TWI228320B - An avalanche photo-detector(APD) with high saturation power, high gain-bandwidth product - Google Patents

An avalanche photo-detector(APD) with high saturation power, high gain-bandwidth product Download PDF

Info

Publication number
TWI228320B
TWI228320B TW092124948A TW92124948A TWI228320B TW I228320 B TWI228320 B TW I228320B TW 092124948 A TW092124948 A TW 092124948A TW 92124948 A TW92124948 A TW 92124948A TW I228320 B TWI228320 B TW I228320B
Authority
TW
Taiwan
Prior art keywords
layer
collapse
apd
light
patent application
Prior art date
Application number
TW092124948A
Other languages
Chinese (zh)
Other versions
TW200511596A (en
Inventor
Jin-Wei Shi
Chee-Wee Liu
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW092124948A priority Critical patent/TWI228320B/en
Priority to JP2003389150A priority patent/JP3826129B2/en
Priority to US10/720,117 priority patent/US6963089B2/en
Application granted granted Critical
Publication of TWI228320B publication Critical patent/TWI228320B/en
Publication of TW200511596A publication Critical patent/TW200511596A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier
    • H01L31/107Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier the potential barrier working in avalanche mode, e.g. avalanche photodiode

Abstract

An avalanche photo-detector (APD) with high saturation power, high gain-bandwidth product, low noise, fast response, low dark current is disclosed. The avalanche photo-detector (APD) having a multi-layered structure includes: an absorption layer with graded doping, a undoped multiplication layer, a undoped drift layer sandwiched between the absorption layer and the multiplication layer for reducing the capacitance, and a field buffer layer sandwiched between the drift layer and the multiplication layer for concentrating the electric field in the multiplication layer.

Description

1228320 玖、發明說明: 【發明所屬之技術領域】 . 本發明係關於一種光偵測器,尤指一種適用於高速長 距離光纖通信之累增崩潰光偵測器GAvalanehe 5 Photodetectors 5 APD) 0 【先前技術】 累增崩潰光賴測器(Avalanche Photodetectors,APD)在 近年來2.5GHz或10GHz頻寬的光纖通信中為光接受器市 10場的主流。因為其有較高速p-i-n偵測器在需求頻寬下較 .高的敏感度、增益、響應度等等特點。和同樣有增益的光 雙載子電晶體(photo-transistor,HPT)相比,APD有較高 的速度表現潛力,而且有較小的脈衝響應下降時間(fall time)使彳于其在眼圖測試(eye_diagram test),和光纖通信商 15品化應用上都遠較HPT來得實用。而高速長距離光纖通信 的市場中,南輸出功率_電頻寬乘積,和高效率-電頻寬乘 積,為高速光偵測器發展中,其需要達到之最重要的兩個 指標。,然而之前所提出的累增崩潰光偵測器(apd)均無 •法同時兼顧兩項指標。 2〇 另一方面,於高速長距離光纖通信的市場中,三五族 半導體為材料的元件一直是市場主流。雖然矽晶工業為電 子業的基石’其具有南良率,低成本,易整合等等優點, 但是其能帶寬度、非間接能帶、相對上的低電子移動度卻 使得其光電元件在光纖通信長波長附近0.3〜Κ55_特性 1228320 5 101228320 发明 Description of the invention: [Technical field to which the invention belongs]. The present invention relates to a light detector, in particular a cumulative collapse light detector GAvalanehe 5 Photodetectors 5 APD) suitable for high-speed and long-distance optical fiber communication. Prior technology] Accumulated collapse optical detectors (Avalanche Photodetectors, APD) have been the mainstream of the optical receiver market for 10 fields in 2.5GHz or 10GHz bandwidth optical fiber communications in recent years. Because it has a higher speed p-i-n detector under the required bandwidth. High sensitivity, gain, responsiveness and so on. Compared with the same gain photo-transistor (HPT), APD has higher speed performance potential, and has a smaller impulse response fall time. The test (eye_diagram test) is far more practical than the HPT in the application of optical fiber communication vendors. In the high-speed and long-distance optical fiber communications market, the output power_electrical bandwidth product and the high-efficiency-electrical bandwidth product are the two most important indicators for the development of high-speed optical detectors. However, the accumulative collapse photodetector (apd) proposed previously is not able to take into account both indicators at the same time. 2 On the other hand, in the high-speed and long-distance fiber-optic communication market, three or five semiconductor-based components have been the mainstream of the market. Although the silicon industry is the cornerstone of the electronics industry, it has the advantages of low yield, low cost, and easy integration, but its band width, non-indirect energy band, and relatively low electron mobility make its optoelectronic components in optical fibers. Near communication long wavelength 0.3 ~ Κ55_ characteristics 1228320 5 10

