CN104882509B - 一种波导对接耦合型吸收倍增分离雪崩二极管 - Google Patents

一种波导对接耦合型吸收倍增分离雪崩二极管 Download PDF

Info

Publication number
CN104882509B
CN104882509B CN201510159552.1A CN201510159552A CN104882509B CN 104882509 B CN104882509 B CN 104882509B CN 201510159552 A CN201510159552 A CN 201510159552A CN 104882509 B CN104882509 B CN 104882509B
Authority
CN
China
Prior art keywords
type
waveguide
region
multiplication
ridge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510159552.1A
Other languages
English (en)
Other versions
CN104882509A (zh
Inventor
李冲
郭霞
刘巧莉
董建
刘白
马云飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BEIJING KANGGUAN SHIJI OPTOELECTRONIC TECHNOLOGY Co.,Ltd.
Original Assignee
Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Technology filed Critical Beijing University of Technology
Priority to CN201510159552.1A priority Critical patent/CN104882509B/zh
Publication of CN104882509A publication Critical patent/CN104882509A/zh
Application granted granted Critical
Publication of CN104882509B publication Critical patent/CN104882509B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/107Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier working in avalanche mode, e.g. avalanche photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • H01L31/02327Optical elements or arrangements associated with the device the optical elements being integrated or being directly associated to the device, e.g. back reflectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/03529Shape of the potential jump barrier or surface barrier

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Light Receiving Elements (AREA)

Abstract

一种波导对接耦合型吸收倍增分离雪崩二极管涉及半导体光电器件领域以及光互联领域,能够对微弱通信光信号进行探测。包括有p+型欧姆接触电极(101),p+欧姆接触层(102),吸收层(103),p型电荷区(104),高场倍增区(105),n+型欧姆接触电极(106),n+欧姆接触区(107),绝缘掩埋层(108),衬底(109),脊形波导(110),其特征在于,p型电荷区(104)位于脊形波导(110)终端底部,吸收层(103)位于p型电荷区(104)顶部,与脊形波导(110)的终端内脊区域相对接;高场倍增区(105)以及n+欧姆接触区(107)紧挨p型电荷区(104)依次排布,与脊形波导(110)外脊厚度相同,且延伸方向垂直于脊形波导(110)光传输方向。从二极管对应的I‑V曲线示意图中可以看出,器件实现了良好的倍增。

