CN1858866A - 生产电解电容器的方法 - Google Patents

生产电解电容器的方法 Download PDF

Info

Publication number
CN1858866A
CN1858866A CNA2005100687325A CN200510068732A CN1858866A CN 1858866 A CN1858866 A CN 1858866A CN A2005100687325 A CNA2005100687325 A CN A2005100687325A CN 200510068732 A CN200510068732 A CN 200510068732A CN 1858866 A CN1858866 A CN 1858866A
Authority
CN
China
Prior art keywords
acid
capacitor
conducting polymer
electrode body
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2005100687325A
Other languages
English (en)
Other versions
CN1858866B (zh
Inventor
U·默克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HC Starck GmbH
Original Assignee
HC Starck GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HC Starck GmbH filed Critical HC Starck GmbH
Publication of CN1858866A publication Critical patent/CN1858866A/zh
Application granted granted Critical
Publication of CN1858866B publication Critical patent/CN1858866B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/042Electrodes or formation of dielectric layers thereon characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/15Solid electrolytic capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/48Conductive polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/56Solid electrolytes, e.g. gels; Additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/025Solid electrolytes
    • H01G9/028Organic semiconducting electrolytes, e.g. TCNQ
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/042Electrodes or formation of dielectric layers thereon characterised by the material
    • H01G9/0425Electrodes or formation of dielectric layers thereon characterised by the material specially adapted for cathode
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

生产具有低等效串联电阻和低残余电流的电解电容器的方法,该电容器包含由导电聚合物构成的固体电解质和含有导电聚合物和粘结剂的外层,还涉及由该方法生产的电解电容器及其应用。