表現遠遠較三五族元件來的差。在一般的三五材料中當累 增崩潰發生時,電子、電洞的游離速度總是相差不多:然 而在矽晶材料中99%以上的產生載子均為電子。此項特性 使得以矽為基板(Si based)的累增崩潰光偵測器(APD), 在7C件電頻寬、嗶音、增益等表現均較三五族為基板(V based) # APD來的優秀。然而矽的能帶寬卻使得以矽晶 為材料的APD無法對光纖通信長波有所反應。如前所述, 為了解決這個問題,使用InGaAs為光吸收層再利用晶圓 融合(Wafer Bonding)技術黏接上&累增崩潰層的分離式 吸收崩潰APD,已經被發表。例如先前美國專利u s pat No. 6465803所述之傳統的InGaAs融接以之ApD 20 (祕* fused Si APD )即是。然而此種晶圓融合(财打 Bo,的元件之-些先天缺點,例如高製程成本,高暗 電流,S!和InGaAs目熱擴張係數不㈤㈣打易破裂之特 性,-直無法有效地解決。另一種使用石夕錯合金為吸光層 材料並以石夕為累增層材料,應用在通信波長的卿結構如 U. S. Μ N〇. 6459 1 07專利所述,其提出—種新穎以SiGeC 為吸光^的長波長之累增崩潰光债測器。但是該累增崩潰 光偵測器仍然具有高操作電壓和高系統電容,且無 法直接成長出較厚吸光層,對於實際應用及製造上較 為困難。 發明内容】 6 1228320 本發明之主要目的孫力担 材料w 的係在美供-種可用四族或三五族 ==的累增崩潰光_器(_),俾能減少電 5 速产、咸:,加快光激發載子傳輸速度,提高反應 速度提高輸出功“及增加增益頻寬乘積。 勺乜’ 述目的,本發明累增崩潰光偵測器(APD), ^ 光吸收層(abSG_㈣,係為第—半導體,用以吸 \射之光,並轉換為载子(,,且該光吸收層 二:η)為漸變重摻雜(graded d_g)以製造一内建電 10 W增層(mUltipliea—,係為未參雜之第二半導體, 妾又載子以累增放大電流;—遮蔽緩衝層_打 :)’係為第三半導體,且央置於該光吸收層及該累增層 b ’用以於偏麼時,集中電場於該累增層;以及一飄移 二=rr),係為一未參雜之第四半導體,並夾置於該 15 間 =蔽緩衝層陶d buffer layer)與該光吸收層(加〇咖啦 間’用以降低電容。 本發明之第—半導體,第二半導體,第三半導體及第 :半導體可同時為三五族、三五族合金、四族、或是四族 口金半導體材料。較佳為第一半導體,第二半導體,第三 半導體及第四半導體同時為四族半導體材料或三五族半導 體材料。本發明之第一半導體光吸收層,遮蔽緩衝層之第 二半導體較佳為第一導電型(例如p型),而連接累增層 (multiplication)之基板較佳為第二導電型(例如n型),第二 半導體累增層’和第四半導體飄移層較佳為非參雜。— 20 1228320 【實施方式】 , 本發明累增崩潰光偵測器(APD)可選擇性地更包含一 第一導體層及第二導體層,用以連接並導通該光吸收層或 该累增層’其中該光吸收層(absorption)位於該第一導體層 5及該飄移層(drift layer)之間,且該累增層位於該第二導體 層及该遮蔽緩衝層(field buffer layer)之間。本發明累增崩 潰光偵測器(APD)之光吸收層為漸變重摻雜,以建立一内 建之電場。以p型矽光吸收層為例,摻雜之濃度由接近磊晶 層表面之一方向接近磊晶層底部之一方遞減。本發明累增 10崩潰光偵測器(APD)可選擇性地更包含一第一波導層及第 一波導層,該光吸收層(absorpti〇n)位於該第一波導層及該 飄移層(drift layer)之間,且該累增層位於該第二波導層及 该遮蔽緩衝層(field buffer layer)之間。本發明累增崩潰光 偵測器可選擇性地更包含一第一多層反射鏡組及一第二層 15反射鏡組,其中該光吸收層(absorption)及該累增層 (multiplication)係夾置於該第一多層反射鏡組及第二層反 射鏡之間’更佳為該第一多層反射鏡組及一第二層反射鏡 -組為分佈式布拉格反射鏡。本發明累增崩潰光偵測器可選 擇性地更包含一側邊覆蓋式的電洞弛張層322 (relaxati〇n 20 layer) ’用以環繞接觸該光吸收層(absorption),並連接該光 吸收層(absorption)及該第一導體層,以捕捉該光吸收層 (absorption)弛張之電洞至該第一導體層,更佳為該電洞弛 張層為P+-Ge,P+-SiGe。本發明累增崩潰光偵測器之光吸 收層(absorption),可為重參雜或較佳為為漸變重摻雜 1228320 5 10 15 (graded dopmg)以製造一内建電場,加快電子傳輸縮短 電子在吸光層的傳輸時間。本發明累增崩潰光彳貞測器光吸 收層可用任何三五族、三五族合金、四族、或是四族合金 半導體材料實現。& 了達成㈣晶為基板,低製作成本的 優點’該^收層較佳為以Si^ixCix為能障而以帥^ ^能井的量子井或疊晶格,或是以Si或SixCl.x為能障或遮 盍層(cap layer)而以^為材料的量子點,其中〈卜本 發明累增崩潰光伯測器之該光吸收層,該累增層 (multiplication) ’ 該遮蔽緩衝層(fieidbufferia㈣,該飄矛; 層(drift layer)可同時為四族半導體或四族半導體合金,或 同時為三五族半導體或三五族半導體合金。舉例來說本發 明累增崩潰光偵測器的累增層(multipHcati〇n)可為未參雜 之矽層,該飄移層(drift layer))同時為未參雜之矽層,且 該遮蔽緩衝層⑽d buffer layer)㈤時為卩型或剛;雜之 矽層,或者該光吸收層為p5nnGaAs,且該飄移層 her)同時為未參雜之Inp,該遮蔽緩衝層卬灿如版 Θ時為p型InA1As,該累增層同時為無參雜之 InAlAs ’該基板可為n型之Inp或是—心型的⑽半導體層 加上一半絕緣的InP基板。本發明累增崩潰光偵測器之該^ 入射.方向無限制,較佳為該光入射方向與該光載;傳播/平 =方向垂直’近乎垂直’平行或近乎平行。本發明累增崩 潰光偵測器(APD)所需求的蟲晶層結構形成之方法^限 制,可為任何習磊晶成長方法,較佳為使用超真空化學氣 20 1228320 相沈積UHV-CVD,低壓化學氣相沈積LP-CVD,或分子束 蠢晶MBE的方法成長在半導體基板上。 為能讓貴審查委員能更瞭解本發明之技術内容,特 舉累增崩潰光偵測器(APD)較佳具體實施例說明如下。 5 請參照本發明之圖1及圖4。本發明之圖1為本發明累 -增崩潰光偵測器(APD)之以矽和矽鍺合金為材料的能帶分 佈圖,圖4為本發明具體累增崩潰光偵測器(ApD)之橫截面 示意圖。本發明具體累增崩潰光偵測器(APD)具有p型金屬 導電層110,410,吸光層120,420,飄移層130,430,電 10 %遮蔽層(或遮蔽緩衝層)14〇,440,上、下波導包覆層 160 ’ 180。及累增層(muitipiicati〇n iayer)i5〇,450及η型金 屬導電層170, 470。本發明累增崩潰光偵測器(ApD)係採 用應力補償方法及漸變重摻雜(gracjed doping)(即在長晶 •時隨著晶體厚度的改變也同時改變參雜的濃度)成長吸光 15層120’ 420。在本實施例中使用sic在矽基板成長時做為延 伸(tensile)應力層122,而以&在矽基板成長時做為收 縮(c〇mpressed)應力層121,同時成長這兩層磊晶形成 父錯$接之super-lattice疊晶格,使能達成應力平衡的效應 進而將磊晶層長厚。而漸變重摻雜(graded d〇ping)成長吸 20光層120,可以製造一内建電場加快電子傳輸,是以可以縮 短電子在吸光層12〇的傳輸時間。另一方面,SiC/SiGe量 子井或日日格based偵測器導帶差小,也不會阻礙電子傳 輸所以車乂短的電子傳輸時間是可以被預期的。圖1之元件 舁傳統里子井或疊晶格以矽晶為基底的光偵測器相比,本 1228320The performance is far worse than the three or five family components. When the cumulative collapse occurs in ordinary materials, the dissociation speeds of electrons and holes are always similar: however, more than 99% of the carriers generated in silicon materials are electrons. This feature makes the Si-based cumulative collapse photodetector (APD) perform better than the three or five families in the 7C electrical bandwidth, beep, and gain (V based) # APD Comes excellent. However, the energy bandwidth of silicon makes it impossible for APDs made of silicon to respond to long-wavelength optical fiber communications. As mentioned earlier, in order to solve this problem, a separate absorption collapse APD that uses InGaAs as a light absorbing layer and then uses wafer bonding (Wafer Bonding) technology to attach & accumulate collapse layers has been published. For example, the conventional InGaAs described in the US patent No. 6465803 is ApD 20 (fused Si APD). However, some of the inherent disadvantages of this type of wafer fusion (for example, Boda ’s components, such as high process cost, high dark current, and the thermal expansion coefficient of S! And InGaAs do not affect the characteristics of easy cracking, cannot be effectively resolved. The other uses Shi Xi Co alloy as the light absorbing layer material and Shi Xi as the accumulating layer material. The clear structure applied at the communication wavelength is described in the US M No. 6459 1 07 patent, which proposes a novel SiGeC as The long-wavelength accumulation of light absorbing collapses the optical debt detector. However, the accumulated collapse light detector still has high operating voltage and high system capacitance, and cannot grow a thick light-absorbing layer directly, which is more practical and manufacturing. Difficulties Content of the invention] 6 1228320 The main purpose of the present invention is to supply the material of the Sun Li material w in the United States-a kind of cumulative breakdown light device (_) that can be used by four or three or five families ==, can reduce electricity 5 speed Production, salt :, to accelerate the transmission speed of light-excited carriers, increase the response speed and increase the output work "and increase the gain bandwidth product." For the stated purpose, the present invention accumulates collapsed photodetector (APD), ^ light absorption layer (AbSG_㈣, the first half A conductor for absorbing and emitting light and converting it into a carrier (, and the light absorbing layer 2: η) is graded heavily doped (graded d_g) to make a built-in 10 W build-up layer (mUltipliea—, It is a second semiconductor that is not doped, and the carrier amplifies the current in order to accumulate the current;-the shielding buffer layer _ =: is a third semiconductor, and is placed in the center of the light absorption layer and the accumulation layer b ' For biasing, the electric field is concentrated in the accumulation layer; and a drift of two = rr), which is an unincorporated fourth semiconductor, and is sandwiched between the 15 layers = d buffer layer) And the light absorbing layer (plus 0 karats) to reduce capacitance. The first semiconductor of the present invention, the second semiconductor, the third semiconductor, and the third semiconductor can be a Group III or III, a Group III or III alloy, a Group IV, Or a Group IV semiconductor material. Preferably, the first semiconductor, the second semiconductor, the third semiconductor, and the fourth semiconductor are both a Group IV semiconductor material or a Group III or semiconductor material. The first semiconductor light absorbing layer of the present invention shields The second semiconductor of the buffer layer is preferably a first conductivity type (for example, p-type), and The substrate of the multiplication layer is preferably a second conductivity type (such as n-type), and the second semiconductor accumulation layer and the fourth semiconductor drift layer are preferably non-different. — 20 1228320 [Embodiment], The progressive collapse photodetector (APD) of the present invention may optionally further include a first conductor layer and a second conductor layer for connecting and conducting the light absorption layer or the accumulation layer, wherein the light absorption layer ( The absorption is located between the first conductor layer 5 and the drift layer, and the accumulation layer is located between the second conductor layer and the field buffer layer. The light absorbing layer of the progressive collapse photodetector (APD) of the present invention is gradually heavily doped to establish a built-in electric field. Taking the p-type silicon light absorbing layer as an example, the doping concentration decreases from one approaching the surface of the epitaxial layer to one approaching the bottom of the epitaxial layer. The accumulating 10-column photodetector (APD) of the present invention may optionally further include a first waveguide layer and a first waveguide layer, and the light absorbing layer (absorptin) is located on the first waveguide layer and the drift layer ( drift layer), and the accumulation layer is located between the second waveguide layer and the field buffer layer. The accumulative collapse photodetector of the present invention may optionally further include a first multi-layer mirror group and a second 15-layer mirror group, wherein the absorption layer and the multiplication layer are It is sandwiched between the first multilayer mirror group and the second layer mirror. It is more preferable that the first multilayer mirror group and a second layer mirror-group are distributed Bragg mirrors. The accumulative collapse photodetector of the present invention may optionally further include a hole relaxation layer 322 (relaxation 20 layer) of a side-covering type to surround the light absorption layer and connect the light. The absorption layer and the first conductor layer are used to capture the relaxation holes of the light absorption layer to the first conductor layer. More preferably, the hole relaxation layers are P + -Ge, P + -SiGe. The absorption of the accumulating collapsed photodetector of the present invention can be heavily doped or preferably graded heavily doped 1228320 5 10 15 (graded dopmg) to create a built-in electric field to accelerate electron transmission and shorten electrons. Transmission time in the light absorbing layer. The light-absorbing layer of the accumulative collapse photodetector of the present invention can be implemented with any of three or five group, three or five group alloys, four group, or four group alloy semiconductor materials. & Achieved the advantage of using ㈣crystal as the substrate and low production cost 'The ^ receiving layer is preferably a quantum well or stacked lattice with Si ^ ixCix as the energy barrier and a handsome energy well, or Si or SixCl .x is an energy barrier or a cap layer and quantum dots using ^ as a material, in which the light absorbing layer of the cumulative collapse optical detector of the present invention, the multiplication layer, the masking The buffer layer (fieidbufferia㈣, the drifting spear; layer (drift layer) can be a Group IV semiconductor or a Group IV semiconductor alloy, or a Group III semiconductor or a Group III semiconductor alloy at the same time. For example, the present invention accumulates crash detection The multi-pHcation of the detector can be an un-doped silicon layer, the drift layer is also an un-doped silicon layer, and the shielding buffer layer (d buffer layer) is ㈤ Type or rigid; hybrid silicon layer, or the light absorption layer is p5nnGaAs, and the drift layer is at the same time non-doped Inp, the shielding buffer layer is p-type InA1As when the plate is as bright as Θ, the accumulation layer At the same time, it is InAlAs without impurities. The substrate can be n-type Inp or-heart-shaped ⑽ semiconductor layer. Insulating InP substrate half. The ^ incident. Direction of the progressively collapsing light detector of the present invention is not limited, and it is preferred that the incident direction of the light and the light load; propagation / flat = direction perpendicular 'nearly perpendicular' parallel or nearly parallel. The method for forming the worm crystal layer structure required by the progressive collapse photodetector (APD) of the present invention is limited, and can be any Xi Leijing growth method, preferably using ultra-vacuum chemical gas 20 1228320 phase deposition UHV-CVD, Low pressure chemical vapor deposition LP-CVD, or molecular beam stupid MBE, is grown on semiconductor substrates. In order to allow your reviewers to better understand the technical content of the present invention, a preferred embodiment of the cumulative collapse light detector (APD) is described below. 5 Please refer to FIG. 1 and FIG. 4 of the present invention. FIG. 1 of the present invention is a band diagram of silicon and silicon-germanium alloy as a material of the accumulative-accelerating collapse photodetector (APD) of the present invention, and FIG. 4 is a specific accumulating collapse photodetector (ApD) of the present invention Schematic cross-section. The specific accumulating collapse photodetector (APD) of the present invention has a p-type metal conductive layer 110, 410, a light absorbing layer 120, 420, a drift layer 130, 430, and an electrical 10% shielding layer (or shielding buffer layer) 1440,440. , The upper and lower waveguide cladding layers 160'180. And accumulation layers (muitipiication iayer) i50, 450 and n-type metal conductive layers 170, 470. The accumulative collapse photodetector (ApD) of the present invention adopts a stress compensation method and gradually doped (gracjed doping) (that is, the concentration of the impurity is changed at the same time as the thickness of the crystal is changed). Layer 120 '420. In this embodiment, sic is used as the tensile stress layer 122 when the silicon substrate is grown, and & is used as the compressive stress layer 121 when the silicon substrate is grown, and the two epitaxial layers are grown at the same time. The super-lattice superimposed lattice is formed, which can achieve the effect of stress balance and further increase the thickness of the epitaxial layer. Gradual doping growth and absorption of the light-absorbing layer 120 can create a built-in electric field to speed up the electron transport, so as to shorten the electron transmission time in the light-absorbing layer 120. On the other hand, the small difference between the conduction bands of the SiC / SiGe quantum wells or the Rigger-based detectors will not hinder the electron transmission, so a short electron transmission time of the carriage can be expected. The components of Figure 1 相比 Compared with a conventional photodetector based on a silicon substrate or a stacked lattice based on silicon, this 1228320