Description

一种波导对接耦合型吸收倍增分离雪崩二极管
技术领域
本发明涉及半导体光电器件领域以及光互联领域,具体涉及一种能够对微弱通信光信号进行探测的波导对接耦合(butt-coupling)型吸收倍增分离雪崩二极管。
背景技术
雪崩光电探测器(APD)通过雪崩倍增效应产生内部增益,具有高灵敏度和响应度等特性,是光电探测器重要的研究方向之一,在弱光检测,量子通信,生物医学以及光通信集成系统等各类光信息检测领域都有着广阔的应用。
波导雪崩探测器突破了传统垂直入射结构探测器的光响应与频率响应之间的相互制约,器件集成上具有尺寸小、集成度高的优点,而器件性能上具有更高的响应度,更大的灵敏度以及更宽的频率响应范围等特性优势,因此,是未来光电集成系统发展的重要核心器件。吸收倍增分离型(Separated Absorption Multiplication,缩写为SAM)结构的雪崩探测器,其器件结构设计更为灵活。针对不同的探测波长可选用不同的半导体吸收材料,并与低离化率比值的倍增材料进行低位错集成,形成具有高吸收、低过剩噪声、低误码率和高灵敏等优点的雪崩器件。因此,波导吸收倍增分离型雪崩探测器的研制对于未来光信息检测领域的发展有着举足轻重的作用。但是,现今研制的波导SAM-APD距离实现高响应、大带宽、高集成的目标仍有很大的距离。
本发明就是针对光信息检测领域的雪崩光电探测器的高吸收、大带宽、高灵敏度的需求,设计的一种波导对接耦合型吸收倍增分离雪崩光电探测器结构。
发明内容:
本发明的目的在于提供一种波导对接耦合型雪崩二极管结构,相比于报道的其他结构,该结构工艺简单,具有高耦合效率、高灵敏度以及大带宽等性能。
为了实现上述目的,本发明的雪崩光电二极管结构,如图1所示,包括有p+型欧姆接触电极101,p+欧姆接触层102,吸收层103,p型电荷区104,高场倍增区105,n+型欧姆接触电极106,n+欧姆接触区107,绝缘掩埋层108,衬底109,脊形波导110。其特征在于,p型电荷区104位于脊形波导110终端底部,吸收层103位于p型电荷区104顶部,与脊形波导110的终端内脊区域相对接;高场倍增区105以及n+欧姆接触区107紧挨p型电荷区104依次排布,与脊形波导110外脊厚度相同,且延伸方向垂直于脊形波导110光传输方向。p型电荷区104的厚度和外脊厚度相同。
器件在实现吸收倍增分离的同时,利用波导对接耦合提高光耦合效率,避免了传统双倍增区的电信号的扰动现象,器件尺寸可减小到纳米尺度,可以降低渡越时间和暗电流,提高灵敏度。
该结构实现光波导对接耦合入射,吸收倍增分离的器件功能,其工作原理,如图1所示,光耦合进入脊形波导110中进行传输,并通过对接耦合被吸收层103吸收,产生光生电子-空穴对。在吸收层103反向偏压的作用下电子-空穴分离,光生空穴向p+欧姆接触层102漂移,进而通过p+型欧姆接触电极101进入到外电路,而光生电子漂移通过p型电荷区104,到达高场倍增区105,发生雪崩倍增,最后倍增电子在n+欧姆接触区107收集,产生的倍增电流通过n+型欧姆接触电极106进入到外电路,实现光信号的接收与倍增。
本发明设计针对Ge/Si器件,同时InGaAs/InP、AlGaAs/GaAl、GaN、SiC、SOI或GOI材料器件亦可适用。
本发明适用于所有雪崩探测器的波导对接耦合型设计。
本发明的探测波长范围适用于红外、可见光、紫外或太赫兹波段。
附图说明:
图1:根据本发明提出的波导对接耦合型吸收倍增分离雪崩二极管的三维视图;图中:p+型欧姆接触电极101,p+欧姆接触层102,吸收层103,p型电荷区104,高场倍增区105,n+型欧姆接触电极106,n+欧姆接触区107,绝缘掩埋层108,衬底109,脊形波导110
图2:根据本发明提出的波导对接耦合型吸收倍增分离雪崩二极管对应的I-V曲线示意图;从图中可以看出,器件实现了良好的倍增。
图3:本发明的波导对接耦合型吸收倍增分离雪崩二极管具体实施例;
其中,图3-1是刻蚀脊形Si波导110;图3-2是刻蚀器件的Si区;图3-3是硼离子注入形成p型电荷区104;图3-4是选区外延本征Ge层;图3-5是硼离子注入形成p+欧姆接触层102,余下部分为Ge吸收层103;图3-6是磷离子注入形成n+欧姆接触区107;图3-7是蒸发电极金属,形成p+型欧姆接触电极101和n+型欧姆接触电极106。
具体实施方式:
如图3所示,其制备过程和方法如下:
1、在绝缘体上硅(SOI)衬底的顶层220nm厚的Si上刻蚀脊形波导110,刻蚀深度为120nm。
2、通过刻蚀定义器件区域,刻蚀到绝缘掩埋层。
3、注入硼,形成p型电荷区104,掺杂浓度为2×1017cm-3
4、在表面沉积一层SiO2,干法和湿法结合刻蚀出Ge外延窗口,选区外延本征Ge层,厚度约为0.5μm;
5、在Ge区顶层注入硼,形成p+欧姆接触层102,厚度约为0.1μm,掺杂浓度为1×1019cm-3,余下部分为Ge吸收层103;
6、磷离子注入形成n+欧姆接触区107,掺杂浓度为1×1019cm-3;p型电荷区104与n+欧姆接触区107之间的SOI顶层硅作为高场倍增区105;
7、快速退火,将注入的杂质离子激活,退火温度500℃,退火时间30秒;
8、PECVD氧化层钝化;
9、刻蚀开孔,蒸发电极金属,形成p+型欧姆接触电极101和n+型欧姆接触电极106。
根据本发明提出的波导对接耦合型吸收倍增分离雪崩二极管对应的I-V
曲线示意图;从图2中可以看出,器件实现了良好的倍增。
至此已经结合优选实施例对本发明进行了描述。应该理解,本领域技术人员在不脱离本发明的精神和范围的情况下,可以进行各种其他的改变、替换和添加。因此,本发明的范围不局限于上述特定实施例,而应由所附权利要求所限定。

