CN1905216B - 具有分开的吸收和倍增区域的锗/硅雪崩光电检测器 - Google Patents

具有分开的吸收和倍增区域的锗/硅雪崩光电检测器 Download PDF

Info

Publication number
CN1905216B
CN1905216B CN2006101513471A CN200610151347A CN1905216B CN 1905216 B CN1905216 B CN 1905216B CN 2006101513471 A CN2006101513471 A CN 2006101513471A CN 200610151347 A CN200610151347 A CN 200610151347A CN 1905216 B CN1905216 B CN 1905216B
Authority
CN
China
Prior art keywords
intrinsic material
uptake zone
intrinsic
multiplication region
wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2006101513471A
Other languages
English (en)
Other versions
CN1905216A (zh
Inventor
M·摩斯
O·多森姆
M·潘尼卡
A·刘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Intel Corp
Original Assignee
Intel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Intel Corp filed Critical Intel Corp
Publication of CN1905216A publication Critical patent/CN1905216A/zh
Application granted granted Critical
Publication of CN1905216B publication Critical patent/CN1905216B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/107Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier working in avalanche mode, e.g. avalanche photodiodes
    • H01L31/1075Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier working in avalanche mode, e.g. avalanche photodiodes in which the active layers, e.g. absorption or multiplication layers, form an heterostructure, e.g. SAM structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/107Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier working in avalanche mode, e.g. avalanche photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • H01L27/14629Reflectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • H01L31/1812Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table including only AIVBIV alloys, e.g. SiGe
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0312Inorganic materials including, apart from doping materials or other impurities, only AIVBIV compounds, e.g. SiC
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Receiving Elements (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

公开了基于半导体波导的光接收机。根据本发明方案的装置包括包含紧邻第二类型半导体区的第一类型半导体区的吸收区。第一类型半导体吸收在第一波长范围中的光,第二类型半导体吸收在第二波长范围中的光。限定倍增区以紧邻吸收区并与吸收区分开。倍增区包括存在电场的本征半导体区,以倍增在吸收区中产生的电子。