構製造一内建電場,所以 所以可以加快電子傳輸,徹底解決了 雜也解決了其可能崩潰增加暗電流的 b件使用一漸變重參雜graded d〇pe(y4 載子傳輸問題,使得本發明在低增益操作時有超高速表現 (>40GHz)。本發明圖i之元件只牵涉到電子的傳輸過程, 如此便有增加元件最大可輸出電功率的優點。更有甚者, 本發明圖1之元件磊晶層結構和少了射極(emitter)的siGe based DHBT相當類似,可以共同建立於同一基板,故開創The structure creates a built-in electric field, so it can speed up the electron transmission, completely solve the impurity and also solve the problem of b pieces that may collapse and increase the dark current. Use a gradual doped impurity (graded doppe) transmission problem, which makes the invention Ultra-high-speed performance (> 40GHz) in low gain operation. The element of Figure i of the present invention only involves the transmission process of electrons, so there is an advantage of increasing the maximum output electrical power of the element. What's more, Figure 1 of the present invention The structure of the epitaxial layer of the device is very similar to that of siGe based DHBT without emitter. It can be built on the same substrate, so

' 而本實施例與傳統累增崩潰光偵測器(APD)結構上尚 有相§大之差異。其最大之差異,是在崩潰層中多了未參 雜的飄移層(drift layer) Π0(例如矽磊晶層或是漸變帶溝的 SiGe磊晶層)。該飄移層(Drift Layer) 130係用磊晶成長無 20參雜’但f I較寬的半導體材料層來降低系統電容。飄移 層(drift layer)130最主要的功能就是降低系統電容,並提供 足夠的電場將傳輸電子快速掃除,以大幅增進元件操作速 度。在本實施例中,該飄移層(drift layer) 130為未摻雜之矽 '層。而電場遮蔽層(或遮蔽緩衝層)140係用磊晶成長參雜 11 1228320 或離子佈值方式製造出同樣重參雜態(P型或η型),但帶寬 •較寬的半導體材料層(Electric Field Buffer Layer)來防止吸 光層120和飄移層130的崩潰。在本實施例中,該電場遮蔽 層(或遮蔽緩衝層)140為p型(或n型)摻雜之矽層。當圖i 5元件操作時,電場會因為電場遮蔽層(Field buffer layei〇 U0 的關係集中在較薄的累增層(multiplication layer) 150,操作 電壓便可有效降低。綜上所,述,在吸光層和累增層結構上 的革命性突破後,圖1或圖4中的元件便能夠有低操作電 壓’高操作速度,高飽和功率,高增益頻寬乘積,低暗電 10 流、噪音等等表現。 。月參本發明之圖2及圖4。本發明之圖2為本發明累 增崩潰光偵測器(APD)又一實施例之能帶分佈圖。圖2係表 示三五材料之本發明累增崩潰光偵測器(APD),本實施例 具體累增崩潰光偵測器(APD)具有p型波導包覆層21〇,吸 15光層220,飄移層230,電場遮蔽層(或遮蔽緩衝層)24〇, 累增層(multiplication layer)250及η型波導包覆層260,及 η型金屬接觸層280,ρ型金屬接觸層270。本實施例三五材 •料的累增崩潰光偵測器(APD)例子中,係以InA1As為累增 崩潰層250,因為inA1As累增崩潰發生時,其電子數目仍遠 20大於電洞數目。而此優異特性和矽晶材料類似,是以選擇 InA1 As做為累增崩潰層250。在本實施例中,傳輸層(或飄 移層)230係使用未摻雜jnp材料,因其對於光通信波長不 反應而且具有極高的電子移動度,可有效降低元件電容增 進電子傳輸速度。在本實施例中,吸光層220使用的是 12 1228320'However, there is a significant difference in structure between this embodiment and the conventional accumulating collapse photodetector (APD). The biggest difference is that there is an undifferentiated drift layer (such as a silicon epitaxial layer or a gradually-grooved SiGe epitaxial layer) in the collapse layer. The Drift Layer 130 is a semiconductor material layer with epitaxial growth of 20 ′ but wide f I to reduce system capacitance. The main function of the drift layer 130 is to reduce the system capacitance and provide a sufficient electric field to quickly sweep the transmitted electrons, thereby greatly increasing the speed of component operation. In this embodiment, the drift layer 130 is an undoped silicon layer. The electric field shielding layer (or shielding buffer layer) 140 is an epitaxial growth doped 11 1228320 or ionic distribution method to produce the same heavy doped state (P-type or η-type), but a wide band • wider semiconductor material layer ( Electric Field Buffer Layer) to prevent the light absorbing layer 120 and the drift layer 130 from collapsing. In this embodiment, the electric field shielding layer (or shielding buffer layer) 140 is a p-type (or n-type) doped silicon layer. When the components in Figure 5 are operated, the electric field will be concentrated in the thinner multiplication layer 150 because of the relationship between the electric field shielding layer (Field buffer layei0U0), and the operating voltage can be effectively reduced. In summary, as described above, After the revolutionary breakthrough in the structure of the light absorbing layer and the accumulating layer, the components in Figure 1 or Figure 4 can have low operating voltage, high operating speed, high saturation power, high gain bandwidth product, low dark current, 10 noise, and noise. The performance is shown in Figures 2 and 4 of the present invention. Figure 2 of the present invention is a band distribution diagram of still another embodiment of the cumulative collapse photodetector (APD) of the present invention. Figure 2 shows three or five The material of the present invention is a progressive collapse photodetector (APD). This embodiment specifically has a cumulative collapse photodetector (APD) having a p-type waveguide cladding layer 21, an absorber 15 light layer 220, a drift layer 230, and an electric field. A shielding layer (or a shielding buffer layer) 240, a multiplication layer 250 and an n-type waveguide cladding layer 260, an n-type metal contact layer 280, and a p-type metal contact layer 270. Three or five materials of this embodiment • Accumulation of Expected Explosion Detector (APD) Example, InA1As Accumulation The collapse layer 250, because inA1As accumulative collapse occurs, the number of electrons is still far greater than the number of holes. And this excellent characteristic is similar to silicon material, and InA1 As is selected as the accumulation collapse layer 250. In this embodiment, In the transmission layer (or drift layer) 230, an undoped jnp material is used, because it does not respond to the wavelength of optical communication and has a very high electron mobility, which can effectively reduce the element capacitance and increase the electron transmission speed. In this embodiment, The light absorbing layer 220 uses 12 1228320