Description

生产电解电容器的方法
技术领域
本发明涉及生产含有具有低等效串联电阻和低漏电流的电解电容器的方法,该电容器包含导电聚合物的固体(固体材料)电解质和含有导电聚合物和粘结剂的外层,还涉及由该方法生产的电解电容器及其应用。
背景技术
固体电解电容器一般由多孔金属电极、位于金属表面的氧化物层、被结合在多孔结构中的导电固体材料、外电极如银层,以及进一步的电触点和封装组成。
固体电解电容器的例子是具有电荷转移络合物、二氧化锰电解质或聚合物/固体电解质的钽、铝、铌和氧化铌电容器。采用多孔本体的优点在于,由于表面面积大,可达到非常高的电容密度,即,在小容积内达到高电容量。
由于电导率高,故π-共轭聚合物特别适合作为固体电解质。π-共轭聚合物亦称作导电聚合物或合成金属。鉴于聚合物在加工性、重量和通过化学改性对性能的专门调节方面相对于金属的优越性,它们在经济上正变得日益重要。已知π-共轭聚合物的例子是聚吡咯、聚噻吩、聚苯胺、聚乙炔、聚亚苯基、聚对亚苯基亚乙烯基,一种特别重要和技术上使用的聚噻吩是聚(3,4-亚乙基-1,3-二氧基)噻吩,通常被称作聚3,4-亚乙二氧基噻吩,因为其氧化形式表现出非常高的导电性。
电子学的技术发展越来越要求固体电解电容器具有非常低的等效串联电阻(ESR)。之所以这样的原因在于,例如,集成电路中日益提高的逻辑电路电压、更高的集成密度和提高的时钟频率。另外,低ESR也能降低能耗,这对于移动、电池驱动的使用场合特别有利。因此,若能进一步尽可能降低固体电解电容器的ESR,将是可心的。
欧洲专利申请EP-A 340 512(=US 4,910,645)描述由3,4-亚乙基-1,3-二氧基噻吩生产固体电解质的技术以及通过就地氧化聚合生成其阳离子聚合物,来作为电解电容器中固体电解质的应用。聚3,4-亚乙二氧基噻吩作为固体电解电容器中二氧化锰或电荷转移络合物的替代物,由于电导率较高,能降低电容器的等效串联电阻并改善频率响应。
在日本专利说明JP-B 3296727中,描述了一种生产固体电解电容器的特殊方法。为此,电容器阳极被浸渍在氧化剂与3,4-亚乙基-1,3-二氧基噻吩的溶液中,随后令该混合物在大于70%的空气湿度和30℃~50℃的温度下进行聚合。此法的缺点在于,由此在阳极表面生成的膜对于外部应力不够稳定。按此法生产的电容器表现出高漏电流和高ESR值。
除了低ESR之外,现代固体电解电容器还要求低漏电流和对于外部应力的良好稳定性。高机械应力尤其发生在电容器阳极封装的生产过程期间,这会大大增加电容器阳极的漏电流。
耐此应力的稳定性,因而也就是较低的漏电流,尤其可借助在电容器阳极表面的约5~50μm厚导电聚合物外层来实现。此种层起着电容器阳极与阴极侧电极之间的机械缓冲作用。这防止了电极,例如,在机械应力作用下变得与阳极直接接触或损坏后者,并从而增加电容器的漏电流。该导电聚合物外层本身表现出所谓自愈合能力:尽管有该缓冲作用在阳极外表面仍然出现的微小电介质瑕疵因而被电绝缘,结果,瑕疵处外层的导电性被电流破坏。
利用就地聚合形成此种外层是非常困难的。为此,该层的形成要求非常多的涂布周期。由于大量的涂布周期,此外层非常不均一,并且特别是电容器阳极的边缘,常常覆盖得不完全。
如果氧化剂和单体以混合物形式联合施涂到电容器阳极上以便生成聚合物外层,则该聚合物外层将在尚未来得及形成足够厚和均一外层时便因附着力不足而从电容器阳极上剥落。这将导致高ESR数值和高漏电流。
日本专利申请JP-A 2003-188052公开,均匀的边缘覆盖可以借助顺序施涂氧化剂和单体,以及工艺参数的复杂匹配来实现。然而,这使生产过程变得非常昂贵和复杂,并容易中断。
具有良好边缘覆盖的致密外层可通过电化学聚合来实现。然而,电化学聚合要求首先在电容器阳极的绝缘氧化物层上沉积一种导电膜,随后再给每一单个电容器的层安装触点。此种加装触点的程序在大生产条件下非常复杂并且会损伤氧化物层。
具有致密外层的电容器也可,例如,按照上面提到的专利说明书EP-A 340 512(=US 4,910,645)或JP-B 3296727中描述的那样首先涂布(或称镀膜)电容器阳极:即,就地聚合,随后通过施涂一种包含导电聚合物与粘结剂材料的制剂生成一个外层。然而,鉴于就地聚合中在阳极外表面已经沉积了导电聚合物,故由制剂形成的外层不与阳极表面直接接触,而是附着在就地层上。于是,就地层与阳极表面之间不良的附着力又导致该外层膜的局部剥落,从而导致较高ESR。若不采用预先就地涂布,而仅借助粘结剂材料施涂附着良好的导电聚合物制剂则是不够的,因为该制剂的电导率太低,达不到低ESR的要求,或者制剂根本不能渗透到多孔结构中去。
因此,目前需要一种生产固体电解电容器的简单方法,该电容器的特征在于,低等效串联电阻(ESR)、低漏电流和具有良好边缘覆盖的致密聚合物外层。
因此,目的是发现一种适当方法,用它可生产此种固体电解电容器。
发明概述
现已令人惊奇地发现,一种方法,包括:在用一种含能生成导电聚合物的前体和氧化剂的混合物浸渍之后,令电容器电极暴露于大于或等于70%的大气相对湿度,以及由含导电聚合物和粘结剂的溶液或分散体在电容器电极上施涂导电外层,能满足这些要求。
因此,本发明提供一种生产电解电容器的方法,包括下列工艺步骤:
A)为形成固体电解质,将一种含有用于生成导电聚合物的前体、一种或多种氧化剂以及任选地相反离子的混合物引入到涂有电介质层和任选进一步的层的电极材料的多孔电极体上,
B)让用含有用于生成导电聚合物的前体、一种或多种氧化剂和任选地相反离子的混合物浸渍的电极体暴露于大于或等于70%的大气相对湿度,使该前体聚合,生成固体电解质,以及
C)为生成导电外层,将含有至少一种导电聚合物和至少一种粘结剂的溶液或分散体施涂到覆盖着电介质并完全或部分地覆盖着固体电解质和任选进一步层的多孔电极体上,随后进行干燥。
详细描述
含有生成导电聚合物的前体、一种或多种氧化剂和任选地相反离子的混合物,为简便计,在下面亦称作“混合物”。
涉及将混合物引入到涂以电介质和任选进一步层的多孔电极体中的步骤,在本发明范围内应理解为,该混合物,在施涂到涂以电介质和任选进一步层的多孔电极体中以后,渗入到电极体的多孔结构中。
原则上,电解电容器按照如下所述生产:首先,例如,一种具有大表面面积的粉末被压缩并烧结形成多孔电极体。也可对金属箔实施腐蚀,以便获得一种多孔薄膜。随后,电极体被涂以,例如,通过电化学氧化,涂(镀)以电介质,即一种氧化物层。构成固体电解质的导电聚合物,借助氧化聚合而沉积在电介质上。此后,在电容器体外表面上以溶液或分散体形式施涂含有至少一种导电聚合物和粘结剂的层。任选地,在该聚合物外层上施涂进一步的层。含良导电层,例如,石墨和银,或者金属阴极体的涂层,被作为放电电极。最后,给电容器安装触点和封装。
电极材料在按照本发明方法获得的电解电容器中优选形成一种具有大表面面积的多孔体,例如,呈多孔烧结体或粗糙化的膜。下面,为简单计,将这也称作电极体。
覆盖着电介质的电极体,为简单计,在下面亦称作氧化(的)电极体。术语“氧化电极体”还包括表面覆盖着尚未通过对电极体的氧化生成的电介质的那些电极体。
覆盖着电介质并完全或部分地覆盖着固体电解质的电极体,为简单计,在下面亦称作电容器体。
以含有至少一种导电聚合物和粘结剂的溶液或分散体形式施涂到电容器体外表面的层,在下面被称作聚合物外层。
术语“外表面”应理解为包括电容器体的外部。聚合物外层位于这些外表面的全部或部分上,正如在图1和2中示意地和作为例子所表示的。
附图简述
图1是以钽电容器为例的一种固体电解电容器结构的示意表达,其中
1、电容器体
5、聚合物外层
6、石墨/银层
7、电极体上的接线触点
8、触点
9、封装
10、局部示意断面
图2表示附图1钽电容器的示意层结构的局部示意10的放大断面,其中
10、局部示意断面
2、多孔电极体
3、电介质
4、固体电解质
5、聚合物外层
6、石墨/银层
在本发明范围内,在下文中针对一般或优选范围给出的定义、子定义、参数和解释也可彼此任意组合,即,也适用于各个范围和优选范围之间。
术语聚合物就本发明内容而言包括所有含一个以上重复单元的化合物。
导电聚合物在这里应理解为代表整个一类在氧化和还原之后具有导电性的π-共轭聚合物。优选地,那些在氧化之后具有导电性的π-共轭聚合物被理解为在本发明意义范围内的导电聚合物。作为例子,在这里可举出聚噻吩、聚吡咯和聚苯胺,它们可以是取代的或者是未取代的。优选的本发明意义内的导电聚合物是任选取代的聚噻吩,特别是任选取代的聚3,4-亚乙二氧基噻吩。除非另行指出,取代的是指取代上选自下列基团的取代基:烷基、环烷基、芳基、卤素、醚、硫醚、二硫醚、亚砜、砜、磺酸根、氨基、醛、酮、羧基、酸酯、羧酸、碳酸酯、羧酸酯、氰基、烷基硅烷、烷氧基硅烷基团,以及羧基酰胺基团。
生成导电聚合物的前体,在下面亦称作前体,应理解为包括对应单体或其衍生物。不同前体的混合物也可使用。合适的单体前体例如是任选取代的噻吩、吡咯或苯胺,优选任选取代的噻吩,特别优选任选取代的3,4-亚烷基二氧基噻吩。
作为取代的3,4-亚烷基二氧基噻吩的例子,可举出通式(I)、(II)的化合物,或者通式(I)和(II)的噻吩的混合物
其中
A代表任选取代的C1~C5-亚烷基基团,优选任选取代的C1~C3-亚烷基基团,
R代表线型或支化的、任选取代的C1~C18-烷基基团,优选线型或支化的,任选取代的C1~C14-烷基基团,任选取代的C5~C12-环烷基基团,任选取代的C6~C14-芳基基团,任选取代的C7~C18-芳烷基基团,任选取代的C1~C4-羟烷基基团,优选任选取代的C1~C2羟烷基基团,或者羟基基团,
x代表0~8的整数,优选0~6,尤其优选代表0或1,以及
在几个基团R键合在A上的情况下,这些基团可相同或不同。
尤其优选这样的聚噻吩,其重复单元为通式(I)、(II)或者这样的通式(I)和(II)的重复单元,其中A代表任选取代的C2~C3-亚烷基基团并且x代表0或1。
最优选的单体前体是任选取代的3,4-亚乙二氧基噻吩。
作为取代的3,4-亚乙二氧基噻吩的例子,可举出通式(III)的化合物
Figure A20051006873200092
其中R和x具有针对通式(I)和(II)所给出的含义。
在本发明的意义内,这些单体前体的衍生物应理解为,例如,代表这些单体前体的二聚体或三聚体。较高分子量的衍生物,即,这些单体前体的四聚体、五聚体等也可能作为衍生物。
作为取代的3,4-亚烷基二氧基噻吩的衍生物的例子,可举出通式(IV)的化合物
Figure A20051006873200101
其中
n代表2~20的整数,优选2~6,尤其优选2或3,
以及
A、R和x具有针对通式(I)和(II)所给出的含义。
衍生物可由不同的单体单元构成并且可以其纯净形式和彼此和/或与单体前体的混合物形式使用。这些前体的氧化或还原形式也可被包括在本发明意义范围内的术语“前体”中,只要,在它们的聚合反应中与上面列出的前体都生成相同的导电聚合物。
适合用于前体的取代基,特别是用于噻吩,优选用于3,4-亚烷基二氧基噻吩的,是针对通式(I)和(II)中的R所提到的基团。
C1~C5-亚烷基基团A,在本发明范围内,包括亚甲基、亚乙基、亚正丙基、亚正丁基或亚正戊基。在本发明范围内,C1~C18-烷基代表线型或支化C1~C18-烷基基团,例如,甲基、乙基、正丙基或异丙基、正丁基、异丁基、仲丁基或叔丁基、正戊基、1-甲基丁基、2-甲基丁基、3-甲基丁基、1-乙基丙基、1,1-二甲基-丙基、1,2-二甲基丙基、2,2-二甲基丙基、正己基、正庚基、正辛基、2-乙基己基、正壬基、正癸基、正十一烷基、正十二烷基、正十三烷基、正十四烷基、正十六烷基或正十八烷基、C5~C12-环烷基代表C5~C12-环烷基基团,例如,环戊基、环己基、环庚基、环辛基、环壬基或环癸基,C5~C14-芳基代表C5~C14-芳基基团,例如,苯基或萘基,并且C7~C18-芳烷基代表C7~C18-芳烷基基团,例如,苄基、邻甲苯基、对甲苯基、2,3-、2,4-、2,5-、2,6-、3,4-、3,5-二甲苯基或2,4,6-三甲苯基。上面的清单系作为说明本发明的范例给出的,不应视为穷尽的。
