CN1685454B - 层叠陶瓷电容器的制造方法 - Google Patents

层叠陶瓷电容器的制造方法 Download PDF

Info

Publication number
CN1685454B
CN1685454B CN200380100063.4A CN200380100063A CN1685454B CN 1685454 B CN1685454 B CN 1685454B CN 200380100063 A CN200380100063 A CN 200380100063A CN 1685454 B CN1685454 B CN 1685454B
Authority
CN
China
Prior art keywords
face
barium titanate
laminated ceramic
ceramic capacitor
particle diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN200380100063.4A
Other languages
English (en)
Other versions
CN1685454A (zh
Inventor
平田和希
冈谦次
小松和博
长井淳夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Publication of CN1685454A publication Critical patent/CN1685454A/zh
Application granted granted Critical
Publication of CN1685454B publication Critical patent/CN1685454B/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • C04B35/4682Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates based on BaTiO3 perovskite phase
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1218Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates
    • H01G4/1227Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates based on alkaline earth titanates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2311/00Metals, their alloys or their compounds
    • B32B2311/22Nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • C04B2235/3263Mn3O4
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5409Particle size related information expressed by specific surface values
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6025Tape casting, e.g. with a doctor blade
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6582Hydrogen containing atmosphere
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6587Influencing the atmosphere by vaporising a solid material, e.g. by using a burying of sacrificial powder
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/345Refractory metal oxides
    • C04B2237/346Titania or titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/405Iron metal group, e.g. Co or Ni
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/43Electric condenser making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/43Electric condenser making
    • Y10T29/435Solid dielectric type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/49126Assembling bases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/49128Assembling formed circuit to base

Abstract

本发明有关层叠陶瓷电容器的制造方法,包含(a)交替层叠含有钛酸钡构成的陶瓷原料的陶瓷生片与内电极而形成层叠体的工序、(b)烧结所述层叠体而得到烧结体的工序、以及(c)在所述烧结体的端面形成外部电极而得到层叠陶瓷电容器的工序,所述钛酸钡在X射线衍射图中具有由(002)面产生的衍射线与由(200)面产生的衍射线,2θ(200)中的峰值强度I(200)相对于在(002)面产生的衍射线的峰值角度2θ(002)与(200)面产生的衍射线的峰值角度2θ(200)的中间点角度的衍射强度Ib之比:I(200)/Ib为2~10。而且所述钛酸钡的平均粒径r(μm)与比表面积Sa(m2/g)之积r·Sa为1~2。