InGaAs材料’因為InGaAs和%錯材料相比其對光通信操作 波長有極強的吸收和超大的電子移動度。在本實施例中吸 光層220之InGaAs材料,也是有漸變重摻雜(graded .doping),用以製造一内建電場,加速掃除載子(例如電 5子)。在本實施例中’電子阻播層212為InGaAsP,因InGaAsP 可避免電子逆向擴散到p型波導包覆層210。而電場遮蔽層 (或遮敝緩衝層)240係用蟲晶成長參雜或離子佈值方式製 造出同樣重參雜態(p型或η型),但帶寬較寬的半導體材料 層 InAlAs (Electric Field Buffer Layer)來防止吸光層 220和 10飄移層230的崩潰。而為了光波導的目的,在本實施例中使 用折射率較InGaAs和InP為低的InAlAs,InAlGaAs,或是 • InGaAsP作為光波導的包覆層210,26〇。本發明之本實施 例之結構與操作方式與前一實施例相類似,僅材料係以三 五族半導體材料為主。 15 凊參照本發明之圖3。圖3為本發明之又一具體實施 例。其層狀結構與圖1所示者相同,但是在量子井的側面使 用再磊晶(re-growth)的方法成長出能帶帶溝相等或小於量 子井中能井材料之帶溝的電洞弛張層322,如此便能夠藉由 k向弛張傳導,將電洞弛張到表面。用以解決在圖1中光吸 20收層320的量子井位障層有時因不得已而需要太厚時,電洞 被捕捉無法弛張到外面接點的問題。於本實施例中,該電 洞弛張層322為P+-Ge或P+-SiGe。 請參照本發明之圖4。圖4為本發明之一具體實施例。 其層狀結構與圖1所示者類似(無光導包覆層,16〇、18〇), 13 1228320 但士係使用簡單的姓刻基台加上垂直入射的(价h mesa)結 · 構貫現在n+-Si基板490上。圖4實施例具體累增崩潰光偵測 ^§(APD)具有p型環形金屬4丨〇,吸光層42〇,飄移層43〇, 電場遮蔽層(或遮蔽緩衝層)44〇,累增層(multiplicati〇n 5 layer)450及η型環形金屬47〇。圖4累增崩潰光偵測器(ApD) •所需求的磊晶層結構可使用超真空化學氣相沈積 UHV-CVD,低壓化學氣相沈積Lp-CVD,或分子束磊晶mbe 的方法成長在Si基板上。在蝕刻基台的元件側面上並可 以選擇性地使用Si〇2或高分子聚合物pMGI保護層 籲 10 (Passivati〇n)480以減低暗電流或減輕側邊崩潰的可能性。 在本實施例中,或p+的環形金屬41〇,47〇均作在同一平 面上以利元件高速量測。入射的光信號從元件正面(或頂 面)圓孔411入射(經過p的環形金屬接觸)。 請參照本發明之圖5。圖5為本發明之又一具體實施 15例。圖5實施例具體累增崩潰光债測器(APD)具有p型金屬 導電層510,多層分佈式布拉格反射鏡(DistributedInGaAs material 'is because InGaAs and %% materials have extremely strong absorption and large electron mobility for the wavelength of optical communication operation. In this embodiment, the InGaAs material of the light absorbing layer 220 is also graded and doped, which is used to create a built-in electric field to accelerate the removal of carriers (for example, electrons). In this embodiment, the 'electron propagation prevention layer 212 is InGaAsP, because InGaAsP can prevent electrons from diffusing backward into the p-type waveguide cladding layer 210. The electric field shielding layer (or shielding buffer layer) 240 is a semiconductor material layer InAlAs (Electric) with the same heavy parameter (p-type or η-type) but with a wide bandwidth by using insect crystal growth or ionic distribution. Field Buffer Layer) to prevent collapse of the light absorbing layers 220 and 10 drift layer 230. For the purpose of optical waveguides, InAlAs, InAlGaAs, or InGaAsP, which have a lower refractive index than InGaAs and InP, are used in this embodiment as the cladding layers 210, 26 of the optical waveguide. The structure and operation of this embodiment of the present invention are similar to those of the previous embodiment, and only the materials are dominated by Group III or V semiconductor materials. 15 凊 Refer to Figure 3 of the present invention. Fig. 3 shows another embodiment of the present invention. Its layered structure is the same as that shown in Figure 1, but the re-growth method is used on the side of the quantum well to grow a hole with a band gap equal to or smaller than the band gap of the energy well material in the quantum well. The layer 322 is thus able to relax the holes to the surface by the k-direction relaxation conduction. It is used to solve the problem that when the quantum well barrier layer of the photo-absorption 20-recovery layer 320 in FIG. 1 needs to be too thick due to necessity, the hole cannot be captured to relax to the external contact. In this embodiment, the hole relaxation layer 322 is P + -Ge or P + -SiGe. Please refer to FIG. 4 of the present invention. FIG. 4 is a specific embodiment of the present invention. Its layered structure is similar to that shown in Figure 1 (without light-guide cladding layers, 16 and 18). 13 1228320 Danshi uses a simple surname abutment plus a normal incidence (valence mesa) structure. Present on the n + -Si substrate 490. The embodiment of FIG. 4 specifically detects the accumulative collapse light. (APD) has a p-type ring metal 4o, a light absorbing layer 42o, a drift layer 43o, an electric field shielding layer (or shielding buffer layer) 44o, and an accumulating layer. (Multiplicati5n layer) 450 and n-type ring metal 47o. Figure 4 Accumulated Collapse Photodetector (ApD) • The required epitaxial layer structure can be grown using ultra-vacuum chemical vapor deposition UHV-CVD, low pressure chemical vapor deposition Lp-CVD, or molecular beam epitaxy mbe On a Si substrate. On the element side of the etching abutment, Si02 or high polymer pMGI protective layer (Passivation 480) can be optionally used to reduce dark current or the possibility of side collapse. In this embodiment, the ring metal 41 or 47 of p + is made on the same plane to facilitate high-speed measurement of the device. The incident optical signal is incident from the circular hole 411 on the front (or top) surface of the element (through the p-ring metal contact). Please refer to FIG. 5 of the present invention. Fig. 5 shows another 15 specific embodiments of the present invention. The embodiment of FIG. 5 is a specific cumulative collapse optical debt detector (APD) with a p-type metal conductive layer 510, a multilayer distributed Bragg reflector (Distributed