适合作C1~C5-亚烷基基团A的任选地进一步的取代基是许多有机基团,例如,烷基、环烷基、芳基、卤素、醚、硫醚、二硫醚、亚砜、砜、磺酸根、氨基、醛、酮、羧酸酯、羧酸、碳酸酯、羧酸酯、氰基、烷基硅烷和烷氧基硅烷基团,以及羧基酰胺基团。
制备导电聚合物用单体前体及其衍生物的制备方法乃是本领域技术人员已知的,并且描述在,例如,L.Groenendaal,F.Jonas,D.Freitag,H.Pielartzik&J.R.Reynolds,Adv.Mater.12(2000)481-494和文中援引的文献中。
制备要使用的聚噻吩所要求的通式(I)的3,4-亚烷基二氧基噻吩乃是本领域技术人员已知的或者可按照已知的方法生产(例如,按照P.Blanchard,A.Cappon,E.Levillain,Y.Nicolas,P.Frere和J.Roncali,Org.Lett.4(4),2002,pp.607-609)。
导电聚合物借助制备导电聚合物用前体的氧化聚合而在表面覆盖着电介质的电极体上生成,其中含有前体、氧化剂、任选地相反离子以及优选地溶剂的混合物被施涂到电极体的电介质上,浸渍的氧化的电极体,按照本发明,暴露于大于或等于70%的空气相对湿度并,视所采用的氧化剂的活性而定,通过加热该涂层使氧化聚合进行到底。
作为氧化剂,可采用所有本领域技术人员公知适合噻吩、苯胺或吡咯氧化聚合用的金属盐。
适合作为氧化剂的金属盐是主族金属或副族金属的金属盐,后者在下面亦称作元素周期系的过渡金属盐。合适的过渡金属盐特别是无机或有机酸的或含有机基团的无机酸的盐、过渡金属如铁(III)、铜(II)、铬(VI)、铈(IV)、锰(IV)和锰(VII)和钌(III)的盐。
优选的过渡金属盐是铁(III)的盐。传统铁(III)盐有利地廉价、易得并且容易处理,例如,无机酸的铁(III)盐,例如,铁(III)卤化物(例如,FeCl3)或其它无机酸的铁(III),例如,Fe(ClO4)3或Fe2(SO4)和有机酸的或含有机基团的无机酸的铁(III)盐。
作为含有机基团的无机酸的铁(III)盐,例如可举出C1~C20-链烷醇的硫酸单酯的铁(III)盐,例如,月桂基硫酸酯的铁(III)盐。
特别优选的过渡金属盐是有机酸的那些,特别是有机酸的铁(III)盐。
作为有机酸的铁(III)盐,可举出,例如,下列盐:C1~C20-链烷磺酸的铁(III)盐,例如,甲磺酸、乙磺酸、丙磺酸、丁磺酸或更高级磺酸如十二烷磺酸的那些,脂族全氟磺酸的那些,例如,三氟甲磺酸、全氟丁磺酸或全氟辛磺酸的那些,脂族C1~C20-羧酸如2-乙基己基羧酸的那些,以及芳族磺酸,任选地取代上C1~C20-芳基基团,例如,苯磺酸、邻甲苯磺酸、对甲苯磺酸或十二烷基苯磺酸的那些,以及环烷磺酸如樟脑磺酸的那些。
这些上面提到的有机酸的铁(III)盐的任意混合物也可用作氧化剂。
使用有机酸的和含有机基团无机酸的铁(III)盐具有,它们没有腐蚀作用的大优点。
作为金属盐最优选对甲苯磺酸铁(III)、邻甲苯磺酸铁(III)或对甲苯磺酸铁(III)与邻甲苯磺酸铁(III)的混合物。
在优选的实施方案中,金属盐以离子交换剂,优选碱性离子交换剂进行处理,然后再使用。合适的离子交换剂的例子是苯乙烯和二乙烯基苯的、以叔胺官能化的大孔聚合物,例如,由拜尔公司(Leverkusen)以商品名Lewatit销售的那些。此种以离子交换剂处理的金属盐的制备描述在DE 103 24 534中。
另一类合适的氧化剂是过氧化合物,例如,过氧化二硫酸盐(过二硫酸盐),特别是过二硫酸铵和碱金属,例如,过二硫酸钠和过二硫酸钾,或者过硼酸碱金属盐——任选地在催化数量金属离子如铁、钴、镍、钼或钒离子的存在下——以及过渡金属氧化物如二氧化锰(氧化锰(IV))或氧化铈(IV)。
为实施通式(III)或(IV)的噻吩的氧化聚合,理论上要求2.25当量氧化剂每摩尔噻吩(例如参见,J.Polym.Sc.Part A Polymer Chemistry,卷26,p.1287(1988))。然而,也可使用更少或更多的氧化剂当量数。在本发明内容的范围内,采用1当量或更高,尤其优选2当量或更高的氧化剂每摩尔噻吩。
作为固体电解质被包含在按照本发明方法生产的电解电容器中的导电聚合物,优选聚噻吩,可以是中性或阳离子的。在优选的实施方案中,它们是阳离子的,术语“阳离子的”仅指在聚合物主链上存在的电荷。视基团R上的取代基而定,导电聚合物可在结构单元中带有正和负电荷,正电荷位于聚合物主链,而负电荷则可能位于取代上磺酸根基团或羧酸根基团的基团R上。关于这一点,聚合物主链上的正电荷可部分或全部被可能存在于基团R上的阴离子基团所饱和。总地看,导电聚合物在此种情况下可看作阳离子、中性或甚至阴离子的。但是,在本发明范围内,它们一律被视为阳离子导电聚合物,因为存在于聚合物主链上的正电荷占主导地位。这些正电荷无法在通式中表示,因为它们的确切数值和位置无法明确地确定。然而,正电荷的数目至少是1且至多是n,其中n是导电聚合物,优选聚噻吩,中全部重复单元(相同或不同)的总数。
为了抵消正电荷,就任选取代上磺酸根或羧酸根因而带上负电荷的基团R尚未完全做到消除正电荷而言,阳离子导电聚合物需要阴离子作为相反离子。
因此,在优选的实施方案中,可将相反离子加入到包括氧化电极体的混合物中。这些相反离子可以是单体的或者是聚合物阴离子,在下面称后者为聚阴离子。
聚合物阴离子例如,可以是聚合羧酸的阴离子,例如,聚丙烯酸、聚甲基丙烯酸或聚马来酸,或者聚合磺酸,例如,聚苯乙烯磺酸和聚乙烯基磺酸。这些聚羧酸和聚磺酸也可以是乙烯基羧酸和乙烯基磺酸与其它可聚合单体如丙烯酸酯和苯乙烯的共聚物。
单体阴离子被优选用于固体电解质,因为它们更容易渗透氧化电极体。
例如,下面单体化合物的阴离子可用作单体阴离子:C1~C20-链烷磺酸如甲磺酸、乙磺酸、丙磺酸、丁磺酸或更高级磺酸如十二烷磺酸,脂族全氟磺酸,例如,三氟甲磺酸、全氟丁磺酸或全氟辛磺酸,脂族C1~C20-羧酸,例如,2-乙基己基羧酸,以及脂族全氟羧酸如三氟乙酸或全氟辛酸,以及芳族磺酸,任选地取代上C1~C20-烷基基团,例如,苯磺酸、邻甲苯磺酸、对甲苯磺酸或十二烷基苯磺酸,以及环烷磺酸的,例如,樟脑磺酸,或者四氟硼酸根、六氟磷酸根、过氯酸根、六氟锑酸根、六氟砷酸根或六氯锑酸根。磺酸的单体阴离子不局限于举磺酸的那些,而是也可以是二磺酸的、三磺酸或聚磺酸的阴离子,例如,苯二磺酸或萘二磺酸的。
对甲苯磺酸、甲磺酸或樟脑磺酸的阴离子是优选的。
相反离子以其碱金属盐的形式或者作为游离酸加入到溶液中。
可能存在的所使用的氧化剂的阴离子也可起到相反离子的作用,这就是说,加入附加相反离子并非绝对不可缺少。
含有可用于电荷平衡用相反离子的阴离子的阳离子聚噻吩通常在业内被称作聚噻吩/(聚)阴离子络合物。
其它组分也可在步骤A)中加入到被结合到氧化电极体中的混合物中,例如,一种或多种可溶于有机溶剂中的有机粘结剂,例如,聚醋酸乙烯、聚碳酸酯、聚乙烯醇缩丁醛、聚丙烯酸酯、聚甲基丙烯酸酯、聚苯乙烯、聚丙烯腈、聚氯乙烯、聚丁二烯、聚异戊二烯、聚醚、聚酯、硅酮、苯乙烯/丙烯酸酯共聚物、醋酸乙烯/丙烯酸酯共聚物和乙烯/醋酸乙烯共聚物或水溶性粘结剂,如,聚乙烯醇,交联剂如三聚氰胺化合物、封端异氰酸酯、官能硅烷——例如,四乙氧基硅烷、烷氧基硅烷水解产物如基于四乙氧基硅烷的,环氧硅烷如3-缩水甘油氧基丙基三烷氧基硅烷-聚氨酯,聚丙烯酸酯或聚烯烃分散体,和/或添加剂,例如,表面活性剂,例如,离子或非离子表面活性剂或偶联剂,例如,有机官能硅烷和/或其水解产物,例如,3-缩水甘油氧基丙基三烷氧基硅烷、3-氨基丙基三乙氧基硅烷、3-巯基丙基-三甲氧基硅烷、3-甲基丙烯酰氧基丙基三甲氧基硅烷、乙烯基三甲氧基硅烷和辛基三乙氧基硅烷。
该混合物在步骤A)向电极体的电介质上的施涂可直接实施或者利用偶联剂,例如,硅烷如有机官能硅烷和/或其水解产物,例如,3-缩水甘油氧基丙基三烷氧基硅烷、3-氨基-丙基三乙氧基硅烷、3-巯基丙基三甲氧基硅烷、3-甲基丙烯酸氧基丙基-三甲氧基硅烷、乙烯基三甲氧基硅烷或辛基三乙氧基硅烷和/或一种或多种其它官能层。
该混合物优选含有1~30wt%生成导电聚合物的前体和0~50wt%粘结剂、交联剂和/或添加剂,这两种重量百分数均指对混合物总重量而言。
特别优选的是,混合物基本由前体、氧化剂和溶剂组成。
特别可举出下面在反应条件下呈惰性的有机溶剂,可作为生成导电聚合物的前体和/或氧化剂和/或相反离子的溶剂:脂族醇,例如,甲醇、乙醇、异丙醇和丁醇;脂族酮如丙酮和丁酮;脂族羧酸酯如乙酸乙酯和乙酸丁酯;芳烃如甲苯和二甲苯;脂族烃如己烷、庚烷和环己烷;氯化烃如二氯甲烷和二氯乙烷;脂族腈如乙腈;脂族亚砜和砜,例如,二甲基亚砜和环丁砜;脂族羧酸酰胺如甲基乙酰胺、二甲基乙酰胺和二甲基甲酰胺;脂族和芳脂族醚如二乙醚和茴香醚。另外,水或者水与上述有机溶剂的混合物也可用作溶剂。
生成导电聚合物用的氧化剂和前体可以固态和/或液态的形式混合在一起。然而,优选在混合物中加入一种或多种溶剂。作为合适的溶剂尤其可举出上面已经列出的溶剂。特别优选作为溶剂的是那些具有高蒸汽压的溶剂,例如,甲醇或乙醇。此类溶剂无需加热,很容易从电极体中蒸发。这一特性的优点在于,在聚合反应开始之前,溶剂就可蒸发,同时氧化剂可沉积在氧化的电极体内表面上。这样一来,该薄膜的性能如导电性和膜质量,以及对电介质的附着力都将改善。然而,如果在尚有较大量溶剂的存在下聚合反应就已经开始了,这将导致聚合物颗粒在溶液中的生成。在溶剂完全蒸发之后,这些颗粒将表现出对电介质表面很差的附着力,并从而导致高ESR和低覆盖度。
因此,在优选的方法中,溶剂从电极体表面含溶剂的混合物中预先蒸发,然后再进行聚合。
也可在待涂表面直接生成该混合物。为此,氧化剂和生成导电聚合物的前体相继,优选以溶液形式加到待涂表面上。随后,通过对各个组分,即,氧化剂和前体,在待涂表面的充分混合,和/或任选地在部分或完全蒸发出溶剂以后,借助在氧化剂/前体界面的扩散作用而形成该混合物。
在含有生成导电聚合物的前体与至少一种氧化剂的混合物中,聚合反应速率除了取决于离析物的浓度之外还取决于聚合的反应常数。反应常数k具有由下式给出的温度依赖性:
                     k=νxe-Ea/RT,其中ν是频率因数,Ea是活化能,以J/mol为单位,R是气体常数(8.3145JK-1mol-1)以及T是温度,K。
活化能是依赖于温度但与浓度无关的反应速率特征常数。高活化能导致反应速度较慢并从而延长混合物的适用期。长适用期在工业过程中对实现高材料收率和低加工成本是有利的。
优选的含生成导电聚合物用前体和至少一种氧化剂的混合物其特征在于,前体聚合的活化能等于或大于75kJ/mol,优选等于或大于85kJ/mol,尤其优选等于或大于95kJ/mol。活化能过高的缺点是,聚合反应只能在非常高的温度开始,这对于导电聚合物的生成不利。因此,活化能优选小于200kJ/mol,尤其优选小于150kJ/mol,最优选小于130kJ/mol。
活化能的确定以及实施有关动力学测定的程序乃是本领域技术人员公知的并且描述在,例如,《均相多步骤反应的动力学》,F.G.Helfferich,主编:R.G.Compton和G.Hancock,作为从书《综合化学动力学》,(Elsevier,阿姆斯特丹2001)中的卷38中。