Description

具有分开的吸收和倍增区域的锗/硅雪崩光电检测器
技术领域
本发明的实施例总体来说涉及光学装置,更具体地说,涉及光电检测器,但不仅限于此。
背景技术
因为因特网数据传输增长率超过话音传输而推动对光纤光通信的需要,所以对快速和有效的基于光的技术的需要不断增加。在密集波分复用(DWDM)系统中的同一光纤之上的多光信道的传输提供了使用由光纤提供的空前容量(信号带宽)的简单方法。在系统中通常使用的光学元件包括波分复用(WDM)的发射机和接收机、滤光器,例如,衍射光栅、薄膜滤光器、光纤Bragg光栅、阵列波导光栅、光学添加/下降(add/drop)多路器、激光、光交换机和光电检测器。光电二极管可以用作光电检测器,通过将入射光转换为电信号来检测光。电路可以与光电检测器连接在一起,以接收表示入射光的电信号。然后电路可以根据所要求的应用处理电信号。
附图说明
参考以下附图介绍本发明的非限定和非穷举的实施例,其中相同的标号指的是全部图中相同的部分,除非另作说明。
图1A是说明在用于本发明实施例的系统中具有分开的吸收和倍增区域的多个锗/硅雪崩光电检测器的剖面图的图。
图1B是说明布置在用于本发明实施例的二维阵列中的具有分开的吸收和倍增区域的多个锗/硅雪崩光电检测器的俯视图的图。
图2是说明相对于用于本发明实施例的雪崩光电检测器的吸收区域的硅和锗层的响应率对波长的关系的图。
图3是说明在用于本发明实施例的具有分开的吸收和倍增区域的锗/硅雪崩光电检测器的倍增区域中使用硅对灵敏度的改善的图。
图4A是说明用于本发明实施例的具有谐振腔的锗/硅雪崩光电检测器的剖面图的图。
图4B是说明用于本发明实施例的具有显示出产生的电子空穴对的谐振腔的锗/硅雪崩光电检测器的剖面图的另一个图。
具体实施方式
公开了具有分开的吸收和倍增(SAM)区域的锗/硅雪崩光电检测器(APDs)的方法和装置。在下面的介绍中,阐述了大量的特定的细节,以便提供对本发明的彻底的了解。然而,对于本领域的普通技术人员来说,显然不必采用特定的细节来实践本发明。在其它情况中,没有详细介绍众所周知的材料或方法,以免模糊本发明。
贯穿本说明书,对“一个实施例”的引用是指在本发明的至少一个实施例中包括结合实施例进行描述的特定的特征、结构或特性。因此,在贯穿本说明书的不同地方出现的短语“在一个实施例中”不一定全部涉及同一个实施例。此外,在一个或多个实施例中,特定的特征、结构或特性可以以任何合适的方式组合。另外,可以理解,随同提供的附图对于本领域的普通技术人员是用于说明目的,并且附图不一定是按比例绘制的。
图1A是说明用于本发明实施例的系统100的剖面图的图,包括以具有一维或多维的栅格或阵列101方式排列的多个雪崩光电检测器103A、103B、...、103N。光照(illumination)117入射到阵列101的多个雪崩光电检测器103A、103B、...、103N的一个或多个上。在所示的例子中,具有光照117的对象116的图像可以通过光学元件130聚焦到阵列101上。因此,阵列101可以起检测图像的作用,类似于,例如,互补金属氧化物半导体(CMOS)传感器阵列等。
图1B示出了用于本发明实施例的具有以二维栅格方式排列的多个雪崩光电检测器103A、103B、...、103N的阵列101的俯视图,由此多个雪崩光电检测器103A、103B、...、103N中的每一个起像素等的作用。在图1B中所示的例子示出了在光照117内使用阵列101的像素的对象116的图像118。
注意,虽然图1A和1B为了说明的目的说明了在成像系统中采用的雪崩光电检测器的例子应用,但是在其它类型的应用中也可以采用雪崩光电检测器,例如,根据本发明的启示实现了包括可见到红外波长的具有各种波长的光的检测。
重新参考图1A,光学元件131可以是透镜或其它类型的折射或衍射光学元件,由此将具有光照117的图像聚焦在阵列101上。对于本发明的实施例,光照117可以包括可见光、红外光和/或跨过可见到红外光谱的波长的组合。
在图1A所示的例子中,多个雪崩光电检测器103A、103B、...、103N中的每一个包括半导体材料层105、107、109、111、113和115。触点131与层105连接在一起,触点133与层115连接在一起。对于一个实施例,层105是具有例如5e19cm-3的掺杂浓度和例如100纳米的厚度的硅的p+掺杂层。对于一个实施例,层105具有提供改善触点131与层105之间的电连接的掺杂浓度。对于一个实施例,层107和109是形成雪崩光电检测器103A的吸收区域135的本征半导体材料区。对于一个实施例,层107是本征硅层,层109是本征锗层。紧邻吸收区域135的是分开的倍增区137,包括例如硅的本征半导体材料层113。如说明的例子所示,层113布置在p-掺杂硅层111与n+掺杂硅层115之间。对于一个实施例,层111具有例如100纳米的厚度和例如1-2e17cm-3的掺杂浓度。对于一个实施例,层115具有例如5e19cm-3的掺杂浓度。在所示的例子中,多个雪崩光电检测器103A、103B、...、103N中的每一个连接在地与电压V1、V2、...、Vn之间,由此偏置每个雪崩光电检测器在层105与115之间如图所示产生电场。