RefleCt〇r)511,吸光層520,飄移層53〇,電場遮蔽層(或 籲 遮蔽緩衝層)540,累增層(multiplicati〇11 layer)55〇,及η 型金屬導電層570。其層狀結構與圖i或圖4所示者相同,但 20是將所需的蟲晶層和元件結構製作在s〇i (silicon 〇n Insulator)基板590上,再於吸光層52〇上使用化學氣相沉積 .(CVD)或電子束蒸鍍的方法鍍上在操作光波長具有高反射 率的夕層刀佈式布拉袼反射鏡(Distributed Bragg Reflector)511。如此入射的光信號從基板59〇底部入射通過 14 1228320 半反射的Si〇2層後便會因為光學共振形成的關係,使得光 在共振腔内來回被吸光層520充分被吸收,偵測器的量子效 盈也應此增加。當然TL件的磊晶層總厚度也必須設計在共 振光二分之一光波長的整數倍。 5 請參照本發明之圖6及圖7。圖6及圖7為本發明之又一 具體貫施例,其層狀結構與圖4所示者類似,但因以行波式 偵測器的結構實現所以多了光波導包覆層16〇、18〇、21〇、 260,如圖1,2所示。圖6實施例具體累增崩潰光偵測器(ApD) 具有P型光波導包覆層610,吸光層62〇,飄移層63〇,電場 ίο遮蔽層(或遮蔽緩衝層)640,累增層(multipHcati〇n =yer)65〇及η型金屬導電層67〇。圖7實施例具體三五族累增 朋/貝光偵測器(APD)具有ρ型光波導包覆層7丨〇,7〇〇 ρ型金 屬接觸層,吸光層720,飄移層73〇,電場遮蔽層(或遮蔽 緩衝層)740 ’ 累增層(muitipiicati〇n iayer)75〇,η型光波導 15包覆層760,及η型導電層77〇, ρ型、電子阻擋層78〇。。其使 •用波導結構可藉由適當調整元件長度便可得到最佳的增益 頻覓和頻覓效率乘積。綜上所述此發明的ApD,可為一般 的垂直入射器結構,使光激發載子的傳輸方向和入射光方 向平行,並在元件主動區磊晶層(ph〇t〇-abs〇rpti〇n layer, 20 electric fleld buffer layer, drift layer, multipHcation layerj 的表面和底部使用磊晶、化學氣相沉積、或蒸鍍的方式製 作出對操作波長能夠有共振反射的多層布拉格反射鏡,並 製作在SOI基板上。此發明的另一種結構為行波式結構, 15 1228320 其元件的磊晶層形成對入射光波導的光波導管,而電極則 .排列成可以波導微波電信號的電極結構。 在系統整合方面,本發明之光偵器結構,可以用 re-growth的方法或預先在吸光層的上方長出一和下方吸 5光層參雜型態相反,並且能帶帶寬較吸光層為寬的半導體 層’來當作雙異質接面電晶體的射極或集極,如此便可以 和DHBT電晶體或DHBT電晶體所構成之電路作單晶積體 化結合。而在APD中的Electric Field Buffer Layer可用離子 佈值的方式達成。這種DHBT,APD整合技術,可以用所有 ω二五族、三五族合金、四族、或是四族合金半導體材料實 現。如圖8及圖9的方法為使用石夕晶和四族合金半導體以垂 直入射器結構和共振式垂直入射器結構將累增崩潰光偵測 器APD801,901及雙極性電晶體〇1^78〇2,9〇2在重參雜 的石夕基板,或是S 01基板上實現。 15 上述實施例僅係為了方便說明而舉例而已,本發明所 主張之權利範圍自應以申請專利範圍所述為準,而非僅限 • 於上述實施例。 【圖式簡單說明】 圖1係本發明以四族合金材料為例之能帶分佈圖。 圖2係本發明又以三五族合金材料為例之能帶分佈圖。 圖3係本發明又一較佳實施例之橫剖面示意圖。 圖4係本發明又一較佳實施例之橫剖面示意圖。 16 1228320 圖5係本發明又一 圖6係本發明又一 面示意圖。 車又佳實施例之橫剖面示意圖。 較佳實施例以四族合金材料為例之橫剖 圖7係本發明又_知 ^ 車乂佳貫施例以三五族合金材料為例之橫 刮面不意圖。 圖8係本發明實施例與—雙極性電晶體整合於—則基版 之橫剖面示意圖。RefleCtr) 511, light absorbing layer 520, drift layer 53o, electric field shielding layer (or shielding buffer layer) 540, multiplicati11 layer 55o, and n-type metal conductive layer 570. Its layered structure is the same as that shown in Fig. I or Fig. 4, but 20 is to make the required worm crystal layer and element structure on a soi (silicon On Insulator) substrate 590, and then on the light absorption layer 52. Chemical vapor deposition (CVD) or electron beam evaporation is used to plate a distributed Bragg Reflector 511 having a high reflectance at the operating light wavelength. The incident optical signal is incident from the bottom of the substrate 59 to pass through the 121228320 semi-reflected Si02 layer. Due to the relationship formed by optical resonance, the light is fully absorbed by the light absorption layer 520 back and forth in the resonance cavity. The quantum profit should also increase. Of course, the total thickness of the epitaxial layer of the TL element must also be designed to be an integral multiple of one-half the wavelength of the resonant light. 5 Please refer to FIG. 6 and FIG. 7 of the present invention. 6 and FIG. 7 are yet another specific embodiment of the present invention. The layered structure is similar to that shown in FIG. 4, but the optical waveguide cladding layer 16 is added because it is realized by the structure of a traveling wave detector. 18, 21, 260, as shown in Figures 1,2. The embodiment of FIG. 6 has a specific accumulating collapse photodetector (ApD) having a P-type optical waveguide cladding layer 610, a light absorbing layer 62, a drift layer 63, an electric field, a shielding layer (or shielding buffer layer) 640, and an accumulation layer (MultipHcation = yer) 65 ° and n-type metal conductive layer 67 °. The embodiment of FIG. 7 specifically shows that the three or five groups of accumulating / beading photodetectors (APD) have a p-type optical waveguide cladding layer 70, 700, p-type metal contact layer, light-absorbing layer 720, and drift layer 7300, The electric field shielding layer (or shielding buffer layer) 740 ′ accumulation layer (muitipiicati iayer) 75 o, n-type optical waveguide 15 cladding layer 760, and n-type conductive layer 77 o, p-type, electron blocking layer 78 o. . It allows the use of waveguide structure to obtain the best gain frequency-finding and frequency-finding efficiency product by appropriately adjusting the element length. In summary, the ApD of this invention can be a general vertical incident structure, which makes the transmission direction of the photo-excited carriers parallel to the incident light direction, and epitaxially layer (ph〇t〇-abs〇rpti〇) in the active area of the element. n layer, 20 electric fleld buffer layer, drift layer, multipHcation layerj The surface and bottom of the layer are fabricated by epitaxial, chemical vapor deposition, or evaporation methods to produce multilayer Bragg mirrors with resonance reflections at the operating wavelength. On the SOI substrate. Another structure of this invention is a traveling wave structure. The epitaxial layer of the element 15 1228320 forms an optical waveguide for the incident optical waveguide, and the electrodes are arranged as an electrode structure that can guide microwave electrical signals. In terms of integration, the light detector structure of the present invention can use the re-growth method or grow one above the light absorbing layer in advance and the light absorbing layer below the five light absorbing layer has an opposite type, and the band width is wider than that of the light absorbing layer. The semiconductor layer is used as the emitter or collector of the double heterojunction transistor, so that it can be combined with a circuit composed of a DHBT transistor or a DHBT transistor as a single crystal. The Electric Field Buffer Layer in the APD can be achieved by means of ion distribution. This DHBT, APD integration technology can be implemented with all omega II-5, III-5 alloy, IV, or IV alloy semiconductor materials. Such as The method of FIG. 8 and FIG. 9 uses Shi Xijing and Group IV alloy semiconductors in a vertical incidence structure and a resonant vertical incidence structure to accumulate and collapse the photodetectors APD801, 901 and bipolar transistors 〇1 ^ 78. 2,920 is implemented on the heavily miscellaneous Shixi substrate, or S 01 substrate. 15 The above embodiments are just examples for the convenience of explanation. The scope of the rights claimed in the present invention should be described in the scope of patent application. For the sake of illustration, but not limited to the above embodiments. [Simplified illustration of the drawing] Fig. 1 is a band distribution diagram of the present invention using a group IV alloy material as an example. Band distribution diagram of the example. Figure 3 is a schematic cross-sectional view of another preferred embodiment of the present invention. Figure 4 is a schematic cross-sectional view of another preferred embodiment of the present invention. 16 1228320 Figure 5 is another Figure 6 of the present invention Is another schematic view of the present invention A schematic cross-sectional view of a good example of a car. A cross-sectional view of a preferred embodiment using a Group IV alloy material as an example. 7 is a cross-sectional view of the present invention. Figure 8 is a schematic cross-sectional view of an embodiment of the present invention integrated with a bipolar transistor in a base plate.