该混合物可采用公知的方法施涂到氧化的电极体上,例如,通过浸渍、流延、滴涂、喷涂、喷洒、刮刀涂布、刷涂、旋涂或印刷,例如,喷墨、网印或擦涂印刷。
优选将氧化的电极体浸没在混合物中。关于这方面,浸没和取出的速率优选介于0.001mm/s~100mm/s,尤其优选介于0.01mm/s~10mm/s。
按照本发明,令浸渍的氧化电极体暴露于大于或等于70%的空气相对湿度中。这些条件可在混合物的施涂和/或施涂以后一直维持为主导氛围。优选的是,氧化电极体仅在施涂步骤以后才暴露于提高的空气湿度中。这样做的优点是,混合物不从空气中过分吸收水份,因此其组成不致不断地改变。
优选的是,按照加工步骤B)在高空气湿度中的暴露持续1s~24h,优选30s~2h,尤其优选1min~30min。这例如可在人工气候室内进行。相对湿度,就此而论,大于或等于70%,优选大于或等于80%,尤其优选大于或等于90%。暴露于高空气相对湿度期间的温度优选小于30℃,尤其优选介于1℃~30℃,最优选介于10℃~30℃。在优选的实施方案中,暴露于高空气相对湿度期间的温度优选介于15℃~25℃。
在暴露于高空气湿度以后,优选实施一种热后处理,以便在-10℃~300℃,优选10℃~200℃,尤其优选30℃~150℃的温度进一步聚合。热处理持续的时间取决于用于涂布的聚合物的性质并且介于5s~数小时。也可对该热处理采取涉及不同温度下、不同停留时间的某一温度曲线。
热处理例如可通过以一定速度移动涂布的氧化电极体穿过要求温度的加热室来实施,以便达到在要求温度停留要求的时间。另外,热处理例如可在一个或多个各自处于不同温度的加热炉中实施。
在暴露于高空气湿度之后,并任选地在该热后处理以后,优选采用适当溶剂,优选水或醇,洗掉多余氧化剂和涂层上的残留盐。残留盐,就此而论,应理解为氧化剂的还原形式,以及可能存在的进一步的盐。
关于金属氧化物电介质,例如,阀(valve)用金属的氧化物,有利的是,在暴露于高空气湿度以及可能在热后处理之后并优选在洗涤阶段期间和以后,对氧化物膜进行电化学处理以便纠正所述氧化物膜中可能的瑕疵并从而降低成品电容器的残余电流。在此所谓重整过程中,电容器体被浸泡在电介质中,并对电极体施加正电位的正电压。从氧化物膜中瑕疵部位流出到导电聚合物的电流在这些部位重整该氧化物膜或破坏在这些瑕疵部位的导电聚合物的导电性。
依赖于氧化的电极体的性质,可能有利的是,在一次洗涤程序之前和/或以后以生成导电聚合物的前体和氧化剂的混合物再浸渍氧化的电极体几次以便增厚电极体内部的聚合物层。涉及这方面的混合物的组成可以变化。固体电解质可任选地由包含多个功能层组成的多层系统组成。
电介质表面被固体电解质的覆盖度优选大于50%,尤其优选大于70%,最优选大于80%。
在本发明范围内,电介质被固体电解质的覆盖率是按如下所述确定的:测定干态和湿态下电容器在120Hz的电容。覆盖度是以百分数表示的干态与湿态电容之比。干态是指电容器在测定之前预先在高温(80℃~120℃)干燥了几个小时。湿态是指,电容器在提高的压力下的饱和空气湿度中,例如在蒸汽压容器中暴露了几个小时。借此,潮湿渗透到了尚未被固体电解质覆盖的孔隙中并起到液体电解质作用。
结果,惊奇地发现,上面描述的本发明方法能抑制在氧化电极体外表面的聚合反应。因此,现已可能给电极体内部充分地涂以导电聚合物,而不会与此同时生成附着不良的外层膜,即便在采取多次浸渍和聚合的情况下。在经过按照步骤A)+B)的内部涂布以后,含至少一种导电聚合物和粘结剂的溶液或分散体于是便可直接涂布到以后的电极体的外表面上。粘结剂与外表面的直接接触导致聚合物外层膜与氧化电极体表面的良好附着。
固体电解质生成以后并任选地在进一步施涂多层,例如,其它类型导电层到电容器体上以后,按照本发明,一种含有至少一种导电聚合物和粘结剂的溶液或分散体于是被施涂到电容器体上,以便生成聚合物外层。
溶液或分散体中的导电聚合物可由上面描述的生成固体电解质的前体产生。优选的上面给出的有关前体的范围、规定和例子类似地以适当的组合适用于该溶液或分散体中的导电聚合物。
优选的该溶液或分散体中的导电聚合物是任选取代的聚噻吩、吡咯和/或苯胺。
尤其优选作为溶液或分散体中的导电聚合物的是一种任选取代的聚噻吩,具有通式(V)或(VI)的重复单元或者通式(V)和(VI)的重复单元,
Figure A20051006873200181
其中
A代表任选取代的C1~C5-亚烷基基团,
R代表线型或支化、任选取代的C1~C18-烷基基团、任选取代的C5~C12-环烷基基团、任选取代的C6~C14-芳基基团、任选取代的C7~C18-芳烷基基团、任选取代的C1~C4-羟烷基基团或羟基基团,
x代表0~8的整数,以及
在几个基团R键合在A上的情况下,这些基团可相同或不同。
通式(V)和(VI)应理解为,取代基R可结合到亚烷基基团A上x次。就是说,有“x”个基团R键合在A上。
聚3,4-亚乙二氧基噻吩最适合作溶液或分散体中的导电聚合物。
在聚合物外层中含有的聚噻吩包含通式(V)或(VI)的重复单元或通式(V)和(VI)的重复单元的情况下,前面关于前体所给出的优选基团A和R以及x的定义在这里成立。类似地,优选范围的任意组合也成立。
在本发明范围内,前缀“聚”应理解为有一个以上相同或不同重复单元存在于该聚合物或聚噻吩中。聚噻吩含有总共n个通式(V)或(VI)的或者通式(V)和(VI)的重复单元,其中n是2~2000的整数,优选2~100。聚噻吩中的通式(V)和/或(VI)的重复单元在每种情况下相同或不同。优选每种情况具有相同通式(V)、(VI)或(V)和(VI)的重复单元。
聚噻吩优选在每种情况下在端基处带有H。
单体和/或聚合的阴离子可优选地起步骤C)中导电聚合物的相反离子的作用。合适的相反离子是上面针对混合物所描述的相反离子。类似地,优选的范围的任意组合也成立。
聚合阴离子选作为相反离子使用。
聚合阴离子例如可以是聚合羧酸的阴离子,例如,聚丙烯酸、聚甲基丙烯酸或聚马来酸或聚合磺酸如聚苯乙烯磺酸和聚乙烯基磺酸的。这些聚羧酸和聚磺酸也可以是乙烯基羧酸和乙烯基磺酸与其它可聚合单体如丙烯酸酯和苯乙烯的共聚物。
聚合羧酸或磺酸的阴离子优选作为聚合阴离子使用。
尤其优选作为聚合阴离子的是聚苯乙烯磺酸(PSS)的阴离子。
提供聚合阴离子的聚酸的分子量优选介于1000~2,000,000,尤其优选2000~500,000。聚酸或其碱金属盐有市售供应,例如,聚苯乙烯磺酸和聚丙烯酸,或者可按照公知的方法制取(例如参见,HoubenWeyl,《有机化学方法》,卷E 20“大分子材料”,第二章(1987)p.1141起)。
聚合阴离子和导电聚合物在溶液或分散体中可以0.5∶1~50∶1,优选1∶1~30∶1,尤其优选2∶1~20∶1的重量比存在,每种情况皆以溶液或分散体干燥后的重量为基准计。就此而论,导电聚合物的重量对应于所用单体的称取数量,同时假定在聚合反应中发生了完全转化。
步骤C)中的溶液和分散体优选地还可包含至少一种溶剂。合适的溶剂是上面谈到前体时已经提到的溶剂。优选的溶剂是水或其它质子溶剂如醇,例如,甲醇、乙醇、异丙醇和丁醇,以及水与这些醇的混合物。
生成聚合物外层用的溶液或分散体优选含有至少一种聚合物有机粘结剂。合适的聚合物有机粘结剂包括,例如,聚乙烯醇、聚乙烯基吡咯烷酮、聚氯乙烯、聚醋酸乙烯、聚乙烯醇缩丁醛、聚丙烯酸酯、聚丙烯酸酰胺、聚甲基丙烯酸酯、聚甲基丙烯酸酰胺、聚丙烯腈、苯乙烯/丙烯酸酯共聚物、醋酸乙烯/丙烯酸酯共聚物和乙烯/醋酸乙烯共聚物、聚丁二烯、聚异戊二烯、聚苯乙烯、聚醚、聚酯、聚碳酸酯、聚氨酯、聚酰胺、聚酰亚胺、聚砜、三聚氰胺-甲醛树脂、环氧树脂、硅酮树脂或纤维素。在本发明范围内也适合作聚合物有机粘结剂的是通过加入交联剂,例如,三聚氰胺化合物、封端异氰酸酯或官能硅烷,例如,3-缩水甘油氧基丙基三烷氧基硅烷、四乙氧基硅烷和四乙氧基硅烷水解产物,或者可交联聚合物,例如,聚氨酯、聚丙烯酸酯或聚烯烃,随后进行交联,所生成的那些粘结剂。适合作为聚合物粘结剂的此类交联产物也可例如通过加入的交联剂与加入的聚合物阴离子起反应来制备。在此种情况下,聚合物外层中的交联聚阴离子于是将既起聚合物阴离子的作用,又起粘结剂的作用。含有此种交联的聚阴离子的电容器也被视为本发明范围内的。优选那些具有足够温度稳定性以耐受成品电容器今后将受到的温度应力,例如,220℃~260℃的焊接温度的电容器。
聚合物粘结剂在溶液或分散体中的含量,以溶液或分散体干燥后的组合物为基准计,介于1~90%,优选5~80%,最优选20~60%。
加入粘结剂的巨大优越性在于,聚合物外层对电容器体的附着力的改善。另外,粘结剂还增加分散体中的固体分数,通过浸渍就已经达到足够的外层厚度,因此边缘覆盖率得到显著改善。
按照本发明步骤C)的含有至少一种导电聚合物和粘结剂的溶液或分散体另外还可含有其它组分如表面活性物质,例如,离子和非离子表面活性剂或偶联剂,例如,有机官能硅烷或其水解产物,例如,3-缩水甘油氧基丙基三烷氧基硅烷、3-氨基丙基-三乙氧基硅烷、3-巯基丙基-三甲氧基硅烷、3-甲基丙烯酰氧基丙基三甲氧基硅烷、乙烯基三甲氧基硅烷或辛基三乙氧基硅烷。
优选的是,步骤C)的溶液和分散体还含有能改进导电性的其它添加剂,例如,含有醚基团的化合物,例如,四氢呋喃,含有内酯基团的化合物,例如,γ-丁内酯、γ-戊内酯,含有酰胺或内酰胺基团的化合物,例如,己内酰胺、N-甲基己内酰胺、N,N-二甲基乙酰胺、N-甲基乙酰胺、N,N-二甲基甲酰胺(DMF)、N-甲基甲酰胺、N-甲基甲酰苯胺、N-甲基吡咯烷酮(NMP)、N-辛基吡咯烷酮、吡咯烷酮、砜和亚砜,例如,环丁砜(四亚甲基砜)、二甲基亚砜(DMSO)、糖或糖的衍生物,例如,蔗糖、葡糖、果糖、乳糖、糖醇,例如,山梨醇、甘露醇、呋喃衍生物,例如,2-呋喃羧酸、3-呋喃羧酸和/或二醇或多醇,例如,乙二醇、甘油、二甘醇和三甘醇。四氢呋喃、N-甲基甲酰胺、N-甲基吡咯烷酮、二甲基亚砜或山梨醇特别优选被作为提高导电性的添加剂。
溶液或分散体的制备例如可由含有前体和氧化剂的混合物来实施。分散体由任选取代的的苯胺、通式(I)、(II)的噻吩或通式(I)和(II)的噻吩混合物的制备可在,例如,类似于EP-A 440 957中提到的那些条件下实施。合适的氧化剂、溶剂和单体或聚合阴离子是上面已经提到的那些。
也可先制备聚苯胺/聚阴离子或聚噻吩/聚阴离子络合物,然后将它们分散或再分散在一种或多种溶剂中。
溶液或分散体按照公知的方法施涂到电容器体上,例如,通过旋涂、浸渍、流延、滴涂、喷涂、喷洒、刮刀涂布、刷涂或印刷,例如,喷墨、网印或擦涂印刷。
优选的是,采用这样的含有至少一种导电聚合物和粘结剂的溶液或分散体,它们在干态时的比电导率大于10S/cm,尤其优选大于20S/cm,最优选大于50S/cm,最最优选大于100S/cm。
聚合物外层施涂以后也可进行干燥、通过洗涤来清洁该层,重整和反复施涂——正如在上面关于固体电解质的制备已经描述的。视具体使用的粘结剂或交联剂而定,也可采取进一步的处理步骤,例如,加热或光照固化或交联。另外,还可在聚合物外层上施涂进一步的层。
聚合物外层的厚度介于1~1000μm,优选1~100μm,尤其优选2~50μm,最优选4~20μm。层厚可沿外表面变化。特别是,在电容器体边缘处的层厚可大于或小于电容器体侧面的。优选实际上均一的层厚。
聚合物外层可具有,就其组成的粘结剂、导电聚合物和聚合物阴离子而言均匀的分布或不均匀的分布。优选均匀的分布。
聚合物外层可以是构成电容器体外层的含几个功能层的多层系统的一部分。在聚合物外层上还可提供进一步的功能层。另外,可在电容器体上提供几个聚合物外层。