Description

层叠陶瓷电容器的制造方法
发明领域
本发明涉及具有以钛酸钡作为主成分的电介质层的层叠陶瓷电容器的制造方法。
背景技术
层叠陶瓷电容器具有交替层叠电介质层与内电极层的结构。这种层叠陶瓷电容器广泛用作为小型、大电容量、高可靠性的电子元件。
作为这样的电容器的电介质材料,要求相对介电常数高、介质损耗小、且温度特性好。
作为满足这样要求的材料,提出采用这样的钛酸钡,即在X射线衍射图中,2θ(200)的峰值强度I(200)相对于(002)面产生的衍射线的峰值角度2θ(002)与(200)面产生的衍射线的峰值角度2θ(200)的中间点角度的衍射强度(Ib)的之比:(I(200)/Ib)为4~16(参看特开2001-345230号公报)。
然而,在上述的方法中,当用粒径偏差大的粒子形成电介质层时,所得到的层叠陶瓷电容器在加上直流电压时,电容量的下降(以下称作DC偏置特性)往往变大。
将这样的层叠陶瓷电容器实装到电路中并加上直流电压时,产生的问题是电容量下降较大,不能发挥按设计那样的功能。
因此,也考虑通过降低电介质层原料的相对介电常数来制造具有优良DC偏置特性的层叠陶瓷电容器。但这时不能增大层叠陶瓷电容器的电容量。
发明内容
本发明的目的在于提供相对介电常数高、介质损耗低、DC偏置特性优良的层叠陶瓷电容器的制造方法。
鉴于上述目的,本发明的层叠陶瓷电容器的制造方法,包含下述工序:
(a)交替层叠含有钛酸钡构成的陶瓷原料的陶瓷生片与内电极而形成层叠体的工序、
(b)烧结所述层叠体而得到烧结体的工序、以及
(c)在所述烧结体的端面形成外部电极而得到层叠陶瓷电容器的工序,
所述钛酸钡在X射线衍射图中具有由(002)面产生的衍射线与由(200)面产生的衍射线,
(200)中的峰值强度I(200)相对于在(002)面产生的衍射线的峰值角度2θ(002)与(200)面产生的衍射线的峰值角度2θ(200)的中间点角度的衍射强度Ib之比:I(200)/Ib为2~10,
而且所述钛酸钡的平均粒径r(μm)与比表面积Sa(m2/g)之积r·Sa为1~2。
上述方法中,最好所述工序(a)包含煅烧所述陶瓷原料、接着粉碎的工序,并且所述粉碎后的陶瓷粉末的比表面积Sb(m2/g)满足Sb≤1.2Sa,而且0<Sb≤6。
上述方法中,最好当所述粉碎后的陶瓷粉末的个数基准的50%累积频率分布粒径D50、10%累积频率分布粒径D10、90%累积频率分布粒径D90分别用α(μm)、β(μm)、γ(μm)表示时,所述α、β、γ满足:0.7α≤β,γ≤1.5α,0.4≤α≤0.7,0.3≤β≤0.5,γ≤0.8。
附图说明
图1示出本发明中所用的钛酸钡的X射线衍射图。
图2示出用本发明的制造方法制造的层叠陶瓷电容器的一部分切开的立体图。
具体实施方式
本发明的层叠陶瓷电容器的制造方法由以下3个工序组成。
最初,交替层叠以钛酸钡为主成分的陶瓷原料构成的陶瓷生片与内电极,形成层叠体(工序(a))。
以下示出层叠体的形成方法的1例。
首先,用混合手段将使主成分的钛酸钡分散于分散剂即水中的分散液进行湿法混合,并脱水、干燥,得到陶瓷原料。
本发明中,作为钛酸钡采用在常温附近为正方晶系的材料。该钛酸钡用X射线衍射法,示出如图1的X射线衍射图,分别看到2θ=44.9°附近(002)面产生的衍射峰值、以及2θ=45.4°附近(200)面产生的衍射峰值。这里,设(002)面产生的衍射线的峰值角度2θ(002)与(200)面产生的衍射线的峰值角度2θ(200)的中间点角度为2θb(即2θb=(2θ(002)+2θ(200)/2)时,2θ(200)的峰值强度I(200)相对于2θb的衍射强度Ib之比(I(200)/Ib)为2~10。而且,设用μm表示平均粒径时的数值为r、用m2/g表示比表面积时的数值为Sa时,上述钛酸钡的Sa·r为1~2。
当I(200)/Ib小于2时,钛酸钡的相对介电常数变小。又,I(200)/Ib大于10的钛酸钡,其制作困难。
又,当积Sa·r小于1时,以及大于2时,DC偏置特性变差。
这里,Sa和r的范围较好是Sa=2~10m2/g,r=0.2~0.5μm,更好是Sa=2~7m2/g,r=0.2~0.5μm,最好是Sa=2.5~5m2/g,r=0.2~0.4μm。
又,本发明中,作为副成分,最好添加MgO、SiO2、Mn3O4、稀土类氧化物(Dy2O3、Ho2O3、Er2O3、Yb2O3等)。这些副成分的功能是,各自作为构成使层叠陶瓷电容器的可靠性提高的第2相(核壳结构的壳体部分)成分的一部分。最好对每100mol钛酸钡添加0.1mol~10mol的范围内的副成分。副成分的粒径最好在0.05~1μm的范围内。
上述脱水后的干燥在120℃以下、最好在100℃~120℃范围内进行。
又,作为混合手段可用球磨机等。用球磨机时,为防止混合时钛酸钡被粉碎过头、粒度分布变大,最好采用粒径0.5mm以下的氧化锆球。
其次,将得到的陶瓷原料最好进行煅烧。煅烧在800~1000℃的温度范围内进行。所得到的煅烧体,粗看呈轻微凝结状态。根据利用X射线衍射法来分析该煅烧体所得结果,认为原料粒子之间起反应,稍微成为固溶态。
接着,将上述煅烧体分散于分散剂即水中后的分散液,采用粉碎手段进行湿法粉碎,然后脱水,再干燥。作为粉碎手段例如可用球磨机等。又,用球磨机时,为防止过分粒碎,最好使用粉径0.5mm以下的氧化锆球作为粉碎媒体。脱水后的干燥在120℃以下、最好在100℃~120℃范围内进行。