圖9係本發明另一實施例與一雙極性電晶體整合於一 S〇I 基版之橫剖面示意圖。 10 【圖號說明】 π 0 p型金屬導電120吸光層 121收縮應力層 層 122延伸應力層 130飄移層 140遮蔽緩衝層 150累增層 160 n型波導包覆層 170 η型金屬導電180 ρ型波導包覆層 層 210 ρ型波導包覆212電子阻擋層 260 η型波導包覆層 層 220吸光層 230飄移層 270 η型金屬接觸 層 240遮蔽緩衝層 250累增層 280 ρ型金屬接觸 層 17 1228320 吸光層 322 頂面圓孔 飄移層 累增層 470 基板 布拉格反射鏡 飄移層 累增層 570 基板 飄移層 累增層 670 p型金屬接觸760 層 飄移層 780 累增層 770 802 902 310 p型金屬導電層 320 410 p型環形金屬 411 420吸光層 430 440遮蔽緩衝層 450 480保護層 490 510 p型金屬導電層 511 520吸光層 530 540遮蔽緩衝層 550 580保護層 590 610 p型波導包覆層 620吸光層 630 640遮蔽緩衝層 650 710 p型波導包覆層 700 720吸光層 730 740遮蔽緩衝層 750 801累增崩潰光偵測器 901累增崩潰光偵測器 902布拉格反射鏡 電洞弛張層 η型環形金屬 η型金屬導電層 η型金屬導電層 η型波導包覆層 電子阻擋層 η型金屬接觸 層 # 雙極性電晶體 雙極性電晶體 18FIG. 9 is a schematic cross-sectional view of another embodiment of the present invention integrated with a bipolar transistor on a SOI base plate. 10 [Illustration of drawing number] π 0 p-type metal conductive 120 light absorbing layer 121 shrink stress layer 122 extension stress layer 130 drift layer 140 shielding buffer layer 150 accumulation layer 160 n-type waveguide cladding layer 170 n-type metal conductive 180 ρ type Waveguide cladding layer 210 ρ-type waveguide cladding 212 electron blocking layer 260 n-type waveguide cladding layer 220 light absorbing layer 230 drift layer 270 n-type metal contact layer 240 shielding buffer layer 250 accumulation layer 280 p-type metal contact layer 17 1228320 Light absorbing layer 322 Top circular hole drift layer accumulation layer 470 Substrate Bragg reflector drift layer accumulation layer 570 Substrate drift layer accumulation layer 670 p-type metal contact 760 layer drift layer 780 accumulation layer 770 802 902 310 p-type metal Conductive layer 320 410 p-ring metal 411 420 light absorbing layer 430 440 shielding buffer layer 450 480 protective layer 490 510 p-type metal conductive layer 511 520 light absorbing layer 530 540 shielding buffer layer 550 580 protective layer 590 610 p-type waveguide cladding layer 620 Light absorbing layer 630 640 Shielding buffer layer 650 710 p-type waveguide cladding layer 700 720 Light absorbing layer 730 740 Shielding buffer layer 750 801 Cumulative collapse light detector 901 Cumulative collapse light detector 902 Bragg reflection Mirror hole relaxation layer η ring metal η metal conductive layer η metal conductive layer η waveguide cladding layer electronic blocking layer η metal contact layer # bipolar transistor bipolar transistor 18

Claims (1)