当然,应当理解,在本公开中描述的特定例子的掺杂浓度、厚度和材料等是为了说明的目的,并且根据本发明的启示也可以利用其它掺杂浓度、厚度和材料等。
操作中,光照117入射到多个雪崩光电检测器103A、103B、...、103N中的每一个的一个或多个层105上。层105较薄,由此基本上所有的光照117穿过层105传播到吸收区135的层107。对于一个实施例,本征硅层107吸收波长在大约420纳米到大约~1100纳米范围内的光。波长大于大约~1100纳米的大部分光穿过本征硅层107传播到吸收区135的本征锗层109中。本征锗层109吸收穿过层107的波长达到大约1600纳米的剩余的光。
为了说明,图2是示出了用于本发明实施例的硅和锗的响应率对波长关系的例子的图201。特别地,图201示出了硅的响应率相对于波长的曲线207,以及锗的响应率相对于波长的曲线209。对于一个实施例,曲线207可以对应于图1A的本征硅层107的响应率,而曲线209可以对应于图1A的本征锗的响应率。如曲线207所示,硅吸收具有如大约420纳米一样短的波长。随着波长加长,由于硅在红外波长的较低的吸收,硅的响应率开始下降。的确,随着光的波长在这一点上增加,硅随着光变得更加靠近红外区而变得更加透明。因此,相对于图1A,更长波长的光照117不在层107中吸收而是传播到层109。然而,对于本发明的实施例,曲线209显示出在层109中锗吸收穿过层107的波长达到大约1 600纳米的更长波长的光。根据本发明的启示,在层107中,硅吸收小于大约~1000纳米的较短波长的光,同时锗在同一波长范围下具有更大的吸收系数,否则由于表面复合将不会产生显著的光电流。
因此,重新参考图1A,根据本发明的启示,利用在吸收区135中本征硅层107和本征锗层109的组合,在雪崩光电检测器的吸收区135中吸收从波长大约420纳米的可见光直到波长达到大约1600纳米的较长的红外波长的光照117。在半导体层107和109中光照117的光吸收导致在吸收区135中光载流子或电子空穴对的产生。
由于在雪崩光电检测器中存在偏置和电场,导致在吸收区135中产生的电子空穴对的空穴向层105的方向漂去,而电子向层115的方向漂去。随着电子漂移进入倍增区137,电子在本征硅层113中经受由在层111中的p-掺杂硅和在层115中的n+掺杂硅的相邻层的掺杂水平引起的较高的电场。作为层113中的高电场的结果,根据本发明的启示,从吸收区135漂移进入倍增区137的电子发生碰撞电离。因此,对于本发明的实施例,在吸收区135中由光照117的吸收产生的光电流在倍增区137中被倍增或放大。然后在触点131和133处收集光载流子。例如,可以在触点131处收集空穴,在触点133处收集电子。根据本发明的实施例,触点131和133可以与电路连接在一起,以处理在触点131和133中的每一个处出现的信号。
如上所述,倍增区137包括在层113中的本征硅以及分别在相邻p-掺杂和n+掺杂层111和115中的硅。图3是说明在利用倍增区137中的硅代替另一种材料,例如,磷化铟(InP),的雪崩光电检测器的实施例中实现改善灵敏度的图301。特别地,图301示出了对于雪崩光电检测器的各种实施例,接收机灵敏度dBm对光电倍增增益M之间的关系的图301。特别地,曲线333示出了基于磷化铟的雪崩光电检测器的接收机灵敏度与光电倍增增益的关系,而曲线335示出了基于硅的雪崩光电检测器的接收机灵敏度与光电倍增增益的关系。如通过比较图3中的曲线333和335可以看到的,对于本发明的实施例,通过使用基于硅的雪崩光电检测器代替基于磷化铟的雪崩光电检测器,接收机灵敏度大约改善了4-5dB。由此可见,对于本发明的实施例,在倍增区137中用硅代替磷化铟需要较少的功率就可以精确地检测由雪崩光电检测器接收到的光信号中编码的信号。
因为在材料中的电子和空穴的碰撞电离特性,对于本发明的实施例,利用在倍增区137中的硅改善如图1A和1B所示的雪崩光电检测器103A、103B、...、103N的灵敏度。对于本发明的实施例,因为在倍增区137中使用硅,所以基本上只有一种类型的载流子,特别是电子,能够实现碰撞电离。这可以用空穴与电子的碰撞电离系数比的k因数定量地看出。硅具有低于,例如,磷化铟,大约一个数量级的k因数。使用硅的结果是,在倍增区137中基本上只有电子而不是空穴被有选择地倍增或放大。因此,对于本发明的实施例,与具有较高k因数的材料相比,缩小了雪崩光电检测器103A、103B、...、103N中的噪音和不稳定性。示出过量噪声与k因数(k)之间关系的公式为:
FA(M)=kM+(1-k)(2-(1/M))    (公式1)
这里FA是过量噪声因数,M是雪崩光电检测器的增益。
