WO2022004442A1 - 車両用ブレーキ液圧制御装置 - Google Patents

車両用ブレーキ液圧制御装置 Download PDF

Info

Publication number
WO2022004442A1
WO2022004442A1 PCT/JP2021/023296 JP2021023296W WO2022004442A1 WO 2022004442 A1 WO2022004442 A1 WO 2022004442A1 JP 2021023296 W JP2021023296 W JP 2021023296W WO 2022004442 A1 WO2022004442 A1 WO 2022004442A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
brake fluid
fluid pressure
control
stopped
Prior art date
Application number
PCT/JP2021/023296
Other languages
English (en)
French (fr)
Inventor
佳奈子 小暮
Original Assignee
日立Astemo上田株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立Astemo上田株式会社 filed Critical 日立Astemo上田株式会社
Priority to JP2022533868A priority Critical patent/JPWO2022004442A1/ja
Priority to US18/003,716 priority patent/US20230264662A1/en
Publication of WO2022004442A1 publication Critical patent/WO2022004442A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/12Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/66Electrical control in fluid-pressure brake systems
    • B60T13/662Electrical control in fluid-pressure brake systems characterised by specified functions of the control system components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/12Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger
    • B60T7/122Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger for locking of reverse movement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/12Lateral speed
    • B60W2520/125Lateral acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/14Yaw
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/18Braking system
    • B60W2710/182Brake pressure, e.g. of fluid or between pad and disc