优选的是,聚合物外层直接位于电容器体外表面上,不夹着进一步的中间层。聚合物外层优选能渗透电容器体的边缘区域,以便产生与固体电解质之间的良好接触并改善对电容器体的附着力(例如参见图2)。
在特别优选的实施方案中,本发明电解电容器包含:含有聚3,4-亚乙二氧基噻吩(PEDT)的固体电解质和含有聚苯乙烯磺酸(PSS)和聚3,4-亚乙二氧基噻吩的聚合物外层,后者在文献中也常常被称作PEDT/PSS或PEDOT/PSS。
在最特别优选的实施方案中,本发明电解电容器包含聚3,4-亚乙二氧基噻吩和单体相反离子的固体电解质,和PEDT/PSS和粘结剂的聚合物外层。
在本发明另一种优选的制备电解电容器的实施方案中,电极材料是阀用金属或具有与阀用金属可比电气性能的化合物。
阀用金属在本发明范围内可理解为代表那些其氧化物层不允许电流沿两个方向同等地流动的层。当电压加在阳极上时,阀用金属的氧化物层阻止电流的流动,而当电压加在阴极上时,电流以可能破坏氧化物层的大电流流动。阀用金属包括Be、Mg、Al、Ge、Si、Sn、Sb、Bi、Ti、Zr、Hf、V、Nb、Ta和W以及至少一种这些金属与其它元素的合金或化合物。具有可比性能的化合物是那些表现出金属导电性的、可以被氧化并且其氧化物层具有上面所描述的性能的化合物。例如,NbO表现出金属导电性,但通常不认为是阀用金属。然而,氧化的NbO却表现出阀用金属氧化物的典型性能,因此NbO或NbO与其它元素的合金或化合物是此类具有可比性能的化合物的典型例子。
可见,术语“可氧化金属”不仅涵盖金属,而且包括金属与其它元素的合金或化合物,只要它们表现出金属导电性并且可以被氧化。
因此,本发明特别优选提供一种生产电解电容器的方法,其特征在于,阀用金属或具有可比性能的化合物是钽、铌、铝、钛、锆、铪、钒、至少一种这些金属与其它元素的合金或化合物,NbO或NbO与其它元素的合金或化合物。
电介质优选由电极材料的氧化物或者——在其已经是氧化物的情况下——电极材料的较高(价)氧化形式。电介质任选含有进一步的元素和/或化合物。
可氧化金属以,例如,粉末形式进行烧结,形成多孔电极体,或者在金属体上压印一种多孔结构。后一种程序可通过,例如,腐蚀一种膜来实施。
多孔电极体在例如一种适当电解质中进行氧化,例如,在磷酸中,通过外加电压。该成形电压的大小取决于要达到的氧化物层的厚度或者电容器以后的使用电压。优选的电压是1~300V,尤其优选1~80V。
为制备电极体,优选采用比电荷大于35000μC/g,尤其优选比电荷大于45000μC/g,更特别优选比电荷大于65000μC/g,最特别优选比电荷大于95000μC/g的金属粉末。在本发明方法的优选实施方案中,采用比电荷大于140000μC/g的金属粉末。
金属粉末的比电荷按如下所述计算:
比电荷=(电容×电压)/氧化电极体的重量。
关于这方面,电容根据氧化电极体在含水电解质中在120Hz测定的电容算出。电解质的电导率应足够大,以致,在120Hz,其电容仍不因电解质的电阻而下降。例如,18%含水硫酸电解质被用于此种测定。上式中的电压对应于最大成形电压(氧化电压)。
按本发明方法生产的电解电容器,由于其残余电流低,并且其ESR低,故特别适合作为电子电路中的元件。优选数字电子电路,例如,用于电脑中的(桌面、笔记本、服务器),用于便携式电子装置中,例如,移动电话和数字照相机,用于消费者/娱乐电子电器,例如,CD/DVD播放机和电脑游戏机,用于导航系统和通讯设备。
因此,本发明也提供按照本发明方法生产的电解电容器以及此种电解电容器在电子电路中的应用。
优选比电荷大于5000μC/g,尤其优选大于15000μC/g,更特别优选大于30000μC/g,最特别优选大于40000μC/g,以涂以电介质的电极体重量为基准计,的电解电容器。
电解电容器的比电荷按如下所述计算:
比电荷=(电容×电压)/氧化电极体重量
与此有关的电容由在120Hz测定的电解电容器的电容来计算,而电压则是电容器的操作电压(额定电压)。氧化电极体的重量是指涂以电介质的多孔电极材料的纯重量,不包括聚合物、触点和封装。
优选在100kHz测定的ESR小于51mΩ的电解电容器。特别优选的是,本发明电解电容器的ESR,在100kHz测定小于31mΩ,更优选小于21mΩ,最特别优选小于16mΩ。在特别优选的本发明电解电容器的实施方案中,ESR小于11mΩ。
固体电解电容器的等效串联电阻反比于电容器的几何表面(面积)。因此,等效串联电阻与几何表面的乘积提供一个与结构尺寸无关的数量。
术语几何表面在以下应理解为代表由几何尺寸算出的电容器体的外表面。在拟立方体(cuboic)烧结体的情况下,几何表面相应地是:
几何表面=2(L×B+L×H+B×H)
其中L代表烧结体的长度,B,宽度,H,高度,而×是乘号。关于这一点,仅电容器体的覆盖了聚合物外层的那些部分被考虑在内。
如果多个电容器体被用于一个电容器中,则各个几何表面加起来构成总几何表面。
在例如含有缠绕片材形式多孔电极体的固体电解电容器的情况下,退绕片材的尺寸(长度、宽度)被作为度量尺寸。
因此,也优选这样的电解电容器,其中在100kHz测定的等效串联电阻乘上电容器体的几何表面(的乘积)小于4000mΩmm2。特别优选的是,等效串联电阻乘上几何表面(的乘积)小于3000mΩmm2,更特别优选小于2000mΩmm2,最特别优选小于1000mΩmm2。在本发明电解电容器的特别优选的实施方案中,等效串联电阻乘上几何表面小于600mΩmm2
下面给出的实例不拟视为限制性的。
实例
实例1
1、氧化电极体的制备
比电容为50,000μFV/g的钽粉末压制成片状器件,并进行烧结,以制成尺寸4.2mm×3mm×1.6mm的多孔电极体。片状器件(阳极片状器件)在磷酸电解质中在30V下进行阳极化处理。
2、阳极片状器件按照本发明的就地化学镀膜
制备一种溶液,由1重量份3,4-亚乙二氧基噻吩(BAYTRONM,H.C.Starck公司)和20重量份40wt%对甲苯磺酸铁(III)(BAYTRONM,H.C.Starck公司)的乙醇溶液组成。
用该溶液来浸渍7个阳极片状器件。将阳极片状器件浸没在该溶液中,然后在室温(20℃)暴露于95%的空气相对湿度达30min。这以后,它们在干燥室内在50℃下热处理15min,并在150℃下处理15min。随后,片状器件放在对甲苯磺酸的2%水溶液中洗涤30min。将阳极片状器件放在0.25wt%对甲苯磺酸水溶液中重整30min,随后在蒸馏水中清洗并干燥。再重复上述浸渍、干燥、热处理和重整过程4次。
对比例1
涂布的阳极片状器件按照类似于实例1的方法制造,只是在浸渍后,片状器件在室温(20℃)暴露于仅50%的空气相对湿度30min。
来自实例1的阳极片状器件不具有任何可见聚合物外膜。但在对比例1的阳极片状器件中,形成了表现出龟裂和剥落的清晰可见聚合物外膜。
实例1显示,以前体和氧化剂浸渍的阳极片状器件按照本发明接受高空气湿度的暴露能抑制阳极外表面的聚合,即便随后进行高温热处理。另一方面,在对比例中,形成一种对阳极表面附着力很差的聚合物外膜。
实例2
本发明电容器的制备
1、氧化的电极体的制备
比电容为50,000μFV/g的钽粉末压制成片状器件,并进行烧结,以制成尺寸4.2mm×3mm×1.6mm的多孔电极体。片状器件(阳极片状器件)在磷酸电解质中在30V下进行阳极化处理。
2、阳极片状器件按照本发明的就地化学镀膜
制备一种溶液,由1重量份3,4-亚乙二氧基噻吩(BAYTRONM,H.C.Starck公司)和20重量份40wt%对甲苯磺酸铁(III)(BAYTRONC-E,H.C.Starck公司)的乙醇溶液组成。
用该溶液来浸渍7个阳极片状器件。将阳极片状器件浸没在该溶液中,然后在室温(20℃)暴露于95%的空气相对湿度达30min。这以后,它们在干燥室内在50℃下热处理15min,并在150℃下处理15min。随后,片状器件放在对甲苯磺酸的2%水溶液中洗涤30min。将阳极片状器件放在0.25wt%对甲苯磺酸水溶液中重整30min,随后在蒸馏水中清洗并干燥。再重复上述浸渍、干燥、热处理和重整过程2次。
3、聚合物外层的施涂
随后,将阳极片状器件浸渍在由90份含水PEDT/PSS分散体(BAYTRONP,H.C.Starck公司)、4份DMSO、4.2份磺化聚酯(Eastek1400,固体含量30wt%在水中,Eastman)和0.2份表面活性剂(ZonylFS 300,杜邦公司)并在80℃干燥15min。
随后,片状器件镀以石墨和银层。
对比例2
按照类似于实例2制备7个电容器,只是在浸渍后,电容器在室温(20℃)暴露于仅50%的空气相对湿度30min。
电容器平均具有以下电气数值
  实例295%空气相对湿度   对比例250%空气相对湿度
  电容,120Hz   137μF   126μF
  电容,100Hz   107μF   68μF
  ESR,10kHz   28mΩ   50mΩ
  ESR,100kHz   23mΩ   28mΩ
采用LCR表(电感、电容、电阻测量表)(Agilent 4284A)在120Hz和100kHz下测定电容并在10kHz和100kHz下测定等效串联电阻(ESR)。
按照本发明制备的实例2的电容器,由于暴露于95%的空气相对湿度,表现出明显好于对比例2的电容器的电气性能,后者暴露于50%的空气相对湿度。
按照本发明生产的电容器在10kHz~100kHz频率范围具有稳定ESR。在10kHz的ESR比在100kHz下仅高出5mΩ。因此,可以看出,即便在100kHz的高频下,仍然保留着80%的电容可用。另一方面,来自对比例的电容器表现出ESR在较低频率的陡峭升高。在10kHz的ESR数值高于在100kHz的。与此同时,这些电容器在100kHz的电容大致为在120Hz的一半。对比例电容器的频率响应之所以如此差的原因是聚合物外层对电容器体的附着不良。不能表现出粘结剂对电容器体的良好附着是因为,表现出对电容器体附着不良的就地聚合层依然存在于所述电容器体与含粘结剂聚合物的层之间。
实例3.1
本发明电容器的制备
按照类似于实例2的方式制备7个电容器,只是阳极片状器件在浸渍并在20℃下暴露于95%的空气相对湿度15min以后在50℃进行30min的热处理。
实例3.2
按照类似于实例3.1的方式制备7个电容器,只是阳极片状器件在浸渍后在40℃下暴露于95%的空气相对湿度15min。
电容器具有下列平均电气数值
  实例3.195%空气相对湿度20℃   对比例3.295%空气相对湿度40℃
  电容,120Hz   119μF   74μF
  电容,100Hz   89μF   47μF
  ESR,10kHz   30mΩ   54mΩ
  ESR,100kHz   22mΩ   30mΩ
采用LCR表(Agilent 4284A)在120Hz和100kHz下测定电容并在10kHz和100kHz下测定等效串联电阻(ESR)。
按照本发明制备的实例3.1的电容器,由于在20℃暴露于95%的空气相对湿度,表现出在10kHz和100kHz都明显较高的电容和较低ESR。于是,实例3.1的电容器表现出比实例3.2更好的电气性能,后者是在40℃下暴露于95%的空气相对湿度的。
高空气湿度暴露期间较低的温度,优选低于30℃,正如实例3.1那样,导致较低ESR和高电容。
实例4
本发明电容器的制备
类似于实例2那样制备6个电容器。
对比例4
类似于实例2那样制备6个电容器,但不施涂聚合物外层。
实例4的电容器在10V操作电压下平均具有0.9μA的残余电流。不具有聚合物外层的对比例4的电容器在10V下完全短路了。
实例4和对比例4显示,在本发明的方法中,聚合物外层的施涂乃是生产低残余电流电容器不可或缺的。

Claims (16)

1.一种生产电解电容器的方法,包括至少下列工艺步骤:
A)为形成固体电解质,将一种含有用于生成导电聚合物的前体、一种或多种氧化剂以及任选地相反离子的混合物引入到涂有电介质层和任选进一步的层的电极材料的多孔电极体上,
B)让用含有用于生成导电聚合物的前体、一种或多种氧化剂和任选地相反离子的混合物浸渍的电极体暴露于大于或等于70%的大气相对湿度,使该前体聚合,生成固体电解质,以及
C)为生成导电外层,将含有至少一种导电聚合物和至少一种粘结剂的溶液或分散体施涂到覆盖着电介质并完全或部分地覆盖着固体电解质和任选进一步层的多孔电极体上,随后进行干燥。
2.权利要求1的方法,其特征在于,步骤B)在低于30℃的温度实施。
3.权利要求1或2的方法,其特征在于,用任选取代的噻吩、吡咯或苯胺作为生成导电聚合物的前体。
4.权利要求3的方法,其特征在于,用3,4-亚乙二氧基噻吩作为任选取代的噻吩。
5.权利要求1~4至少之一的方法,其特征在于,作为氧化剂,采用碱金属或铵的过氧化焦硫酸盐、过氧化氢、碱金属过硼酸盐、有机酸铁(III)盐、无机酸铁(III)盐或含有有机基团的无机酸的铁(III)盐。
6.权利要求1~5至少之一的方法,其特征在于,相反离子是单体链烷磺酸或环烷磺酸或者芳族磺酸的阴离子。
7.权利要求1~6至少之一的方法,其特征在于,在步骤A)中使用的混合物具有等于或大于75k/Jmol的聚合反应活化能。
8.权利要求1~7至少之一的方法,其特征在于,在步骤C)中作为导电聚合物施涂的溶液或分散体含有任选取代的聚噻吩、聚吡咯和/或聚苯胺。
9.权利要求8的方法,其特征在于,任选取代的聚噻吩是聚3,4-亚乙二氧基噻吩。
10.权利要求1~9至少之一的方法,其特征在于,电极材料是一种阀用金属或具有可比电气性能的化合物。
11.权利要求10的方法,其特征在于,阀用金属或具有可比电气性能的化合物是钽、铌、铝、钛、锆、铪、钒、至少一种这些金属与其它元素的合金或化合物,NbO或NbO与其它元素的合金或化合物。
12.权利要求1~11至少之一的方法,其特征在于,电介质是阀用金属的氧化物或具有可比性能的化合物的氧化物。
13.权利要求1~12至少之一的方法,其特征在于,步骤A)的混合物另外还包含溶剂并且该溶剂在前体聚合之前从电极体上的含溶剂的混合物中蒸发掉。
14.按照权利要求1~13至少之一的方法制造的电解电容器。
15.权利要求14的电解电容器,其特征在于,该电解电容器的比电荷大于5000μC/g,以涂了电介质的电极体重量为基准计。
16.权利要求14或15的电解电容器在电子电路中的应用。
CN2005100687325A 2004-05-05 2005-04-30 生产电解电容器的方法 Expired - Fee Related CN1858866B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004022110.3 2004-05-05
DE102004022110A DE102004022110A1 (de) 2004-05-05 2004-05-05 Verfahren zur Herstellung von Elektrolytkondensatoren

Publications (2)

Publication Number Publication Date
CN1858866A true CN1858866A (zh) 2006-11-08
CN1858866B CN1858866B (zh) 2011-07-06

Family

ID=34935871

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2005100687325A Expired - Fee Related CN1858866B (zh) 2004-05-05 2005-04-30 生产电解电容器的方法

Country Status (14)

Country Link
US (1) US7279015B2 (zh)
EP (1) EP1598841A1 (zh)
JP (1) JP4833583B2 (zh)
KR (1) KR101151942B1 (zh)
CN (1) CN1858866B (zh)
AU (1) AU2005201903A1 (zh)
BR (1) BRPI0503421A (zh)
DE (1) DE102004022110A1 (zh)
IL (1) IL168350A (zh)
MX (1) MXPA05004704A (zh)
RU (1) RU2005113495A (zh)
SV (1) SV2006002105A (zh)
TW (1) TW200608424A (zh)
ZA (1) ZA200503497B (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102074370A (zh) * 2009-11-20 2011-05-25 三洋电机株式会社 固体电解电容器的制造方法
CN101425377B (zh) * 2007-10-30 2011-09-14 Nec东金株式会社 具有改进的耐湿性能的固体电解电容器及其制造方法
CN101727999B (zh) * 2008-10-15 2012-03-21 Nec东金株式会社 导电性高分子组合物及其制备方法、以及固体电解电容器
CN102420051A (zh) * 2010-09-27 2012-04-18 Avx公司 带有改进的阳极末端的固体电解电容器
CN103578779A (zh) * 2012-07-19 2014-02-12 Avx公司 温度稳定的固体电解电容器
CN103578777A (zh) * 2012-07-19 2014-02-12 Avx公司 在高电压下具有改善性能的固体电解电容器
CN103578778A (zh) * 2012-07-19 2014-02-12 Avx公司 湿-干电容提高的固体电解电容器
CN103717329A (zh) * 2011-08-09 2014-04-09 H.C.施塔克股份有限公司 由阀金属粉末制造电解电容器的方法
CN104851592A (zh) * 2014-02-13 2015-08-19 三星电机株式会社 固态电解质电容器、其制造方法和片型电子组件
CN111210995A (zh) * 2013-08-15 2020-05-29 Avx 公司 抗潮湿固体电解电容器组件

Families Citing this family (73)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005223122A (ja) * 2004-02-05 2005-08-18 Matsushita Electric Ind Co Ltd チップ型アルミ電解コンデンサ及びその製造方法
WO2006064342A2 (en) * 2004-12-14 2006-06-22 Nissan Motor Co., Ltd. Electrode for use in a battery and method of making the same
US8264819B2 (en) * 2005-08-19 2012-09-11 Avx Corporation Polymer based solid state capacitors and a method of manufacturing them
GB0517952D0 (en) 2005-09-02 2005-10-12 Avx Ltd Method of forming anode bodies for solid state capacitors
DE102005043828A1 (de) * 2005-09-13 2007-03-22 H.C. Starck Gmbh Verfahren zur Herstellung von Elektrolytkondensatoren
TWI479509B (zh) * 2006-02-09 2015-04-01 信越聚合物股份有限公司 導電性高分子溶液、導電性塗膜、電容器,以及電容器之製造方法
TWI404090B (zh) 2006-02-21 2013-08-01 Shinetsu Polymer Co 電容器及電容器之製造方法
JP4912914B2 (ja) * 2006-02-21 2012-04-11 信越ポリマー株式会社 コンデンサ及びその製造方法
JP4797784B2 (ja) * 2006-05-09 2011-10-19 日本ケミコン株式会社 固体電解コンデンサ
JP5305569B2 (ja) 2006-06-29 2013-10-02 三洋電機株式会社 電解コンデンサの製造方法および電解コンデンサ
US7563290B2 (en) 2006-07-06 2009-07-21 Kemet Electronics Corporation High voltage solid electrolytic capacitors using conductive polymer slurries
JP4831771B2 (ja) * 2006-08-24 2011-12-07 Necトーキン株式会社 固体電解コンデンサ
JP4730908B2 (ja) * 2006-11-28 2011-07-20 Necトーキン株式会社 固体電解コンデンサ
JP4911509B2 (ja) 2007-04-03 2012-04-04 三洋電機株式会社 電解コンデンサおよびその製造方法
DE102007048212A1 (de) * 2007-10-08 2009-04-09 H.C. Starck Gmbh Verfahren zur Herstellung von Elektrolytkondensatoren mit polymerer Zwischenschicht
JP4873572B2 (ja) * 2007-12-14 2012-02-08 Necトーキン株式会社 固体電解コンデンサとその製造方法
US20100123993A1 (en) * 2008-02-13 2010-05-20 Herzel Laor Atomic layer deposition process for manufacture of battery electrodes, capacitors, resistors, and catalyzers
US8094434B2 (en) 2008-04-01 2012-01-10 Avx Corporation Hermetically sealed capacitor assembly
DE102008023008A1 (de) * 2008-05-09 2009-11-12 H.C. Starck Gmbh Neuartige Polythiophene-Polyanion-Komplexe in unpolaren organischen Lösungsmitteln
JP2010021217A (ja) * 2008-07-09 2010-01-28 Japan Carlit Co Ltd:The 固体電解コンデンサおよびその製造方法
AU2008361558B2 (en) * 2008-09-09 2014-08-28 Touch One Corporation Glove and attachment therefor
US8405956B2 (en) 2009-06-01 2013-03-26 Avx Corporation High voltage electrolytic capacitors
GB2468942B (en) 2009-03-23 2014-02-19 Avx Corp High voltage electrolytic capacitors
US9908817B2 (en) * 2009-06-02 2018-03-06 Uchicago Argonne, Llc Multilayer capacitors, method for making multilayer capacitors
US8194395B2 (en) * 2009-10-08 2012-06-05 Avx Corporation Hermetically sealed capacitor assembly
US8125768B2 (en) 2009-10-23 2012-02-28 Avx Corporation External coating for a solid electrolytic capacitor
US8206467B2 (en) 2010-03-24 2012-06-26 Sanyo Electric Co., Ltd. Method for manufacturing a solid electrolytic capacitor
JP5312396B2 (ja) * 2010-04-26 2013-10-09 三洋電機株式会社 固体電解コンデンサの製造方法
JP5481639B2 (ja) * 2010-06-29 2014-04-23 カーリットホールディングス株式会社 導電性高分子製造用酸化剤とそれを用いた固体電解コンデンサ及びその製造方法
US8259436B2 (en) 2010-08-03 2012-09-04 Avx Corporation Mechanically robust solid electrolytic capacitor assembly
US8279584B2 (en) 2010-08-12 2012-10-02 Avx Corporation Solid electrolytic capacitor assembly
US8824121B2 (en) 2010-09-16 2014-09-02 Avx Corporation Conductive polymer coating for wet electrolytic capacitor
US8824122B2 (en) 2010-11-01 2014-09-02 Avx Corporation Solid electrolytic capacitor for use in high voltage and high temperature applications
US8848342B2 (en) 2010-11-29 2014-09-30 Avx Corporation Multi-layered conductive polymer coatings for use in high voltage solid electrolytic capacitors
US8493713B2 (en) 2010-12-14 2013-07-23 Avx Corporation Conductive coating for use in electrolytic capacitors
US8576543B2 (en) 2010-12-14 2013-11-05 Avx Corporation Solid electrolytic capacitor containing a poly(3,4-ethylenedioxythiophene) quaternary onium salt
US8451588B2 (en) 2011-03-11 2013-05-28 Avx Corporation Solid electrolytic capacitor containing a conductive coating formed from a colloidal dispersion
US8379372B2 (en) 2011-04-07 2013-02-19 Avx Corporation Housing configuration for a solid electrolytic capacitor
US8947857B2 (en) 2011-04-07 2015-02-03 Avx Corporation Manganese oxide capacitor for use in extreme environments
US9767964B2 (en) 2011-04-07 2017-09-19 Avx Corporation Multi-anode solid electrolytic capacitor assembly
US8300387B1 (en) 2011-04-07 2012-10-30 Avx Corporation Hermetically sealed electrolytic capacitor with enhanced mechanical stability
US9105401B2 (en) 2011-12-02 2015-08-11 Avx Corporation Wet electrolytic capacitor containing a gelled working electrolyte
US10879010B2 (en) 2012-02-27 2020-12-29 Kemet Electronics Corporation Electrolytic capacitor having a higher cap recovery and lower ESR
DE102013101443A1 (de) 2012-03-01 2013-09-05 Avx Corporation Ultrahigh voltage solid electrolytic capacitor
US8971019B2 (en) 2012-03-16 2015-03-03 Avx Corporation Wet capacitor cathode containing an alkyl-substituted poly(3,4-ethylenedioxythiophene)
JP2013219362A (ja) 2012-04-11 2013-10-24 Avx Corp 過酷な条件下で強化された機械的安定性を有する固体電解コンデンサ
CN103578768B (zh) 2012-07-19 2017-10-31 Avx公司 用在电解电容器固体电解质中的非离子表面活性剂
JP5933397B2 (ja) * 2012-08-30 2016-06-08 エイヴィーエックス コーポレイション 固体電解コンデンサの製造方法および固体電解コンデンサ
GB2512480B (en) 2013-03-13 2018-05-30 Avx Corp Solid electrolytic capacitor for use in extreme conditions
US9324503B2 (en) 2013-03-15 2016-04-26 Avx Corporation Solid electrolytic capacitor
US9892862B2 (en) 2013-05-13 2018-02-13 Avx Corporation Solid electrolytic capacitor containing a pre-coat layer
US9472350B2 (en) 2013-05-13 2016-10-18 Avx Corporation Solid electrolytic capacitor containing a multi-layered adhesion coating
GB2517019B (en) 2013-05-13 2018-08-29 Avx Corp Solid electrolytic capacitor containing conductive polymer particles
US9343239B2 (en) * 2013-05-17 2016-05-17 Kemet Electronics Corporation Solid electrolytic capacitor and improved method for manufacturing a solid electrolytic capacitor
US9761378B2 (en) 2015-03-30 2017-09-12 Kemet Electronics Corporation Process to improve coverage and electrical performance of solid electrolytic capacitors
JP5543001B2 (ja) * 2013-09-02 2014-07-09 三洋電機株式会社 電解コンデンサの製造方法
US9236193B2 (en) 2013-10-02 2016-01-12 Avx Corporation Solid electrolytic capacitor for use under high temperature and humidity conditions
US9589733B2 (en) 2013-12-17 2017-03-07 Avx Corporation Stable solid electrolytic capacitor containing a nanocomposite
US9754730B2 (en) 2015-03-13 2017-09-05 Avx Corporation Low profile multi-anode assembly in cylindrical housing
US9928963B2 (en) 2015-03-13 2018-03-27 Avx Corporation Thermally conductive encapsulant material for a capacitor assembly
US10014108B2 (en) 2015-03-13 2018-07-03 Avx Corporation Low profile multi-anode assembly
US10297393B2 (en) 2015-03-13 2019-05-21 Avx Corporation Ultrahigh voltage capacitor assembly
US9991055B2 (en) 2015-05-29 2018-06-05 Avx Corporation Solid electrolytic capacitor assembly for use at high temperatures
US9767963B2 (en) 2015-05-29 2017-09-19 Avx Corporation Solid electrolytic capacitor with an ultrahigh capacitance
US9972444B2 (en) 2015-05-29 2018-05-15 Avx Corporation Solid electrolytic capacitor element for use in dry conditions
US9672989B2 (en) 2015-05-29 2017-06-06 Avx Corporation Solid electrolytic capacitor assembly for use in a humid atmosphere
DE102015122773A1 (de) 2015-12-23 2017-06-29 Deutsches Zentrum für Luft- und Raumfahrt e.V. Kondensator mit beschichteten Poren
JP6816770B2 (ja) * 2016-08-24 2021-01-20 株式会社村田製作所 固体電解コンデンサ素子、固体電解コンデンサ、固体電解コンデンサ素子の製造方法、及び、固体電解コンデンサの製造方法
US10431389B2 (en) 2016-11-14 2019-10-01 Avx Corporation Solid electrolytic capacitor for high voltage environments
US11081288B1 (en) 2018-08-10 2021-08-03 Avx Corporation Solid electrolytic capacitor having a reduced anomalous charging characteristic
US11380492B1 (en) 2018-12-11 2022-07-05 KYOCERA AVX Components Corporation Solid electrolytic capacitor
US11756742B1 (en) 2019-12-10 2023-09-12 KYOCERA AVX Components Corporation Tantalum capacitor with improved leakage current stability at high temperatures
US11763998B1 (en) 2020-06-03 2023-09-19 KYOCERA AVX Components Corporation Solid electrolytic capacitor