1228320 拾、申請專利範圍: 1 · 一種累增崩潰光偵測器(APD ),包括: 一光吸收層(absorption),係為第一半導體,用以吸收 入射之光,並轉換為載子(carrier) ’且該光吸收層 5 (absorPtion)為漸變重摻雜(graded doping)或重捧雜 一累增層(multiplication),係為未參雜之第二半導 體’以接受載子以累增放大電流; • 一遮蔽緩衝層(field buffer layer),係為第三半導體, 且夾置於該光吸收層及該累增層之間,用以於偏壓 10 中電場於該累增層;以及 ^ 一飄移層(drift layer),係為一未參雜之第四半導體, 並夾置於該遮蔽緩衝層(field buffer layer)與該光吸收層 (absorption)之間,用以降低電容。 2.如申請專利範圍第丨項所述之累增崩潰光積測器 15 (APD) ’其更包含-第-導體層及第二導體層,該光吸 •收層(absorption)位於該第一導體層及該飄移層⑽⑽的 之間,該光吸收層(absorption)位於該第一導體層及該飄移 層(dnfHayer)之間’且該累增層位於該第二導體層及該遮 蔽緩衝層(field buffer layer)之間。 201228320 Patent application scope: 1 · An Accumulated Collapse Photo Detector (APD), which includes: A light absorption layer (absorption), which is the first semiconductor, used to absorb incident light and convert it into carriers ( carrier) 'and the light absorbing layer 5 (absorPtion) is a graded doping or a multiplication layer, which is an un-doped second semiconductor' to accept carriers for accumulation Amplify the current; • A field buffer layer, which is a third semiconductor, is sandwiched between the light absorption layer and the accumulation layer, and is used to bias the electric field in the accumulation layer at a bias voltage of 10; And, a drift layer is an unincorporated fourth semiconductor, and is sandwiched between the field buffer layer and the light absorption layer to reduce capacitance. 2. Accumulated collapse photometer 15 (APD) as described in item 丨 of the patent application scope, which further includes a first conductor layer and a second conductor layer, and the absorption layer is located in the first Between a conductor layer and the drift layer ,, the absorption layer is located between the first conductor layer and the drift layer (dnfHayer), and the accumulation layer is located between the second conductor layer and the shielding buffer Layer (field buffer layer). 20 3 _如申請專利範圍第1項所述之g 〇 K累增崩潰光偵測器 UPD),其更包含-第-波導層及第二波導層,該光吸 收層(absorpt·)位於該第一波導層及該飄移層⑽㈣… 之間,,且該累增層位於該第二波暮 層及該遮蔽緩衝層 (field buffer layer)之間。 19 1228320 4·如申請專利範圍第1項所述之累增崩潰光偵測器 (APD ),其更包含一第一多層反射鏡組及一第二層反射 鏡組,其中該光吸收層(abs〇rpti〇n)及該累增層 (multiplication)係夾置於該第一多層反射鏡組及第二層反 5 射鏡之間。 5.如申請專利範圍第2項所述之累增崩潰光偵測器 (APD ),其更包含一側邊覆蓋式電洞弛張層,用以環繞 接觸該光吸收層(absorption),並連接該光吸收層 (absorption)及該第一導體層,以捕捉並弛張該光吸收層 鲁 10 (absorption)之電洞至該第一導體層。 6·如申請專利範圍第1項所述之累增崩潰光偵測器 (APD ),其中該光吸收層為重複交錯之多層應力平衡疊 晶格。 7.如申請專利範圍第丨項所述之累增崩潰光偵測器 15 (APD),其中該光吸收層,該累增層(麵出冲㈤吵該 遮蔽緩衝層(field buffer layer),該飄移層⑽一〇為四 族半導體或四族半導體合金。 .8.如申請專利範圍第i項所述之累增崩潰㈣測器· () ’其中該光吸收層,該累增層(細ltiplication),該 20遮敝緩衝層(field buffer layer),該飄移層卿t ㈣為三 五族半導體或三五族半導體合金。 9.如申請專利範圍第㈣所述之累增崩潰光偵測器 PD ) I中5亥光吸收層為P型或n型之漸變重摻雜或重 20 1228320 10 15 20 摻雜之SiGe,SiGeC ’ SiC/ SiGe多層疊晶格,si/siGe多層 疊晶格,Si/Ge量子點(quantum dot)。 10.如申請專利範圍第1項所述之累增崩潰光偵測器 (APD),其中該累增層(muitiplicati〇n)為未參雜之矽層, 該飄移層(drift layer))為未參雜之石夕|,且該遮蔽緩衝層 (field buffer layer)為p型或n型重摻雜之矽層。 11 ·如申請專利範圍第i項所述之累增崩潰光债測器 (APD ) ’其中該光吸收層為p型㈣心,該飄移層(触 layer)為未參雜之InP,該遮蔽緩衝層(fieM以订”丨叮以)為 P型InAlAs,該累增層為未參雜InAUs。 •如申請專利範圍第4項所述之累增崩潰光偵測器 為:^其中该第—多層反射鏡組及—第二層反射鏡組 馮分佈式布拉格反射鏡。 :3·如申:青專利刪5項所述之累增崩潰光侦測 益(APD),其中該電洞弛張層或(apdV0^?1'^ 以近U直 射方向與該光載子傳播平均方向垂_丨( 如二專第2、4或5項所述之累增崩潰光 方向;=平::該光入射方向與該光載子傳播平均 (二如1::專利㈣1項所述之累增崩潰綱器 與”超真空化學氣相沈積贿-CVD,低麼化 沈積LP-CVD,或分子束蟲晶咖的方法形成。3 _ As described in item 1 of the scope of the patent application, the 〇K cumulative collapse photodetector (UPD), further comprising a first waveguide layer and a second waveguide layer, the light absorption layer (absorpt ·) is located in the first A waveguide layer and the drift layer ⑽㈣ ..., and the accumulation layer is located between the second wave layer and the field buffer layer. 19 1228320 4. The progressive collapse light detector (APD) described in item 1 of the scope of patent application, further comprising a first multilayer mirror group and a second layer mirror group, wherein the light absorbing layer (Absorptin) and the multiplication layer are sandwiched between the first multi-layer mirror group and the second multi-layer mirror. 5. The progressive collapse photodetector (APD) according to item 2 of the scope of patent application, further comprising a side-covered hole relaxation layer for surrounding contact with the light absorption layer and connection The absorption layer and the first conductor layer are used to capture and relax the holes of the absorption layer 10 to the first conductor layer. 6. The progressive collapse photodetector (APD) according to item 1 of the scope of the patent application, wherein the light absorption layer is a repeating staggered multilayer stress-balanced stacked lattice. 7. The cumulative collapse photodetector 15 (APD) as described in item 丨 of the patent application scope, wherein the light absorption layer, the accumulation layer (face out the noise, the field buffer layer, The drift layer 为 is a Group IV semiconductor or a Group IV semiconductor alloy. .8. The cumulative collapse detector described in item i of the patent application range () (wherein the light absorbing layer and the cumulative layer ( Fine ltiplication), the 20-field buffer layer, the drift layer t ㈣ is a Group III semiconductor or a Group III semiconductor alloy. 9. Accumulated collapse light detection as described in the first paragraph of the scope of the patent application Detector PD) The 5H light absorbing layer in I is a P-type or n-type graded heavily doped or heavily doped 20 1228320 10 15 20 doped SiGe, SiGeC 'SiC / SiGe multi-layered lattice, si / siGe multi-layered crystal Lattice, Si / Ge quantum dot. 10. The accumulative collapse photodetector (APD) described in item 1 of the scope of the patent application, wherein the accumulating layer (muitiplication) is an unincorporated silicon layer, and the drift layer is The unmixed stone xi |, and the field buffer layer is a p-type or n-type heavily doped silicon layer. 11 · Accumulated collapse optical debt detector (APD) as described in item i of the scope of the patent application, wherein the light absorbing layer is a p-type core, the drift layer (contact layer) is unincorporated InP, and the shielding The buffer layer (fieM) is a P-type InAlAs, and the accumulation layer is unincorporated InAUs. • The accumulative collapse photodetector described in item 4 of the scope of patent application is: ^ Among which —Multi-layer mirror group and—Second layer mirror group Feng distributed Bragg mirror.: 3. · As claimed: The green patent deletes the accumulative collapse light detection benefit (APD) described in 5 items, in which the hole relaxes. Layer or (apdV0 ^? 1 '^ near U direct direction perpendicular to the average direction of the photo carrier propagation _ 丨 (accumulated collapse light direction as described in the second, second, fourth or fifth item of the special school; = flat :: the light The incident direction and the photocarrier propagation average (two such as the cumulative collapse program described in 1 :: Patent ㈣1 and "ultra-vacuum chemical vapor deposition bridging-CVD, low-deposition deposition LP-CVD, or molecular beamworm Crystal coffee method is formed. 21 1228320 17.如申請專利範圍第丨項所述之累增崩潰光偵測器 (APD )其係以超真空化學氣相沈積冊,低廢化 學氣相沈積LP-CVD,或分子束磊晶Mbe的方法形成於 SOI (Silicon On Insulator)基板上。 18.如申請專利则3項所述之累增崩潰靡器 2ρ:ν、ί中該光吸收層1累増層,該光波導包覆層 糸口开4 A波導官,而其電極結構型成一電波導管。21 1228320 17. Accumulated Collapse Photo Detector (APD) as described in item 丨 of the patent application, which is based on ultra-vacuum chemical vapor deposition, low waste chemical vapor deposition LP-CVD, or molecular beam epitaxy The Mbe method is formed on a SOI (Silicon On Insulator) substrate. 18. As described in the patent application, the accumulative breakdown described in 3 items 2ρ: ν, ί in the light absorption layer 1 accumulation layer, the optical waveguide cladding layer opening 4 A waveguide official, and its electrode structure is shaped as an electric wave catheter. 22twenty two
TW092124948A 2003-09-09 2003-09-09 An avalanche photo-detector(APD) with high saturation power, high gain-bandwidth product TWI228320B (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
TW092124948A TWI228320B (en) 2003-09-09 2003-09-09 An avalanche photo-detector(APD) with high saturation power, high gain-bandwidth product
JP2003389150A JP3826129B2 (en) 2003-09-09 2003-11-19 Avalanche photodetector
US10/720,117 US6963089B2 (en) 2003-09-09 2003-11-25 Avalanche photo-detector with high saturation power and high gain-bandwidth product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW092124948A TWI228320B (en) 2003-09-09 2003-09-09 An avalanche photo-detector(APD) with high saturation power, high gain-bandwidth product

Publications (2)

Publication Number Publication Date
TWI228320B true TWI228320B (en) 2005-02-21
TW200511596A TW200511596A (en) 2005-03-16

Family

ID=34225701

Family Applications (1)

Application Number Title Priority Date Filing Date
TW092124948A TWI228320B (en) 2003-09-09 2003-09-09 An avalanche photo-detector(APD) with high saturation power, high gain-bandwidth product

Country Status (3)

Country Link
US (1) US6963089B2 (en)
JP (1) JP3826129B2 (en)
TW (1) TWI228320B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100399509C (en) * 2005-07-07 2008-07-02 中国科学院半导体研究所 Method for growing quanta line or nod using home-position superlattice as formboard positioning

Families Citing this family (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI228320B (en) * 2003-09-09 2005-02-21 Ind Tech Res Inst An avalanche photo-detector(APD) with high saturation power, high gain-bandwidth product
WO2006080153A1 (en) * 2005-01-28 2006-08-03 Nec Corporation Semiconductor light-receiving device and method for manufacturing same
US7209623B2 (en) * 2005-05-03 2007-04-24 Intel Corporation Semiconductor waveguide-based avalanche photodetector with separate absorption and multiplication regions
US20060292809A1 (en) * 2005-06-23 2006-12-28 Enicks Darwin G Method for growth and optimization of heterojunction bipolar transistor film stacks by remote injection
US20080050883A1 (en) * 2006-08-25 2008-02-28 Atmel Corporation Hetrojunction bipolar transistor (hbt) with periodic multilayer base
US20070054460A1 (en) * 2005-06-23 2007-03-08 Atmel Corporation System and method for providing a nanoscale, highly selective, and thermally resilient silicon, germanium, or silicon-germanium etch-stop
US7233051B2 (en) * 2005-06-28 2007-06-19 Intel Corporation Germanium/silicon avalanche photodetector with separate absorption and multiplication regions
CN100364050C (en) * 2005-07-19 2008-01-23 中国科学院半导体研究所 Method for preapring nano size pit on gallium arsenide substrate
US20070102834A1 (en) * 2005-11-07 2007-05-10 Enicks Darwin G Strain-compensated metastable compound base heterojunction bipolar transistor
US8530934B2 (en) 2005-11-07 2013-09-10 Atmel Corporation Integrated circuit structures containing a strain-compensated compound semiconductor layer and methods and systems related thereto
US20070148890A1 (en) * 2005-12-27 2007-06-28 Enicks Darwin G Oxygen enhanced metastable silicon germanium film layer
US20070152289A1 (en) * 2005-12-30 2007-07-05 Morse Michael T Avalanche photodetector with reflector-based responsivity enhancement
US8059973B2 (en) * 2006-02-17 2011-11-15 Finisar Corporation Discrete bootstrapping in an optical receiver to prevent signal feedback
JP5282350B2 (en) * 2006-03-13 2013-09-04 日本電気株式会社 Semiconductor optical device
US20070262295A1 (en) * 2006-05-11 2007-11-15 Atmel Corporation A method for manipulation of oxygen within semiconductor materials
JP2007311455A (en) * 2006-05-17 2007-11-29 Nec Corp Semiconductor light receiving element
US7821015B2 (en) 2006-06-19 2010-10-26 Semisouth Laboratories, Inc. Silicon carbide and related wide-bandgap transistors on semi insulating epitaxy
US8193537B2 (en) 2006-06-19 2012-06-05 Ss Sc Ip, Llc Optically controlled silicon carbide and related wide-bandgap transistors and thyristors
US7741657B2 (en) * 2006-07-17 2010-06-22 Intel Corporation Inverted planar avalanche photodiode
US7683397B2 (en) * 2006-07-20 2010-03-23 Intel Corporation Semi-planar avalanche photodiode
EP1883141B1 (en) * 2006-07-27 2017-05-24 OSRAM Opto Semiconductors GmbH LD or LED with superlattice cladding layer
EP1883119B1 (en) * 2006-07-27 2015-11-04 OSRAM Opto Semiconductors GmbH Semiconductor layer structure with overlay grid
EP1883140B1 (en) * 2006-07-27 2013-02-27 OSRAM Opto Semiconductors GmbH LD or LED with superlattice clad layer and graded doping
US7569913B2 (en) * 2006-10-26 2009-08-04 Atmel Corporation Boron etch-stop layer and methods related thereto
US7495250B2 (en) * 2006-10-26 2009-02-24 Atmel Corporation Integrated circuit structures having a boron- and carbon-doped etch-stop and methods, devices and systems related thereto
US7550758B2 (en) 2006-10-31 2009-06-23 Atmel Corporation Method for providing a nanoscale, high electron mobility transistor (HEMT) on insulator
US7687870B2 (en) * 2006-12-29 2010-03-30 Panasonic Corporation Laterally configured electrooptical devices
US8525200B2 (en) * 2008-08-18 2013-09-03 Taiwan Semiconductor Manufacturing Company, Ltd. Light-emitting diode with non-metallic reflector
US8279411B2 (en) * 2008-08-27 2012-10-02 The Boeing Company Systems and methods for reducing crosstalk in an avalanche photodiode detector array
KR101513717B1 (en) * 2008-09-18 2015-04-20 삼성디스플레이 주식회사 Substrate and display apparatus having the same
CN101866832B (en) * 2010-05-25 2011-07-20 云南大学 Method for intermittently growing single-layer Ge quantum dots with high dimensional homogeneity on buffer layer by landfill
US9395182B1 (en) 2011-03-03 2016-07-19 The Boeing Company Methods and systems for reducing crosstalk in avalanche photodiode detector arrays
EP2549536B1 (en) * 2011-07-22 2020-08-19 Espros Photonics AG Semiconductor structure for photon detection
JP5817833B2 (en) * 2011-10-14 2015-11-18 富士通株式会社 Semiconductor device, manufacturing method thereof, and power supply device
EP2800377A4 (en) * 2011-12-28 2015-07-15 Fujifilm Corp Imaging device
US9780248B2 (en) * 2012-05-05 2017-10-03 Sifotonics Technologies Co., Ltd. High performance GeSi avalanche photodiode operating beyond Ge bandgap limits
US8786043B2 (en) * 2012-05-05 2014-07-22 SiFotonics Technologies Co, Ltd. High performance GeSi avalanche photodiode operating beyond Ge bandgap limits
KR20140025265A (en) * 2012-08-20 2014-03-04 한국전자통신연구원 Low-voltage high-gain high-speed germanium photo detector
US9614112B2 (en) 2013-09-11 2017-04-04 The University Of Connecticut Imaging cell array integrated circuit
WO2016190346A1 (en) * 2015-05-28 2016-12-01 日本電信電話株式会社 Light-receiving element and optical integrated circuit
WO2017019013A1 (en) * 2015-07-27 2017-02-02 Hewlett Packard Enterprise Development Lp Doped absorption devices
TWI595678B (en) * 2016-02-18 2017-08-11 Univ Nat Central Light detecting element
US10032950B2 (en) 2016-02-22 2018-07-24 University Of Virginia Patent Foundation AllnAsSb avalanche photodiode and related method thereof
JP6705762B2 (en) * 2017-03-14 2020-06-03 日本電信電話株式会社 Avalanche photodiode
CN109119509B (en) 2017-06-23 2023-10-27 松下知识产权经营株式会社 Light detecting element
TWI664718B (en) * 2018-05-04 2019-07-01 National Central University Boss-Shaped Avalanche Photodetector
CN109148623B (en) * 2018-08-20 2020-06-26 中国科学院上海技术物理研究所 AlGaN-based avalanche photodiode with low noise and preparation method thereof
DE102018130478A1 (en) * 2018-11-30 2020-06-04 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Avalanche photo diode
JP7044048B2 (en) * 2018-12-19 2022-03-30 日本電信電話株式会社 Avalanche photodiode and its manufacturing method
JP7081551B2 (en) * 2019-03-28 2022-06-07 日本電信電話株式会社 Avalanche photodiode and its manufacturing method
CN110364590A (en) * 2019-07-09 2019-10-22 武汉光谷量子技术有限公司 A kind of optical detector and its manufacturing method of high gain-bandwidth product
WO2022133655A1 (en) * 2020-12-21 2022-06-30 华为技术有限公司 Avalanche photodiode

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5818096A (en) * 1996-04-05 1998-10-06 Nippon Telegraph And Telephone Corp. Pin photodiode with improved frequency response and saturation output
US6074892A (en) * 1996-05-07 2000-06-13 Ciena Corporation Semiconductor hetero-interface photodetector
US6222200B1 (en) * 1999-04-19 2001-04-24 Nortel Networks Limited Photodetector with spectrally extended responsivity
JP4702977B2 (en) * 2000-04-28 2011-06-15 富士通株式会社 Receiver
US6384462B1 (en) * 2000-12-06 2002-05-07 Nova Crystals, Inc. Planar hetero-interface photodetector
WO2003065417A2 (en) * 2002-02-01 2003-08-07 Picometrix, Inc. Charge controlled avalanche photodiode and method of making the same
TWI228320B (en) * 2003-09-09 2005-02-21 Ind Tech Res Inst An avalanche photo-detector(APD) with high saturation power, high gain-bandwidth product

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100399509C (en) * 2005-07-07 2008-07-02 中国科学院半导体研究所 Method for growing quanta line or nod using home-position superlattice as formboard positioning

Also Published As

Publication number Publication date
US20050051861A1 (en) 2005-03-10
US6963089B2 (en) 2005-11-08
TW200511596A (en) 2005-03-16
JP2005086192A (en) 2005-03-31
JP3826129B2 (en) 2006-09-27

Similar Documents

Publication Publication Date Title
TWI228320B (en) An avalanche photo-detector(APD) with high saturation power, high gain-bandwidth product
US6130441A (en) Semiconductor hetero-interface photodetector
US8637951B2 (en) Semiconductor light receiving element and optical communication device
EP3349252B1 (en) Optical waveguide detector and optical module
Watanabe et al. High-speed and low-dark-current flip-chip InAlAs/InAlGaAs quaternary well superlattice APDs with 120 GHz gain-bandwidth product
EP1995793A1 (en) Photodiode, method for manufacturing such photodiode, optical communication device and optical interconnection module
JP6480577B2 (en) Light receiving element and optical integrated circuit
WO2009023065A2 (en) Nanowire photodiodes and methods of making nanowire photodiodes
WO2011083657A1 (en) Avalanche photodiode and receiver using same
EP3447806B1 (en) Optical waveguide integrated light receiving element and method for manufacturing same
JP3675223B2 (en) Avalanche photodiode and manufacturing method thereof
US9406832B2 (en) Waveguide-coupled MSM-type photodiode
Bandyopadhyay et al. Photodetectors for optical fiber communications
EP1204148A2 (en) Planar resonant cavity enhanced photodetector
Anselm et al. A resonant-cavity, separate-absorption-and-multiplication, avalanche photodiode with low excess noise factor
Beling et al. High Power Integrated 100 GHz Photodetectors
CN115101609B (en) Germanium-silicon photoelectric detector based on directional coupler
CN218769537U (en) Photon integrated gain detector structure
TWI728694B (en) Mixed-layer composite charging layer accumulatively increasing breakdown photodiode
CN115810680B (en) Local field enhanced photoconductive high-speed photoelectric detector
CN108987530B (en) Method for manufacturing photoelectric detector
JP2004158763A (en) Semiconductor photo detector
TWI455354B (en) Homogeneous junction type of high speed photodiode
Morrison et al. Progress towards photon counting between 1µm and 1.6 µm using silicon with infrared absorbers
CN114497265A (en) Avalanche photoelectric detector

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees