控制在向前位置(D位置)执行,在步骤S210和S220中确定由前轮63a和63b的空转引起的打滑,爬坡启动控制被禁止。接着,当驾驶员操作变速杆81到向后的位置(R位置)时,确定档位SP被改变,爬坡启动控制的禁止被解除。当爬坡启动控制的禁止被解除时,当执行图4中下一个爬坡启动控制程序时,在步骤S100中确定爬坡启动控制没有禁止。
当档位SP没有改变时,输入来自加速器踏板位置传感器84的加速器开度Acc,并且判断加速器是否被踩踏(步骤S530)。当加速器被踩踏时,前轮63a和63b和后轮66a和66b的制动器被释放(步骤S540)。当加速器被踩踏用于使驾驶员的驱动操作按优先次序时,制动器被释放。
接着,输入车速V(步骤S550),当车速V是阈值Vref或更高,确定启动完成。不需要禁止爬坡启动控制,因而,爬坡启动控制的禁止被解除(步骤S570),程序完成。在另一方面,当车速V低于阈值Vref时,确定启动没有完成,没有解除爬坡启动控制禁止的理由,程序完成而没有解除爬坡道启动的禁止。
图9示出车辆在爬坡启动控制启动时的制动压力、发动机22的转速Ne、电机40的扭矩和的车辆速度V随时间变化的一个示例,图10示出在车辆爬坡启动控制启动时随制动压力、发动机22的转速Ne、电机40的扭矩和由前轮63a和63b的空转引起的打滑时的车速V随时间变化的一个示例。如在图9中所示出,制动踏板85回位,并且在时刻T11时释放制动器,释放前轮63a和63b的制动轮缸98a和98b中缸压力,而保持后轮66a和66b的制动轮缸98c和98d中的缸压力,发动机22的目标转速Ne*根据爬坡坡度θ设定。接着,发动机22的节气门开度TH逐渐地增加以增加发动机22的转速Ne。扭矩从电机40输出,并且当可输出扭矩Tem(是从发动机22向前轮63a和63b输出的扭矩和可从电机40输出的扭矩之和)大于目标扭矩Td*而没有由前轮63a和63b的空转引起的打滑时,在时刻T12逐渐地释放后轮66a和66b的制动器。因而,车速V逐渐地增加以完成车辆的启动。在另一方面,如在图10中示出,当制动踏板85回位,在时刻T21释放制动器时,类似地,仅仅释放前轮63a和63b的制动器,而保持后轮66a和66b的制动器,发动机22的目标转速Ne*根据爬坡坡度θ设定,发动机22的节气门开度TH逐渐地增加,因而,增加发动机22的转速Ne。当在时刻T22确定由前轮63a和63b的空转引起的打滑时,前轮63a和63b所释放的制动器回位至初始状态,爬坡启动控制被禁止。因而,发动机的目标转速Ne*被释放,并且发动机22的转速Ne减少至使车辆保持停在爬坡道上。
根据本实施例的混合动力车辆,当驾驶员使在爬坡道上停车状态下的制动踏板85回位时,释放前轮63a和63b(动力从发动机向前轮输出)的制动器,而保持后轮66a和66b的制动器,节气门开度TH逐渐增加使得发动机22的转速Ne逐渐到达根据爬坡坡度θ设定的发动机22的目标转速Ne*,当可输出扭矩Tem(是从发动机22向前轮63a和63b输出的扭矩和可从电机40输出的扭矩之和)大于根据爬坡坡度θ设定的Td*时,释放后轮66a和66b的制动器,启动电机40的扭矩输出以输出目标扭矩Td*,因而允许车辆在爬坡道上平稳地启动。进一步地,当确定由前轮63a和63b的空转引起的打滑,同时逐渐增加发动机22的转速Ne时,前轮63a和63b的制动器回位至初始状态以保持停车状态,因而正确地解决了车辆由于前轮63a和63b的打滑而不能平稳地启动的问题。
在本实施例的混合动力车辆20中,当确定由前轮63a和63b的空转引起的打滑或后轮66a和66b的反向时,爬坡启动控制被禁止,接着,当档位SP被改变或驾驶员踩踏加速器踏板83以使车速V到达阈值Vref时,爬坡启动控制的禁止被解除,因而,允许在下一次启动爬坡道上的车辆时正确地执行爬坡启动控制。
在本实施例的混合动力车辆20中,提供电机40(向后轮66a和66b的后轴67输出动力),但是也可以不提供电机40。在这情况下,当从发动机22向后轮63a和63b输出的扭矩变得大于目标扭矩Td*时,可以释放后轮66a和66b的制动器,或当从发动机22向后轮63a和63b输出的扭矩变得大于略小于目标扭矩Td*的扭矩时,可以释放后轮66a和66b的制动器。在发动机22的转速Ne到达目标转速Ne*之后,可以释放后轮66a和66b的制动器。在这情况下,可以如实施例中逐渐释放后轮66a和66b的制动器,或可以立即释放。
在本实施例的混合动力车辆20中,当后轮66a和66b在启动处理中反相转动时,制动器回位至初始状态以禁止爬坡启动控制。然而,当后轮66a和66b即使在启动处理之前反向转动时,制动器可以回位至初始状态以禁止爬坡启动控制。或者,即使后轮66a和66b反向转动,制动器也可以不回位至初始状态,并且可以继续爬坡启动控制。
在本实施例的混合动力车辆20中,当确定由于前轮63a和63b的空转引起的打滑时,前轮63a和63b的制动器回位至初始状态以禁止爬坡启动控制,但是即使确定由于前轮63a和63b的空转引起的打滑,前轮63a和63b的制动器也可以不回位至初始状态,并且继续爬坡启动控制。
在本实施例的混合动力车辆20中,当禁止爬坡启动控制时,如果档位SP接着被改变或驾驶员踩踏加速器踏板83使车速V到达阈值Vref,则解除爬坡启动控制的禁止,但是当检测到车辆移动时,可以解除爬坡启动控制的禁止。
在本实施例的混合动力车辆20中,如果当爬坡启动控制被禁止时驾驶员踩踏加速器踏板83,前轮63a和63b和后轮66a和66b的制动器被释放。然而,当爬坡启动控制被禁止时,前轮63a和63b和后轮66a和66b的制动器被保持,而不考虑驾驶员踩踏加速器踏板83。
在本实施例的混合动力车辆20中,发动机22的目标转速Ne*基于爬坡坡度θ设定,但是发动机22的目标转速Ne*可以基于除了爬坡坡度θ以外诸如车速V的车辆状态设定。类似地,发动机22的目标转速Ne*可以基于除了爬坡坡度θ以外诸如车速V的车辆状态设定。
在本实施例的混合动力车辆20中,提供CVT 50(无级变速器)作为变速器,但是不限于CVT 50,可以使用诸如环形等其它型号的无级变速器,或可以使用分级变速器。
在本实施例的混合动力车辆20中,作为内燃机的发动机用作前轮动力源,但是可以使用诸如电动机的其它动力源作为前轮动力源。
已经参照实施例的描述实施本发明的最佳实施例,但是本发明不限于这些实施例,可以进行各种变化,而不脱离本发明的要旨。

Claims (18)

1.一种车辆,包括;
能够向第一轴输出动力的动力源;
检测驾驶员制动操作的制动操作检测单元;
制动力施加单元,所述制动力施加单元基于所述驾驶员的制动操作将制动力施加到所述第一轴和不同于所述第一轴的第二轴,并且不管所述驾驶员的制动操作能够独立地将所述制动力施加到所述第一轴和所述第二轴;
道路坡度检测单元,所述单元检测所述车辆前后方向的道路坡度;
目标操作状态设定模块,当所述道路坡度是爬坡坡度时,所述目标操作状态设定模块设定目标状态,所述目标状态是用于向所述第一轴输出基于所述检测的爬坡坡度的驱动力的所述动力源的操作状态;
控制模块,所述控制模块执行爬坡坡度驱动控制以控制所述动力源和所述制动力施加单元,使得在所述车辆根据所述制动力施加单元基于所述驾驶员的制动操作而施加的制动力而停在爬坡坡度上的爬坡坡度停车状态下,当所述制动操作检测单元检测驾驶员的制动操作为解除制动器的操作时,所述动力源的操作逐渐进入所述目标操作状态,且在所述爬坡坡度停车状态中的制动状态被逐渐解除。
2.根据权利要求1所述的车辆,其中所述爬坡坡度驱动控制是如下控制,在所述爬坡坡度停车状态中保持施加到所述第二轴的制动力,并经由对施加到所述第一轴的制动力进行解除的中间制动力保持保持状态而解除在所述爬坡坡度停车状态中的所述制动状态。
3.根据权利要求2所述的车辆,其中所述爬坡坡度驱动控制是如下控制,当在所述爬坡坡度停车状态下检测到解除所述制动器的操作时,进入所述中间制动力保持状态,并且在所述动力源的操作状态进入到所述目标操作状态之后,解除施加到所述第二轴的所述制动力。
4.根据权利要求1所述的车辆,进一步包括检测由所述第一轴的空转引起打滑的打滑检测单元,
其中,在所述爬坡坡度驱动控制执行过程中,当所述打滑检测单元检测到打滑时,所述控制模块执行控制以进入所述爬坡坡度停车状态,并且禁止执行所述爬坡坡度驱动控制。
5.根据权利要求4所述的车辆,其中,当在禁止执行所述爬坡坡度驱动控制的同时所述车辆移动或所述车辆的行驶方向被改变时,所述控制模块解除对执行所述爬坡坡度驱动控制的禁止。
6.根据权利要求1所述的车辆,进一步包括检测所述第二轴转动的转动检测单元,
其中,在执行所述爬坡坡度驱动控制过程中,当所述转动检测单元检测到所述第二轴相对于正向反向转动时,所述控制模块执行控制以进入所述爬坡坡度停车状态,并且禁止执行所述爬坡坡度驱动控制。
7.根据权利要求6所述的车辆,其中,当在禁止执行所述爬坡坡度驱动控制的同时所述车辆移动或所述车辆的行驶方向被改变时,所述控制模块解除对执行所述爬坡坡度驱动控制的禁止。
8.根据权利要求1所述的车辆,进一步包括检测驾驶员加速器操作的加速器操作检测单元,
其中,当所述加速器操作检测单元检测到加速器操作时,所述控制模块执行对所述制动力施加单元进行控制的加速器操作控制,使得解除施加到所述第一轴的制动力和施加到所述第二轴的制动力。
9.根据权利要求1所述的车辆,进一步包括可向所述第二轴输入并从所述第二轴输出动力的电机,
其中,所述控制模块基于所述驾驶员的加速器操作控制所述电机。
10.根据权利要求9所述的车辆,其中,当所述动力源的操作状态进入所述目标操作状态时,所述控制模块执行控制,使得动力从所述电机输出。
11.一种在爬坡坡度上停车的车辆控制方法,所述车辆包括:能够向第一轴输出动力的动力源;能够独立地调节施加到所述第一轴的制动力和施加到不同于所述第一轴的第二轴的制动力的制动力施加单元,所述控制方法包括以下步骤:
(a)设定目标操作状态,所述目标操作状态是从通过驾驶员的制动操作所述车辆停在爬坡坡度上的爬坡坡度停车状态起,到解除所述驾驶员的制动操作为止,用于向所述第一轴输出基于道路坡度的驱动力的所述动力源的操作状态;和
(b)执行对所述动力源和所述制动力施加单元进行控制的爬坡坡度驱动控制,使得当解除所述驾驶员的制动操作时,所述动力源的操作状态逐渐地进入所述目标操作状态,并且通过所述驾驶员的制动操作的制动状态逐渐被解除。
12.根据权利要求11所述的车辆控制方法,其中所述步骤(b)进行控制,以在所述爬坡坡度停车状态中保持施加到所述第二轴的制动力,并经由对施加到所述第一轴的制动力进行解除的中间制动力保持保持状态而解除在所述爬坡坡度停车状态中的所述制动状态。
13.根据权利要求11所述的车辆控制方法,其中所述步骤(b)进行控制,以当在所述爬坡坡度停车状态下检测到解除所述制动器的操作时,进入所述中间制动力保持状态,并且在所述动力源的操作状态进入到所述目标操作状态之后,解除施加到所述第二轴的所述制动力。
14.根据权利要求11所述的车辆控制方法,进一步包括检测由所述第一轴的空转引起打滑的打滑检测单元,
其中,所述步骤(b)是在所述爬坡坡度驱动控制执行过程中,当所述第一轴的空转引起打滑时,进行控制以进入所述爬坡坡度停车状态的步骤,所述步骤(b)还禁止执行所述爬坡坡度驱动控制。
15.根据权利要求14所述的车辆控制方法,其中当在所述爬坡坡度驱动控制的执行被禁止的同时所述车辆移动或所述车辆的行驶方向被改变时,所述步骤(b)解除对执行所述爬坡坡度驱动控制的禁止。
16.根据权利要求11所述的车辆控制方法,其中在执行所述爬坡坡度驱动控制过程中,当所述第二轴相对于正向反向转动时,所述步骤(b)执行控制以进入所述爬坡坡度停车状态,并且禁止执行所述爬坡坡度驱动控制。
17.根据权利要求16所述的车辆控制方法,其中当在所述爬坡坡度驱动控制的执行被禁止的同时所述车辆移动或所述车辆的行驶方向被改变时,所述步骤(b)解除对执行所述爬坡坡度驱动控制的禁止。
18.根据权利要求11所述的车辆控制方法,所述车辆进一步包括检测驾驶员加速器操作的加速器操作检测单元,
其中所述步骤(b)是当所述驾驶员执行所述加速器操作时,控制所述制动力施加单元,使得解除施加到所述第一轴的制动力和施加到所述第二轴的制动力的步骤。
CNB2006101118449A 2005-08-26 2006-08-25 车辆和车辆的控制方法 Expired - Fee Related CN100540374C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005245960A JP2007055536A (ja) 2005-08-26 2005-08-26 自動車およびその制御方法
JP2005245960 2005-08-26

Publications (2)

Publication Number Publication Date
CN1919669A true CN1919669A (zh) 2007-02-28
CN100540374C CN100540374C (zh) 2009-09-16

Family

ID=37715667

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2006101118449A Expired - Fee Related CN100540374C (zh) 2005-08-26 2006-08-25 车辆和车辆的控制方法

Country Status (4)

Country Link
US (1) US7512474B2 (zh)
JP (1) JP2007055536A (zh)
CN (1) CN100540374C (zh)
DE (1) DE102006000422B4 (zh)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101376334A (zh) * 2007-08-28 2009-03-04 福特环球技术公司 防止混合动力电动车辆倒溜
CN101367339B (zh) * 2007-08-16 2013-01-23 福特环球技术公司 混合动力电动车辆的倒溜控制
CN101372207B (zh) * 2007-08-23 2013-01-23 福特环球技术公司 在倾斜表面上停止混合动力电动车辆
CN101790478B (zh) * 2007-08-02 2013-03-20 雷诺股份公司 用于辅助斜坡起步的方法
CN101865741B (zh) * 2008-12-29 2013-05-22 通用汽车环球科技运作公司 基于传动系扭矩传感器检测车辆移动的系统和方法
CN103661356A (zh) * 2012-09-13 2014-03-26 三菱自动车工业株式会社 车辆控制装置
CN104002796A (zh) * 2013-02-27 2014-08-27 福特环球技术公司 用于控制车辆的方法
CN104343952A (zh) * 2013-08-08 2015-02-11 本田技研工业株式会社 车辆的控制装置
CN104554271A (zh) * 2014-12-08 2015-04-29 昆明理工大学 一种基于参数估计误差的路面坡度和汽车状态参数联合估计方法
WO2016150364A1 (en) * 2015-03-25 2016-09-29 Byd Company Limited Hybrid electric vehicle, drive control method and device of the same
CN104343953B (zh) * 2013-07-26 2017-04-12 通用汽车环球科技运作有限责任公司 具有徐变控制干涉功能的变速器
CN107150678A (zh) * 2016-03-02 2017-09-12 丰田自动车株式会社 包括行驶马达的车辆
CN108367745A (zh) * 2015-12-14 2018-08-03 罗伯特·博世有限公司 脱开电动马达促动的第一制动装置的方法、车辆的制动系统、它的控制设备和具有它的车辆
CN109605376A (zh) * 2019-01-11 2019-04-12 北京猎户星空科技有限公司 一种机器人控制方法、装置、设备及介质
CN110209062A (zh) * 2019-06-04 2019-09-06 三一重机有限公司 挖掘机装卸控制方法及装置
CN112113777A (zh) * 2020-09-15 2020-12-22 中国第一汽车股份有限公司 一种坡度信号禁用方法、坡度信号禁用装置及车辆
CN112455424A (zh) * 2020-12-10 2021-03-09 上海馨联动力系统有限公司 一种混合动力汽车的爬坡工况识别方法
CN113266501A (zh) * 2021-06-17 2021-08-17 一汽解放青岛汽车有限公司 混合动力汽车的发动机启动控制方法、车辆及存储介质
CN114867648A (zh) * 2019-12-24 2022-08-05 株式会社爱德克斯 制动控制装置

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100836365B1 (ko) * 2006-10-19 2008-06-09 현대자동차주식회사 스타터와 isg를 구비한 차량의 엔진 시동 방법
JP5408855B2 (ja) * 2007-08-28 2014-02-05 株式会社デンソー 車両用制御装置及び制御システム
WO2009037138A1 (de) * 2007-09-13 2009-03-26 Robert Bosch Gmbh Verfahren zur anfahrunterstützung bei einem kraftfahrzeug
DE102007046307A1 (de) * 2007-09-27 2009-04-02 Robert Bosch Gmbh Anfahrassistenzsystem mit variabler Bedingung für das Lösen der Bremse
JP5211921B2 (ja) * 2008-07-31 2013-06-12 株式会社アドヴィックス 制動力保持制御装置
JP5503128B2 (ja) * 2008-09-03 2014-05-28 日立オートモティブシステムズ株式会社 車両発進補助装置
JP5137897B2 (ja) 2009-05-20 2013-02-06 本田技研工業株式会社 車両の走行制御装置
JP5143100B2 (ja) * 2009-09-14 2013-02-13 日立オートモティブシステムズ株式会社 車両制御装置
CA2774251A1 (en) 2009-09-15 2011-03-24 Consortium De Recherche Brp-Universite De Sherbrooke S.E.N.C. Method of controlling a hydraulic continuously variable transmission
US8798882B2 (en) 2009-09-15 2014-08-05 Consortium de Recherche BRP—Universite de Sherbrooke S.E.N.C. Method of controlling a hydraulic continuously variable transmission
US9457811B2 (en) * 2009-09-17 2016-10-04 Ford Global Technologies, Llc Brake assisted vehicle engine restart on a road grade
FR2954255B1 (fr) * 2009-12-23 2012-02-03 Peugeot Citroen Automobiles Sa Procede et dispositif pour obtenir un decollage a forte charge de vehicules hybrides
DE102010062498A1 (de) * 2010-12-07 2012-06-14 Robert Bosch Gmbh Verfahren zum Lösen einer Feststellbremse bei einem Anfahrvorgang
WO2013051627A1 (ja) * 2011-10-07 2013-04-11 ヤマハ発動機株式会社 車両の制御装置、車両及び原動機
JP5430732B2 (ja) * 2012-11-13 2014-03-05 本田技研工業株式会社 車両の走行制御装置
JP6110675B2 (ja) * 2013-02-01 2017-04-05 富士重工業株式会社 車両用変速制御装置
EP2979940B1 (en) * 2013-03-29 2020-08-05 Autoliv Nissin Brake Systems Japan Co., Ltd. Vehicle brake fluid pressure control device
WO2014157161A1 (ja) * 2013-03-29 2014-10-02 日信工業株式会社 車両用ブレーキ液圧制御装置
JP5798153B2 (ja) * 2013-06-12 2015-10-21 日信工業株式会社 車両用ブレーキ液圧制御装置
US9352741B2 (en) * 2013-08-15 2016-05-31 GM Global Technology Operations LLC Method and apparatus for controlling creep torque in a powertrain system
US9327710B2 (en) * 2013-09-12 2016-05-03 Ford Global Technologies, Llc Methods and systems for operating a stop/start engine
GB2523203B (en) * 2014-02-18 2017-01-11 Jaguar Land Rover Ltd Control System and method
CN204610119U (zh) * 2015-03-12 2015-09-02 浙江吉利控股集团有限公司 用于串联式混合动力车辆的点火系统
JP2017085709A (ja) * 2015-10-23 2017-05-18 三菱自動車工業株式会社 四輪駆動電気自動車の発進制御機構
TWI629194B (zh) * 2016-01-22 2018-07-11 力能科技有限公司 電動車
GB2577090B (en) * 2018-09-13 2020-12-30 Jaguar Land Rover Ltd Powertrain control method and apparatus
WO2022004442A1 (ja) * 2020-06-30 2022-01-06 日立Astemo上田株式会社 車両用ブレーキ液圧制御装置

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6144060A (ja) * 1984-08-08 1986-03-03 Akebono Brake Chuo Gijutsu Kenkyusho:Kk 車両の発進時におけるブレーキ油圧制御方法
US4717207A (en) * 1985-06-03 1988-01-05 Nissan Motor Co., Ltd. Booster unit for moving a vehicle on a slope and method of controlling the same
KR930004579B1 (ko) * 1988-11-09 1993-06-01 미쯔비시 덴끼 가부시기가이샤 완속 주행장치
JPH02299959A (ja) * 1989-05-16 1990-12-12 Toyota Motor Corp 車両用登坂路発進制御装置
US5450324A (en) * 1993-01-07 1995-09-12 Ford Motor Company Electric vehicle regenerative antiskid braking and traction control system
JP3259478B2 (ja) * 1993-10-29 2002-02-25 トヨタ自動車株式会社 車輪スリップ制御装置
DE19611360C2 (de) * 1996-03-22 1998-01-29 Daimler Benz Ag Einrichtung zur Betätigung der Bremsanlage eines Straßenfahrzeuges
JPH11124018A (ja) * 1997-10-23 1999-05-11 Jkc Truck Brake Systems:Kk 坂道発進補助装置を備えたブレーキ制御システム
EP1023546B1 (de) 1997-10-17 2003-01-08 Continental Teves AG & Co. oHG Verfahren und vorrichtung zum ermitteln des fahrzeugantriebsmoments beim anfahren eines fahrzeugs, zum ermitteln einer extern verursachten, ein fahrzeug antreibenden oder bremsenden grösse sowie zum unterstützen des anfahrens am berg
DE19941482B4 (de) * 1998-09-30 2017-11-09 Robert Bosch Gmbh Vorrichtung und Verfahren zur Verhinderung des Rückwärtsrollens eines an einem Hang befindlichen Fahrzeuges
JP3752872B2 (ja) * 1999-02-18 2006-03-08 三菱ふそうトラック・バス株式会社 坂道発進補助装置
DE19917437B4 (de) 1999-04-17 2007-09-20 Robert Bosch Gmbh Verfahren und Vorrichtung zur Steuerung der Bremsanlage eines Fahrzeugs
JP3846113B2 (ja) 1999-07-09 2006-11-15 トヨタ自動車株式会社 車両の駆動源制御装置
US7032697B2 (en) 2002-05-30 2006-04-25 Hyeongcheol Lee Drive control system for vehicles with an auxiliary driving system
DE10248813A1 (de) 2002-10-19 2004-06-09 Wabco Gmbh & Co. Ohg Verfahren für die Steuerung einer Rollsperre für ein Fahrzeug
JP2006505454A (ja) 2002-11-09 2006-02-16 ダイムラークライスラー・アクチェンゲゼルシャフト 車両の少なくとも1つのホイールブレーキ装置を制御する方法及び装置
DE10306362A1 (de) 2002-11-09 2004-05-27 Daimlerchrysler Ag Verfahren und Vorrichtung zur Ansteuerung wenigstens einer Radbremseinrichtung eines Fahrzeugs
JP4144353B2 (ja) 2002-12-27 2008-09-03 三菱ふそうトラック・バス株式会社 車両の制動補助装置
JP2005081964A (ja) * 2003-09-08 2005-03-31 Mazda Motor Corp 電動パーキングブレーキシステム
JP2005088787A (ja) 2003-09-18 2005-04-07 Nsk Ltd ブレーキ制御装置

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101790478B (zh) * 2007-08-02 2013-03-20 雷诺股份公司 用于辅助斜坡起步的方法
CN101367339B (zh) * 2007-08-16 2013-01-23 福特环球技术公司 混合动力电动车辆的倒溜控制
CN101372207B (zh) * 2007-08-23 2013-01-23 福特环球技术公司 在倾斜表面上停止混合动力电动车辆
CN101376334B (zh) * 2007-08-28 2013-07-17 福特环球技术公司 防止混合动力电动车辆倒溜
CN101376334A (zh) * 2007-08-28 2009-03-04 福特环球技术公司 防止混合动力电动车辆倒溜
CN101865741B (zh) * 2008-12-29 2013-05-22 通用汽车环球科技运作公司 基于传动系扭矩传感器检测车辆移动的系统和方法
CN103661356A (zh) * 2012-09-13 2014-03-26 三菱自动车工业株式会社 车辆控制装置
CN104002796A (zh) * 2013-02-27 2014-08-27 福特环球技术公司 用于控制车辆的方法
CN104343953B (zh) * 2013-07-26 2017-04-12 通用汽车环球科技运作有限责任公司 具有徐变控制干涉功能的变速器
CN104343952A (zh) * 2013-08-08 2015-02-11 本田技研工业株式会社 车辆的控制装置
CN104554271A (zh) * 2014-12-08 2015-04-29 昆明理工大学 一种基于参数估计误差的路面坡度和汽车状态参数联合估计方法
WO2016150364A1 (en) * 2015-03-25 2016-09-29 Byd Company Limited Hybrid electric vehicle, drive control method and device of the same
CN108367745A (zh) * 2015-12-14 2018-08-03 罗伯特·博世有限公司 脱开电动马达促动的第一制动装置的方法、车辆的制动系统、它的控制设备和具有它的车辆
CN108367745B (zh) * 2015-12-14 2020-12-01 罗伯特·博世有限公司 脱开电动马达促动的第一制动装置的方法、车辆的制动系统、它的控制设备和具有它的车辆
CN107150678A (zh) * 2016-03-02 2017-09-12 丰田自动车株式会社 包括行驶马达的车辆
CN109605376A (zh) * 2019-01-11 2019-04-12 北京猎户星空科技有限公司 一种机器人控制方法、装置、设备及介质
CN110209062A (zh) * 2019-06-04 2019-09-06 三一重机有限公司 挖掘机装卸控制方法及装置
CN114867648A (zh) * 2019-12-24 2022-08-05 株式会社爱德克斯 制动控制装置
CN114867648B (zh) * 2019-12-24 2024-04-16 株式会社爱德克斯 制动控制装置
CN112113777A (zh) * 2020-09-15 2020-12-22 中国第一汽车股份有限公司 一种坡度信号禁用方法、坡度信号禁用装置及车辆
CN112113777B (zh) * 2020-09-15 2022-08-23 中国第一汽车股份有限公司 一种坡度信号禁用方法、坡度信号禁用装置及车辆
CN112455424A (zh) * 2020-12-10 2021-03-09 上海馨联动力系统有限公司 一种混合动力汽车的爬坡工况识别方法
CN113266501A (zh) * 2021-06-17 2021-08-17 一汽解放青岛汽车有限公司 混合动力汽车的发动机启动控制方法、车辆及存储介质

Also Published As

Publication number Publication date
DE102006000422A1 (de) 2007-03-01
DE102006000422B4 (de) 2009-10-22
CN100540374C (zh) 2009-09-16
US7512474B2 (en) 2009-03-31
US20070050120A1 (en) 2007-03-01
JP2007055536A (ja) 2007-03-08

Similar Documents

Publication Publication Date Title
CN100540374C (zh) 车辆和车辆的控制方法
CN101189420B (zh) 机动车辆和机动车辆的控制方法
CN101365613B (zh) 内燃机装置及其控制方法、动力输出装置
CN101267971B (zh) 混合动力车及其控制方法
US7877184B2 (en) Control apparatus and control method for hybrid vehicle
US6581373B2 (en) Vehicle with reduced emission of harmful component
US6434475B2 (en) Automatic stop/restart device of vehicle engine
US8068946B2 (en) Hybrid vehicle and control method thereof
JP3255012B2 (ja) ハイブリッド車
US9896102B2 (en) Vehicle controller
CN1991153A (zh) 动力输出装置和安装该装置的车辆以及该装置的控制方法
CN105313888A (zh) 用于启动混合动力车辆的发动机的方法和系统
CN101722953A (zh) 用于起停混合动力车辆的爬行模式推进
JP6637481B2 (ja) 車両用制御装置
JP4229104B2 (ja) 自動車およびその制御方法
US10800400B2 (en) Control system for hybrid vehicle
CN1847643A (zh) 汽车及其控制方法
JP4238846B2 (ja) 車両およびその制御方法並びに動力出力装置
JP3758419B2 (ja) アイドルストップ車両
JP2003146115A (ja) 有段変速機を備えたハイブリッド車両
Tamai et al. Saturn engine stop-start system with an automatic transmission
CN1876420A (zh) 混合动力汽车传动系统
US6717378B2 (en) Motor output control system and method for hybrid vehicle
CN108238041B (zh) 混合动力车辆
JP2004270512A (ja) ハイブリッド車両の制御装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090916

Termination date: 20110825