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3814730A1 (de) * 1988-04-30 1989-11-09 Bayer Ag Feststoff-elektrolyte und diese enthaltende elektrolyt-kondensatoren
EP0440957B1 (de) 1990-02-08 1996-03-27 Bayer Ag Neue Polythiophen-Dispersionen, ihre Herstellung und ihre Verwendung
JP2676973B2 (ja) 1990-04-16 1997-11-17 三菱電機株式会社 液晶表示装置の製造方法
US5800857A (en) * 1992-09-18 1998-09-01 Pinnacle Research Institute, Inc. Energy storage device and methods of manufacture
US5812367A (en) * 1996-04-04 1998-09-22 Matsushita Electric Industrial Co., Ltd. Solid electrolytic capacitors comprising a conductive layer made of a polymer of pyrrole or its derivative
US5914852A (en) * 1996-04-26 1999-06-22 Nippon Chemi-Con Corporation Solid electrolyte capacitor and its manufacture
JP3296727B2 (ja) * 1996-08-22 2002-07-02 三洋電機株式会社 固体電解コンデンサの製造方法
JP3157748B2 (ja) * 1997-07-30 2001-04-16 富山日本電気株式会社 導電性高分子を用いた固体電解コンデンサ及びその製造方法
JP3350846B2 (ja) * 1998-02-02 2002-11-25 エヌイーシートーキン富山株式会社 導電性高分子を用いた固体電解コンデンサ及びその製造方法
JPH11274011A (ja) * 1998-03-23 1999-10-08 Matsushita Electric Ind Co Ltd アルミ電解コンデンサ
US6375688B1 (en) * 1998-09-29 2002-04-23 Matsushita Electric Industrial Co., Ltd. Method of making solid electrolyte capacitor having high capacitance
JP2000235937A (ja) * 1999-02-16 2000-08-29 Matsushita Electric Ind Co Ltd 固体電解コンデンサおよびその製造方法
ATE363721T1 (de) * 1999-04-06 2007-06-15 Showa Denko Kk Festelektrolytkondensator und herstellungsverfahren
US6517892B1 (en) * 1999-05-24 2003-02-11 Showa Denko K.K. Solid electrolytic capacitor and method for producing the same
US6552896B1 (en) * 1999-10-28 2003-04-22 Matsushita Electric Industrial Co., Ltd. Solid electrolytic capacitor and method for manufacturing the same
JP3806567B2 (ja) * 2000-01-17 2006-08-09 三洋電機株式会社 固体電解コンデンサの製造方法及び製造装置
US6430032B2 (en) * 2000-07-06 2002-08-06 Showa Denko K. K. Solid electrolytic capacitor and method for producing the same
JP4547780B2 (ja) * 2000-07-12 2010-09-22 パナソニック株式会社 固体電解コンデンサの製造方法
US6674635B1 (en) * 2001-06-11 2004-01-06 Avx Corporation Protective coating for electrolytic capacitors
JP2003188052A (ja) 2001-12-17 2003-07-04 Nec Tokin Toyama Ltd 固体電解コンデンサ素子及びその製造方法並びに固体電解コンデンサ
DE10237577A1 (de) * 2002-08-16 2004-02-26 H.C. Starck Gmbh Substituierte Poly(alkylendioxythiophene) als Feststoffelektrolyte in Elektrolytkondensatoren
DE10324534A1 (de) 2003-04-02 2004-10-14 H.C. Starck Gmbh Retardierende Oxidationsmittel zur Herstellung leitfähiger Polymere

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101425377B (zh) * 2007-10-30 2011-09-14 Nec东金株式会社 具有改进的耐湿性能的固体电解电容器及其制造方法
CN101727999B (zh) * 2008-10-15 2012-03-21 Nec东金株式会社 导电性高分子组合物及其制备方法、以及固体电解电容器
CN102074370A (zh) * 2009-11-20 2011-05-25 三洋电机株式会社 固体电解电容器的制造方法
CN102074370B (zh) * 2009-11-20 2015-07-15 三洋电机株式会社 固体电解电容器的制造方法
CN102420051A (zh) * 2010-09-27 2012-04-18 Avx公司 带有改进的阳极末端的固体电解电容器
CN103717329A (zh) * 2011-08-09 2014-04-09 H.C.施塔克股份有限公司 由阀金属粉末制造电解电容器的方法
CN103578779A (zh) * 2012-07-19 2014-02-12 Avx公司 温度稳定的固体电解电容器
CN103578777A (zh) * 2012-07-19 2014-02-12 Avx公司 在高电压下具有改善性能的固体电解电容器
CN103578778A (zh) * 2012-07-19 2014-02-12 Avx公司 湿-干电容提高的固体电解电容器
CN103578777B (zh) * 2012-07-19 2018-07-31 Avx公司 在高电压下具有改善性能的固体电解电容器
CN111210995A (zh) * 2013-08-15 2020-05-29 Avx 公司 抗潮湿固体电解电容器组件
CN104851592A (zh) * 2014-02-13 2015-08-19 三星电机株式会社 固态电解质电容器、其制造方法和片型电子组件

Also Published As

Publication number Publication date
TW200608424A (en) 2006-03-01
US20050248910A1 (en) 2005-11-10
RU2005113495A (ru) 2006-11-10
KR20060045899A (ko) 2006-05-17
KR101151942B1 (ko) 2012-07-02
JP4833583B2 (ja) 2011-12-07
IL168350A (en) 2010-11-30
JP2005322917A (ja) 2005-11-17
DE102004022110A1 (de) 2005-12-01
SV2006002105A (es) 2006-02-15
EP1598841A1 (de) 2005-11-23
MXPA05004704A (es) 2005-11-10
AU2005201903A1 (en) 2005-11-24
CN1858866B (zh) 2011-07-06
BRPI0503421A (pt) 2006-01-10
ZA200503497B (en) 2006-07-26
US7279015B2 (en) 2007-10-09

Similar Documents

Publication Publication Date Title
CN1858866A (zh) 生产电解电容器的方法
CN101055803A (zh) 具有聚合物外层的电解质电容器及其制备方法
CN1610027A (zh) 带有聚合外层的电解电容器
CN1295722C (zh) 固体电解电容器及其制造方法
CN1577657A (zh) 电解质电容器中含有亚烷基氧硫代噻吩单元的聚噻吩
CN1184653C (zh) 固体电解电容器的制作方法及固体电解电容器
CN1220997C (zh) 电解电容器及其制造方法
JP4845699B2 (ja) 固体電解コンデンサ及び固体電解コンデンサの製造方法
CN1308980C (zh) 固体电解电容器及其制造方法
JP5500830B2 (ja) 有機金属化合物で処理された電解コンデンサアノード
CN110459406A (zh) 用于高温高湿度条件下的固体电解电容器
JP4299297B2 (ja) コンデンサおよび該コンデンサの製造方法
CN101110297A (zh) 具有聚合物外层的电解电容器及其制备方法
JP2008060234A (ja) 固体電解コンデンサおよびその製造方法
CN1201349C (zh) 铌电容器
CN1868011A (zh) 电容器电极薄板及其制造方法与装置以及电解电容器
JP4789751B2 (ja) 固体電解コンデンサの製造方法
CN1186790C (zh) 固体电解电容器及其制造方法
CN1193057C (zh) 导电性聚合物,固体电解电容器及其制造方法
JP2011192688A (ja) 固体電解コンデンサ及びその製造方法
CN1399784A (zh) 固体电解电容器及其制造方法
CN1226760C (zh) 固体电解电容的制造方法及固体电解电容
CN1698145A (zh) 固体电解电容器及其制造方法
JP2011222709A (ja) 固体電解コンデンサ及びその製造方法
CN1242584A (zh) 电容器及其制造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1098574

Country of ref document: HK

C14 Grant of patent or utility model
GR01 Patent grant
REG Reference to a national code

Ref country code: HK

Ref legal event code: WD

Ref document number: 1098574

Country of ref document: HK

C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20110706

Termination date: 20140430