Claims (3)

1.一种波导对接耦合型吸收倍增分离雪崩二极管,包括有p+型欧姆接触电极(101),p+欧姆接触层(102),吸收层(103),p型电荷区(104),高场倍增区(105),n+型欧姆接触电极(106),n+欧姆接触区(107),绝缘掩埋层(108),衬底(109),脊形波导(110),其特征在于,p型电荷区(104)位于脊形波导(110)终端底部,吸收层(103)位于p型电荷区(104)顶部,与脊形波导(110)的终端内脊区域相对接;高场倍增区(105)以及n+欧姆接触区(107)紧挨p型电荷区(104)依次排布,与脊形波导(110)外脊厚度相同,且延伸方向垂直于脊形波导(110)光传输方向,其中,所述p型电荷区(104)和所述脊形波导(110)的外脊厚度相同。
2.根据权利要求1所述的一种波导对接耦合型吸收倍增分离雪崩二极管,其特征在于:
适用于雪崩探测器的波导对接耦合型设计。
3.根据权利要求1所述的一种波导对接耦合型吸收倍增分离雪崩二极管,其特征在于:
探测波长范围为红外、可见光、紫外或太赫兹波段。
CN201510159552.1A 2015-04-05 2015-04-05 一种波导对接耦合型吸收倍增分离雪崩二极管 Active CN104882509B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510159552.1A CN104882509B (zh) 2015-04-05 2015-04-05 一种波导对接耦合型吸收倍增分离雪崩二极管

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510159552.1A CN104882509B (zh) 2015-04-05 2015-04-05 一种波导对接耦合型吸收倍增分离雪崩二极管

Publications (2)

Publication Number Publication Date
CN104882509A CN104882509A (zh) 2015-09-02
CN104882509B true CN104882509B (zh) 2017-04-19

Family

ID=53949922

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510159552.1A Active CN104882509B (zh) 2015-04-05 2015-04-05 一种波导对接耦合型吸收倍增分离雪崩二极管

Country Status (1)

Country Link
CN (1) CN104882509B (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3447806B1 (en) * 2016-04-19 2021-03-03 Nippon Telegraph And Telephone Corporation Optical waveguide integrated light receiving element and method for manufacturing same
CN108010982B (zh) * 2017-12-01 2020-06-19 北京工业大学 波导复合式耦合型单行载流子探测器
IT201800004149A1 (it) * 2018-03-30 2019-09-30 St Microelectronics Srl Fotorivelatore di luce ultravioletta di carburo di silicio e suo processo di fabbricazione
CN111211182A (zh) * 2018-11-19 2020-05-29 上海新微技术研发中心有限公司 一种波导型光电探测器及其制造方法
CN111211181B (zh) * 2018-11-19 2022-03-01 上海新微技术研发中心有限公司 一种波导型光电探测器及其制造方法
CN110398793B (zh) * 2019-04-02 2021-05-25 西安理工大学 一种基于全介质的光可调双带太赫兹吸收器及制作方法
CN112133775B (zh) * 2020-09-04 2022-11-08 上海大学 碲锌镉/硅γ射线X射线探测器及其制备方法
CN112993065A (zh) * 2021-03-30 2021-06-18 华中科技大学 一种基于Bragg光栅和横向波导结构的雪崩光电探测器
CN113611759B (zh) * 2021-07-28 2023-08-08 青岛海信宽带多媒体技术有限公司 一种光探测器、制备方法以及光模块
CN117012846A (zh) * 2022-04-27 2023-11-07 苏州旭创科技有限公司 光电探测器以及光芯片

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1905216A (zh) * 2005-06-28 2007-01-31 英特尔公司 具有分开的吸收和倍增区域的锗/硅雪崩光电检测器
CN201885758U (zh) * 2010-11-19 2011-06-29 深圳信息职业技术学院 一种雪崩光电探测器及光能检测装置
CN103489953A (zh) * 2013-09-09 2014-01-01 中国科学院半导体研究所 一种双步消逝场耦合的雪崩光电探测器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1905216A (zh) * 2005-06-28 2007-01-31 英特尔公司 具有分开的吸收和倍增区域的锗/硅雪崩光电检测器
CN201885758U (zh) * 2010-11-19 2011-06-29 深圳信息职业技术学院 一种雪崩光电探测器及光能检测装置
CN103489953A (zh) * 2013-09-09 2014-01-01 中国科学院半导体研究所 一种双步消逝场耦合的雪崩光电探测器

Also Published As

Publication number Publication date
CN104882509A (zh) 2015-09-02

Similar Documents

Publication Publication Date Title
CN104882509B (zh) 一种波导对接耦合型吸收倍增分离雪崩二极管
CN104681634B (zh) 一种波导耦合型吸收倍增分离雪崩二极管
WO2017000873A1 (zh) 硅基锗光电探测器
CN108010982B (zh) 波导复合式耦合型单行载流子探测器
JP5232981B2 (ja) SiGeフォトダイオード
US9054008B2 (en) Solar blind ultra violet (UV) detector and fabrication methods of the same
US9219184B2 (en) Avalanche photodiodes with defect-assisted silicon absorption regions
CN106531822B (zh) 一种光电探测器
CN105789366B (zh) 一种硅基混合集成雪崩光电探测器
CN113035982B (zh) 全硅掺杂多结电场增强型锗光波导探测器
KR101947088B1 (ko) 애벌란시 광검출기
CN102782880B (zh) 具有改进响应度的基于硅的肖特基势垒探测器
JP2013080728A (ja) アバランシェフォトダイオード及びそれを用いた受信機
CN109461787A (zh) 光栅垂直耦合型插指光电探测器
CN105742397A (zh) 一种可见光到红外光探测的宽波段光电二极管
CN110896112B (zh) 波导集成的GeSn光电探测器及其制造方法
CN111129168B (zh) 一种光电探测器
US20190019903A1 (en) SILICON WAVEGUIDE INTEGRATED WITH SILICON-GERMANIUM (Si-Ge) AVALANCHE PHOTODIODE DETECTOR
CN111211181A (zh) 一种波导型光电探测器及其制造方法
CN101614843B (zh) 倏逝波耦合型单一载流子行波光电探测器的制作方法
CN111211182A (zh) 一种波导型光电探测器及其制造方法
JP2000332286A (ja) 高パワーで大きいバンド幅の進行波光検出噐
CN108039389B (zh) 波导耦合型单行载流子探测器
CN112201723A (zh) 一种波导型光电探测器及其制备方法
KR20110093535A (ko) 근적외선 광 검출기 및 이를 채용한 이미지 센서, 그 반도체 제조 방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
EXSB Decision made by sipo to initiate substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20210720

Address after: 100022 room 1806, Huateng Beibao business building, 37 nanmofang Road, Chaoyang District, Beijing

Patentee after: BEIJING KANGGUAN SHIJI OPTOELECTRONIC TECHNOLOGY Co.,Ltd.

Address before: 100124 No. 100 Chaoyang District Ping Tian Park, Beijing

Patentee before: Beijing University of Technology

TR01 Transfer of patent right