因为对于本发明的实施例,通过使用倍增区137的硅基本上只有电子能够实现碰撞电离,所以因为倍增区137中产生超过一种类型的载流子而引起失控(runaway)的机会显著地减小。为了说明,对于本发明实施例的硅的k因数值小于0.05或大约0.02-0.05。比较起来,其它材料,例如,砷化铟镓(InGaAs)的k因数值是大约0.5-0.7,而锗的k因数值是大约0.7-1.0。因此,本发明实施例使用硅的k因数值小于其它材料。因此,在倍增区137中对于雪崩光电检测器的实施例使用硅,导致其灵敏度相比使用其它材料,例如砷化铟镓或锗等,的雪崩光电检测器得到改善。
图4A是说明用于本发明实施例的具有谐振腔的锗/硅雪崩光电检测器403的剖面图的图。应当理解,根据本发明的启示,雪崩光电检测器403与图1A和1B中示出的雪崩光电检测器103A、103B、...、103N的例子具有相似性,并且可以使用雪崩光电检测器403代替雪崩光电检测器103A、103B、...、103N的任何一个或多个。重新参考图4A所示的例子,雪崩光电检测器403包括层405、407、409、411、413和415。在图4A所示的例子中,雪崩光电检测器403布置在一绝缘体上硅(SOI)的晶片上,因此,雪崩光电检测器也包括硅衬底层419和在图4A中示出作为埋置氧化物层425的反射层。对于一个实施例,雪崩光电检测器403也包括在层407的表面上的层405的对侧上布置在层407的表面和内部的护圈421,如图4A所示。
对于一个实施例,层405和护圈421是具有一掺杂浓度的p+掺杂硅,该掺杂浓度在与层405和层407连接在一起的接触之间提供改善的电连接。对于一个实施例,紧邻层405布置护圈421,如图4A所示,以防止或减少电场延伸到或超过雪崩光电检测器403的边缘。根据本发明的启示,通过帮助隔离或限制在雪崩光电检测器403的结构内的电场,护圈431有助于减小来自雪崩光电检测器403结构的漏电流。
对于一个实施例,层407和409形成雪崩光电检测器403的吸收区435。对于一个实施例,层407是本征硅层,层409是本征锗层。紧邻吸收区435是包括本征硅层413的分开的倍增区437。如描述的例子所示,层413布置在p-掺杂硅层411与n+掺杂硅层415之间。对于一个实施例,层411和415具有在倍增区437的层413中产生高电场的掺杂浓度。例如,对于一个实施例,层411具有例如1-2e17cm-3的掺杂浓度,层415具有例如5e19cm-3的掺杂浓度。另外,对于本发明的实施例,在层405与层415之间也存在较低的电场。
操作中,如图4A所示,光照417导向雪崩光电检测器403,并且入射到雪崩光电检测器403的表面上。在图4A所示的例子中,引导光照417穿过自由空间并入射到层405的表面上。根据本发明的启示,在吸收区435中吸收光照417的光,在倍增区437中倍增来自光电流的电子或在吸收区435中产生的电子空穴对,作为碰撞电离的结果。对于一个实施例,在埋置的氧化物层425与光照417的光入射的雪崩光电检测器403的表面之间的雪崩光电检测器403中也限定了谐振腔。结果,光照417的光在埋置的氧化物层425与雪崩光电检测器的表面之间的谐振腔中循环,如图4A所示。
图4B是说明用于本发明实施例的具有显示出产生的电子空穴对的谐振腔的雪崩光电检测器403的增加细节的剖面图的另一个图。特别是,图4B示出了入射在雪崩光电检测器403的层405表面上的光照417。当光照穿过吸收区435的层407和409时,光被吸收,产生包括电子427和空穴429的光电流或电子空穴对。在p+掺杂层405与n+掺杂层415之间具有电场,电子427从吸收区435漂移到倍增区437中。在倍增区437的层413中存在高电场,电子427发生碰撞电离,产生其它电子空穴对,并因此导致在吸收区435中产生的光电流的倍增或放大。然后,对于本发明的实施例,由与层405和415连接在一起的接触收集空穴429和电子427。
依照进一步说明地,来自光照417的没有在第一次穿过雪崩光电检测器403中被吸收的光被埋置的氧化物层425反射,在图4B中说明为SiO2,并且穿过雪崩光电检测器403来回循环,如图所示。结果,根据本发明的启示,来自光照417的光在吸收区435和倍增区437内反复循环,由此增加光照417的吸收概率并改善雪崩光电检测器403的性能。
说明本发明的实施例的包括理论上描述的上述介绍不是打算穷举或限定于精确的公开形成。虽然在此为了说明性的目的介绍了本发明的特定实施例和例子,但是如本领域的技术人员将认识到的,各种等价的改良和改进是可能的。的确,应当理解,为了说明的目的提供特定波长、尺寸、材料、时间、电压功率范围值等,并且在根据本发明的教导的其它实施例中也可以采用其它值。
对于本发明的实施例可以按照上述详细说明进行这些改进。在随后的权利要求书中使用的术语不应该视为将本发明限定于在说明书和权利要求书中公开的特定的实施例。相反地,范围完全由随后的被视为根据权利要求书阐明的原理建立的权利要求书确定。

Claims (18)

1.一种用于光学设备的装置,包括:
包括位于第二类型本征半导体材料上的第一类型本征半导体材料的吸收区,以使在所述第一类型本征半导体材料上入射并通过所述第一类型本征半导体材料而进入所述第二类型本征半导体材料,其中所述第一类型本征半导体材料不同于所述第二类型本征半导体材料,所述第一类型本征半导体材料吸收在第一波长范围内的光,所述第二类型本征半导体材料吸收在第二波长范围内的光,其中第一波长范围不同于第二波长范围;以及
置于所述吸收区和衬底之间的倍增区,所述倍增区与所述吸收区分开,所述倍增区包括存在电场的另一本征半导体材料,以倍增在所述吸收区中产生的电子,
其中所述第一类型本征半导体材料是本征硅层,所述第二类型本征半导体材料是本征锗层,而所述另一本征半导体材料也是本征硅层。
2.根据权利要求1所述的装置,其特征在于,入射到所述第一类型本征半导体材料上的波长在第一波长范围以外并且在第二波长范围以内的光穿过所述第一类型本征半导体区,进入所述第二类型本征半导体材料并且被吸收。
3.根据权利要求1所述的装置,其特征在于,所述倍增区的本征半导体材料布置在第一和第二掺杂区之间。
4.根据权利要求1所述的装置,其特征在于,还包括在吸收层上布置的掺杂接触层。
5.根据权利要求1所述的装置,其特征在于,吸收区吸收在第一和第二波长范围的组合范围以内的光。
6.根据权利要求1所述的装置,其特征在于,所述装置是光电检测器,其中光电检测器是以阵列方式排列的多个光电检测器中的一个,以共同检测聚焦在阵列上的图像。
7.根据权利要求1所述的装置,其特征在于,还包括紧邻所述倍增区布置的反射层,其中倍增区布置在吸收区与反射层之间,由此在反射层与光入射的装置表面之间限定包括吸收区和倍增区的谐振腔。
8.根据权利要求7所述的装置,其特征在于,所述反射层包括绝缘体上硅(SOI)晶片的埋置氧化物层。
9.根据权利要求4所述的装置,其特征在于,还包括限定在吸收区中的紧邻掺杂接触层的护圈。
10.一种用于操作光学设备的方法,包括:
引导光束进入包括第一类型本征半导体材料的吸收区;
在第一类型本征半导体材料中吸收在第一波长范围中的光的第一部分;
使在第一波长范围以外并且在第二波长范围以内的光的第二部分通过所述吸收区的第一类型本征半导体材料;
在吸收区的第二类型本征半导体材料中吸收光的第二部分,其中所述第一类型本征半导体材料不同于所述第二类型本征半导体材料;以及
有选择地倍增在吸收区中产生的漂移进入紧邻吸收区限定的倍增区中的电子,所述倍增区包括另一本征半导体材料,
其中所述第一类型本征半导体材料是本征硅层,所述第二类型本征半导体材料是本征锗层,而所述另一本征半导体材料也是本征硅层。
11.根据权利要求10所述的方法,其特征在于,还包括加速在吸收区中产生的漂移进入倍增区的电子,以响应倍增区中的高电场。
12.根据权利要求10所述的方法,其特征在于,选择性地倍增在吸收区中产生的漂移进入倍增区的电子,以响应在倍增区中的碰撞电离。
13.根据权利要求10所述的方法,其特征在于,有选择地倍增在吸收区中产生的漂移进入倍增区中的电子是响应于包括具有小于0.05的k因数值的硅的倍增区。
14.根据权利要求10所述的方法,其特征在于,还包括在限定包括吸收区和倍增区的谐振腔的反射面之间反射光。
15.一种用于光学设备的系统,包括:
光电检测器阵列,光电检测器中的每一个包括:
包括位于第二类型本征半导体材料上的第一类型本征半导体材料的吸收区,以使在所述第一类型本征半导体材料上入射并通过所述第一类型本征半导体材料而进入所述第二类型本征半导体材料,其中所述第一类型本征半导体材料不同于所述第二类型本征半导体材料,第一类型本征半导体材料吸收在第一波长范围内的光,第二类型本征半导体材料吸收在第二波长范围内的光,其中第一波长范围不同于第二波长范围;以及
置于吸收区和衬底之间的倍增区,所述倍增区与吸收区分开,所述倍增区包括存在电场的另一本征半导体材料,以倍增在吸收区中产生的电子;以及
光聚焦元件,以将光学图像聚焦到光电检测器阵列上,
其中所述第一类型本征半导体材料是本征硅层,所述第二类型本征半导体材料是本征锗层,而所述另一本征半导体材料也是本征硅层。
16.根据权利要求15所述的系统,其特征在于,所述光聚焦元件包括透镜。
17.根据权利要求15所述的系统,其特征在于,在每个光电检测器中的倍增区的本征半导体材料布置在第一和第二掺杂区之间。
18.根据权利要求15所述的系统,其特征在于,每个光电检测器还包括包含吸收区和倍增区的谐振腔。
CN2006101513471A 2005-06-28 2006-06-28 具有分开的吸收和倍增区域的锗/硅雪崩光电检测器 Active CN1905216B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/170,556 2005-06-28
US11/170,556 US7233051B2 (en) 2005-06-28 2005-06-28 Germanium/silicon avalanche photodetector with separate absorption and multiplication regions