接着,将粉碎后的陶瓷粉末与有机粘合剂混合,调制电介质层形成用浆料。粉碎后的陶瓷粉末最好与酒精混合,以酒精被覆其表面。接着将表面用酒精被覆的陶瓷粉末与分散剂、有机粘合剂、以及增塑剂相混合,制成浆料。添加酒精使粉碎后的陶瓷粉末不致凝聚,但其添加量最好不超过粘合剂、分散剂以及增塑剂的合计量。
上述浆产中,表面经酒精被覆的陶瓷粉末在50重量%~80重量%的范围内为好,有机粘合剂在5重量%~10重量%的范围内为好,增塑剂在5重量%~10%的范围内为好。其余为分散剂。
调制上述浆料时,作为被覆粉碎后的陶瓷粉末的酒精,使用乙醇等。作为有机粘合剂,采用聚乙烯醇缩丁醛树脂。作为分散剂采用n-醋酸丁基。作为增塑剂,采用苯甲基乙基酞酸盐。
利用上面得到的浆料制成作为电介质层的陶瓷生片,作为从浆料制成陶瓷生片的方法,采用例如刮片法。
接着,层叠所述陶瓷生片与内电极,形成层叠体。
以下示出陶瓷生片与内电极的层叠方法的一例。
在陶瓷生片的单面上按规定图案丝网印刷内电极膏。所用的内电极膏例如由铜、镍或钴等贱金属组成。
将上述那样制成的印刷了不同图案的内电极的2种陶瓷生片交替层叠、热压,使一体化。这里,热压最好在80~140℃温度范围、以80~200kgf/cm2的压力范围进行。
接着,切成规定的大小,制成层叠体。内电极与陶瓷生片的层叠数根据静电容量等适当设定。
其次,对得到的层叠体施行脱粘合剂处理后,经烧结得到烧结体(工序(b))。烧结温度在1100℃~1300℃范围内为好。为防止内电极氧化,烧结气氛最好采用还原性气氛。例如可用N2与H2的混合气体作为还原性气氛。
最后,在所得到的烧结体的内电极露出的端面上,通过形成外部电极,从而得到图2所示的层叠陶瓷电容器(工序(c))。图2中,10为以钛酸钡作为主成分的电介质层,11和12为内电极,13和14为分别连接内电极11和12的外部电极。
上述外部电极的形成,是通过将外部电极膏涂布于内电极露出的表面上,并在氮氛围中烧结来实现。作为外部电极膏,例如可用铜构成的电极膏等。
又,相对的一对内电极间所夹的电介质层的厚度在1~3μm范围为好,内电极厚度在1~2μm范围为好。
层叠陶瓷电容器用于实际电路中时,必定加上直流电压。由于加上直流电压,大部分的电容器的电容量将减小。本发明中作为陶瓷原料的主成分即钛酸钡,是使用I(200)/Ib位于2~10范围内、且Sa·r在1~2范围内的粒径一致的粉末,通过这样可降低由于加上直流电压而引起的电容量即DC偏置特性的下降率。
制成的层叠陶瓷电容器的电介质层,由具有钛酸钡成为核心部分、上述的副成分和钛酸钡成为壳体部分的核壳结构的粒子所构成。具有核壳结构的粒子中,包含核心部分的全部表面被壳体部分所被覆的粒子、以及不是所有的核心部表面被壳体部分被覆而核心部分的表面一部分露出的粒子。
又,上述工序(a)中,最好粉碎后的陶瓷粉末的比表面积Sb为Sb≤1.2Sa(其中0≤Sb≤6m2/g,更好是2≤Sb≤6m2/g,Sa满足上述数值范围)。这样,在工序(b)中烧结时,钛酸钡以外的成分易与钛酸钡或副成分起反应,提高烧结性。因此,由钛酸钡和上述的副成分构成的粒子能够形成均匀一致的核壳结构,可得到具有优良特性的电介质层。
又,当设上述粉碎后的陶瓷粉末的个数基准的50%累积频率分布粒径D50为α、10%累积频率分布粒径D10为β、90%累积频率分布粒径D90为γ时,最好上述粉碎后的陶瓷粉末满足0.7α≤β,且γ≤1.5α(其中0.4μm≤α≤0.7μm,0.3μm≤β≤0.5μm,γ≤0.8μm,Sa在上述范围内)。
由于DC偏置特性也受粉碎后的陶瓷粉末粒径的偏差的影响,故通过不仅使钛酸钡粒径均匀一致,而且使粉碎后的陶瓷粉末粒径分布缩小,就能够进一步提高DC偏置特性。
以下说明钛酸钡平均粒径的测定法。
用扫描电子显微镜观察钛酸钡粉末,在该观察面上随机划10条直线。测定10条直线各自长度与各直线上的钛酸钡的粒子数。用钛酸钡的粒子数去除各直线的长度,从而计算钛酸钡的粒径。接着计算在10条直线中的平均值。本发明以该平均值作为平均粒径。
又,测定钛酸钡或粉碎后的陶瓷粉末的比表面积的方法如下所述。
首先,利用下式的BET吸附等温式
x/[V(1-x)]=1/(VmC)+x(C-1)/(VmC)       (1)
求出作为单分子层He全表面吸附时的吸附量Vm(cm3/g)。具体地说,选择用横轴x和纵轴x/[V(1-x)]表示的He的实际吸附等温线的相对压低的区域的3点,求得通过这3点的直线。这时,得到的直线的斜率为(C-1)/(VmC),截距为1(VmC)。从而,根据得到的直线的斜率的值和截距的值,计算吸附量Vm。这里,上式(1)中x为相对压(吸附平衡压/饱和蒸气压),V为在相对压x的He的吸附量(cm3/g),C为表示He的第1层中的吸附热与第2层中吸附热的之差的参数。
其次,根据上述得到的单分子层吸附量Vm,用下式
S=sVmKA/V0                (2)
求出比表面积S(m2/g)。这里,s为He每1分子的占有截面积,KA为阿伏伽德罗数,V0为每1mol的He的体积(22414cm3)。
实施例1
按照每100mol主成分的钛酸钡中副成分的MgO 1.0mol、Dy2O3 0.3mol、Ho2O30.3mol、SiO2 0.6mol、Mn3O4 0.05mol的比例,称量各粉末。这时,作为钛酸钡,采用具有表1所示的I(200)/Ib值、比表面积(Sa)值、平均粒径r的原料粉末。此外,表1还示出Sa·r值。
然后,将这些主成分和副成分与纯水一起置入具备氧化锆球的球磨机中,经湿法混合、脱水、干燥,得到陶瓷原料。
接着,将得到的干燥粉末置入高纯度的氧化铝坩锅,在空气中煅烧2小时,得到煅烧物。