Definitions

  • This disclosure relates to a vehicle brake fluid pressure control device.
  • the brake fluid pressure control device for a vehicle that can execute the holding control at the time of stopping to hold the brake fluid pressure when it is determined that the vehicle has stopped, and is a vehicle brake fluid pressure control device during the holding control at the time of stopping of the vehicle.
  • a vehicle brake fluid pressure control device that releases the holding control when the vehicle is stopped even if the operating member is not operated.
  • the holding control when the vehicle is stopped is released without operating the operating member, so that the holding control when the vehicle is stopped can be quickly released.
  • the first threshold value is set to a value corresponding to the road surface gradient so that the turntable is not installed in common sense, even if the vehicle has a lateral behavior amount on the turntable, the driver intends to do so. On the contrary, it is possible to suppress a decrease in brake fluid pressure.
  • the first condition or the lateral behavior amount of the vehicle is equal to or more than the specified value and the operation of the operating member is performed during the holding control when the vehicle is stopped.
  • the second condition including the fact that the above is performed may be satisfied, the holding control at the time of stopping may be canceled.
  • the holding control when the vehicle is stopped is not released unless the operation member is operated. Therefore, for example, on a turntable of a multi-storey car park. Even if the amount of lateral movement occurs in the vehicle, it is possible to suppress a decrease in brake fluid pressure contrary to the driver's intention. If the vehicle slides down while rotating during stop control on a low ⁇ road surface such as an ice road, the vehicle will generate lateral behavior and the driver will try to rebuild the vehicle. By operating the member, the holding control when the vehicle is stopped is released and the brake fluid pressure is lowered, so that the vehicle can be rebuilt.
  • the second condition may further include that the absolute value of the front-rear acceleration applied to the vehicle is equal to or higher than the second threshold value.
  • the first threshold value may be larger than the second threshold value.
  • the second condition includes the condition for operating the operating member, even if the second threshold value is set to a value corresponding to a small road surface gradient where, for example, a turntable can be sufficiently installed, an error in the turntable is made. The judgment can be suppressed.
  • the first threshold value may be set based on the estimated road surface gradient.
  • the vehicle brake fluid pressure control device 100 is for appropriately controlling the braking force (brake fluid pressure) applied to each wheel W of the vehicle CR.
  • the vehicle brake fluid pressure control device 100 mainly includes a hydraulic pressure unit 10 provided with an oil passage (hydraulic passage) and various parts, and a control unit 20 for appropriately controlling various parts in the hydraulic pressure unit 10. Be prepared for.
  • a wheel speed sensor 91, a steering angle sensor 92, a lateral acceleration sensor 93, a yaw rate sensor 94, and an acceleration sensor 95 are connected to the control unit 20.
  • the wheel speed sensor 91 detects the wheel speed of the wheel W.
  • the steering angle sensor 92 detects the steering angle of the steering ST as an example of the operating member.
  • the lateral acceleration sensor 93 detects the acceleration acting in the lateral direction of the vehicle CR.
  • the yaw rate sensor 94 detects the turning angular velocity (yaw rate) of the vehicle CR as a lateral behavior amount of the vehicle CR.
  • the acceleration sensor 95 detects the acceleration of the vehicle CR in the front-rear direction. The detection results of the sensors 91 to 95 are output to the control unit 20.
  • the control unit 20 includes, for example, a CPU, RAM, ROM, and an input / output circuit, and includes a wheel speed sensor 91, a steering angle sensor 92, a lateral acceleration sensor 93, a yaw rate sensor 94, an acceleration sensor 95, and a pressure sensor 8 (described later). Control is executed by performing each arithmetic processing based on the input from (see FIG. 2) and the programs and data stored in the ROM. Further, the wheel cylinder H is a liquid that converts the brake fluid pressure generated by the master cylinder MC and the vehicle brake hydraulic pressure control device 100 into the operating force of the wheel brakes FR, FL, RR, RL provided on each wheel W. It is a pressure device, and each is connected to the hydraulic unit 10 of the vehicle brake fluid pressure control device 100 via a pipe.
  • the hydraulic unit 10 of the vehicle brake hydraulic pressure control device 100 includes a master cylinder MC, which is a hydraulic pressure source that generates brake hydraulic pressure according to the pedaling force applied to the brake pedal BP by the driver. It is arranged between the wheel brakes FR, FL, RR, and RL.
  • the hydraulic pressure unit 10 is composed of a pump body 10a, which is a substrate having an oil passage through which brake fluid flows, an inlet valve 1 and an outlet valve 2 arranged in a plurality on the oil passage.
  • the two output ports M1 and M2 of the master cylinder MC are connected to the inlet port 121 of the pump body 10a, and the outlet port 122 of the pump body 10a is connected to each wheel brake FR, FL, RR, RL.
  • the oil passage starting from the output port M1 leads to the wheel brake FL on the left side of the front wheel and the wheel brake RR on the right side of the rear wheel.
  • the oil passage starting from the output port M2 leads to the wheel brake FR on the right side of the front wheel and the wheel brake RL on the left side of the rear wheel.
  • the oil passage starting from the output port M1 will be referred to as a "first system”
  • the oil passage starting from the output port M2 will be referred to as a "second system”.
  • the hydraulic pressure unit 10 is provided with two control valve units V corresponding to the wheel brakes FL and RR in the first system thereof, and similarly, the second system thereof corresponds to the wheel brakes RL and FR. Therefore, two control valve units V are provided. Further, the hydraulic pressure unit 10 is provided with a reservoir 3, a pump 4, an orifice 5a, a pressure regulating valve (regulator) R, and a suction valve 7 in each of the first system and the second system. Further, the hydraulic pressure unit 10 is provided with a common motor 9 for driving the pump 4 of the first system and the pump 4 of the second system. The motor 9 is a motor capable of controlling the rotation speed, and in the present embodiment, the rotation speed is controlled by duty control. Further, in the present embodiment, the pressure sensor 8 is provided only in the second system.
  • the oil passage from the output ports M1 and M2 of the master cylinder MC to each pressure regulating valve R will be referred to as “output hydraulic passage A1", and the oil from the pressure regulating valve R of the first system to the wheel brakes FL and RR will be referred to.
  • the oil passages from the road and the pressure regulating valve R of the second system to the wheel brakes RL and FR are referred to as “wheel hydraulic passages B", respectively.
  • the oil passage from the output hydraulic passage A1 to the pump 4 is referred to as “suction hydraulic passage C”
  • the oil passage from the pump 4 to the wheel hydraulic passage B is referred to as “discharge hydraulic passage D"
  • the oil passage from the wheel hydraulic passage B to the suction hydraulic passage C is referred to as an "open passage E".
  • the control valve unit V is a valve that controls the flow of hydraulic pressure from the master cylinder MC or the pump 4 to the wheel brakes FL, RR, RL, FR (specifically, the wheel cylinder H), and controls the pressure of the wheel cylinder H. Can be increased, retained or decreased. Therefore, the control valve unit V includes an inlet valve 1, an outlet valve 2, and a check valve 1a.
  • the inlet valve 1 is a normally open type proportional solenoid valve provided between each wheel brake FL, RR, RL, FR and the master cylinder MC, that is, in the wheel hydraulic path B. Therefore, the differential pressure between the upstream and downstream of the inlet valve 1 can be adjusted according to the value of the drive current flowing through the inlet valve 1.
  • the outlet valve 2 is a normally closed solenoid valve interposed between each wheel brake FL, RR, RL, FR and each reservoir 3, that is, between the wheel hydraulic path B and the open path E.
  • the outlet valve 2 is normally closed, but when the wheel W is about to lock, it is opened by the control unit 20, so that the brake fluid pressure acting on each wheel brake FL, FR, RL, RR is applied. Let it escape to each reservoir 3.
  • the check valve 1a is connected to each inlet valve 1 in parallel.
  • This check valve 1a is a valve that allows only the inflow of brake fluid from each wheel brake FL, FR, RL, RR side to the master cylinder MC side, and is an inlet when the input from the brake pedal BP is released. Even when the valve 1 is closed, the inflow of brake fluid from each wheel brake FL, FR, RL, RR side to the master cylinder MC side is allowed.
  • the reservoir 3 is provided in the open path E, and has a function of temporarily storing the brake fluid that is released when each outlet valve 2 is opened. Further, a check valve 3a that allows only the flow of brake fluid from the reservoir 3 side to the pump 4 side is interposed between the reservoir 3 and the pump 4.
  • the pump 4 is interposed between the suction hydraulic path C leading to the output hydraulic path A1 and the discharge hydraulic path D leading to the wheel hydraulic path B, and sucks the brake fluid stored in the reservoir 3. It has a function of discharging to the discharge liquid pressure path D.
  • the brake fluid absorbed by the reservoir 3 can be returned to the master cylinder MC, and the brake fluid pressure is generated regardless of whether or not the brake pedal BP is operated, and the wheel brakes FL, RR, RL, and FR are generated. Braking force can be generated.
  • the amount of brake fluid discharged by the pump 4 depends on the rotation speed (duty ratio) of the motor 9. That is, as the rotation speed (duty ratio) of the motor 9 increases, the amount of brake fluid discharged by the pump 4 also increases.
  • the orifice 5a attenuates the pulsation of the pressure of the brake fluid discharged from the pump 4.
  • the pressure regulating valve R normally allows the flow of brake fluid from the output hydraulic path A1 to the wheel hydraulic path B, and when the pressure on the wheel cylinder H side is increased by the brake hydraulic pressure generated by the pump 4, this is used. It has a function of adjusting the pressure on the wheel hydraulic path B and the wheel cylinder H side to a set value or less while shutting off the flow, and is configured to include a switching valve 6 and a check valve 6a.
  • the switching valve 6 is a normally open type proportional solenoid valve interposed between the output hydraulic path A1 leading to the master cylinder MC and the wheel hydraulic path B leading to each wheel brake FL, FR, RL, RR. ..
  • the valve body of the switching valve 6 is urged in the valve closing direction by an electromagnetic force corresponding to the applied current, and the pressure in the wheel hydraulic path B is higher than the pressure in the output hydraulic path A1.
  • a predetermined value this predetermined value depends on the applied current
  • the brake fluid escapes from the wheel hydraulic path B toward the output hydraulic path A1 so that the brake fluid escapes to the wheel hydraulic path B side.
  • the pressure is adjusted to a predetermined pressure.
  • the differential pressure between the upstream and downstream of the switching valve 6 is adjusted, and the wheel hydraulic path is adjusted.
  • the pressure of B can be adjusted below the set value.
  • the check valve 6a is connected in parallel to each switching valve 6.
  • the check valve 6a is a one-way valve that allows the flow of brake fluid from the output hydraulic path A1 to the wheel hydraulic path B.
  • the suction valve 7 is a normally closed solenoid valve provided in the suction hydraulic passage C, and switches between a state in which the suction hydraulic passage C is opened and a state in which the suction hydraulic passage C is closed.
  • the suction valve 7 is opened under the control of the control unit 20 when, for example, the pump 4 pressurizes the hydraulic pressure in each of the wheel brakes FL, FR, RL, and RR.
  • the pressure sensor 8 detects the brake fluid pressure of the output hydraulic path A1, and the detection result is input to the control unit 20.
  • the control unit 20 has a control valve unit V, a pressure regulating valve R (switching valve 6), and a suction valve 7 in the hydraulic pressure unit 10 based on the signals input from the sensors 91 to 95, 8.
  • the operation of each wheel brake FL, RR, RL, and FR is controlled by controlling the opening / closing operation and the operation of the motor 9.
  • the control unit 20 includes a behavior determination unit 21, an operation determination unit 22, a hydraulic pressure control unit 23, a valve drive unit 24, a motor drive unit 25, and a storage unit 26.
  • the behavior determination unit 21 has a function of determining whether or not the absolute value of the yaw rate Y output from the yaw rate sensor 94 (hereinafter, also simply referred to as “yotarate Y”) is equal to or higher than the specified value Yth. Then, when the behavior determination unit 21 determines that the yaw rate Y is equal to or higher than the specified value Yth, the behavior determination unit 21 outputs a yaw rate generation signal indicating that to the hydraulic pressure control unit 23.
  • the operation determination unit 22 determines whether or not the steering ST has been operated by determining whether or not the steering angle ⁇ (absolute value) output from the steering angle sensor 92 is equal to or greater than the steering angle specified value ⁇ th. Has the function of Then, when the operation determination unit 22 determines that the operation has been performed, the operation determination unit 22 outputs an operation signal indicating that to the hydraulic pressure control unit 23.
  • the above-mentioned specified value Yth and steering angle specified value ⁇ th may be appropriately set by experiments, simulations, or the like.
  • the hydraulic pressure control unit 23 brakes in a plurality of types of control modes such as a known skid suppression control mode, a traction control mode, and a stop hold control.
  • the stop control is a mode in which the brake fluid pressure is held when the vehicle is stopped.
  • the brake fluid pressure is held according to the depression force of the brake pedal BP when the vehicle is stopped, or when the vehicle is stopped.
  • This mode refers to a mode in which the hydraulic pressure is maintained at a hydraulic pressure higher than the brake fluid pressure (hydraulic pressure boosted by the pump 4) according to the depression force of the brake pedal BP.
  • the various control modes are stored in the storage unit 26.
  • the hydraulic pressure control unit 23 determines whether or not the vehicle CR is in the skid state (sideslip state) during the holding control when the vehicle is stopped, based on the signals output from the behavior determination unit 21 and the operation determination unit 22. It has a skid determination unit 23a. Specifically, the skid determination unit 23a determines that the yaw rate Y is equal to or higher than the specified value Yth and that the absolute value G of the front-rear acceleration applied to the vehicle CR is equal to or higher than the first threshold value G1 during the holding control when the vehicle is stopped. When the first condition including is satisfied, it has a function of setting the first flag F1 indicating that skid is generated by the satisfaction of the first condition to 1.
  • the first threshold value G1 is set to a value corresponding to the road surface gradient so that the turntable is not installed in common sense. Specifically, the first threshold value G1 is preferably set to a value corresponding to a road surface gradient of 10 to 15%, and more preferably set to a value corresponding to a road surface gradient of 11 to 13%.
  • the yaw rate Y is equal to or higher than the specified value Yth
  • the steering ST is operated
  • the absolute value G of the front-rear acceleration is from the first threshold value G1 during the holding control when the vehicle is stopped.
  • the second condition including the small second threshold value G2 or more it has a function of setting the second flag F2 indicating that skid is generated by the establishment of the second condition to 1.
  • the second threshold value G2 can be set to an extremely small value without considering the installation conditions of the turntable, and can be set to a value corresponding to a road surface gradient of 5% or less, for example.
  • the hydraulic pressure control unit 23 has a function of determining whether or not the vehicle CR has stopped, and when it is determined that the vehicle CR has stopped, the holding control when the vehicle is stopped is started.
  • the method for determining whether or not the vehicle CR has stopped may be any method.
  • the vehicle body speed calculated based on the signal from the wheel speed sensor 91 is a predetermined value V1 (FIG. 7 (FIG. 7).
  • V1 FIG. 7 (FIG. 7).
  • the hydraulic pressure control unit 23 releases the vehicle stop holding control regardless of the establishment of the known release condition. It is configured as follows. That is, the hydraulic pressure control unit 23 is configured to release the holding control when the vehicle is stopped when the first condition or the second condition is satisfied during the holding control when the vehicle is stopped. In particular, the hydraulic pressure control unit 23 cancels the vehicle stop hold control when the first condition is satisfied during the vehicle stop hold control, even if the vehicle stop hold control switch and the steering ST are not operated. It is configured in.
  • the stop hold control switch is a switch for determining whether or not the stop hold control can be executed by the control unit 20.
  • the control unit 20 executes the stop hold control when the start condition of the stop hold control is satisfied. Further, when the stop hold control switch is OFF, the control unit 20 does not execute the stop hold control even if the start condition of the stop hold control is satisfied. Further, the control unit 20 cancels the stop hold control when the stop hold control switch is turned from ON to OFF during the stop hold control.
  • the known release condition includes, for example, that the start operation is performed when the shift position is "D" or "R".
  • the valve drive unit 24 is a part that controls the control valve unit V, the pressure regulating valve R, and the suction valve 7 based on the instruction of the hydraulic pressure control unit 23. Therefore, the valve drive unit 24 includes a control valve unit drive unit 24a, a pressure regulating valve drive unit 24b, and a suction valve drive unit 24c.
  • the control valve unit drive unit 24a controls the inlet valve 1 and the outlet valve 2 based on the instruction of the hydraulic pressure control unit 23 to increase, hold, or reduce the pressure. Specifically, when the pressure of the wheel cylinder H should be increased, no current flows through both the inlet valve 1 and the outlet valve 2. Then, when the pressure of the wheel cylinder H should be reduced, a signal is sent to both the inlet valve 1 and the outlet valve 2, the inlet valve 1 is closed, and the outlet valve 2 is opened, so that the brake fluid of the wheel cylinder H is liquid. Is discharged from the outlet valve 2. Further, when the pressure of the wheel cylinder H is maintained, a signal is sent to the inlet valve 1 and no current is passed through the outlet valve 2, so that both the inlet valve 1 and the outlet valve 2 are closed.
  • the pressure regulating valve drive unit 24b normally does not pass a current through the pressure regulating valve R. Then, when a drive instruction is given from the hydraulic pressure control unit 23, a current is supplied to the pressure regulating valve R by duty control according to this instruction. When a current is supplied to the pressure regulating valve R, a differential pressure corresponding to this current is formed between the master cylinder MC side of the pressure regulating valve R and the control valve unit V (wheel cylinder H) side. As a result, the hydraulic pressure in the discharge hydraulic passage D between the pressure regulating valve R and the control valve unit V is adjusted.
  • the suction valve drive unit 24c normally does not pass a current through the suction valve 7. Then, when instructed by the hydraulic pressure control unit 23, a signal is output to the suction valve 7 according to this instruction. As a result, the suction valve 7 is opened so that the brake fluid is sucked from the master cylinder MC to the pump 4.
  • the motor drive unit 25 determines the rotation speed of the motor 9 based on the instruction of the hydraulic pressure control unit 23 and drives the motor 9. That is, the motor drive unit 25 drives the motor 9 by the rotation speed control, and in the present embodiment, the rotation speed control is performed by the duty control.
  • control unit 20 constantly repeatedly executes the skid determination process shown in FIGS. 4 and 5 and the process for releasing the holding control when the vehicle is stopped shown in FIG.
  • control unit 20 first determines whether or not the vehicle is being held and controlled when the vehicle is stopped (S1). If it is determined in step S1 that the vehicle is being held and controlled when the vehicle is stopped (Yes), the control unit 20 determines whether or not the yaw rate Y applied to the vehicle CR is equal to or greater than the specified value Yth (S2).
  • step S2 determines whether or not the absolute value G of the front-back acceleration is equal to or greater than the first threshold value G1 (S3). If it is determined in step S3 that G ⁇ G1 (Yes), the control unit 20 determines that the first condition is satisfied, sets the first flag F1 to 1 (S4), and performs this control. finish.
  • control unit 20 determines No in any of steps S1 to S3, the first flag F1 is set to 0 (S5), and this control is terminated.
  • the control unit 20 first determines whether or not the vehicle is being held and controlled when the vehicle is stopped (S11). If it is determined in step S11 that the vehicle is being held and controlled when the vehicle is stopped (Yes), the control unit 20 determines whether or not the yaw rate Y applied to the vehicle CR is equal to or greater than the specified value Yth (S12).
  • step S12 determines whether or not the absolute value G of the front-back acceleration is equal to or greater than the second threshold value G2 (S13).
  • step S13 determines whether or not the steering angle ⁇ of the steering ST is equal to or greater than the steering angle specified value ⁇ th (S14).
  • step S14 If it is determined in step S14 that ⁇ ⁇ ⁇ th (Yes), the control unit 20 determines that the second condition is satisfied, sets the second flag F2 to 1 (S15), and performs this control. finish.
  • control unit 20 determines No in any of steps S11 to S14, the second flag F2 is set to 0 (S16), and the control is terminated.
  • control unit 20 first determines whether or not the vehicle is in the holding control when the vehicle is stopped (S21). If it is determined in step S21 that the vehicle is not in the holding control when the vehicle is stopped (No), the control unit 20 ends this control.
  • step S24 determines that the first flag F1 is 1 in step S22 (Yes)
  • step S24 determines that the second flag F2 is 1 in step S23 (Yes)
  • step S24 another When it is determined that the cancellation condition is satisfied (Yes), the holding control at the time of stopping is canceled (S25), and this control is terminated. If it is determined in step S24 that the other release conditions are not satisfied, the control unit 20 terminates this control as it is without canceling the holding control when the vehicle is stopped (No). That is, in this case, the holding control when the vehicle is stopped is continued.
  • FIGS. 7 and 8 control when the first condition or the second condition is satisfied during the holding control when the vehicle is stopped will be described with reference to FIGS. 7 and 8.
  • the yaw rate, steering angle, and longitudinal acceleration in FIGS. 7 and 8 are shown as absolute values for convenience. Further, the vehicle body speed is shown as a value estimated from the wheel speed.
  • the absolute value G of the front-rear acceleration applied to the vehicle CR is equal to or higher than the first threshold value G1, and the road surface is low, for example, on an ice road. On the ⁇ road surface, the vehicle CR may continue to slide while rotating without actually stopping.
  • the yaw rate Y of the specified value Yth or more is generated in the vehicle CR (time t3), so that at this time point as shown in FIGS. 7 (f) and 7 (h).
  • the first condition is satisfied, the first flag F1 becomes 1, and the holding control when the vehicle is stopped is released.
  • the brake fluid pressure drops, the wheel lock is released, and the grip force of the wheel W is restored, so that the vehicle CR can be steered. Therefore, when the driver performs a steering operation in order to regain the posture of the vehicle CR (time t4), the posture of the vehicle CR can be repositioned by the driver's operation.
  • the absolute value G of the front-rear acceleration applied to the vehicle CR is smaller than the first threshold value G1 and equal to or larger than the second threshold value G2. Therefore, when the road surface is a low ⁇ road surface such as an ice road, the vehicle CR may continue to slide while rotating without actually stopping.
  • a yaw rate Y occurs during the holding control when the vehicle is stopped (time t12 to t14), and the yaw rate Y exceeds the specified value Yth.
  • time t13 There are times (time t13).
  • the driver performs a steering operation in order to restore the posture of the vehicle CR.
  • the steering angle ⁇ exceeds the steering angle specified value ⁇ th as shown in FIG. 8 (e) (time t14), as shown in FIGS.
  • the second flag F2 becomes 1, and the holding control when the vehicle is stopped is released.
  • the holding control at the time of stopping is released without operating the steering ST, so that the holding control at the time of stopping can be quickly released.
  • the first threshold value G1 is set to a value corresponding to the road surface gradient so that the turntable is not installed in common sense, even if the yaw rate is applied to the vehicle CR on the turntable, the brake fluid is contrary to the driver's intention. The decrease in pressure can be suppressed.
  • the release of the holding control when the vehicle is stopped is determined by the second condition. Therefore, on a slope with a small slope, the absolute value G of the front-rear acceleration is the second threshold value G2 or more. Moreover, even if the yaw rate Y becomes equal to or higher than the specified value Yth, the holding control when the vehicle is stopped is not released unless the steering operation is performed. Therefore, for example, even if a yaw rate Y of a specified value Yth or more is generated in the vehicle CR on the turntable, it is possible to suppress a decrease in the brake fluid pressure contrary to the driver's intention.
  • the driver operates the steering to rebuild the vehicle CR, so that the stop control can be performed. Since it is released and the brake fluid pressure is lowered, the vehicle can be rebuilt.
  • the second condition includes the condition for operating the steering ST
  • the second threshold value G2 is set to a value corresponding to a small road surface gradient at which a turntable can be sufficiently installed
  • the turntable can be used. It is possible to suppress the misjudgment of. Further, even if the condition of the front-rear acceleration is removed from the second condition, the erroneous determination on the turntable can be suppressed depending on the operation condition of the steering ST.
  • a turntable Since a turntable is not installed on a large road surface gradient of 10% or more, it is possible to suppress erroneous judgment on the turntable by setting the first threshold value G1 to a value corresponding to the road surface gradient of 10% or more. can. Further, when the first threshold value G1 is set to a value corresponding to the road surface gradient of 11% or more, erroneous determination on the turntable can be further suppressed.
  • the first threshold value G1 By setting the first threshold value G1 to a value corresponding to a road surface gradient of 15% or less, for example, a road surface gradient of 15% or less as compared with the case where the first threshold value is set to a value corresponding to a road surface gradient larger than 15%. It is possible to suppress the sliding down of the vehicle CR in. Further, when the first threshold value G1 is set to a value corresponding to the road surface gradient of 13% or less, it is possible to suppress the vehicle from slipping down on the road surface gradient of 13% or less.
  • the embodiment can be transformed into various forms as illustrated below.
  • the yaw rate is exemplified as the lateral behavior amount of the vehicle, but for example, the lateral acceleration detected by the lateral acceleration sensor may be used.
  • the yaw rate is adopted as the amount of behavior as in the above-described embodiment, the skid state (skid state) of the vehicle can be satisfactorily determined based on the yaw rate.
  • the holding control switch when the vehicle is stopped and the steering ST are exemplified as the operating member, but the operating member may be, for example, a brake or an accelerator.
  • depressurization control (decompression control when the holding control when the vehicle is stopped is released) is performed by controlling the pressure regulating valve R, but for example, the piston in the master cylinder is moved by driving the motor.
  • the holding control at the time of stopping and the release thereof according to the present disclosure may be performed by controlling the electric booster.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Regulating Braking Force (AREA)

Abstract

停車時保持制御中においてドライバーの意図に反するブレーキ液圧の低下を抑える車両用ブレーキ液圧制御装置を開示する。車両用ブレーキ液圧制御装置は、車両が停止したと判定した場合にブレーキ液圧を保持する停車時保持制御を実行可能である。停車時保持制御中(時刻t2~t3)において、車両の横方向の挙動量(ヨーレートY)が規定値(Yth)以上であること、および、車両に加わる前後加速度の絶対値(G)が第1閾値(G1)以上であることを含む第1条件が満たされた場合には、車両を操作するための操作部材の操作がなくても、停車時保持制御を解除する(時刻t3)。

Description

車両用ブレーキ液圧制御装置
 本開示は、車両用ブレーキ液圧制御装置に関する。
 従来、例えば車両が停止した際にブレーキ液圧を保持する停車時保持制御を実行する車両用ブレーキ液圧制御装置として、停車時保持制御中に車両にヨーレートが加わるとブレーキ液圧を低下させるものが知られている(特表2006-528579号公報参照)。この技術では、アイス路等の低μ路面の坂道で停車していた車両が回転しながらずり下がると、保持されていたブレーキ液圧が低下するので、車輪のロックが解消されてドライバーの操作で車両の立て直しを図ることが可能となっている。
 しかしながら、従来のように停車時保持制御中においてヨーレートに基づいてブレーキ液圧を低下させると、例えば立体駐車場のターンテーブル上において停車した車両にターンテーブルが回転することでヨーレートが加わると、ドライバーの意図に反してブレーキ液圧が低下してしまうおそれがあった。
 停車時保持制御中においてドライバーの意図に反するブレーキ液圧の低下を抑えることができる車両用ブレーキ液圧制御装置を提供することが望まれている。
 上述の背景に鑑み、車両が停止したと判定した場合にブレーキ液圧を保持する停車時保持制御を実行可能な車両用ブレーキ液圧制御装置であって、前記停車時保持制御中において、車両の横方向の挙動量が規定値以上であること、および、車両に加わる前後加速度の絶対値が第1閾値以上であることを含む第1条件が満たされた場合には、車両を操作するための操作部材の操作がなくても、前記停車時保持制御を解除する車両用ブレーキ液圧制御装置を開示する。
 この構成によれば、第1条件が満たされた場合には、操作部材を操作しなくても停車時保持制御が解除されるので、停車時保持制御を迅速に解除することができる。また、第1閾値を、ターンテーブルが常識的に設置されないような路面勾配に対応した値に設定することで、ターンテーブル上において車両に横方向の挙動量が発生しても、ドライバーの意図に反するブレーキ液圧の低下を抑えることができる。
 また、前記車両用ブレーキ液圧制御装置は、前記停車時保持制御中において、前記第1条件、または、車両の横方向の挙動量が前記規定値以上であること、および、前記操作部材の操作が行われたことを含む第2条件が満たされた場合に、前記停車時保持制御を解除してもよい。
 これによれば、停車時保持制御中において、挙動量が規定値以上になっても、操作部材の操作が行われなければ停車時保持制御が解除されないので、例えば立体駐車場のターンテーブル上などにおいて車両に横方向の挙動量が発生しても、ドライバーの意図に反するブレーキ液圧の低下を抑えることができる。なお、アイス路等の低μ路面の坂道における停車時保持制御中において車両が回転しながらずり下がった場合には、車両に横方向の挙動量が発生するとともに、ドライバーが車両を立て直そうとして操作部材を操作することで、停車時保持制御が解除され、ブレーキ液圧が低下されるので、車両の立て直しを行うことができる。
 また、前記第2条件は、車両に加わる前後加速度の絶対値が第2閾値以上であることをさらに含んでいてもよい。
 また、前記第1閾値は、前記第2閾値より大きくてもよい。
 第2条件は、操作部材の操作の条件を含んでいるため、第2閾値を例えばターンテーブルの設置が十分あり得るような小さな路面勾配に対応した値に設定しても、ターンテーブルでの誤判定を抑えることができる。
 また、前記第1閾値は、推定された路面勾配に基づいて設定してもよい。
一実施形態に係る車両用ブレーキ液圧制御装置を備えた車両の構成図である。 車両用ブレーキ液圧制御装置のブレーキ液圧回路図である。 制御部のブロック構成図である。 第1条件を満たすかの判断処理を示すフローチャートである。 第2条件を満たすかの判断処理を示すフローチャートである。 停車時保持制御を解除するための処理を示すフローチャートである。 第1条件で停車時保持制御が解除される場合における各種パラメータの変化を示すタイムチャート(a)~(h)である。 第2条件で停車時保持制御が解除される場合における各種パラメータの変化を示すタイムチャート(a)~(h)である。
 車両用ブレーキ液圧制御装置の一実施形態について、適宜図面を参照しながら詳細に説明する。
 図1に示すように、車両用ブレーキ液圧制御装置100は、車両CRの各車輪Wに付与する制動力(ブレーキ液圧)を適宜制御するためのものである。車両用ブレーキ液圧制御装置100は、油路(液圧路)や各種部品が設けられた液圧ユニット10と、液圧ユニット10内の各種部品を適宜制御するための制御部20とを主に備えている。
 制御部20には、車輪速センサ91、操舵角センサ92、横加速度センサ93、ヨーレートセンサ94、および加速度センサ95が接続されている。車輪速センサ91は、車輪Wの車輪速度を検出する。操舵角センサ92は、操作部材の一例としてのステアリングSTの操舵角を検出する。横加速度センサ93は、車両CRの横方向に働く加速度を検出する。ヨーレートセンサ94は、車両CRの横方向の挙動量としての車両CRの旋回角速度(ヨーレート)を検出する。加速度センサ95は、車両CRの前後方向の加速度を検出する。各センサ91~95の検出結果は、制御部20に出力される。
 制御部20は、例えば、CPU、RAM、ROMおよび入出力回路を備えており、車輪速センサ91、操舵角センサ92、横加速度センサ93、ヨーレートセンサ94および加速度センサ95や後述する圧力センサ8(図2参照)からの入力と、ROMに記憶されたプログラムやデータに基づいて各演算処理を行うことによって、制御を実行する。また、ホイールシリンダHは、マスタシリンダMCおよび車両用ブレーキ液圧制御装置100により発生されたブレーキ液圧を各車輪Wに設けられた車輪ブレーキFR,FL,RR,RLの作動力に変換する液圧装置であり、それぞれ配管を介して車両用ブレーキ液圧制御装置100の液圧ユニット10に接続されている。
 図2に示すように、車両用ブレーキ液圧制御装置100の液圧ユニット10は、運転者がブレーキペダルBPに加える踏力に応じたブレーキ液圧を発生する液圧源であるマスタシリンダMCと、車輪ブレーキFR,FL,RR,RLとの間に配置されている。液圧ユニット10は、ブレーキ液が流通する油路を有する基体であるポンプボディ10a、油路上に複数配置された入口弁1、出口弁2などから構成されている。マスタシリンダMCの二つの出力ポートM1,M2は、ポンプボディ10aの入口ポート121に接続され、ポンプボディ10aの出口ポート122が、各車輪ブレーキFR,FL,RR,RLに接続されている。そして、通常時はポンプボディ10a内の入口ポート121から出口ポート122までが連通した油路となっていることで、ブレーキペダルBPの踏力が各車輪ブレーキFL,RR,RL,FRに伝達されるようになっている。
 ここで、出力ポートM1から始まる油路は、前輪左側の車輪ブレーキFLと後輪右側の車輪ブレーキRRに通じている。出力ポートM2から始まる油路は、前輪右側の車輪ブレーキFRと後輪左側の車輪ブレーキRLに通じている。なお、以下では、出力ポートM1から始まる油路を「第一系統」と称し、出力ポートM2から始まる油路を「第二系統」と称する。
 液圧ユニット10には、その第一系統に各車輪ブレーキFL,RRに対応して二つの制御弁ユニットVが設けられており、同様に、その第二系統に各車輪ブレーキRL,FRに対応して二つの制御弁ユニットVが設けられている。また、この液圧ユニット10には、第一系統および第二系統のそれぞれに、リザーバ3、ポンプ4、オリフィス5a、調圧弁(レギュレータ)R、吸入弁7が設けられている。また、液圧ユニット10には、第一系統のポンプ4と第二系統のポンプ4とを駆動するための共通のモータ9が設けられている。このモータ9は、回転数制御可能なモータであり、本実施形態では、デューティ制御により回転数制御が行われる。また、本実施形態では、第二系統にのみ圧力センサ8が設けられている。
 なお、以下では、マスタシリンダMCの出力ポートM1,M2から各調圧弁Rに至る油路を「出力液圧路A1」と称し、第一系統の調圧弁Rから車輪ブレーキFL,RRに至る油路および第二系統の調圧弁Rから車輪ブレーキRL,FRに至る油路をそれぞれ「車輪液圧路B」と称する。また、出力液圧路A1からポンプ4に至る油路を「吸入液圧路C」と称し、ポンプ4から車輪液圧路Bに至る油路を「吐出液圧路D」と称し、さらに、車輪液圧路Bから吸入液圧路Cに至る油路を「開放路E」と称する。
 制御弁ユニットVは、マスタシリンダMCまたはポンプ4から車輪ブレーキFL,RR,RL,FR(詳細には、ホイールシリンダH)への液圧の行き来を制御する弁であり、ホイールシリンダHの圧力を増加、保持または低下させることができる。そのため、制御弁ユニットVは、入口弁1、出口弁2、チェック弁1aを備えて構成されている。
 入口弁1は、各車輪ブレーキFL,RR,RL,FRとマスタシリンダMCとの間、すなわち車輪液圧路Bに設けられた常開型の比例電磁弁である。そのため、入口弁1に流す駆動電流の値に応じて、入口弁1の上下流の差圧が調整可能となっている。
 出口弁2は、各車輪ブレーキFL,RR,RL,FRと各リザーバ3との間、すなわち車輪液圧路Bと開放路Eとの間に介設された常閉型の電磁弁である。出口弁2は、通常時に閉塞されているが、車輪Wがロックしそうになったときに制御部20により開放されることで、各車輪ブレーキFL,FR,RL,RRに作用するブレーキ液圧を各リザーバ3に逃がす。
 チェック弁1aは、各入口弁1に並列に接続されている。このチェック弁1aは、各車輪ブレーキFL,FR,RL,RR側からマスタシリンダMC側へのブレーキ液の流入のみを許容する弁であり、ブレーキペダルBPからの入力が解除された場合に、入口弁1を閉じた状態にしたときにおいても、各車輪ブレーキFL,FR,RL,RR側からマスタシリンダMC側へのブレーキ液の流入を許容する。
 リザーバ3は、開放路Eに設けられており、各出口弁2が開放されることによって逃がされるブレーキ液を一時的に貯留する機能を有している。また、リザーバ3とポンプ4との間には、リザーバ3側からポンプ4側へのブレーキ液の流れのみを許容するチェック弁3aが介設されている。
 ポンプ4は、出力液圧路A1に通じる吸入液圧路Cと車輪液圧路Bに通じる吐出液圧路Dとの間に介設されており、リザーバ3で貯留されているブレーキ液を吸入して吐出液圧路Dに吐出する機能を有している。これにより、リザーバ3により吸収されたブレーキ液をマスタシリンダMCに戻すことができるとともに、ブレーキペダルBPの操作の有無に関わらずブレーキ液圧を発生して、車輪ブレーキFL,RR,RL,FRに制動力を発生することができる。
 なお、ポンプ4によるブレーキ液の吐出量は、モータ9の回転数(デューティ比)に依存している。すなわち、モータ9の回転数(デューティ比)が大きくなると、ポンプ4によるブレーキ液の吐出量も大きくなる。
 オリフィス5aは、ポンプ4から吐出されたブレーキ液の圧力の脈動を減衰させている。
 調圧弁Rは、通常時に出力液圧路A1から車輪液圧路Bへのブレーキ液の流れを許容するとともに、ポンプ4が発生したブレーキ液圧によりホイールシリンダH側の圧力を増加するときには、この流れを遮断しつつ、車輪液圧路BおよびホイールシリンダH側の圧力を設定値以下に調節する機能を有し、切換弁6およびチェック弁6aを備えて構成されている。
 切換弁6は、マスタシリンダMCに通じる出力液圧路A1と各車輪ブレーキFL,FR,RL,RRに通じる車輪液圧路Bとの間に介設された常開型の比例電磁弁である。詳細は図示しないが、切換弁6の弁体は、付与される電流に応じた電磁力によって閉弁方向へ付勢されており、車輪液圧路Bの圧力が出力液圧路A1の圧力より所定値(この所定値は、付与される電流による)以上高くなった場合には、車輪液圧路Bから出力液圧路A1へ向けてブレーキ液が逃げることで、車輪液圧路B側の圧力が所定圧に調整される。すなわち、切換弁6に入力される駆動電流の値(指示電流値)に応じて閉弁力を任意に変更することで、切換弁6の上下流の差圧が調整されて、車輪液圧路Bの圧力を設定値以下に調節可能となっている。
 チェック弁6aは、各切換弁6に並列に接続されている。このチェック弁6aは、出力液圧路A1から車輪液圧路Bへのブレーキ液の流れを許容する一方向弁である。
 吸入弁7は、吸入液圧路Cに設けられた常閉型の電磁弁であり、吸入液圧路Cを開放する状態および遮断する状態を切り換えるものである。吸入弁7は、例えば、ポンプ4によって各車輪ブレーキFL,FR,RL,RR内の液圧を加圧するときに制御部20の制御により開弁される。
 圧力センサ8は、出力液圧路A1のブレーキ液圧を検出するものであり、その検出結果は制御部20に入力される。
 次に、制御部20の詳細について説明する。
 図3に示すように、制御部20は、各センサ91~95,8から入力された信号に基づき、液圧ユニット10内の制御弁ユニットV、調圧弁R(切換弁6)および吸入弁7の開閉動作ならびにモータ9の動作を制御して、各車輪ブレーキFL,RR,RL,FRの動作を制御するものである。制御部20は、挙動判定部21、操作判定部22、液圧制御部23、弁駆動部24、モータ駆動部25および記憶部26を備えている。
 挙動判定部21は、ヨーレートセンサ94から出力されてくるヨーレートYの絶対値(以下、単に「ヨーレートY」とも称する。)が規定値Yth以上か否かを判定する機能を有している。そして、この挙動判定部21は、ヨーレートYが規定値Yth以上であると判定すると、そのことを示すヨーレート発生信号を液圧制御部23に出力する。
 操作判定部22は、操舵角センサ92から出力されてくる操舵角θ(絶対値)が操舵角規定値θth以上か否かを判定することで、ステアリングSTの操作が行われたか否かを判定する機能を有している。そして、この操作判定部22は、操作が行われたと判定すると、そのことを示す操作信号を液圧制御部23に出力する。
 なお、前述した規定値Ythや操舵角規定値θthは、実験やシミュレーション等により適宜設定すればよい。
 液圧制御部23は、各センサ91~95,8から入力された信号に基づいて、例えば公知の横滑り抑制制御モードや、トラクション制御モードや、停車時保持制御などの複数種類の制御モードでブレーキ液圧を制御するために、各種弁の動作やモータ9の駆動を弁駆動部24やモータ駆動部25に指示する機能を有している。ここで、停車時保持制御とは、車両が停車する際にブレーキ液圧を保持するモードであり、例えば、停車時におけるブレーキペダルBPの踏込力に応じたブレーキ液圧に保持したり、停車時におけるブレーキペダルBPの踏込力に応じたブレーキ液圧よりも高い液圧(ポンプ4で昇圧した液圧)に保持するモードをいう。なお、各種制御モードは、記憶部26に記憶されている。
 また、液圧制御部23は、挙動判定部21および操作判定部22から出力されてくる信号に基づいて、停車時保持制御中において、車両CRがスキッド状態(横滑り状態)か否かを判定するスキッド判定部23aを有している。具体的に、スキッド判定部23aは、停車時保持制御中において、ヨーレートYが規定値Yth以上であること、および、車両CRに加わる前後加速度の絶対値Gが第1閾値G1以上であることを含む第1条件が満たされた場合には、第1条件の成立によってスキッドが発生したことを示す第1フラグF1を1にする機能を有している。ここで、第1閾値G1は、ターンテーブルが常識的に設置されないような路面勾配に対応した値に設定されている。具体的に、第1閾値G1は、10~15%の路面勾配に対応した値に設定するのが好ましく、11~13%の路面勾配に対応した値に設定するのがより好ましい。
 また、スキッド判定部23aは、停車時保持制御中において、ヨーレートYが規定値Yth以上であること、ステアリングSTの操作が行われたこと、および、前後加速度の絶対値Gが第1閾値G1より小さな第2閾値G2以上であることを含む第2条件が満たされた場合には、第2条件の成立によってスキッドが発生したことを示す第2フラグF2を1にする機能を有している。ここで、第2閾値G2は、ターンテーブルの設置条件を考慮しない極めて小さな値に設定することができ、例えば、5%以下の路面勾配に対応した値に設定することができる。
 液圧制御部23は、車両CRが停止したか否かを判定し、車両CRが停止したと判定した場合に、停車時保持制御を開始する機能を有している。ここで、車両CRが停止したか否かの判定方法は、どのような方法であってもよく、例えば、車輪速センサ91からの信号に基づいて算出した車体速度が所定値V1(図7(a)参照)以下であるか否を判定することで車両CRの停止を判断する方法などが挙げられる。
 また、液圧制御部23は、停車時保持制御中において、第1フラグF1または第2フラグF2が1である場合には、公知の解除条件の成立に関わらず、停車時保持制御を解除するように構成されている。つまり、液圧制御部23は、停車時保持制御中において、第1条件または第2条件が満たされた場合には、停車時保持制御を解除するように構成されている。特に、液圧制御部23は、停車時保持制御中において、第1条件が満たされた場合には、停車時保持制御スイッチやステアリングSTの操作がなくても、停車時保持制御を解除するように構成されている。
 ここで、停車時保持制御スイッチとは、制御部20による停車時保持制御の実行の可否を決めるためのスイッチである。制御部20は、停車時保持制御スイッチがONの場合には、停車時保持制御の開始条件が満たされると停車時保持制御を実行する。また、制御部20は、停車時保持制御スイッチがOFFの場合には、停車時保持制御の開始条件が満たされても停車時保持制御を実行しない。さらに、制御部20は、停車時保持制御中に、停車時保持制御スイッチがONからOFFにされると、停車時保持制御を解除する。
 なお、公知の解除条件としては、例えば、シフトポジションが「D」または「R」で発進操作が行われたことなどが挙げられる。
 弁駆動部24は、液圧制御部23の指示に基づいて、制御弁ユニットV、調圧弁Rおよび吸入弁7を制御する部分である。そのため、弁駆動部24は、制御弁ユニット駆動部24a、調圧弁駆動部24bおよび吸入弁駆動部24cを有する。
 制御弁ユニット駆動部24aは、液圧制御部23の増圧、保持または減圧の指示に基づいて入口弁1および出口弁2を制御する。具体的には、ホイールシリンダHの圧力を増加すべき場合には、入口弁1および出口弁2の双方に電流を流さない。そして、ホイールシリンダHの圧力を減少させるべき場合には、入口弁1および出口弁2の双方に信号を送り、入口弁1を閉じ、出口弁2を開放させることで、ホイールシリンダHのブレーキ液を出口弁2から流出させる。また、ホイールシリンダHの圧力を保持する場合には、入口弁1に信号を送り、出口弁2には電流を流さないことで、入口弁1と出口弁2の双方を閉じる。
 調圧弁駆動部24bは、通常時は、調圧弁Rに電流を流さない。そして、液圧制御部23から駆動の指示があった場合には、この指示に従い調圧弁Rにデューティ制御により電流を供給する。調圧弁Rに電流が供給されると、調圧弁RのマスタシリンダMC側と制御弁ユニットV(ホイールシリンダH)側との間には、この電流に応じた差圧が形成される。その結果、調圧弁Rと制御弁ユニットVの間の吐出液圧路Dの液圧が調整される。
 吸入弁駆動部24cは、通常時は、吸入弁7に電流を流さない。そして、液圧制御部23から指示があった場合には、この指示に従い吸入弁7に信号を出力する。これにより、吸入弁7が開いてマスタシリンダMCからポンプ4へブレーキ液が吸入されるようになっている。
 モータ駆動部25は、液圧制御部23の指示に基づきモータ9の回転数を決定し、駆動するものである。すなわち、モータ駆動部25は、回転数制御によりモータ9を駆動するものであり、本実施形態では、デューティ制御により回転数制御を行う。
 次に、制御部20の動作を図4から図6を参照して説明する。
 制御部20は、常時、図4および図5に示すスキッド判定処理と、図6に示す停車時保持制御を解除するための処理を繰り返し実行する。
 図4に示す処理において、制御部20は、まず、停車時保持制御中であるか否かを判断する(S1)。ステップS1において停車時保持制御中であると判断した場合には(Yes)、制御部20は、車両CRに加わるヨーレートYが規定値Yth以上であるか否かを判断する(S2)。
 ステップS2においてY≧Ythであると判断した場合には(Yes)、制御部20は、前後加速度の絶対値Gが第1閾値G1以上であるか否かを判断する(S3)。ステップS3においてG≧G1であると判断した場合には(Yes)、制御部20は、第1条件が満たされたと判断して、第1フラグF1を1に設定し(S4)、本制御を終了する。
 また、制御部20は、ステップS1~S3のいずれかにおいてNoと判断すると、第1フラグF1を0に設定して(S5)、本制御を終了する。
 図5に示す処理において、制御部20は、まず、停車時保持制御中であるか否かを判断する(S11)。ステップS11において停車時保持制御中であると判断した場合には(Yes)、制御部20は、車両CRに加わるヨーレートYが規定値Yth以上であるか否かを判断する(S12)。
 ステップS12においてY≧Ythであると判断した場合には(Yes)、制御部20は、前後加速度の絶対値Gが第2閾値G2以上であるか否かを判断する(S13)。ステップS13においてG≧G2であると判断した場合には(Yes)、制御部20は、ステアリングSTの操舵角θが操舵角規定値θth以上であるか否かを判断する(S14)。
 ステップS14においてθ≧θthであると判断した場合には(Yes)、制御部20は、第2条件が満たされたと判断して、第2フラグF2を1に設定し(S15)、本制御を終了する。
 また、制御部20は、ステップS11~S14のいずれかにおいてNoと判断すると、第2フラグF2を0に設定して(S16)、本制御を終了する。
 図6に示す処理において、制御部20は、まず、停車時保持制御中であるか否かを判断する(S21)。ステップS21において停車時保持制御中でないと判断した場合には(No)、制御部20は、本制御を終了する。
 ステップS21において停車時保持制御中であると判断した場合には(Yes)、制御部20は、第1フラグF1が1であるか否かを判断する(S22)。ステップS22においてF1=1でないと判断した場合には(No)、制御部20は、第2フラグF2が1であるか否かを判断する(S23)。ステップS23においてF2=1でないと判断した場合には(No)、制御部20は、その他の解除条件が成立したか否かを判断する(S24)。
 制御部20は、ステップS22において第1フラグF1が1であると判断した場合(Yes)、ステップS23において第2フラグF2が1であると判断した場合(Yes)、または、ステップS24においてその他の解除条件が成立したと判断した場合には(Yes)、停車時保持制御を解除して(S25)、本制御を終了する。また、制御部20は、ステップS24においてその他の解除条件が成立していないと判断した場合には(No)、停車時保持制御の解除を行わずに、そのまま本制御を終了する。つまり、この場合には、停車時保持制御が継続される。
 次に、停車時保持制御中において第1条件または第2条件が満たされた場合の制御について図7および図8を参照して説明する。なお、図7および図8におけるヨーレート、操舵角および前後加速度については、便宜上、絶対値として図示するものとする。また、車体速度は、車輪速度から推定された値として図示する。最初に、図7を参照して、停車時保持制御中に第1条件が満たされた場合の制御について説明する。
 図7(a),(b),(g)に示すように、車両CRが車体速度V2で走行している際に、運転者がブレーキペダルBPを踏むと(時刻t1)、ホイールシリンダH内のブレーキ液圧が徐々に上がっていくとともに、車体速度が徐々に下がっていく。車体速度が所定値V1まで下がると(時刻t2)、車両CRの停止が判断され、例えばそのときのブレーキ液圧P1で停車時保持制御が実行される(図7(h)参照)。なお、図7の例では、車両CRが、第1閾値G1に対応する勾配よりも大きな路面勾配の下り坂で停止しようとしたこととする。
 制御部20が車両CRの停止を判断した後、図7(d)に示すように、車両CRにかかる前後加速度の絶対値Gが第1閾値G1以上であり、路面が例えばアイス路等の低μ路面である場合には、車両CRが実際には停止せずに回転しながらすべり続けることがある。
 この場合には、図7(c)に示すように、車両CRに規定値Yth以上のヨーレートYが発生するため(時刻t3)、図7(f),(h)に示すように、この時点で第1条件が満たされて第1フラグF1が1となり、停車時保持制御が解除される。これにより、時刻t3以降は、ブレーキ液圧が低下していって車輪のロックが解消され、車輪Wのグリップ力が回復するので、車両CRの操縦が可能となる。そのため、ドライバーが、車両CRの姿勢を立て直すべく、ステアリング操作を行うと(時刻t4)、ドライバーの操作により車両CRの姿勢を立て直すことができる。
 次に、図8を参照して、停車時保持制御中に第2条件が満たされた場合の制御について説明する。
 図8(a),(b),(g)に示すように、車両CRが車体速度V2で走行している際に、運転者がブレーキペダルBPを踏むと(時刻t11)、ホイールシリンダH内のブレーキ液圧が徐々に上がっていくとともに、車体速度が徐々に下がっていく。車体速度が所定値V1まで下がると(時刻t12)、車両CRの停止が判断され、例えばそのときのブレーキ液圧P1で停車時保持制御が実行される(図8(h)参照)。なお、図8の例では、車両CRが、第1閾値G1に対応する勾配よりも小さな路面勾配の下り坂で停止しようとしたこととする。
 制御部20が車両CRの停止を判断した後、図8(d)に示すように、車両CRにかかる前後加速度の絶対値Gが、第1閾値G1よりも小さく、かつ、第2閾値G2以上であり、路面が例えばアイス路等の低μ路面である場合には、車両CRが実際には停止せずに回転しながらすべり続けることがある。
 このような現象が生じると、図8(c),(h)に示すように、停車時保持制御中において(時刻t12~t14)、ヨーレートYが発生し、そのヨーレートYが規定値Ythを超えることがある(時刻t13)。この場合、ドライバーは車両CRの姿勢を立て直すべく、ステアリング操作を行う。このステアリング操作により、図8(e)に示すように、操舵角θが操舵角規定値θthを超えると(時刻t14)、図8(f),(h)に示すように、この時点で第2条件が満たされて第2フラグF2が1となり、停車時保持制御が解除される。
 これにより、図8(b)に示すように、停車時保持制御により保持されていたブレーキ液圧が下がっていくので、図8(a)に示すように、車輪Wのロック状態が解消される(時刻t15)。そのため、車輪Wのグリップ力が回復して車両CRの操縦が可能となるので、ドライバーの操作により車両CRの姿勢を立て直すことができる。
 以上によれば、本実施形態において以下のような効果を得ることができる。
 第1条件が満たされた場合には、ステアリングSTを操作しなくても停車時保持制御が解除されるので、停車時保持制御を迅速に解除することができる。また、第1閾値G1を、ターンテーブルが常識的に設置されないような路面勾配に対応した値に設定するので、ターンテーブル上において車両CRにヨーレートが加わったとしても、ドライバーの意図に反するブレーキ液圧の低下を抑えることができる。
 坂道がターンテーブルを設置可能な小さな勾配である場合には、第2条件によって停車時保持制御の解除を判断するので、小さな勾配の坂道において、前後加速度の絶対値Gが第2閾値G2以上で、かつ、ヨーレートYが規定値Yth以上になっても、ステアリング操作が行われなければ停車時保持制御が解除されない。そのため、例えばターンテーブル上において車両CRに規定値Yth以上のヨーレートYが発生しても、ドライバーの意図に反するブレーキ液圧の低下を抑えることができる。なお、アイス路等の低μ路面の坂道における停車時保持制御中において車両CRが回転しながらずり下がった場合には、ドライバーが車両CRを立て直そうとしてステアリング操作することで、停車時保持制御が解除され、ブレーキ液圧が低下されるので、車両の立て直しを行うことができる。
 なお、第2条件は、ステアリングSTの操作の条件を含んでいるため、第2閾値G2をターンテーブルの設置が十分あり得るような小さな路面勾配に対応した値に設定しても、ターンテーブルでの誤判定を抑えることができる。また、第2条件から前後加速度の条件を取り除いたとしても、ステアリングSTの操作の条件によって、ターンテーブルでの誤判定を抑えることができる。
 10%以上といった大きな路面勾配では常識的にターンテーブルを設置しないため、第1閾値G1を10%以上の路面勾配に対応した値に設定することで、ターンテーブルでの誤判定を抑制することができる。さらに、第1閾値G1を、11%以上の路面勾配に対応した値に設定すると、ターンテーブルでの誤判定をより抑制することができる。
 第1閾値G1を15%以下の路面勾配に対応した値に設定することで、例えば第1閾値を15%よりも大きな路面勾配に対応した値に設定した場合と比べ、15%以下の路面勾配での車両CRのずり下がりを抑制することができる。さらに、第1閾値G1を、13%以下の路面勾配に対応した値に設定すると、13%以下の路面勾配での車両のずり下がりを抑制することができる。
 なお、前記実施形態は、以下に例示するように様々な形態に変形して実施することができる。
  前記実施形態では、車両の横方向の挙動量としてヨーレートを例示したが、例えば横加速度センサで検出される横加速度であってもよい。ただし、前記実施形態のように、挙動量としてヨーレートを採用した場合には、ヨーレートに基づいて車両の横滑り状態(スキッド状態)を良好に判定することができる。
 前記実施形態では、操作部材として停車時保持制御スイッチやステアリングSTを例示したが、操作部材は、例えばブレーキやアクセルなどであってもよい。
 前記実施形態では、調圧弁Rを制御することで減圧制御(停車時保持制御の解除時の減圧制御)を行ったが、例えば、モータを駆動することによってマスタシリンダ内のピストンを移動させるような電動ブースタでブレーキ液圧を保持・減圧する場合には、電動ブースタを制御することで本開示に係る停車時保持制御やその解除を行ってもよい。
 前記した実施形態および変形例で説明した各要素を、任意に組み合わせて実施してもよい。

Claims (5)

  1.  車両が停止したと判定した場合にブレーキ液圧を保持する停車時保持制御を実行可能な車両用ブレーキ液圧制御装置であって、
     前記停車時保持制御中において、車両の横方向の挙動量が規定値以上であること、および、車両に加わる前後加速度の絶対値が第1閾値以上であることを含む第1条件が満たされた場合には、車両を操作するための操作部材の操作がなくても、前記停車時保持制御を解除することを特徴とする車両用ブレーキ液圧制御装置。
  2.  前記停車時保持制御中において、前記第1条件、または、車両の横方向の挙動量が前記規定値以上であること、および、前記操作部材の操作が行われたことを含む第2条件が満たされた場合には、前記停車時保持制御を解除することを特徴とする請求項1に記載の車両用ブレーキ液圧制御装置。
  3.  前記第2条件は、車両に加わる前後加速度の絶対値が第2閾値以上であることをさらに含むことを特徴とする請求項2に記載の車両用ブレーキ液圧制御装置。
  4.  前記第1閾値は、前記第2閾値より大きいことを特徴とする請求項3に記載の車両用ブレーキ液圧制御装置。
  5.  前記第1閾値は、推定された路面勾配に基づいて設定されていることを特徴とする請求項1から請求項4のいずれか1項に記載の車両用ブレーキ液圧制御装置。
PCT/JP2021/023296 2020-06-30 2021-06-21 車両用ブレーキ液圧制御装置 WO2022004442A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022533868A JPWO2022004442A1 (ja) 2020-06-30 2021-06-21
US18/003,716 US20230264662A1 (en) 2020-06-30 2021-06-21 Vehicle brake fluid pressure control device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-112649 2020-06-30
JP2020112649 2020-06-30

Publications (1)

Publication Number Publication Date
WO2022004442A1 true WO2022004442A1 (ja) 2022-01-06

Family

ID=79316178

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/023296 WO2022004442A1 (ja) 2020-06-30 2021-06-21 車両用ブレーキ液圧制御装置

Country Status (3)

Country Link
US (1) US20230264662A1 (ja)
JP (1) JPWO2022004442A1 (ja)
WO (1) WO2022004442A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230311824A1 (en) * 2020-06-30 2023-10-05 Hitachi Astemo Ueda, Ltd. Vehicle brake fluid pressure control device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007055536A (ja) * 2005-08-26 2007-03-08 Toyota Motor Corp 自動車およびその制御方法
JP2014100923A (ja) * 2012-11-16 2014-06-05 Nissin Kogyo Co Ltd 車両用ブレーキ液圧制御装置
JP2014172477A (ja) * 2013-03-07 2014-09-22 Daimler Ag トレーラ車両の坂道発進補助装置
JP2017071313A (ja) * 2015-10-07 2017-04-13 株式会社アドヴィックス 車両用制動装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7569230B2 (ja) * 2021-02-04 2024-10-17 株式会社Subaru 制動制御装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007055536A (ja) * 2005-08-26 2007-03-08 Toyota Motor Corp 自動車およびその制御方法
JP2014100923A (ja) * 2012-11-16 2014-06-05 Nissin Kogyo Co Ltd 車両用ブレーキ液圧制御装置
JP2014172477A (ja) * 2013-03-07 2014-09-22 Daimler Ag トレーラ車両の坂道発進補助装置
JP2017071313A (ja) * 2015-10-07 2017-04-13 株式会社アドヴィックス 車両用制動装置

Also Published As

Publication number Publication date
US20230264662A1 (en) 2023-08-24
JPWO2022004442A1 (ja) 2022-01-06

Similar Documents

Publication Publication Date Title
JP5752668B2 (ja) 車両用ブレーキ液圧制御装置
JP4452300B2 (ja) 車両挙動制御装置
JP3528452B2 (ja) 制動力制御装置
US9120470B2 (en) Vehicle brake hydraulic pressure controller
JP3528415B2 (ja) 制動圧力制御装置
US9421952B2 (en) Vehicle brake hydraulic pressure control apparatus
WO2022004442A1 (ja) 車両用ブレーキ液圧制御装置
US7661773B2 (en) Method of braking force distribution and braking force control system for vehicle
JP3425727B2 (ja) 車両の自動ブレーキ装置
JP5103917B2 (ja) 車両の運動制御装置
JP2008213670A (ja) 車両用ブレーキ制御装置
JP4790744B2 (ja) 車両用ブレーキ液圧制御装置
WO2022004443A1 (ja) 車両用ブレーキ液圧制御装置
JP5078484B2 (ja) 車両用ブレーキ液圧制御装置
JP2022011485A (ja) 車両用ブレーキ液圧制御装置
JP4972575B2 (ja) 車両用ブレーキ液圧制御装置
JP4815528B2 (ja) 車両用ブレーキ液圧制御装置
JP4972481B2 (ja) 車両用ブレーキ液圧制御装置
JP5502052B2 (ja) 車両用ブレーキ液圧制御装置
JP2007030757A (ja) 車両用ブレーキ液圧制御装置
JPH10258729A (ja) 車両の自動ブレーキ装置
KR100751231B1 (ko) 차량의 안정성 제어 시스템
JP2007125945A (ja) 車両の制動制御装置、及び車両の制動制御方法
JP6091266B2 (ja) 車両用ブレーキ液圧制御装置
KR100751221B1 (ko) 차량의 안정성 제어 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21831692

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022533868

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21831692

Country of ref document: EP

Kind code of ref document: A1