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN2012100343905A Division CN102593202A (zh) 2005-06-28 2006-06-28 具有分开的吸收和倍增区域的锗/硅雪崩光电检测器

Publications (2)

Publication Number Publication Date
CN1905216A CN1905216A (zh) 2007-01-31
CN1905216B true CN1905216B (zh) 2012-03-21

Family

ID=37499586

Family Applications (2)

Application Number Title Priority Date Filing Date
CN2012100343905A Pending CN102593202A (zh) 2005-06-28 2006-06-28 具有分开的吸收和倍增区域的锗/硅雪崩光电检测器
CN2006101513471A Active CN1905216B (zh) 2005-06-28 2006-06-28 具有分开的吸收和倍增区域的锗/硅雪崩光电检测器

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN2012100343905A Pending CN102593202A (zh) 2005-06-28 2006-06-28 具有分开的吸收和倍增区域的锗/硅雪崩光电检测器

Country Status (6)

Country Link
US (4) US7233051B2 (zh)
EP (1) EP1897148A2 (zh)
JP (1) JP2008544559A (zh)
KR (1) KR100944574B1 (zh)
CN (2) CN102593202A (zh)
WO (1) WO2007002953A2 (zh)

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9813152B2 (en) 2004-01-14 2017-11-07 Luxtera, Inc. Method and system for optoelectronics transceivers integrated on a CMOS chip
US7233051B2 (en) 2005-06-28 2007-06-19 Intel Corporation Germanium/silicon avalanche photodetector with separate absorption and multiplication regions
DE102007037020B3 (de) * 2007-08-06 2008-08-21 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Avalanche-Photodiode
WO2009048773A1 (en) * 2007-10-02 2009-04-16 Luxtera, Inc. Method and system for optoelectronics transceivers integrated on a cmos chip
KR100928204B1 (ko) 2007-12-11 2009-11-25 한국전자통신연구원 실리콘 에피층을 이용한 cmos 기반의 평판형 애벌란시포토다이오드 및 그 제조 방법
JP5522503B2 (ja) * 2008-07-28 2014-06-18 国立大学法人 東京大学 光半導体素子、光電変換素子及び光変調素子
US8279411B2 (en) * 2008-08-27 2012-10-02 The Boeing Company Systems and methods for reducing crosstalk in an avalanche photodiode detector array
US20120199932A1 (en) * 2009-10-12 2012-08-09 The Regents Of The University Of California Low noise, stable avalanche photodiode
US8242432B2 (en) * 2009-10-23 2012-08-14 Kotura, Inc. System having light sensor with enhanced sensitivity including a multiplication layer for generating additional electrons
KR20110068041A (ko) * 2009-12-15 2011-06-22 한국전자통신연구원 마이크로 렌즈가 집적된 아발란치 광 검출기
US8330171B2 (en) 2010-07-23 2012-12-11 Intel Corporation High speed, wide optical bandwidth, and high efficiency resonant cavity enhanced photo-detector
US9395182B1 (en) 2011-03-03 2016-07-19 The Boeing Company Methods and systems for reducing crosstalk in avalanche photodiode detector arrays
CN104025315B (zh) * 2011-12-29 2017-11-03 英特尔公司 具有低击穿电压的雪崩光电二极管
US10312397B2 (en) 2011-12-29 2019-06-04 Intel Corporation Avalanche photodiode with low breakdown voltage
WO2013180690A1 (en) * 2012-05-29 2013-12-05 Hewlett-Packard Development Company, L.P. Devices including independently controllable absorption region and multiplication region electric fields
FR2992472B1 (fr) * 2012-06-20 2014-08-08 Commissariat Energie Atomique Recepteur optique semi-conducteur a structure pin
KR20140025265A (ko) * 2012-08-20 2014-03-04 한국전자통신연구원 저전압 고이득 고속 광 검출기 및 그의 제조방법
US9171996B2 (en) 2012-08-20 2015-10-27 Electronics And Telecommunications Research Institute Low-voltage high-gain high-speed germanium photo detector and method of fabricating the same
CN106062970B (zh) * 2013-03-11 2018-05-08 英特尔公司 用于硅基光子集成电路的具有凹角镜的低电压雪崩光电二极管
US9377581B2 (en) 2013-05-08 2016-06-28 Mellanox Technologies Silicon Photonics Inc. Enhancing the performance of light sensors that receive light signals from an integrated waveguide
US10283665B2 (en) * 2013-07-08 2019-05-07 Sifotonics Technologies Co., Ltd. Compensated photonic device structure and fabrication method thereof
KR102285120B1 (ko) 2015-01-20 2021-08-05 한국전자통신연구원 광 수신 소자
CN104882509B (zh) * 2015-04-05 2017-04-19 北京工业大学 一种波导对接耦合型吸收倍增分离雪崩二极管
WO2017015580A1 (en) 2015-07-23 2017-01-26 Artilux Corporation High efficiency wide spectrum sensor
US10680131B2 (en) * 2015-07-27 2020-06-09 Hewlett Packard Enterprise Development Lp Doped absorption devices
JP6534888B2 (ja) * 2015-07-30 2019-06-26 技術研究組合光電子融合基盤技術研究所 面型光検出器
US10761599B2 (en) 2015-08-04 2020-09-01 Artilux, Inc. Eye gesture tracking
US10707260B2 (en) 2015-08-04 2020-07-07 Artilux, Inc. Circuit for operating a multi-gate VIS/IR photodiode
US10861888B2 (en) 2015-08-04 2020-12-08 Artilux, Inc. Silicon germanium imager with photodiode in trench
TW202335281A (zh) 2015-08-04 2023-09-01 光程研創股份有限公司 光感測系統
EP3783656B1 (en) 2015-08-27 2023-08-23 Artilux Inc. Wide spectrum optical sensor
JP6362142B2 (ja) * 2015-09-15 2018-07-25 日本電信電話株式会社 ゲルマニウム受光器
US10739443B2 (en) 2015-11-06 2020-08-11 Artilux, Inc. High-speed light sensing apparatus II
US10741598B2 (en) 2015-11-06 2020-08-11 Atrilux, Inc. High-speed light sensing apparatus II
US10418407B2 (en) 2015-11-06 2019-09-17 Artilux, Inc. High-speed light sensing apparatus III
US10886309B2 (en) 2015-11-06 2021-01-05 Artilux, Inc. High-speed light sensing apparatus II
US10254389B2 (en) 2015-11-06 2019-04-09 Artilux Corporation High-speed light sensing apparatus
DE102016103113A1 (de) * 2016-02-23 2017-08-24 Vishay Semiconductor Gmbh Optoelektronische Vorrichtung
JP6699055B2 (ja) * 2016-06-06 2020-05-27 日本電信電話株式会社 アバランシェ受光器
CN109314153B (zh) 2016-06-21 2022-05-17 深圳帧观德芯科技有限公司 基于雪崩光电二极管的图像感测器
JP6975341B2 (ja) 2018-02-23 2021-12-01 アーティラックス・インコーポレイテッド 光検出装置およびその光検出方法
US11105928B2 (en) 2018-02-23 2021-08-31 Artilux, Inc. Light-sensing apparatus and light-sensing method thereof
US11482553B2 (en) 2018-02-23 2022-10-25 Artilux, Inc. Photo-detecting apparatus with subpixels
JP2019165181A (ja) * 2018-03-20 2019-09-26 株式会社東芝 光検出装置
WO2019199691A1 (en) 2018-04-08 2019-10-17 Artilux, Inc. Photo-detecting apparatus
US10854770B2 (en) 2018-05-07 2020-12-01 Artilux, Inc. Avalanche photo-transistor
US10969877B2 (en) 2018-05-08 2021-04-06 Artilux, Inc. Display apparatus
CN112385051B (zh) * 2018-07-12 2022-09-09 深圳帧观德芯科技有限公司 具有银纳米粒子电极的图像传感器
US11574942B2 (en) 2018-12-12 2023-02-07 Artilux, Inc. Semiconductor device with low dark noise
CN116504856A (zh) 2019-08-28 2023-07-28 光程研创股份有限公司 具有低暗电流的光侦测装置
US11309447B2 (en) 2019-12-26 2022-04-19 Globalfoundries U.S. Inc. Separate absorption charge and multiplication avalanche photodiode structure and method of making such a structure
EP4141939A4 (en) * 2020-04-24 2023-10-11 Sony Semiconductor Solutions Corporation LIGHT DETECTOR AND ELECTRONIC INSTRUMENT
WO2022221271A1 (en) * 2021-04-13 2022-10-20 Impact Photonics Llc Silicon-germanium avalanche photodiode