将上述煅烧物与纯水一起置入具备氧化锆球的球磨机中,经湿法粉碎后,进行脱水、干燥。
这里,表1中示出粉碎后的陶瓷粉末的比表面积(Sb)的值。
表1
  试料No.   I<sub>(200)</sub>/I<sub>b</sub>   比表面积Sa(m<sup>2</sup>/g)  平均粒径r(μm)   Sa·r   比表面积Sb(m<sup>2</sup>/g)
  1<sup>*</sup>   1.5   6.1   0.40   2.44   8.78
  2<sup>*</sup>   1.7   7.2   0.27   1.94   8.51
  3   2.1   3.2   0.34   1.09   3.31
  4   2.2   3.6   0.49   1.76   4.22
  5   2.2   4.5   0.39   1.76   5.03
  6   2.5   4.0   0.38   1.52   4.37
  7<sup>*</sup>   2.8   5.3   0.63   3.34   7.34
  8<sup>*</sup>   2.9   4.8   0.43   2.06   5.79
  9<sup>*</sup>   2.9   3.8   0.56   2.13   4.64
  10   3.0   4.3   0.44   1.89   4.38
  11   3.8   4.2   0.27   1.13   4.06
  12<sup>*</sup>   3.9   6.2   0.42   2.61   8.31
  13   4.6   3.5   0.47   1.65   3.84
  14   4.6   4.1   0.38   1.56   4.48
  15   4.8   4.5   0.28   1.25   4.76
  16   5.1   4.6   0.43   1.96   5.33
  17<sup>*</sup>   5.2   6.1   0.42   2.56   7.96
  18   5.9   6.7   0.23   1.54   7.88
  19   7.2   4.0   0.43   1.72   4.53
  试料No.   I<sub>(200)</sub>/I<sub>b</sub>   比表面积Sa(m<sup>2</sup>/g)  平均粒径r(μm)   Sa·r   比表面积Sb(m<sup>2</sup>/g)
  20<sup>*</sup>   7.8   4.8   0.52   2.50   5.99
  21<sup>*</sup>   8.8   3.4   0.66   2.24   4.32
  22   9.5   3.7   0.41   1.52   4.11
  23<sup>*</sup>   2.1   6.8   0.1   0.68   6.37
*本发明范围外
然后,混合上述粉碎后的陶瓷粉末和乙醇,用乙醇被覆陶瓷粉末的表面。接着,将表面由乙醇被覆的陶瓷粉末与作为有机粘合剂的聚乙烯醇缩丁醛树脂、作为分散剂的n-醋酸丁基、以及作为增塑剂的苯甲基丁基酸盐混合,得到浆料。将得到的浆料用刮片法在聚乙烯对苯二甲酸盐(以下略作PET)片上成形陶瓷生片。
在上述得到的陶瓷生片的单面上按所要求的图案丝网印刷由平均粒径约0.4μm的Ni粉末组成的内电极膏。
接着,去除PET片后,将单面上有内电极的陶瓷生片使3片内电极夹着生片相对重叠,进行热压(温度80~100℃,压力80~150kg/cm2)成一体。然后将其切成横2.4mm、竖1.3mm的大小,得到层叠体。这里,该层叠体中按露出于层叠体表面的内电极的端部按照相反方向错开来层叠上述陶瓷生片。
将上述层叠体置入涂敷了氧化锆粉末的氧化锆制的壳中,在气氛炉的氮气流中加热至350℃,使有机粘合剂燃烧,从而进行脱粘合剂处理。然后在N2+H2气流中将层叠体在1250℃中烧结2小时,得到烧结体。
最后,在得到的烧结体的内电极露出的端面上涂布由铜粒子组成的外部电极膏。对涂布的外部电极膏通过在网型连续带式炉内900℃气氛下对烧结体进行烧结,从而形成外部电极,得到层叠陶瓷电容器。这里,所得到的层叠陶瓷电容器中,相对的一对内电极间所夹的电介质层的厚度为2μm。
在测定电压1V和测定频率1kHz的条件下,测定上述得到的各种层叠陶瓷电容器的电容量C0和介质损耗tanγ。根据得到的电容量计算相对介电常数εr
再利用如下所述的方法测定用加上直流电流时的电容量Cv相对于不加上直流电压时的电容量C0的变化率(该变化率用100×(Cv-C0)/C0来表示)来表示的DC偏置特性。
首先,将试料即层叠陶瓷电容器在150℃中热处理1小时,接着在25℃中放置24小时之后,在上述的条件下测定电容量C0。接着以与测定C0的相同条件测定加上3.15V直流电压状态下的电容量Cv。根据得到的C0和Cv,用公式100(Cv-C0)/C0计算DC偏置特性。
表2示出所得到的相对介电常数εr、介质损耗tanγ和DC偏置特性。
表2
试料No.   相对介电常数ε<sub>r</sub>   介质损耗tanδ(%) DC偏置特性(%)
  1<sup>*</sup>   3150   8.2%   -33.6%
  2<sup>*</sup>   3283   10.8%   -40.5%
  3   2887   6.3%   -10.8%
  4   3432   7.7%   -22.2%
  5   3099   8.3%   -14.3%
  6   3008   7.9%   -13.8%
  7<sup>*</sup>   4428   18.3%   -56.3%
  8<sup>*</sup>   3340   9.8%   -36.5%
  9<sup>*</sup>   3878   12.6%   -36.9%
  10   3438   8.9%   -22.9%
  11   2933   5.9%   -13.8%
  12<sup>*</sup>   4351   11.3%   -41.2%
  13   3829   8.4%   -23.8%
  14   3034   6.9%   -18.9%
  15   2901   7.3%   -12.3%
  16   3755   9.9%   -29.3%
  17<sup>*</sup>   3499   9.8%   -49.6%
  18   2999   6.1%   -31.3%
  19   4235   8.3%   -19.8%
  20<sup>*</sup>   4396   14.9%   -41.1%
  21<sup>*</sup>   4135   13.8%   -43.5%
试料No.   相对介电常数ε<sub>r</sub>   介质损耗tanδ(%) DC偏置特性(%)
  22   4013   7.5%   -19.4%
  23<sup>*</sup>   3618   3.11%   -38.2%
*本发明范围外
由表1及表2可见,I(200)/Ib在2~10的范围内及Sa·r在1~2的范围内的试料No.3~6、10、11、13~16、18、19及22的层叠陶瓷电容器显示有相对介电常数高、介质损耗低及优异的DC偏置特性。再有,上述试料中,除试料No.18以外的试料满足Sb≤1.2Sa(式中,0<Sb≤6m2/g,最好为2≤Sb≤6m2/g),这表示具有小于-30%的DC偏置特性。
另外,在实际电路中使用时,为了得到规定的电路特性,DC偏置特性最好小于-30%。
再有,对于试料No.3~6、10、11、13~16、19及22的层叠陶瓷电容器,还对粉碎后的陶瓷粉末的粒度分布进行了测定。粒度分布的测定是采用激光衍射方式的粒度分布进行测定的。表示3示出所得到的结果。
表3
试料No.   D10(β)(μm)   D10(α)(μm)   D90(γ)(μm)   DC偏置特性(%)
  3   0.38   0.45   0.48   -10.8%
  4   0.43   0.68   0.72   -22.2%
  5   0.41   0.53   0.74   -14.3%
  6   0.39   0.50   0.72   -13.8%
  10   0.35   0.58   0.72   -22.9%
  11   0.39   0.44   0.51   -13.8&
  13   0.39   0.58   0.75   -23.8%
  14   0.44   0.49   0.53   -18.9%
  15   0.38   0.41   0.55   -12.3%
  16   0.58   0.71   0.85   -29.3%
试料No.   D10(β)(μm)   D10(α)(μm)   D90(γ)(μm)   DC偏置特性(%)
  19   0.51   0.59   0.68   -19.8%
  22   0.49   0.54   0.64   -19.4%
由表3可见,当将粉碎后的陶瓷粉末的D50、D10、D90分别设为α、β、γ时,满足0.7α≤β、且γ≤1.5α(其中α、β、γ分别为0.4μm≤α≤0.7μm,0.3μm≤β≤0.5μm,γ≤0.8μm)的试料3、5、6、11、14、15、19以及22,其DC偏置特性小于-20%。
另一方面,试料No.4不满足上述的α与β之间的关系。在不满足α与β的关系时,由于细粒子多、粒径的偏差大,故与满足上述关系的试料相比,DC偏置特性不太提高。
又,试料No.16不满足0.4μm≤α≤0.7μm和0.3μm≤β≤0.5μm,为比这些范围更大的值。这时可理解为在平均粒径不满足上述范围的情况下,即使粒径的偏差小,提高DC偏置特性的效果也下降。
如上所述,根据本发明,通过使用主成分即钛酸钡的粒径小、其平均粒径尽可能均匀一致的粉末,就可制成相对介电常数高、介质损耗小且具有优良DC偏置特性的层叠陶瓷电容器。而且,通过使用粉碎后的陶瓷粉末的平均粒径接近于原料的钛酸钡、其粒径尽可能均匀一致的粉末,也能制成具有更优良DC偏置特性的层叠陶瓷电容器。
又,本实施例中说明了用Dy2O3和Ho2O3作为稀土类氧化物的层叠陶瓷电容器,但作为副成分即使包含从Dy2O3、Ho2O3、Er2O3及Yb2O3中选择至少1种稀土类氧化物,也可得到相同的效果。
又,本实施例中所加的直流电压为3.15V,但即使施加不同的电压,用本发明的制造方法制造的层叠陶瓷电容器,也显示出高介电常数、低介质损耗以及良好的DC偏置特性。
又,上述实施例中,取相对的一对内电极间所夹的电介质层的厚度为2.0μm,但只要厚度在1~3μm范围内,通过调节钛酸钡和粉碎后的陶瓷粉末的粒径和粒度使满足上述的范围,也可得到良好的DC偏置特性。
工业上的实用性
根据本发明的制造方法,可提供相对介电常数高、介质损耗小且具有优良的DC偏置特性的层叠陶瓷电容器。

Claims (1)

1.一种层叠陶瓷电容器的制造方法,其特征在于,包含下述工序:
(a)交替层叠含有钛酸钡构成的陶瓷原料的陶瓷生片与内电极而形成层叠体的工序、
(b)烧结所述层叠体而得到烧结体的工序、以及
(c)在所述烧结体的端面形成外部电极而得到层叠陶瓷电容器的工序,
所述钛酸钡在X射线衍射图中具有由(002)面产生的衍射线与由(200)面产生的衍射线,
(200)中的峰值强度I(200)相对于在(002)面产生的衍射线的峰值角度2θ(002)与(200)面产生的衍射线的峰值角度2θ(200)的中间点角度的衍射强度Ib之比:I(200)/Ib为2~10,
而且所述钛酸钡的平均粒径r(μm)与比表面积Sa(m2/g)之积r·Sa为1~2,
所述工序(a)包含煅烧所述陶瓷原料、接着粉碎的工序,并且所述粉碎后的陶瓷粉末的比表面积Sb(m2/g)满足Sb≤1.2Sa,而且0<Sb≤6,
当所述粉碎后的陶瓷粉末的个数基准的50%累积频率分布粒径D50、10%累积频率分布粒径D10、90%累积频率分布粒径D90分别用α(μm)、β(μm)、γ(μm)表示时,所述α、β、γ满足:0.7α≤β,γ≤1.5α,0.4≤α≤0.7,0.3≤β≤0.5,γ≤0.8。
CN200380100063.4A 2002-10-28 2003-10-24 层叠陶瓷电容器的制造方法 Expired - Fee Related CN1685454B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002312446 2002-10-28
JP312446/2002 2002-10-28
PCT/JP2003/013667 WO2004038743A1 (ja) 2002-10-28 2003-10-24 積層セラミックコンデンサの製造方法

Publications (2)

Publication Number Publication Date
CN1685454A CN1685454A (zh) 2005-10-19
CN1685454B true CN1685454B (zh) 2010-06-16

Family

ID=32171127

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200380100063.4A Expired - Fee Related CN1685454B (zh) 2002-10-28 2003-10-24 层叠陶瓷电容器的制造方法

Country Status (6)

Country Link
US (1) US6947276B2 (zh)
EP (1) EP1460658A4 (zh)
JP (1) JP4622518B2 (zh)
CN (1) CN1685454B (zh)
AU (1) AU2003275664A1 (zh)
WO (1) WO2004038743A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003275665A1 (en) * 2002-10-28 2004-05-13 Matsushita Electric Industrial Co., Ltd. Method for manufacturing multilayer ceramic capacitor
JP4438659B2 (ja) * 2005-03-24 2010-03-24 Tdk株式会社 積層セラミック電子部品の製造方法
JP5017792B2 (ja) * 2005-04-04 2012-09-05 Tdk株式会社 電子部品、誘電体磁器組成物およびその製造方法
JP5026242B2 (ja) * 2007-12-11 2012-09-12 サムソン エレクトロ−メカニックス カンパニーリミテッド. 誘電体材料の製造方法
KR101548771B1 (ko) * 2011-06-23 2015-09-01 삼성전기주식회사 칩 타입 적층 커패시터
KR101912266B1 (ko) * 2012-07-20 2018-10-29 삼성전기 주식회사 적층 세라믹 전자부품 및 이의 제조방법
KR101607536B1 (ko) 2012-08-07 2016-03-30 가부시키가이샤 무라타 세이사쿠쇼 적층 세라믹 콘덴서 및 적층 세라믹 콘덴서의 제조방법
CN111063543A (zh) * 2019-12-03 2020-04-24 南京汇聚新材料科技有限公司 一种高机械强度电容器及其制备方法
CN110970218A (zh) * 2019-12-26 2020-04-07 南京汇聚新材料科技有限公司 一种提高耐电压与耐绝缘阻抗的电容器
KR20210151451A (ko) * 2020-06-05 2021-12-14 삼성전기주식회사 유전체 및 이를 포함하는 적층 세라믹 전자부품

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3206502A1 (de) * 1982-02-24 1983-09-01 Philips Patentverwaltung Gmbh, 2000 Hamburg Dielektrikum auf der basis von bleititanaten sowie verfahren zu seiner herstellung und seine verwendung
US5242674A (en) * 1988-10-27 1993-09-07 E. I. Du Pont De Nemours And Company Process for preparing crystalline mixed metal oxides
JP3482654B2 (ja) * 1993-05-07 2003-12-22 株式会社村田製作所 誘電体磁器組成物粉末およびそれを用いた積層セラミックコンデンサ並びに誘電体磁器組成物粉末の製造方法
JP3250932B2 (ja) * 1994-12-28 2002-01-28 京セラ株式会社 非還元性誘電体磁器組成物
CN1120137C (zh) * 1999-02-19 2003-09-03 松下电器产业株式会社 电介质陶瓷组合物、使用该组合物的电容器及其制造方法
JP2000277368A (ja) * 1999-03-23 2000-10-06 Matsushita Electric Ind Co Ltd 積層セラミックコンデンサ
JP3675264B2 (ja) * 1999-12-03 2005-07-27 株式会社村田製作所 セラミックスラリー、セラミックグリーンシート及び積層セラミック電子部品の製造方法
JP3934352B2 (ja) * 2000-03-31 2007-06-20 Tdk株式会社 積層型セラミックチップコンデンサとその製造方法
US6556422B2 (en) * 2000-07-05 2003-04-29 Samsung Electro-Mechanics Co., Ltd. Dielectric ceramic composition, multi-layer ceramic capacitor using the same, and manufacturing method therefor
JP2002234769A (ja) * 2001-02-01 2002-08-23 Murata Mfg Co Ltd チタン酸バリウム粉末の製造方法、チタン酸バリウム粉末、誘電体セラミックおよび積層セラミックコンデンサ
JP2003068561A (ja) * 2001-08-29 2003-03-07 Matsushita Electric Ind Co Ltd 積層セラミックコンデンサの製造方法

Also Published As

Publication number Publication date
JPWO2004038743A1 (ja) 2006-02-23
EP1460658A4 (en) 2008-11-19
WO2004038743A1 (ja) 2004-05-06
EP1460658A1 (en) 2004-09-22
AU2003275664A1 (en) 2004-05-13
JP4622518B2 (ja) 2011-02-02
CN1685454A (zh) 2005-10-19
US6947276B2 (en) 2005-09-20
US20050102808A1 (en) 2005-05-19

Similar Documents

Publication Publication Date Title
CN105073684B (zh) 介电陶瓷组合物以及介电元件
CN105849836B (zh) 层叠型陶瓷电子部件
CN102531593B (zh) 电介质陶瓷组合物和电子部件
CN1685454B (zh) 层叠陶瓷电容器的制造方法
CN103360058B (zh) 陶瓷粉末和层叠陶瓷电容器
JPH05217426A (ja) 非還元性誘電体磁器組成物
JP2002080276A (ja) 誘電体磁器組成物及び磁器コンデンサ
CN102190494B (zh) 电介质陶瓷组合物及电子部件
CN109553406A (zh) 电介质陶瓷组合物及电子部件
CN103449812A (zh) 电介质陶瓷组合物以及电子元件
JP2000154055A (ja) 誘電体磁器組成物
JP2003124049A (ja) 積層セラミックコンデンサ
CN110317056A (zh) 电介质组合物及电子部件
JP4208448B2 (ja) 磁器コンデンサ及びその製造方法
JP2000185969A (ja) 誘電体磁器組成物
JP3752812B2 (ja) チタン酸バリウムの製造方法
JP2002087879A (ja) 誘電体磁器組成物及びこれを用いた積層セラミックコンデンサ
JPH07335474A (ja) セラミックコンデンサの製造方法
JP3375450B2 (ja) 誘電体磁器組成物
JP3735183B2 (ja) マイクロ波誘電体磁器組成物
JP2580374B2 (ja) 複合ペロブスカイト型誘電体磁器粉末の製造方法
JP2531548B2 (ja) 温度補償用磁器組成物
JP2004292271A (ja) 誘電体磁器及びその製法並びに積層セラミックコンデンサ
CN103224388B (zh) 电介质陶瓷组合物和电子部件
JP3793548B2 (ja) 誘電体磁器および積層セラミックコンデンサ

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
ASS Succession or assignment of patent right

Owner name: MURATA MANUFACTURING CO., LTD

Free format text: FORMER OWNER: PANASONIC ELECTRIC EQUIPMENT INDUSTRIAL CO.,LTD.

Effective date: 20100309

C41 Transfer of patent application or patent right or utility model
COR Change of bibliographic data

Free format text: CORRECT: ADDRESS; FROM: KADOMA CITY, OSAKA JAPAN TO: JAPAN KYOTO PREFECTURE

TA01 Transfer of patent application right

Effective date of registration: 20100309

Address after: Kyoto, Japan

Applicant after: Murata Manufacturing Co., Ltd.

Address before: Japan's Osaka kamato City

Applicant before: Matsushita Electric Industrial Co., Ltd.

C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20100616

Termination date: 20201024