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6465803B1 (en) * 1996-05-07 2002-10-15 The Regents Of The University Of California Semiconductor hetero-interface photodetector

Family Cites Families (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE634413A (zh) 1962-07-02
US4009058A (en) 1975-06-16 1977-02-22 Rca Corporation Method of fabricating large area, high voltage PIN photodiode devices
JPS5421294A (en) 1977-07-19 1979-02-17 Mitsubishi Electric Corp Avalanche photo diode
JPS5513907A (en) * 1978-07-17 1980-01-31 Kokusai Denshin Denwa Co Ltd <Kdd> Avalnche photo diode with semiconductor hetero construction
US4210923A (en) * 1979-01-02 1980-07-01 Bell Telephone Laboratories, Incorporated Edge illuminated photodetector with optical fiber alignment
DE2927183A1 (de) 1979-07-05 1981-01-08 Standard Elektrik Lorenz Ag Avalanche-photodiode
US4471155A (en) * 1983-04-15 1984-09-11 Energy Conversion Devices, Inc. Narrow band gap photovoltaic devices with enhanced open circuit voltage
JPS61226976A (ja) 1985-03-30 1986-10-08 Fujitsu Ltd 半導体受光素子
JPS61226973A (ja) 1985-04-01 1986-10-08 Hitachi Ltd アバランシエホトダイオ−ド
CA1282671C (en) * 1985-11-18 1991-04-09 John Condon Bean Device having strain induced region
CA1305350C (en) 1986-04-08 1992-07-21 Hiroshi Amada Light receiving member
US4857982A (en) 1988-01-06 1989-08-15 University Of Southern California Avalanche photodiode with floating guard ring
GB8913198D0 (en) 1989-06-08 1989-07-26 British Telecomm Guard ring structure
DE4011860A1 (de) 1990-04-09 1991-10-10 Siemens Ag Halbleiterelement mit einer silizium-schicht
JP2970815B2 (ja) 1990-04-11 1999-11-02 株式会社東芝 半導体受光素子
JPH0493088A (ja) 1990-08-09 1992-03-25 Nec Corp アバランシェフォトダイオード
JPH04304672A (ja) 1991-04-01 1992-10-28 Olympus Optical Co Ltd 固体撮像装置
US5401952A (en) 1991-10-25 1995-03-28 Canon Kabushiki Kaisha Signal processor having avalanche photodiodes
JP2935307B2 (ja) * 1992-02-20 1999-08-16 株式会社日立製作所 ディスプレイ
US5596186A (en) 1993-12-08 1997-01-21 Nikon Corporation High sensitivity silicon avalanche photodiode
JP2730472B2 (ja) 1993-12-28 1998-03-25 日本電気株式会社 半導体受光素子
JP2701754B2 (ja) 1994-10-03 1998-01-21 日本電気株式会社 シリコン受光素子の製造方法
JP2601231B2 (ja) 1994-12-22 1997-04-16 日本電気株式会社 超格子アバランシェフォトダイオード
EP0818829A1 (en) * 1996-07-12 1998-01-14 Hitachi, Ltd. Bipolar transistor and method of fabricating it
US5897371A (en) 1996-12-19 1999-04-27 Cypress Semiconductor Corp. Alignment process compatible with chemical mechanical polishing
JPH10290023A (ja) 1997-04-15 1998-10-27 Nec Corp 半導体光検出器
US5757057A (en) 1997-06-25 1998-05-26 Advanced Photonix, Inc. Large area avalanche photodiode array
JP3141847B2 (ja) 1998-07-03 2001-03-07 日本電気株式会社 アバランシェフォトダイオード
US6515315B1 (en) 1999-08-05 2003-02-04 Jds Uniphase, Corp. Avalanche photodiode for high-speed applications
US6351326B1 (en) 1999-12-14 2002-02-26 Intel Corporation Method and apparatus for optically modulating light utilizing a resonant cavity structure
US6417528B1 (en) 2000-01-28 2002-07-09 Agere Systems Guardian Corp. High speed semiconductor photodetector
JP2001284630A (ja) * 2000-03-29 2001-10-12 Minolta Co Ltd 半導体光電変換素子ならびにその使用方法および製造方法
JP4702977B2 (ja) 2000-04-28 2011-06-15 富士通株式会社 受光装置
KR100366046B1 (ko) 2000-06-29 2002-12-27 삼성전자 주식회사 에벌란치 포토다이오드 제조방법
GB2367945B (en) 2000-08-16 2004-10-20 Secr Defence Photodetector circuit
US20030045688A1 (en) 2000-08-25 2003-03-06 Chu Charles Chiyuan Human interleukin-four induced protein
US6384462B1 (en) * 2000-12-06 2002-05-07 Nova Crystals, Inc. Planar hetero-interface photodetector
JP4220688B2 (ja) 2001-02-26 2009-02-04 日本オプネクスト株式会社 アバランシェホトダイオード
US6633716B2 (en) 2001-05-02 2003-10-14 Motorola, Inc. Optical device and method therefor
JP2002368252A (ja) 2001-06-06 2002-12-20 Sanyo Electric Co Ltd Pinダイオード
JP4157698B2 (ja) 2001-11-26 2008-10-01 ユーディナデバイス株式会社 半導体受光素子およびその駆動方法
US6720588B2 (en) 2001-11-28 2004-04-13 Optonics, Inc. Avalanche photodiode for photon counting applications and method thereof
JP2003163361A (ja) * 2001-11-29 2003-06-06 Mitsubishi Electric Corp 受光素子および光通信デバイス
US7072557B2 (en) 2001-12-21 2006-07-04 Infinera Corporation InP-based photonic integrated circuits with Al-containing waveguide cores and InP-based array waveguide gratings (AWGs) and avalanche photodiodes (APDs) and other optical components containing an InAlGaAs waveguide core
WO2003065418A2 (en) 2002-02-01 2003-08-07 Picometrix, Inc. Planar avalanche photodiode
US6693308B2 (en) 2002-02-22 2004-02-17 Semisouth Laboratories, Llc Power SiC devices having raised guard rings
US7372495B2 (en) * 2002-08-23 2008-05-13 Micron Technology, Inc. CMOS aps with stacked avalanche multiplication layer and low voltage readout electronics
AU2003270212A1 (en) * 2002-09-19 2004-04-08 Quantum Semiconductor Llc Light-sensing device
US7122734B2 (en) * 2002-10-23 2006-10-17 The Boeing Company Isoelectronic surfactant suppression of threading dislocations in metamorphic epitaxial layers
JP4154293B2 (ja) * 2003-07-09 2008-09-24 株式会社日立製作所 アバランシェホトダイオード、光モジュール及び光受信器
TWI228320B (en) 2003-09-09 2005-02-21 Ind Tech Res Inst An avalanche photo-detector(APD) with high saturation power, high gain-bandwidth product
US7271405B2 (en) 2003-10-14 2007-09-18 Stc.Unm Intersubband detector with avalanche multiplier region
US7160753B2 (en) 2004-03-16 2007-01-09 Voxtel, Inc. Silicon-on-insulator active pixel sensors
US6943409B1 (en) * 2004-05-24 2005-09-13 International Business Machines Corporation Trench optical device
US7397101B1 (en) * 2004-07-08 2008-07-08 Luxtera, Inc. Germanium silicon heterostructure photodetectors
US7209623B2 (en) * 2005-05-03 2007-04-24 Intel Corporation Semiconductor waveguide-based avalanche photodetector with separate absorption and multiplication regions
US7233051B2 (en) 2005-06-28 2007-06-19 Intel Corporation Germanium/silicon avalanche photodetector with separate absorption and multiplication regions
KR100798836B1 (ko) * 2006-05-24 2008-01-28 교세미 가부시키가이샤 적층형 태양 전지
US7741657B2 (en) 2006-07-17 2010-06-22 Intel Corporation Inverted planar avalanche photodiode
US7683397B2 (en) 2006-07-20 2010-03-23 Intel Corporation Semi-planar avalanche photodiode

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6465803B1 (en) * 1996-05-07 2002-10-15 The Regents Of The University Of California Semiconductor hetero-interface photodetector

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JP特开2001-284630A 2001.10.12

Also Published As

Publication number Publication date
US7233051B2 (en) 2007-06-19
CN102593202A (zh) 2012-07-18
CN1905216A (zh) 2007-01-31
WO2007002953A3 (en) 2007-06-21
US20070164385A1 (en) 2007-07-19
US20100320502A1 (en) 2010-12-23
KR20080028385A (ko) 2008-03-31
JP2008544559A (ja) 2008-12-04
KR100944574B1 (ko) 2010-02-25
WO2007002953A2 (en) 2007-01-04
US20140367740A1 (en) 2014-12-18
US8829566B2 (en) 2014-09-09
EP1897148A2 (en) 2008-03-12
US20060289957A1 (en) 2006-12-28
US8338857B2 (en) 2012-12-25

Similar Documents

Publication Publication Date Title
CN1905216B (zh) 具有分开的吸收和倍增区域的锗/硅雪崩光电检测器
US7683397B2 (en) Semi-planar avalanche photodiode
US7741657B2 (en) Inverted planar avalanche photodiode
CN100527449C (zh) 具有分离的吸收区和倍增区的基于半导体波导的雪崩光电检测器
US20070152289A1 (en) Avalanche photodetector with reflector-based responsivity enhancement
US8269303B2 (en) SiGe photodiode
US6897498B2 (en) Polycrystalline germanium-based waveguide detector integrated on a thin silicon-on-insulator (SOI) platform
CN111354807B (zh) 雪崩光电二极管及制造光电组件的方法
KR20140106625A (ko) 낮은 항복 전압을 갖는 애벌랜치 포토다이오드
JP2014057110A (ja) アバランシェ・フォトダイオード
JP2008526003A (ja) ゲルマニウムオンシリコンの光検出器
CN102479866A (zh) 一种新式锗/硅雪崩光电检测器设备
Murshid et al. Array of concentric CMOS photodiodes for detection and de-multiplexing of spatially modulated optical channels
US20210210544A1 (en) Short-wave infrared detector and its integration with cmos compatible substrates
JP7125822B2 (ja) 光半導体素子及び光伝送装置
Lerner The photodiode is the workhorse of detection

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant