CN1650207A - 光束弯曲装置及其制造方法 - Google Patents

光束弯曲装置及其制造方法 Download PDF

Info

Publication number
CN1650207A
CN1650207A CNA038100703A CN03810070A CN1650207A CN 1650207 A CN1650207 A CN 1650207A CN A038100703 A CNA038100703 A CN A038100703A CN 03810070 A CN03810070 A CN 03810070A CN 1650207 A CN1650207 A CN 1650207A
Authority
CN
China
Prior art keywords
optical fiber
grin
fiber lens
lens
reflecting surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA038100703A
Other languages
English (en)
Other versions
CN1307448C (zh
Inventor
J·西麦尔里齐
N·沙西德哈
V·A·巴加瓦图拉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Corning Inc
Original Assignee
Corning Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Corning Inc filed Critical Corning Inc
Publication of CN1650207A publication Critical patent/CN1650207A/zh
Application granted granted Critical
Publication of CN1307448C publication Critical patent/CN1307448C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4202Packages, e.g. shape, construction, internal or external details for coupling an active element with fibres without intermediate optical elements, e.g. fibres with plane ends, fibres with shaped ends, bundles
    • G02B6/4203Optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/255Splicing of light guides, e.g. by fusion or bonding
    • G02B6/2552Splicing of light guides, e.g. by fusion or bonding reshaping or reforming of light guides for coupling using thermal heating, e.g. tapering, forming of a lens on light guide ends
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/262Optical details of coupling light into, or out of, or between fibre ends, e.g. special fibre end shapes or associated optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/30Optical coupling means for use between fibre and thin-film device
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/32Optical coupling means having lens focusing means positioned between opposed fibre ends
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4202Packages, e.g. shape, construction, internal or external details for coupling an active element with fibres without intermediate optical elements, e.g. fibres with plane ends, fibres with shaped ends, bundles
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4206Optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4214Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical element having redirecting reflective means, e.g. mirrors, prisms for deflecting the radiation from horizontal to down- or upward direction toward a device

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Lenses (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Semiconductor Lasers (AREA)

Abstract

本发明揭示了一种用于改变光学信号的模式场的装置,该装置包括一个GRIN光纤透镜(24)和一个设置在GRIN光纤透镜一端的反射表面(26),该反射表面被构型成配合GRIN光纤透镜重新定向依托该反射表面定向的光学信号的通路。本发明也揭示了一种制造用于改变光学信号的模式场的装置和光学组件的方法。

Description

光束弯曲装置及其制造方法
相关申请的交互引用
本申请要求对于Bhagavatula等人的题为“Beam Altering Fiber LensDevice and Method of Manufacture”,递交于2002年3月4日的美国临时申请60/361787,和递交于2002年7月23日的美国临时申请10/202516的优先权。
发明背景
1.发明领域
本发明一般涉及非在线模式场互相连接的光学装置,更具体地说,本发明涉及一种模式转换装置,该模式转换装置的构型促进在这样的装置和光学元件和/或其他具有不同模式场的波导之间传播的光学信号的高效率耦合。
虽然本发明具有广泛的应用范围,但其尤其适合于将诸如激光二极管和半导体波导的椭圆形光学信号源耦合到具有圆对称模式场的光纤中去。
2.技术背景
高耦合效率地耦合在诸如激光二极管,光纤,特征光纤和半导体光学放大器(SOA)等信号源之间传播的光学信号是光通讯中的一个重要方面。被结合在一个光学通讯系统中的常规的光发射模块通常包括用作为光源的诸如激光二极管的半导体激光器,具有光传播核芯的光纤以及插入半导体激光器和光纤之间用于将激光束会聚到光纤芯的各种透镜,诸如球面透镜,自聚焦透镜或非球面透镜。因为光发射模块通常需要半导体激光器和光纤之间的高耦合效率,为了达到最大的耦合功率,模块最好要装配成使半导体激光器,透镜和光纤的光轴互相对准。早期的光发射模块部分地由于透镜的间隔以及对准问题造成的相对大的尺寸和相对高的成本推动了该领域内的发展,并且导致了大量替代的方法。
一种这样的方法是使用分级指数(GRIN)柱透镜。不像其他的透镜,GRIN柱透镜的折射率为径向取决型的并在柱透镜的光轴上有最大值。总之,GRIN柱透镜的折射率曲线为抛物线形,因此其本身是起透镜作用的透镜媒介而不是空气-透镜界面。因此,不像常规的透镜,GRIN柱透镜有平面的输入和输出表面,使在这些表面上的折射是不必要的。该特性能使在该透镜的任何端的光学元件用折射率匹配胶或环氧树脂固定在适当位置。折射率梯度通常由离子交换过程产生,该过程既费时又耗钱。通常的GRIN柱透镜可由掺铊或掺铯的多组分玻璃的离子交换产生。熔化的盐浴可被用于该离子交换过程,因此在500℃的KNO3浴中,钠以及铊或铯离子从玻璃中扩散出,同时钾离子被扩散进玻璃。
因为是产生于该过程的透镜媒介的折射率特性对光起到透镜的作用,因此在制造的过程中需要有严格的控制以保证所制造的GRIN柱透镜对于特定的耦合应用有适当的折射率特性。另外,不像根据本发明的至少一个方面应用的GRIN光纤透镜,GRIN柱透镜很难适合于拼接到标准的通讯光纤和/或其他的光学元件上。总之,GRIN柱透镜为多组分玻璃的结构,和其将要耦合的光波导相比有明显不同的热膨胀系数和软化点(玻璃开始软化的温度)。另一方面,GRIN光纤透镜通常用光纤制造工艺制造,为具有高二氧化硅成分的结构。这样,GRIN光纤透镜的软化点和热膨胀系数和大多数其将要被附接到其上的通讯光纤和其他波导的软化点和热膨胀系数基本相似。因此,GRIN光纤透镜非常适合于如通过熔化拼接耦合到大多数通讯光纤上。
另一种方法被用于在光纤的一端形成微透镜,以在半导体激光器和光学波导之间提供光学耦合。在这样的方法中,透镜被直接和一体化地形成在光纤的一部分的来自光源的光入射的端面上。下文中这样的光纤被称为“透镜光纤”。当用这样的透镜光纤制造发光模块时,因为不需要离开光纤本身的光会聚透镜,以及因为和轴向对准相关的操作数量也可以减少,因此所需要的元件数可以减少。当形成在光纤上的透镜能改变在其间通过的光学信号的模式场时,透镜光纤就被称为畸变透镜光纤。更具体地说,形成在光纤端部的畸变透镜通常能将从激光二极管发射的光学信号的椭圆模式场转变成基本圆对称的光学信号,这样能更有效率地耦合到具有圆对称模式场的光纤的核心。
每种上述方法都有各种在技术上显而易见的功效和优点。但是每种方法也有其自身的局限。例如,虽然常规的GRIN柱透镜技术为通过其间的光学信号提供了优良的对称聚焦特性,但GRIN柱透镜通常单独不能达到高效率的光学成分耦合应用中经常要求的显著改变光学信号的几何形状。另外,因为是GRIN柱透镜本身的材料特性提供了聚焦,因此为了提供具体应用需要的GRIN柱透镜的折射率特性的受控变化,就必须要有精确的制造技术。
同样,虽然畸变光纤透镜容易改变通过其间的光学信号或光束的几何形状,但对于畸变透镜应用可达到的工作距离的范围多少要受到限制。因此,对于具体的应用不能达到合适的工作距离,耦合损耗将很显著,从而使很多耦合应用没有可操作性。
总之,上述已知的装置大多数经常应用于“在线”光学信号耦合的应用场合。用不同的说法,将被耦合的光学信号通常沿和光学信号在其间耦合的各个装置的光轴基本同线的通路传播。没有反射镜或其他光学装置和结构的辅助,上述已知的装置将很难适合于“离线”耦合的应用,即这些光学信号将被耦合的耦合应用沿不和光学信号将被耦合到其上的装置的光轴同线的通路传播。通过实例的方式但也不局限于此,光学信号可以从一个装置以和该光学信号将被耦合到其上的装置的光轴成大致90度的角度发射。在这样的情况下,为了便于适当的光学信号的耦合,光学信号将必须被重新定向或被弯曲。
因此,在技术上需要但在当前又不能达到的是一种用于光学信号耦合应用的克服了和使用畸变透镜或GRIN柱透镜相关的这样那样的缺点的装置。这样的装置应该能改变通过该装置的光学信号的大小,和/或几何形状,和/或其他模式场特性,同时又能在光学信号耦合应用中提供将限制耦合损耗,允许可接受的工作距离的更宽广的范围,最大程度地减小相前失真,以及总体上提供更大的控制的效率的设计灵活性。另外,本发明的模式转换装置应最好能以最小的损耗对光学信号的通路进行重新定向。这样的装置应该在制造上相对价廉,大量生产上相对容易,总之,应该具有更广泛的应用范围而不显著改变材料的性能以及装置本身的特性。本发明就首先致力于提供这样的装置。
发明概述
本发明的一个方面致力于用于改变光学信号的模式场的装置。该装置包括一个GRIN光纤透镜和一个设置在该GRIN光纤透镜的一端的反射表面,该反射表面构型成配合GRIN光纤透镜对依托该反射表面定向的光学信号的通路重新定向。
在另一方面,本发明涉及一种光学组件。该光学组件包括一个光学元件,一个构型成支撑该元件的衬底和一个装置,该装置定位在该衬底上并和该光学元件相关改变通过该装置和该光学元件之间的光学信号的模式场。该装置包括一个GRIN光纤透镜和一个设置在该GRIN光纤透镜的一端的反射表面,该反射表面构型成配合GRIN光纤透镜对依托该反射表面定向的光学信号的通路重新定向。
在还有一个方面中,本发明致力于一种制造用于改变光学信号的模式场的装置的方法。该方法包括在GRIN光纤透镜的一端设置一个反射表面的步骤,其中,该反射表面构型成配合GRIN光纤透镜对依托该反射表面定向的光学信号的通路重新定向。
本发明的光束弯曲装置的优点超过技术上已知的其他的模式转换装置。在一个方面,因为模式转换透镜可直接形成在GRIN光纤透镜上,光学信号的模式场的几何形状和/或尺寸可以通过模式转换透镜而改变,而经改变的光学信号的聚焦主要可由GRIN光纤透镜进行。结果,光学信号的波前可以更好地和光学信号将耦合到其上的光学元件和其他波导匹配。因此,耦合损耗被减到最小,相前失真也得到减小。本发明的光束弯曲装置也可以设计成提供操作性工作距离的更大的范围。这些和其他优点的结果能极大地提高耦合的效率。
除了这些优点之外,GRIN光纤透镜本身还提供了在本发明的制造中的不少优点。如上所述,GRIN光纤透镜最好是高二氧化硅含量结构,最好用常规的多模光纤制造工艺制造。因为GRIN光纤透镜用通讯光纤制造技术制造,根据本发明制造的GRIN光纤透镜可以以高精度抽制成所需要的尺度。总之,GRIN光纤透镜可被抽制成具有约25.0到1000.0微米范围的外径。更好的是,这样的GRIN光纤透镜可被抽制成具有约50.0到500.0微米范围的外径。还要好的是,这样的GRIN光纤透镜可被抽制成具有约75.0到250.0微米范围的外径。另外,因为GRIN光纤透镜可用传统的光纤抽制设备抽制,可先制成大直径的柱或坯件,然后再抽制成(直至几千米)长度的光纤,同时保持材料的特性,诸如但不限于此的初期大直径柱的核心包覆层比,使制造的拼接更容易。因此,除了其他的特性之外,GRIN光纤透镜的所需要的折射率特性可以被设计到该大直径柱或坯件内,这样就可以提供超过结果的GRIN光纤透镜的光学特性的亚微米精度的控制。
除了这些优点以外,GRIN光纤透镜可以根据本发明制造成具有用于多于一种的模式转换应用的预先确定的多种材料特性。因为模式转换透镜可以形成在GRIN光纤透镜上或附着到GRIN光纤透镜的无核心隔离器柱或光纤上,而不是形成在光纤束的本身上,因此,具有相同的长度,用同样的材料形成,具有同样的形状比以及具有同样的截面积的GRIN光纤透镜和无核心隔离器柱可以被附着到具有不同特性和模式场的光纤束上。因此,每个GRIN光纤透镜和/或无核心柱可以通过劈裂成适当的长度而改变,以便例如提供对于每个GRIN光纤透镜和/或隔离器柱将附着其上的特定的光纤束所需要的模式场转换功能。如下文将更详尽地叙述,该目的可最好通过将每个GRIN光纤透镜和/或隔离器柱劈裂或切割到所需要的长度并将每个GRIN光纤透镜和/或柱的切割端构型成具有所需要的光学信号改变特性而实现。
根据本发明的隔离器柱的制造提供了另外的优点。总之,隔离器柱具有基本均匀的折射率,该隔离器柱用二氧化硅,其他的高二氧化硅玻璃含量的材料或者由Corning公司制造的被认知为Vycor的96%二氧化硅玻璃制造。总之,根据本发明,隔离器柱可以圆柱形的,矩形的或制造成采用其他的几何形状。和如上所述所述的GRIN光纤透镜相同,隔离器柱最好用约一米长的柱或坯件制造,用常规的光纤制造技术和设备抽制成所需要的诸如但不限于的125.0微米的直径。总之,隔离器柱被抽制成千米的长度(最好初期的大直径柱的材料特性仍能保持),然后被切割或劈裂成用于模式转换应用的适当的长度。
在一定的应用中,利用圆柱形以外的隔离器柱可以是有利的。例如,根据本发明,可以最好利用基本是矩形的隔离器柱。在这样的实例中,最好可以首先形成约一米长度的本身为矩形的坯件。然后矩形的坯件可用常规的光纤抽制技术和设备抽制以形成具有需要的诸如125.0微米外径的基本为矩形的隔离器柱。在该方法中,从一个单坯件可以抽制几千米长的基本为矩形的隔离器柱材料,然后切割到需要的长度而产生具有所需要的光学特性的隔离器柱。虽然在抽制过程中结果的矩形隔离器柱材料的边缘可能会一定程度地变圆,但如果控制抽制炉的温度,抽制速度以及抽制柱材料的张力,还是能保持基本矩形的形状。另外,由抽制工艺形成的最后经劈裂的矩形隔离器柱的形状比和其他光学特性将被基本保持。这样的工艺便于大规模制造以及达到最后隔离器柱的受控尺度。在本技术领域熟练的人员认识到上述制造技术同样适用于根据本发明的GRIN光纤透镜的制造。
本发明的光束弯曲装置提供了对于各种光学组件和其他包装配置的另外的优点。本发明的光束弯曲装置提供了基本上比技术上已知的畸变的或其他模式转换装置提供的工作距离更长的约20微米或更长的工作距离。结果,部分地由于该装置和半导体器件之间经缓和的对准容差而便于以低损耗耦合到激光二极管或其他半导体器件。
本发明的所有上述方面有利于GRIN光纤透镜和/或隔离器柱的大规模生产,又反过来便于制造工艺,减小和制造工艺相关的成本以及更大的规模经济效益。本发明的装置可被构造成使通过其间的光学信号的模式场可从椭圆模式场改变到圆模式场,从圆模式场改变到椭圆模式场,从具有一种椭圆率的模式场改变到具有不同椭圆率的模式场,或将一种模式场形成为具有相同形状但有不同尺寸的模式场。另外,本发明的装置可以被设计成可以以任何方向改变通过其间的光学信号的模式场。
本发明的其他特征和优点将在下文的详尽叙述中阐述,这些特征和优点在某种程度上通过该叙述对于在本技术领域熟练的人员是显而易见的并且如本文所述通过对本发明的实施而得到理解。
应该理解的是,上文的总体叙述及下文的详尽叙述都仅是本发明的示例,其作用是对于理解本发明所主张的性质和特征提供概述或准则。所包括的附图对本发明的各个实施例加以说明,对本发明提供进一步的理解,和说明书一起解释本发明的原理和操作。
附图简述
图1A示意性地描绘根据本发明的光束弯曲装置的示范实施例的侧视图。
图1A’示意性地描绘根据本发明的光束弯曲装置的第一替代示范实施例的侧视图。
图1B示意性地描绘根据本发明的光束弯曲装置的第二替代示范实施例的侧视图。
图1B’示意性地描绘根据本发明的光束弯曲装置的第三替代示范实施例的侧视图。
图1C示意性地描绘根据本发明的光束弯曲装置的第四替代示范实施例的侧视图。
图1C’示意性地描绘根据本发明的光束弯曲装置的第五替代示范实施例的侧视图。
图2为图1B的光束弯曲装置的剖面图,图中描绘从设置在GRIN光纤透镜上的反射表面反射的光学信号的入射角。
图3示意性地描绘根据本发明的光束弯曲装置的另一个替代示范实施例的剖面图。
图4A示意性地描绘根据本发明的光束弯曲装置的另一个替代示范实施例的侧视图。
图4B示意性地描绘图4A中描绘的光束弯曲装置的透视图。
图5A示意性地描绘根据本发明的光束弯曲装置的还有一个替代示范实施例的侧视图。
图5B示意性地描绘根据本发明的光束弯曲装置的另一个替代示范实施例的侧视图。
图5C示意性地描绘根据本发明的光束弯曲装置的还有一个替代示范实施例的侧视图。
图5D示意性地描绘根据本发明的光束弯曲装置的还有一个替代示范实施例的侧视图。
图5E为描绘根据本发明的光束弯曲装置的另一个替代实施例的显微照片。
图5F-5G为描绘根据本发明的光束弯曲装置的另一个替代实施例的制造的各个阶段的显微照片。
图6A-6C为描绘图1B中描绘的光束弯曲装置的GRIN光纤透镜的各个视图的显微照片,图中显示了根据本发明转换的光学信号模式场。
图7A-7B分别示意性地描绘了结合图1B中根据本发明描绘的光束弯曲装置的示范光学组件的侧视图和顶视图。
图7C示意性地描绘了结合图1B中根据本发明描绘的光束弯曲装置的光学组件的一个替代示范实施例的侧视图。
图8示意性地说明本发明的离线光束弯曲装置的配置,图中包括各个设计变量的名称。
图9是描绘根据本发明的示范离线组件的耦合效率相对于工作距离分布的曲线图。
优选实施例的详尽叙述
下文将详尽参考本发明的优选实施例,在附图中对实例进行说明。只要可能,全部附图中相同的参考数字将用来表示同一个或相似的部件。图1A显示了本发明的光束弯曲装置的示范实施例,该光束弯曲装置总体上用参考数字20表示。
总之,图1A的侧视图中描绘的示范的光束弯曲装置包括一个GRIN光纤透镜24,该光纤透镜24有平方率的折射率或抛物线的折射率特性以及一个设置在GRIN光纤透镜24一端的反射表面26。根据本发明的一个方面,最好是光学信号30的光束可进入GRIN光纤透镜24并总体沿纵向通过GRIN光纤透镜24延伸的光轴28传播。如下文将详尽解释的那样,光学信号30最好在反射表面26上反射并被重新定向或弯曲,因此光学信号30通过GRIN光纤透镜24的侧表面33。在图1A描绘的实施例中,GRIN光纤透镜最好是圆柱形的。因此,光学信号30通过的侧表面33的部分最好是一个曲面34。根据本发明的另一个方面,当光学信号通过曲面34时,光学信号30的模式场的特性最好得到改变。例如,当光学信号30在如图1A所示的GRIN光纤透镜中传播的模式场基本为圆形时,当光学信号通过曲面34时,模式场的形状可最好被从基本圆形的对称模式场改变到椭圆的模式场。
图1A’的侧视图描绘了第一替代的示范光束弯曲装置20’。不像上述实施例,GRIN光纤透镜24’基本为矩形的形状,或可以由平面的侧表面33’限定。反射表面26’可以最好为设置在GRIN光纤透镜24’一端的倾斜表面。当光学信号30在反射表面26’上反射时最好被重新定向,因此通过基本平面的表面35,从而改变了光学信号30的模式场特性。虽然平面表面35最好不改变光学信号30的模式场形状,但最好改变模式场的尺寸。虽然图中未显示,本技术领域熟练的人员将认识到,当部分侧表面33被抛光或被构造成在被重新定向的光学信号30通过侧表面的位置上包括一个平面表面35,通过基本圆柱形的GRIN光纤透镜24可得到相同的模式场效应。这样的平面表面35可以通过例如激光微加工形成在侧表面33上。
图1B的侧视图描绘了光束弯曲装置20”的第二替代示范实施例。光束弯曲装置20”最好包括一个光纤或光纤束22,一个最好通过拼接附着到光纤束22的一端的GRIN光纤透镜24,和一个反射表面26,在本情况下为设置在光纤束22远端的GRIN光纤透镜24的一端的倾斜表面。光纤束22可以是标准的单模光纤,诸如由Corning公司制造的SMF-28光纤,极化保持(PM)光纤,多模光纤或其他光通讯系统中应用的特种光纤,诸如高折射率光纤。另外,光纤束22从图1B所示的一端看时可以是圆对称的或可以是任何其他形状。虽然图1B描绘的实施例中反射表面26直接形成在GRIN光纤透镜24的一端,反射表面26可以设置或成形在分离的无核心隔离器柱的一端,该无核心隔离器柱本身可以附着到光纤束22的远端的GRIN光纤透镜24的一端,下文将参考图4A和图4B更详尽地叙述。在工作中,光学信号30通过光纤束22并进入GRIN光纤透镜24,在该处光学信号通过GRIN光纤透镜24的抛物线折射率特性得到改变。被改变的光学信号30’最好在反射表面26反射并通过GRIN光纤透镜24的侧表面33的曲面34重新定向。和图1A描绘的实施例一样,被改变的光学信号30’的模式场的形状最好在被改变的光学信号30’通过曲面34时改变。
图1B’的侧视图描绘了第三替代示范光束弯曲装置20”’。光束弯曲装置20”’最好包括最好为矩形的光纤束22’,最好为矩形的GRIN光纤透镜24’,以及设置在光纤束22’的远端的GRIN光纤透镜24’的一端的反射表面26’。和图1B的实施例相同,一旦光学信号30通过拼接结37,该光学信号30就通过GRIN光纤透镜24’的特性被改变。当被改变的光学信号30’通过GRIN光纤透镜24’时最好在反射表面26’上被反射,这样,该光学信号就通过侧表面33’的平面表面35。虽然平面表面35最好不改变被改变的光学信号30’的模式场的形状,但最好改变模式场的尺寸。
根据本发明的另一个方面形成本发明的第四和第五替代的光束弯曲装置20””和20””’,该装置包括一个或多个锥形的元件,如图1C和图1C’分别所示。这样的锥形多透镜装置20””可最好包括光纤束22,位于光纤束22的一端具有平方率折射率或抛物线折射率特性的锥形GRIN光纤透镜24”以及设置在光纤束22远端的GRIN光纤透镜24”的一端的反射表面26”。如图1C所示,锥形的GRIN光纤透镜24”最好包括具有基本均匀或恒定的外径尺寸沿纵向从光纤束22的一端向虚线A1延伸的GRIN光纤部分29,具有变化的最好是减小的外径尺寸(或倾斜的外表面)沿纵向在虚线A1和A2之间延伸的锥形GRIN光纤部分31,以及具有基本均匀或恒定的外径尺寸沿纵向从虚线A2向反射表面26”延伸的反射表面部分27。虽然图中未显示,本技术领域熟练的人员将认识到,一个或多个光纤束22,无核心隔离器柱和/或GRIN光纤透镜可以为任何本文中叙述和/或描绘的实施例以和图1C描绘的锥形GRIN光纤透镜24”相似的方式做成锥形。锥形的GRIN光纤部分31最好改变已经被改变的光学信号30’,产生在反射表面26”被反射的被改变光学信号30”。然后该被改变并被重新定向的光学信号30”最好通过曲面34,这样最好改变被改变的光学信号30”的模式场形状。
图1C’描绘了本发明的光束弯曲装置20””’的第五替代示范实施例。图1C’描绘的光束弯曲装置20””’的结构和操作相似于图1C描绘的光束弯曲装置20””的结构和装置。但是光束弯曲装置25’最好是矩形的而不是圆形对称的。因此,光束弯曲装置20””’最好包括一个基本矩形的光纤束22’,一个具有平面侧表面33’和经改变的光学信号30”在反射表面26”’反射后通过的平面表面35的锥形的GRIN光纤透镜24”’。当经改变的光学信号30”通过平面表面35时,最好经改变的光学信号的模式场的尺寸而不是模式场的形状发生改变。
除非本文另有约定,在每个描绘的实施例中,光纤束22及其变型都被叙述为具有约125.0微米的外径和约8.0-10.0微米核心直径的SMF-28光纤。本技术领域熟练的人员将认识到,具有其他直径和几何形状的光纤束也在本发明的范围之内。另外,相关于本发明的光束弯曲装置的结构,设计,制造以及制造优点的其他细节也可在由Corning公司共同拥有的申请于2002年7月23日,题为“Beam Altering Fiber Lens Device and Method ofManufacture”,和申请于2002年7月23日,题为“Optical Signal AlteringLensed Apparatus and Method of Manufacture”的美国共同待批专利申请中找到,并通过引用而结合在本文中。
总之,所有揭示的实施例都包括一个由具有包覆区域约束的核心区域的光纤束。GRIN光纤透镜24及其变型也最好包括一个可由包覆区域约束或不由包覆区域约束的核心区域。在一个优选实施例中,本发明的GRIN光纤透镜的相对折射率特性径向朝光束弯曲装置的光轴增加。GRIN光纤透镜的一端最好在该GRIN光纤透镜被劈裂到适当的长度之前或之后用电弧熔化拼接器或其他技术上普通已知的装置拼接到光纤束的一端。反射表面最好设置在光纤束远端的GRIN光纤透镜的一端。在本文揭示的该实施例和其他实施例中,反射表面可以最好是由常规的抛光技术通过激光微加工或下文将更详尽叙述的其他方法形成的倾斜表面。
不像通过引用而结合在本文中的致力于在线耦合几何形状的各个申请中揭示的实施例,本文揭示的示范实施例最好致力于非在线耦合几何形状或除了改变光学信号的模式场最好还便于光学信号的重新定向或弯曲的离线耦合几何形状。转回图1A,光束弯曲装置20最好限定一个纵向通过其中心延伸的光轴28,光学信号将沿该光轴而通过光束弯曲装置20。在图1A描绘的示范实施例中,GRIN光纤透镜24最好被设计成四分之一的节距长度或接近这个长度。但应该注意,GRIN光纤透镜不局限于四分之一节距,但可以为特殊的应用,诸如大纵横比的透镜应用而设计成四分之一节距长度。
在技术上已知的应用中,GRIN光纤透镜通常被制造成具有和该光纤透镜被附着到其上的光学波导的外径匹配的外径,这样,当光学波导的外径为125.0微米时,GRIN光纤透镜最好也制造成具有125.0微米的外径。这样,当每个都有125.0微米外径的两个光学波导有不同的模式场时,对于每个GRIN光纤透镜折射率特性的差异△发生变化,因此GRIN光纤透镜能符合各种规格同时保持同一个125.0微米的外径。根据本发明,GRIN光纤透镜的外径不需保持在125.0微米。作为替代,GRIN光纤透镜的折射率差异△基本保持相同,每个GRIN光纤透镜的外径,核心外径和长度最好经改变以符合每个光学波导的模式转换要求。根据本发明,必要时每个GRIN光纤透镜的长度可以不同于四分之一节距。结果,根据本发明,同一个坯件可以被用来抽制各种不同用途的GRIN光学透镜。因为坯件的折射率特性不需改变,就可以简化坯件的制作过程和GRIN光纤透镜的制作过程。因此,同一个坯件可以用于不同的模式转换用途。为不同的用途,坯件最好被重新抽制成不同的外径,结果的GRIN光纤透镜可以切割或劈裂到不同的长度以符合不同应用的要求。
GRIN光纤透镜24最好包括一个反射表面26,该反射表面26最好包括一个例如通过将GRIN光纤透镜用激光微加工形成需要的长度和相对于光轴28的需要的角度而形成的倾斜的表面。在操作中,光学信号通过光纤束22和GRIN光纤透镜24并到达反射表面26,在本情况下是一个倾斜的表面。应该注意,当光学信号通过GRIN光纤透镜时,该光学信号可以是发散的,会聚的,聚焦的或平行的。当倾斜的表面形成为45度角或接近所使用的材料相对于光轴的临界角时,由反射表面26限定的空气/玻璃或其他媒介/玻璃的界面32使光学信号30被内部全反射并落入GRIN光纤透镜24的侧曲面34。表面34最好被用作(非球面的)圆柱透镜并沿一个轴线而不是另一个轴线聚焦光束。该方法的一个优点是圆柱透镜和GRIN光纤透镜自我对准。另一个优点是该表面的曲率通过控制GRIN光纤透镜的直径或者如果反射表面被设置在隔离器柱的一端而不是GRIN光纤透镜的一端时通过控制隔离器柱的直径而精确控制。还有,因为GRIN光纤透镜或隔离器柱可以通过传统的光纤再抽制工艺批量生产,形成圆柱透镜的曲面34的表面质量可以达到很高。另外,对于45度的倾斜的反射表面26,通过空气和二氧化硅玻璃界面,图形最好相对于纵向通过光纤束22和GRIN光纤透镜24延伸的的光轴28成90度形成。根据本发明的各个方面,经聚焦的图象尺寸和纵横比可以随着对GRIN光纤透镜24的各种性能的适当控制而变化,这些性能包括但不限于诸如其核心直径和外径,相对折射率差,具有均匀或恒定折射率的无核心隔离器柱的使用,以及将在下文详尽叙述的替代倾斜的表面或除了该倾斜表面再附加的其他反射材料或表面的使用。
下文将更详尽叙述的这些和其他光束弯曲装置对于耦合在光纤束和激光二极管或其他光学波导之间通过的光学信号是很有用的。利用这样的光束弯曲装置提供了其他的优点,诸如和在单模光纤的端部常规地抛光的商业可售的光纤透镜相比有20.0微米或更长的工作长度等。该更大的工作长度便于缓和光学信号在其间传播的本发明的GRIN光纤透镜和激光二极管或其他光学元件之间的对准容差。
参考图2可以最好地理解在各个图中描绘的光束弯曲装置的示范实施例的重要方面。图2描绘了图1A描绘的光束弯曲装置20的剖面图。如图2所示,光学信号30通过GRIN光学透镜24并以入射角□i入射到在本情况下为倾斜的表面的反射表面26,并以反射角□r被反射。入射角□i由入射光学信号30和垂直于倾斜表面的线B之间的角度限定,而反射角□r由垂直于倾斜表面的线B和被反射光束30’之间的角度限定。当入射角□i大于媒介n1和n2的临界角□c时,光学信号30被内部全反射,并且对于所有被反射的光束都不需额外的涂层。临界角□c可由下面的等式表示:
            □c=sin-1(n2/n1)
根据本发明,n1是光学信号在其中传播的媒介的折射率,n2是形成光学信号在其中传播的材料的边界的媒介的折射率。根据本发明,n2通常是空气的折射率,n1是GRIN光纤透镜24的折射率。根据本发明的一个方面,如果入射角□i大于临界角□r,限定反射表面26的倾斜表面以外的其他反射材料就不再必要。
这就是说,如果入射角□i小于临界角□r,单独的倾斜表面对于达到本发明的光束重新定向方面的目标将基本上是不充分的。因此,必须有附加的和/或替代的反射元件促进本发明的目标的实现。若干该附加的反射元件将在下文参考图3-5G中描绘的本发明的光束弯曲装置的各种替代示范实施例叙述。
图3描绘的光束弯曲装置20最好包括一个光纤束22和一个GRIN光纤透镜24,该GRIN光纤透镜24具有大于光纤束22的外径并被直接拼接到光纤束22的一端。除了限定反射表面26的倾斜表面以外,附加的反射元件36可被附着到或以另外方式设置在反射表面26上。这样的反射元件36可以是一种金属化的或介电的涂层材料或其他的功能性元件,诸如双折射或偏振片。如下文将更详尽地叙述的那样,附加的反射元件36可以是一个附加的表面,诸如设置在斜面上的非球面玻璃表面。如图中所示,光学射线通路38离开光纤束22的核心40并基本通向反射平面26。在反射元件36和反射表面26的界面,至少一个实质数量的光学信号被朝向GRIN光纤透镜24的曲面34重新定向。如上所述,曲面34最好形成一个圆锥表面并用作将光束沿一个光轴而不是另一光轴聚焦的圆柱透镜。这样,如果通过图3描绘的光束弯曲装置20的光学信号的模式场是圆形的并同时沿该光轴传播,该圆形的模式场可最好被转换成基本椭圆的模式场并将基本被聚焦在GRIN光纤透镜24外部或下面的一定的距离之外。
图4A和4B描绘了用于改变光学信号的模式场的光束弯曲装置24的另一个示范实施例。不像图3描绘的实施例,图4A和4B描绘的光束弯曲装置20包括一个位于光纤束22和GRIN光纤透镜24之间的隔离器光纤或隔离器柱42。另外,第二隔离器柱44可以任选地位于GRIN光纤透镜24和反射表面26之间。在图4A和4B描绘的实施例中,反射表面26设置在无核心隔离器柱44的一端而不是设置在GRIN光纤透镜24的一端。因为在本发明的该示范实施例中斜面和光轴之间的角度为45度以外的角,反射表面26包括一个附加的反射元件36,诸如金属涂层或介电涂层或其他的功能性元件,诸如双折射或偏振片。涂层元件36也可以包括一个反射表面,诸如非球面的表面或一些能按一定用途的要求适当地弯曲光学信号的其他材料或装置。虽然外径不同,隔离器柱42和44最好是无核心的光传输材料的玻璃柱,具有均匀的或恒定的径向折射率特性。在一个优选实施例中,隔离器柱42和44由常规的光纤抽制工艺制作,切割到需要的长度,拼接或以其他方式附着到光纤束22和/或GRIN光纤透镜上去。设置在GRIN光纤透镜24远端的隔离器柱44的一端的倾斜的反射表面26可以在拼接前或拼接后最好通过抛光或激光微加工被形成或以其他方式定位在隔离器柱44上。
如图4B的透视图所示,隔离器柱42和44具有不同的外径,隔离器柱42和GRIN光纤透镜24基本为矩形,而隔离器柱44基本为圆柱形。本技术领域熟练的人员将认识到,光纤束22,GRIN光纤透镜24以及一个或多个隔离器柱可以是任何几何形状,包括圆柱形,矩形,方形或椭圆形。另外,虽然图中未显示,除了图4A和4B所显示的以外,光束弯曲装置20可以包括各种GRIN光纤透镜和隔离器柱。总之,所应用的每种GRIN光纤透镜和隔离器柱的排列,形状,外径,长度和数量将最好由成本上最有效的方法确定以符合特定的模式转换/弯曲应用的模式场耦合设计的规范。总之,设置反射表面26的GRIN光纤透镜24或隔离器柱44将最好包括一个非球面形的曲面34,以为给定的应用提供所需要的畸变透镜效应。另外,如图4A和4B所示,隔离器柱42,GRIN光纤透镜24和隔离器柱44可以最好标上一个对准图形或沟槽46的标记或如图所示的其他形式,用于表示在制造过程中为了保持光纤束22的偏振轴隔离器柱42,GRIN光纤透镜24和隔离器柱44最好应该怎样对准。这样的标记对于本文中揭示的本发明的其他实施例也都是最优选的。本技术领域熟练的人员将认识到,当光束弯曲装置20的各个元件的几何形状为圆柱形或其他包括非平面表面时才特别有用。另外,本技术领域熟练的人员也将认识到,当对准沟槽的位置将对本发明的操作有反面影响时,对准沟槽可不位于或制作在光学信号将通过的任何表面上。
图5A描绘的光束弯曲装置20类似于图4A描绘的实施例。但这里隔离器柱部分42和44被显示为具有相同的外径。另外,图5A显示的倾斜的反射表面26不包括金属化的,介电的或其他功能性的涂层元件诸如双折射或偏振片。作为替代,最好为非球面表面的第二反射表面48被形成在第一反射表面26上。非球面反射表面48可以通过激光微加工,酸刻蚀,抛光或技术上已知的其他形式形成在反射表面26上。或者,一个附加的反射材料可以通过某些类型的透明环氧树脂粘附到倾斜的反射表面26上。
图5B描绘的光束弯曲装置20类似于图5A描绘的实施例,但不包括光束弯曲特征。更具体地说,图5B描绘的光束弯曲装置20不包括倾斜的反射表面26,也不包括第二反射表面48。作为替代,在光纤束22远端的光束弯曲装置20的一端设置一个曲面47。根据本发明,所形成的曲面47最好相对于沿纵向通过光束弯曲装置20延伸的光学通路(未显示)成一个角度,这样,依靠曲面47定向的光学信号被根据本发明重新定向或弯曲。在一个优选实施例中,圆表面47可最好通过酸刻蚀,激光微加工或其他加工技术形成在光束弯曲装置20的端部。
图5C描绘的光束弯曲装置20包括多个GRIN光纤透镜24和24’。隔离器柱紧跟的或延续的不是单个的GRIN光纤透镜,图5C描绘的光束弯曲装置20包括拼接或以其他方式附着到光纤束22上的第一GRIN光纤透镜24和拼接或以其他方式附着到第一GRIN光纤透镜24上的第二GRIN光纤透镜24’。和上文叙述的其他实施例一样,在光纤束22远端的光束弯曲装置20的端部设置一个倾斜的反射表面26。
图5D描绘的光束弯曲装置20描绘了拼接或以其他方式附着到光纤束22的另一个锥形的GRIN光纤透镜24。虽然图5D描绘的锥形GRIN光纤透镜24的尺度不同于图1C和1C’,图5D描绘的锥形GRIN光纤透镜24的性能和操作基本和图1C和1C’相同。
图5E描绘的光束弯曲装置20最好包括光纤束22,无核心隔离器柱42,GRIN光纤透镜24和反射表面26。不像上述讨论的实施例,无核心隔离器柱42最好包括一个便于将该无核心隔离器柱42拼接到光纤束22的圆端。GRIN光纤透镜24最好拼接到无核心隔离器柱42两个端部的另一端。GRIN光纤透镜24的另一端最好被切割成锥形并最好被热定形成球透镜65。球透镜65最好被抛光或用其他方式定形成包括一个便于光束弯曲的倾斜的反射表面26。球透镜65上和倾斜的反射表面26相对的圆表面67最好是一个由设置成互相基本垂直并最好在光轴上或附近相交的两个不同的曲面C1和C2限定的双锥形表面。涉及曲面C1和C2的功能的进一步的细节可在题为“Beam Altering FiberLens Device and Method of Manufacture”的共同待批的美国专利申请中找到,该申请通过引用而结合在本文中。本技术领域熟练的人员将认识到,具有倾斜的反射表面26和曲面67的球透镜65可以替代地设置在分离的隔离器柱的端部而不是设置在如图5E所示的GRIN光纤透镜24的端部。这样的光束弯曲装置20可最好通过将隔离器柱42拼接到GRIN光纤透镜24,将GRIN光纤透镜24锥形切割成适当的长度以及随后在光纤束22的远端的GRIN光纤透镜24的端部形成球透镜65而制成。
图5F和5G以制造过程的各个阶段显示了一个替代的光束弯曲装置20。该光束弯曲装置20最好包括光纤束22,无核心隔离器柱42,GRIN光纤透镜24和光纤束22远端的倾斜反射表面26。如图5F所示,在无核心隔离器柱42的端部设置一个圆端63便于将无核心隔离器柱42拼接到光纤束22。根据本发明的一个方面,光束弯曲装置20的GRIN光纤透镜24最好被锥形切割成包括一个光纤束22远端的锥形切割端61。然后该锥形切割端61可最好通过抛光或激光微加工成形以形成如图5G所示的倾斜反射表面26。本技术领域熟练的人员将认识到,本发明的光束弯曲装置20可包括具有相同的或不同特性的多隔离器柱和/或多GRIN光纤透镜,或单隔离器柱和多GRIN光纤透镜,或单GRIN光纤透镜和多隔离器柱,取决于所给出应用的要求以及符合该要求的设计方法。
图6A-6C显示了本发明的光束弯曲装置20的操作的一个实施例。图中描绘了具有倾斜的反射表面26的GRIN光纤透镜24的部分视图。图6A-6C中描绘的GRIN光纤透镜24最好如图1B描绘的示范实施例揭示的那样附着到光纤束22上,并且也最好包括图1B描绘的光束弯曲装置20的特征,性能和功能。这就是说,图6A描绘了GRIN光纤透镜24的侧视图,而图6B和6C描绘了GRIN光纤透镜24的顶视图。图6B和6C中描绘的GRIN光纤透镜24从其图6A显示的位置转动了约90度,因此倾斜的反射表面26面向纸面。图6B用显微镜显示了基本聚焦在GRIN光纤透镜24表面的模式场50。图6C用显微镜显示了聚焦在距GRIN光纤透镜24表面约100.0微米的模式场52。因此,在图6C描绘的实施例中,具有椭圆模式场的光学成分可最好被耦合到图6A-6C中描绘的光束弯曲装置20距GRIN光纤透镜表面33的曲面34约100.0微米的距离,以最大限度地提高耦合效率而将光学损耗减到最小。
如上所述的光束弯曲装置的优选应用是将这样的装置耦合到激光二极管或其他高折射率的半导体波导装置。在这样的应用中,由上述元件提供的加强的功能提供了额外的设计灵活性和功能。例如,通过定位在经抛光斜面上的介电镜,光束弯曲装置可以被设计成反射落入其上的一定百分比的光。对于激光二极管耦合,这样的功能可以用于监视激光功率。另外,本发明的光束弯曲装置的倾斜的实施例可以被设计成以90度以外的角度反射光束,以提供和本发明的光束弯曲装置一起封装半导体器件的更多的选择。当应用硅光学台阶技术时,这样的方法尤其可靠。如下文将更详尽所述,硅刻蚀平面可以使封装过程中的对准程序更加简单。
如上简单所述,本文揭示的光束弯曲装置20的每个示范实施例都共用了一定的制造技术。首先,具有操作性的抛物线折射率,核心直径,外径和几何形状的适当的GRIN光纤透镜最好通过拼接附着到经选择的光纤束,或附着到一个或多个其本身被拼接到光纤束端部的隔离器柱42上。这样的隔离器柱42最好是无核心的含硅玻璃柱,其可以被制成具有任何适当的外径和几何形状,具有均匀的或恒定的径向折射率,因此几乎没有或完全没有透镜的特性。在被利用时,隔离器柱42提供了额外的设计灵活性。GRIN光纤透镜的折射率,核心特性以及诸如四分之一节距长度的透镜参数可以通过应用众所周知的公式确定,这些公式由Emkey和Jack在“Analysis and Evaluation ofGraded-Index Fiber-Lenses”,Journal of Lightwave Technology,Vol.LT-5,No.9,September 1987,pgs.1156-64上揭示,该文内容通过引用而结合在本文中。
然后GRIN光纤透镜可被劈裂或锥形切割到和四分之一节距相比为适当的长度并用激光微加工的方法加工成具有相对于光轴的适当的倾斜角度。然后如果需要,这样形成的GRIN光纤透镜24的端部可以被抛光。诸如倾斜角度的GRIN光纤透镜24的参数可以根据所要求的工作距离和光纤束22的模式场以及最后的模式场形状要求设计。如果需要或必要,如上所述的隔离器柱也可以位于本发明的光束弯曲装置20的GRIB光纤透镜24和反射表面26之间。在这样的情况下,隔离器柱44可以被如上所述地劈裂或锥形切割,GRIN光纤透镜24远端的隔离器柱44的端部可以被如上所述地进一步处理,以在隔离器柱上而不是在GRIN光纤透镜上达到所需要的倾斜的反射表面。
也可以达到设计的各种变化,其中,为了不同的应用,GRIN光纤透镜24和光纤束22的核心直径或外径,尺寸以及折射率可以发生变化。例如,GRIN光纤透镜的外径可以等于,小于或大于光纤束以容纳不同尺寸的光束。GRIN光纤透镜,光纤束以及任何隔离器柱的形状可以是非圆柱形,诸如方形或矩形,或可以标以沟槽或其他形式以便于制造和对准光纤束的偏振轴。通过对准平面的侧面或标以光纤束的偏振轴,诸如以适当的偏振轴耦合到激光二极管或其他光学元件的进一步的处理可以被简化。
图7A-7C描绘了结合根据本发明的光束弯曲装置20的示范光学组件。图7A和7B描绘的光学组件54最好包括衬底56和诸如但不限于激光二极管或其他发射器的光学信号源58。该光学信号源58最好支撑在衬底56上并根据本发明的光束弯曲装置20也最好位于衬底56上,因此GRIN光纤透镜24能够和光学源58通讯。如图7B清楚地表示,光学源58发射光学信号60,光学信号60通过形成在GRIN光纤透镜24侧壁上的锥形表面34。然后光学信号60在由反射表面26限定的媒介玻璃界面(通常为空气/玻璃界面)上反射,因此光学信号沿GRIN光纤透镜24和光纤束22的光轴重新定向。在一个优选实施例中,光学信号60的模式场也最好从由光学信号源58发射的椭圆模式场转换成基本圆形的对称模式场,从而将经转换的光学信号60以低损耗耦合到光纤束22。
图7A和7B描绘的构型的具体优点是其对环境效应的宽容。因为光学信号源58和GRIN光纤透镜24之间的对准容差由于GRIN光纤透镜24相对于光学信号源58发射器的取向而较宽,诸如温度,湿度变化等的环境条件对组件54的操作和功能几乎没有影响。
图7C描绘了组件62的另一个替代实施例。该实施例相似于图7A-B描绘的组件54,但利用了硅光学台阶或其他衬底以将光学信号60反射到GRIN光纤透镜24中。该配置尤其适合于和具有通过刻蚀或其他方式形成在硅衬底56上的晶面<111>和通过刻蚀或其他方式制造以支撑光束弯曲装置20的硅光学台阶一起使用。在一个优选实施例中,<111>晶面64被排列成约55度的角度。总之,反射表面26将被倾斜以和<111>晶面匹配(平行),这样使图7C描绘的组件62的对准和制造的复杂性更低。
虽然图中未显示,波前尽可能紧密地匹配也很重要。做不到这一点可导致像差,为耦合效率对于相长干涉或相消干涉的结果。过去,本技术领域熟练的人员通过改变玻璃本身的化学性能调节例如GRIN光纤透镜的性能,诸如透镜的折射率。但非常费时并不便利于模式场耦合组件的高效率制造。根据本发明,GRIN光纤透镜的尺寸和形状,用以移动光学信号图象而不对光学图象添加任何明显的透镜影响的隔离器柱的应用,隔离器柱的尺寸和数量,GRIN光纤透镜的数量,以及对根据本发明限定透镜的外部曲面34,35的形状的独立控制(X平面中和Y平面中)都使本技术领域中熟练的人员能容易和高效率地以对于模式场耦合组件的大量制造既实用,高效又成本效率高的方式基本匹配这些波前。另外,虽然上述图中未显示,但上述原理同样适用于本发明的光学组件的那些实施例,在该实施例中,光学信号被导向通过光纤束,然后通过任何所应用的隔离器柱,通过GRIN光纤透镜,在GRIN光纤透镜中光学信号可最好由反射表面重新定向,然后通过GRIN光纤透镜(或隔离器柱)的外部曲面34,35耦合到诸如但不限于SOA或其他探测器/光电二极管的光学波导装置。
实例
下文将叙述根据本发明的上述实施例的离线或非在线光束弯曲装置和光学组件的实例。
图8参考下文叙述的变化示意性地显示了一种包括一个具有双锥形曲面67和倾斜反射表面26的球透镜65的示范的离线光束弯曲装置80。该示范的多透镜装置包括光学信号源82,在本情况下为能以工作波长‘wav’发射信号的激光二极管;wx0(微米)的x方向(垂直方向)的模式场直径(MFD)以及wy0(微米)的y方向的MFD。来自源82的光束到达形成在具有径向恒定的折射率(nc)和长度(Lc)的隔离器柱42上的x方向的曲率半径(RLx)(微米)和y方向的曲率半径(R1y)的曲面67之前先通过折射率(n1)的媒介(最普通是空气)传播一段距离(z)。在圆柱形双锥形透镜前的光学信号的MFD为wx1和wy1,光束波前曲率半径为rx1和ry1。光学信号通过双锥形透镜转换到分别带有wx1,wy2的MFD和rx2,ry2的波前曲率半径的光束。对于一个薄透镜,wx1=wx2,wy1=wy2,但rx2与ry2通常和rx1与ry1不同。然后光束传播通过长度Lc和折射率nc的隔离器柱42部分。隔离器柱42的长度Lc包括隔离器柱在倾斜反射表面26之前的长度(Lc1)隔离器柱42从倾斜反射表面26延伸到GRIN光纤透镜24的长度。在所显示的实施例中,倾斜反射表面26保证将光学信号弯曲90度。光学信号传播以后的光束特性为wx3,wy3和rx3,ry3。具有这些特性的光束到达带有长度Lg,平均折射率ng,折射率差=delta以及核心半径(a)的特性的GRIN光纤透镜24。通过GRIN光纤透镜24传播以后,光束特性为wx4,wy4,rx4,ry4。设计的目标是使wx4=wy4=wsmf,其中(wsmf)为标准信号模式光纤束22的圆MFD。另一个目标是使rx4和ry4尽可能接近于平整的拨前以最大程度地提高通向光纤束的耦合效率。该目标可以通过修改诸如曲面67,球透镜65,隔离器柱42的Z,Rx,Ry,Lc的设计变量以及诸如Lg,Delta和(a)的GRIN光纤透镜24的特性而对于任何给出的源82和光纤束22实现。该目标还有使Z对于合理的容差和实际的封装要求合理地大又不影响耦合效率。
对于gaussian光束的光束转换可以用对于复杂的光束参数q如通过引用而结合在本文中的参考中揭示的ABCD矩阵程序或用光束传播技术计算。设计最好对于最佳耦合效率在任何需要的z,以及源82和光纤束22特性上得到优化。材料特性n1,nc,ng和ns可以被变化到一定的程度,但对材料的实际考虑限制了这些数值。例如,n1通常等于1(空气),nc大多数情况为二氧化硅或掺二氧化硅,其值在靠近1.3到1.55微米的波长范围约为1.45。对于ng和nsmf情况相同。
复杂的光束参数q由下式限定:
(1/q)=(1/r)-1*(wav/(pi*w∧2*n)
式中r为波前的曲率半径,w为gaussian模式场半径,wav为光的波长。从输入平面84到输出平面86的q参数转换由下式给出:
q2=(A*q1+B)/(C*q1+D)
式中A,B,C,D是分别相关于输入和输出平面84和86的射线参数的射线矩阵元。
1)长度z的自由空间传播的ABCD矩阵为
Figure A0381007000231
2)从折射率n1的媒介到n(非长度)传播的矩阵为 1 0 0 ( n 1 / n )
3)曲率半径R的透镜的矩阵为
Figure A0381007000233
4)对于GRIN光纤透镜n’(r)=n(1-g∧2*r∧2)∧0.5和
长度
Figure A0381007000234
g=((2*□)∧0.5)/5
在特定位置上的透镜的几何形状和设计的变量以及MFD参数:
平面83:源82的输出:wav,wx0,wy0-波长,和源82的x和y模式场
平面84:通过Z传播,材料折射率(n1)但在锥形透镜前
        wx1,wy1:在平面84的光束的模式场直径
        rx1,ry1:拨前曲率半径
平面86:正好在半径Rx和Ry,折射率nc的双锥形透镜之后
        wx2,wy2
        rx2,ry2
平面88:在长度Lc折射率nc的隔离器柱中传播并正好在GRIN光纤透镜24前
        wx3,wy3
        rx3,ry3
平面90:通过长度Lg,平均折射率ng,折射率差=Delta,核心半径=a的GRIN光纤透镜传播之后并且正好在光纤束前:
        wx4,wy4
        rx4,ry4
离线光束弯曲装置的具体实例
用上述程序,对于激光二极管耦合应用的光束弯曲装置的设计变量可以进行计算和优化。图9显示作为工作距离的函数进行的耦合效率的计算。根据该曲线,该设计的最佳工作距离约为50.0微米,这对于实际的封装和对准要求是一个合理的值。激光二极管特性和其他设计参数排列如下:
激光二极管特性:波长:0.98微米
                X方向模式场半径w0x:0.9微米
                Y方向模式场半径w0y:3.6微米
其他设计参数:
双锥形透镜的X曲率半径RLx:25微米
隔离器柱长度Lc:40.0微米
GRIN光纤透镜长度Lg:1170微米
GRIN光纤透镜折射率差Delta:0.01
GRIN光纤透镜核心半径a:62.5
单模光纤束模式场:5.2微米
实例仅为了说明的目的而给出并将根据实际应用而变化。参考下面的参考材料上述实例可更清楚地理解:W.L.Emkey and C.Jack,JLT-5 sept 1987,pp.1156-64;H.kogelnik,Applied Optics,4 Dec 1965,p1562;R.Kishimoto,M.Koyama;Transactions on Microwave Theory and Applications,IEEE MTT-30,June 1982,p882;and Photonics by B.E.A.Saleh and M.C.Teich,JohnWiley & Sons,Inc.,1991,上述每一篇文章都通过引用而结合在本文中。
虽然本发明经详尽的叙述,但应该确切理解,对于在相关技术熟练的人员显而易见的是本发明可以进行修改而不背离本发明的精神。可以对本发明进行形式,设计或配置的各种变化而不背离本发明的精神和范围。例如,GRIN光纤透镜可以被制造成使其折射率特性纵向变化而不是如上所述的径向变化。另外,本技术领域熟练的人员将认识到,如果形成光束弯曲装置20的各种元件的各种材料相关于诸如但不限于软化点和热膨胀系数的特性协调一致,则本发明的光束弯曲装置20的各种元件不需要用相同的材料制造,也不包括这些相同的材料。因此,上文的叙述应被认为是实例而不是限制,本发明的真正的范围应由附后的权利要求限定。

Claims (17)

1.一种用于改变光学信号的模式场的装置,该装置包括:
一个GRIN光纤透镜;和
一个设置在GRIN光纤透镜一端的反射表面,该反射表面被构型成配合GRIN光纤透镜重新定向依托该反射表面定向的光学信号的通路。
2.如权利要求1所述的装置进一步包括一个光纤,并且其中反射表面的远端的GRIN光纤透镜的端部附着到该光纤上。
3.如权利要求1所述的装置,其特征在于,其中反射表面包括一个曲面,其中该曲面相对于GRIN光纤透镜的纵向通路倾斜一个角度并通过抛光或激光微加工形成在GRIN光纤透镜的端部。
4.如权利要求1所述的装置,其特征在于,其中GRIN光纤透镜包括一个球透镜,并且其中反射表面设置在球透镜的至少一个部分上。
5.如权利要求4所述的装置,其特征在于,其中反射表面包括一个倾斜的表面。
6.如权利要求4所述的装置,其特征在于,其中GRIN光纤透镜包括一个锥形区域。
7.如权利要求1所述的装置,其特征在于,其中GRIN光纤透镜包括一个相关于反射表面定位的曲面以和进入或离开该装置的光学信号相联系。
8.如权利要求7所述的装置,其特征在于,其中该装置限定一个光轴,并且其中该曲面由两条基本互相垂直设置的不同的曲线主曲线C1和副曲线C2限定,其中C1和C2在光轴上或接近光轴相交。
9.如权利要求1所述的装置,其特征在于,其中GRIN光纤透镜包括一个相关于反射表面定位的平面的表面以和进入或离开该装置的光学信号相联系。
10.如权利要求1所述的装置,其特征在于,其中反射表面包括一个倾斜表面,并且其中该倾斜表面形成在GRIN光纤透镜的端部。
11.如权利要求2所述的装置,其特征在于,其中该装置进一步包括一个或多个隔离器柱,每个隔离器柱具有径向恒定的折射率,并且其中该一个或多个隔离器柱被定位在光纤和GRIN光纤透镜之间或GRIN光纤透镜和反射表面之间。
12.如权利要求2所述的装置,其特征在于,其中GRIN光纤透镜包括多个GRIN光纤透镜,并且其中该多透镜装置进一步包括一个或多个隔离器柱,每个隔离器柱具有径向恒定的折射率,并且其中该一个或多个隔离器柱被定位在一个或多个光纤和多个GRIN光纤透镜之间。
13.如权利要求1所述的装置,其特征在于,其中反射表面包括一个倾斜表面和一个形成在该倾斜表面上的非球形表面。
14.如权利要求2所述的装置,其特征在于,其中该装置进一步包括一个或多个隔离器柱,每个隔离器柱具有径向恒定的折射率,并且其中该一个或多个隔离器柱被定位在光纤和GRIN光纤透镜之间以及GRIN光纤透镜和反射表面之间。
15.一种光学组件包括:
一个光学元件;
一个构型成支撑该元件的衬底;和
一个在衬底上并且相关于光学元件定位的装置,用于改变通过该装置和光学元件之间的光学信号的模式场,其中该装置包括一个GRIN光纤透镜和一个设置在GRIN光纤透镜一端的反射表面,该反射表面被构型成配合GRIN光纤透镜重新定向依托该反射表面定向的光学信号的通路。
16.如权利要求15所述的光学组件,其特征在于,其中硅光学台阶包括一个用于相对于激光二极管支撑该装置的V形沟槽,这样,在激光二极管和该装置之间通过的光学信号被高效率地耦合。
17.如权利要求15所述的光学组件,其特征在于,其中该装置进一步包括一个光纤和一个或多个隔离器柱,每个隔离器柱具有径向恒定的折射率,并且其中该一个或多个隔离器柱被定位在一个或多个光纤,GRIN光纤透镜和反射表面之间。
CNB038100703A 2002-03-04 2003-02-27 光束弯曲装置及其制造方法 Expired - Fee Related CN1307448C (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US36178702P 2002-03-04 2002-03-04
US60/361,787 2002-03-04
US10/202,516 US6904197B2 (en) 2002-03-04 2002-07-23 Beam bending apparatus and method of manufacture
US10/202,516 2002-07-23
PCT/US2003/006068 WO2003076993A1 (en) 2002-03-04 2003-02-27 Beam bending apparatus and method of manufacture

Publications (2)

Publication Number Publication Date
CN1650207A true CN1650207A (zh) 2005-08-03
CN1307448C CN1307448C (zh) 2007-03-28

Family

ID=27807517

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB038100703A Expired - Fee Related CN1307448C (zh) 2002-03-04 2003-02-27 光束弯曲装置及其制造方法

Country Status (8)

Country Link
US (1) US6904197B2 (zh)
EP (1) EP1481274B1 (zh)
JP (2) JP2005519342A (zh)
CN (1) CN1307448C (zh)
AU (1) AU2003219941A1 (zh)
DE (1) DE60304841T2 (zh)
TW (1) TWI252338B (zh)
WO (1) WO2003076993A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102103230A (zh) * 2009-12-16 2011-06-22 韩国电子通信研究院 光学耦合器以及包括其的有源光学模块
CN103608701A (zh) * 2011-06-15 2014-02-26 康宁股份有限公司 经激光处理的grin透镜和使用它的光学接口设备与组件
CN104382548A (zh) * 2014-12-04 2015-03-04 南京沃福曼医疗科技有限公司 一种微型侧面发光成像探头
CN106058619A (zh) * 2015-04-03 2016-10-26 株式会社东芝 激光照射设备和激光喷丸处理方法
CN110609353A (zh) * 2019-09-10 2019-12-24 武汉博昇光电股份有限公司 一种转角透镜光纤阵列及其制作方法
CN110998393A (zh) * 2017-05-19 2020-04-10 阿道特公司 具有3d聚合物波导的光学互连模块
CN111025483A (zh) * 2019-12-26 2020-04-17 苏州阿格斯医疗技术有限公司 一种光纤透镜的制备方法及光纤透镜

Families Citing this family (79)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6904197B2 (en) * 2002-03-04 2005-06-07 Corning Incorporated Beam bending apparatus and method of manufacture
US7021833B2 (en) * 2002-03-22 2006-04-04 Ban-Poh Loh Waveguide based optical coupling of a fiber optic cable and an optoelectronic device
EP1685061A4 (en) * 2003-10-27 2007-11-14 Bookham Technology Plc OPTICAL ARRANGEMENT WITH VARIABLE OPTICAL DAMPER
US20050129367A1 (en) * 2003-12-12 2005-06-16 The Boeing Company, A Delaware Corporation Method and apparatus for angled fiber optical attenuation
JP2005292718A (ja) * 2004-04-05 2005-10-20 Furukawa Electric Co Ltd:The 光導波路、光導波路モジュールおよび光導波路の作成方法
KR20060065430A (ko) * 2004-12-10 2006-06-14 한국전자통신연구원 광섬유 조명계, 광섬유 조명계의 제작 방법, 광섬유조명계를 구비하는 광 기록 헤드, 및 광 기록 및 재생 장치
KR100749528B1 (ko) * 2005-09-30 2007-08-16 주식회사 두산 광 접속 모듈 및 그 제조 방법
WO2007116998A1 (ja) * 2006-04-07 2007-10-18 Omron Corporation 光ケーブルモジュール
KR100906287B1 (ko) * 2007-08-22 2009-07-06 광주과학기술원 측면 조영이 가능한 광섬유 프로브 및 광섬유 프로브 제조방법
DE102007045570A1 (de) * 2007-09-24 2009-04-02 Robert Bosch Gmbh Sonde und Vorrichtung zum optischen Prüfen von Messobjekten
US8582934B2 (en) * 2007-11-12 2013-11-12 Lightlab Imaging, Inc. Miniature optical elements for fiber-optic beam shaping
GB0724411D0 (en) 2007-12-14 2008-01-30 Stfc Science & Technology Optical sensor
US20090278795A1 (en) * 2008-05-09 2009-11-12 Smart Technologies Ulc Interactive Input System And Illumination Assembly Therefor
WO2010080862A1 (en) * 2009-01-09 2010-07-15 Afl Telecommunications Llc Fiber ball lens apparatus and method
JP5192452B2 (ja) * 2009-06-25 2013-05-08 富士フイルム株式会社 光ファイバの接続構造及び内視鏡システム
WO2011040830A1 (en) 2009-09-30 2011-04-07 Corning Incorporated Optical fiber end structures for improved multi-mode bandwidth, and related systems and methods
KR20120103686A (ko) * 2009-12-14 2012-09-19 도요 가라스 가부시키가이샤 측방 출사 장치 및 그 제조 방법
US20110229077A1 (en) 2010-03-19 2011-09-22 Davide Domenico Fortusini Small-form-factor fiber optic interface devices with an internal lens
US8622632B2 (en) 2010-03-19 2014-01-07 Corning Incorporated Small-form-factor fiber optic interface assemblies for electronic devices having a circuit board
US8520989B2 (en) 2010-03-19 2013-08-27 Corning Incorporated Fiber optic interface devices for electronic devices
US8651749B2 (en) 2010-03-19 2014-02-18 Corning Incorporated Fiber optic interface with translatable ferrule device
CN102782545B (zh) 2010-03-19 2015-07-08 康宁公司 用于电子装置的光纤接口装置
US9529159B2 (en) 2010-07-30 2016-12-27 Corning Optical Communications LLC Ferrules with complementary mating geometry and related fiber optic connectors
US10401572B2 (en) 2010-07-30 2019-09-03 Corning Optical Communications, Llc Fiber optic connectors including ferrules with complementary mating geometry and related fiber optic connectors
US8774577B2 (en) 2010-12-07 2014-07-08 Corning Cable Systems Llc Optical couplings having coded magnetic arrays and devices incorporating the same
US8781273B2 (en) 2010-12-07 2014-07-15 Corning Cable Systems Llc Ferrule assemblies, connector assemblies, and optical couplings having coded magnetic arrays
TWI493896B (zh) * 2010-12-30 2015-07-21 Hon Hai Prec Ind Co Ltd 光纖通訊裝置
US9557488B2 (en) 2011-01-11 2017-01-31 Corning Incorporated Optical connector with lenses having opposing angled planar surfaces
WO2012099769A2 (en) 2011-01-20 2012-07-26 Corning Incorporated Receptacle ferrule assemblies with gradient index lenses and fiber optic connectors using same
JPWO2012105354A1 (ja) * 2011-02-03 2014-07-03 株式会社村田製作所 光モジュール
JP2012168240A (ja) * 2011-02-10 2012-09-06 Sumitomo Electric Device Innovations Inc 光モジュール
TW201250318A (en) * 2011-06-08 2012-12-16 Hon Hai Prec Ind Co Ltd Optical fiber communication apparatus
US8789998B2 (en) 2011-08-31 2014-07-29 Corning Incorporated Edge illumination of an ion-exchanged glass sheet
CN103797391B (zh) 2011-09-13 2016-09-28 康宁光电通信有限责任公司 使用钻孔排料区的平移透镜架总成以及合并所述透镜架总成的光学连接器
EP2761345B1 (en) 2011-09-26 2017-11-08 3M Innovative Properties Company Optical substrate having a plurality of staggered light redirecting features on a major surface thereof
CN103827711B (zh) 2011-09-26 2017-06-09 3M创新有限公司 具有将交错切割端耦合到相关微透镜的多条光纤的光学连接器
US8734024B2 (en) 2011-11-28 2014-05-27 Corning Cable Systems Llc Optical couplings having a coded magnetic array, and connector assemblies and electronic devices having the same
WO2013086127A2 (en) 2011-12-09 2013-06-13 Corning Cable Systems Llc Gradient index (grin) lens holders employing groove alignment feature(s) and total internal reflection (tir) surface, and related components, connectors, and methods
WO2013086117A2 (en) 2011-12-09 2013-06-13 Corning Cable Systems Llc Gradient index (grin) lens holders employing groove alignment features(s) in recessed cover and single piece components, connectors, and methods
US8861900B2 (en) * 2012-02-23 2014-10-14 Corning Incorporated Probe optical assemblies and probes for optical coherence tomography
US8857220B2 (en) 2012-02-23 2014-10-14 Corning Incorporated Methods of making a stub lens element and assemblies using same for optical coherence tomography applications
WO2013126485A1 (en) 2012-02-23 2013-08-29 Corning Incorporated Methods of making a stub lense element and assemblies using same for optical coherence tomography applications
US8967885B2 (en) * 2012-02-23 2015-03-03 Corning Incorporated Stub lens assemblies for use in optical coherence tomography systems
WO2013136490A1 (ja) * 2012-03-15 2013-09-19 東洋製罐グループホールディングス株式会社 ラインビーム発生装置
US9036966B2 (en) 2012-03-28 2015-05-19 Corning Incorporated Monolithic beam-shaping optical systems and methods for an OCT probe
US9435959B2 (en) * 2012-04-26 2016-09-06 Acacia Communications, Inc. Coupling of fiber optics to planar grating couplers
TW201404056A (zh) 2012-04-27 2014-01-16 Corning Cable Sys Llc 電子裝置的隨插即用光收發器模組
US10114174B2 (en) 2012-05-31 2018-10-30 Corning Optical Communications LLC Optical connectors and optical coupling systems having a translating element
US8953914B2 (en) 2012-06-26 2015-02-10 Corning Incorporated Light diffusing fibers with integrated mode shaping lenses
US9151912B2 (en) 2012-06-28 2015-10-06 Corning Cable Systems Llc Optical fiber segment holders including shielded optical fiber segments, connectors, and methods
US9304265B2 (en) 2012-07-26 2016-04-05 Corning Cable Systems Llc Fiber optic connectors employing moveable optical interfaces with fiber protection features and related components and methods
US8897611B2 (en) 2012-09-06 2014-11-25 Corning Incorporated Optical fiber interfaces comprising light blocking elements and illumination systems comprising light blocking elements
EP2713189B1 (en) * 2012-09-28 2015-08-26 CCS Technology, Inc. Optical fiber, light coupling unit and method
DE102012025565B4 (de) * 2012-12-20 2015-03-26 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Optisches Kopplungssystem mit einem optischen Koppler und einem lichtdurchlässigen äußeren Medium sowie Herstellung und Verwendung eines solchen Systems
US9566752B2 (en) 2013-05-22 2017-02-14 Corning Incorporated Methods of forming a TIR optical fiber lens
EP3014323A2 (en) 2013-06-25 2016-05-04 Corning Optical Communications LLC Optical plug having a translating cover and a complimentary receptacle
CN105556363B (zh) * 2013-09-16 2017-06-30 3M创新有限公司 光通信组件
US20150146211A1 (en) * 2013-11-27 2015-05-28 Corning Incorporated Optical coherence tomography probe
US9829663B2 (en) 2014-02-25 2017-11-28 Empire Technology Development Llc Silicon chip with refractive index gradient for optical communication
WO2016040132A1 (en) * 2014-09-09 2016-03-17 Corning Incorporated Integrated torque assembly and methods for oct using an optical fiber cable
WO2016048825A1 (en) 2014-09-23 2016-03-31 Corning Optical Communications LLC Optical connectors and complimentary optical receptacles having magnetic attachment
US10162114B2 (en) 2015-01-08 2018-12-25 Corning Incorporated Reflective optical coherence tomography probe
JP6729908B2 (ja) * 2015-02-23 2020-07-29 ザ・ボード・オブ・トラスティーズ・オブ・ザ・リーランド・スタンフォード・ジュニア・ユニバーシティ 位相面変調センサと、製造方法
CN107949311B (zh) 2015-04-16 2021-04-16 Gentuity有限责任公司 用于神经病学的微光探针
US10126511B2 (en) 2015-05-22 2018-11-13 Corning Optical Communications LLC Fiber coupling device
EP3304147A1 (en) * 2015-05-29 2018-04-11 Corning Optical Communications LLC Planar tapered waveguide coupling elements and optical couplings for photonic circuits
US10631718B2 (en) 2015-08-31 2020-04-28 Gentuity, Llc Imaging system includes imaging probe and delivery devices
WO2017039681A1 (en) * 2015-09-04 2017-03-09 Ccs Technology, Inc. Fiber coupling device for coupling of at last one optical fiber
TWI611228B (zh) * 2016-08-11 2018-01-11 國立高雄應用科技大學 光鑷夾之光纖微透鏡構造及其製造方法
EP3700406A4 (en) 2017-11-28 2021-12-29 Gentuity LLC Imaging system
WO2019183137A1 (en) 2018-03-23 2019-09-26 Digonnet Michel J F Diaphragm-based fiber acoustic sensor
US10791923B2 (en) * 2018-09-24 2020-10-06 Canon U.S.A., Inc. Ball lens for optical probe and methods therefor
US10725244B2 (en) 2018-11-13 2020-07-28 Institut National D'optique Optical fiber with cladding-embedded light-converging structure for lateral optical coupling
US10481350B1 (en) 2018-12-11 2019-11-19 Sicoya Gmbh Through-board optical assembly
US11002924B2 (en) 2018-12-11 2021-05-11 Sicoya Gmbh Optical connector
EP3693767A1 (de) * 2019-02-05 2020-08-12 Fisba AG Vorrichtung zur lichtemission
US11360269B2 (en) * 2019-03-04 2022-06-14 Lumentum Operations Llc High-power all fiber telescope
WO2021242543A1 (en) * 2020-05-27 2021-12-02 Medical Instrument- Development Laboratories, Inc. Fiber optic tapered coupler
EP3995871A1 (en) * 2020-11-09 2022-05-11 Imec VZW Two-stage expanded beam optical coupling

Family Cites Families (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4130343A (en) 1977-02-22 1978-12-19 Bell Telephone Laboratories, Incorporated Coupling arrangements between a light-emitting diode and an optical fiber waveguide and between an optical fiber waveguide and a semiconductor optical detector
DE3134508A1 (de) 1981-09-01 1983-03-17 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt "optische faser mit einer anamorphotisch abbildenden endflaeche und verfahren zu deren herstellung"
JPS5946616A (ja) * 1982-09-10 1984-03-16 Fujitsu Ltd 光フアイバ端末加工法
ATE86759T1 (de) 1984-03-02 1993-03-15 Siemens Ag Koppelanordnung zum ankoppeln eines lichtwellenleiters an einen halbleiterlaser und verfahren zur herstellung einer solchen anordnung.
JPS61191642U (zh) * 1985-05-20 1986-11-28
US4756590A (en) 1985-09-03 1988-07-12 American Telephone And Telegraph Company, At&T Bell Laboratories Optical component package
JPS6261013A (ja) * 1985-09-12 1987-03-17 Daiichi Denshi Kogyo Kk 楕円レンズを有する光ファイバと製造方法
EP0249934A3 (en) 1986-06-18 1990-06-06 Mitsubishi Rayon Co., Ltd. Optical fiber device
JPH0762284B2 (ja) * 1986-10-20 1995-07-05 日本エクスラン工業株式会社 難燃性アクリル繊維の製造方法
JPS63105108U (zh) * 1986-12-25 1988-07-07
JPS63163806A (ja) * 1986-12-26 1988-07-07 Fujitsu Ltd 半導体レ−ザと光フアイバの接続構造
JPS63228107A (ja) * 1987-03-17 1988-09-22 Agency Of Ind Science & Technol 光フアイバデバイス
JPS63300206A (ja) * 1987-05-29 1988-12-07 Fujitsu Ltd 光ファイバと受光素子の光学的結合構造
JPS6442611A (en) * 1987-08-10 1989-02-14 Fujitsu Ltd Structure for optical coupling of optical fiber and photodetecting element
US4883333A (en) * 1987-10-13 1989-11-28 Yanez Serge J Integrated, solid, optical device
JPH0264509A (ja) * 1988-08-31 1990-03-05 Fujitsu Ltd 光ファイバと受光素子の光学的結合構造
GB8827242D0 (en) * 1988-11-22 1988-12-29 Plessey Co Plc Optical coupling of optical fibres & optical devices
US5163113A (en) 1990-07-19 1992-11-10 Gte Laboratories Incorporated Laser-to-fiber coupling apparatus
US6564087B1 (en) * 1991-04-29 2003-05-13 Massachusetts Institute Of Technology Fiber optic needle probes for optical coherence tomography imaging
US5293438A (en) 1991-09-21 1994-03-08 Namiki Precision Jewel Co., Ltd. Microlensed optical terminals and optical system equipped therewith, and methods for their manufacture, especially an optical coupling method and optical coupler for use therewith
US5256851A (en) 1992-02-28 1993-10-26 At&T Bell Laboratories Microlenses for coupling optical fibers to elliptical light beams
JP3282889B2 (ja) 1993-08-04 2002-05-20 古河電気工業株式会社 レンズ付き光ファイバ
US5351323A (en) 1993-11-08 1994-09-27 Corning Incorporated Optical fiber for coupling to elliptically-shaped source
JPH07270642A (ja) * 1994-03-25 1995-10-20 Namiki Precision Jewel Co Ltd 反射型レンズ一体光ファイバー端末
JP3537881B2 (ja) * 1994-03-29 2004-06-14 株式会社リコー Ledアレイヘッド
FR2718854B1 (fr) 1994-04-13 1996-07-12 France Telecom Procédé de préparation d'une fibre optique en vue d'un couplage avec un phototransducteur et système optique ainsi obtenu.
US5455879A (en) 1994-06-22 1995-10-03 Corning Incorporated Anamorphic microlens for coupling optical fibers to elliptical light beams
JP3375213B2 (ja) 1994-09-16 2003-02-10 並木精密宝石株式会社 レンズ付ファイバ
JPH08292341A (ja) 1995-02-23 1996-11-05 Furukawa Electric Co Ltd:The レンズ付きファイバ
JP3304696B2 (ja) * 1995-04-17 2002-07-22 株式会社先進材料利用ガスジェネレータ研究所 光学式センサ
US6044056A (en) * 1996-07-30 2000-03-28 Seagate Technology, Inc. Flying optical head with dynamic mirror
US5719973A (en) 1996-07-30 1998-02-17 Lucent Technologies Inc. Optical waveguides and components with integrated grin lens
JPH1090553A (ja) * 1996-09-13 1998-04-10 Sumitomo Electric Ind Ltd コリメータ付光ファイバおよび光アイソレータ
JPH10142446A (ja) * 1996-11-08 1998-05-29 Mitsubishi Cable Ind Ltd レンズ付き光ファイバ
DE69807972T2 (de) 1997-04-15 2003-06-05 Sumitomo Electric Industries, Ltd. Optisches Modul
US5953162A (en) 1997-07-28 1999-09-14 Blankenbecler; Richard Segmented GRIN anamorphic lens
US6081637A (en) 1997-10-09 2000-06-27 Coherent, Inc. Arrangement for monitoring power of diode-laser-radiation laterally coupled into an optical-fiber
JPH11218641A (ja) 1998-02-04 1999-08-10 Furukawa Electric Co Ltd:The レンズ付き光ファイバとレーザモジュール
JPH11248961A (ja) * 1998-03-02 1999-09-17 Nippon Telegr & Teleph Corp <Ntt> ファイバ型光分岐部品
US6075650A (en) 1998-04-06 2000-06-13 Rochester Photonics Corporation Beam shaping optics for diverging illumination, such as produced by laser diodes
US6205274B1 (en) * 1998-07-20 2001-03-20 Honeywell Inc. Fiber optic header for an edge emitting laser
US6081638A (en) 1998-07-20 2000-06-27 Honeywell Inc. Fiber optic header with integrated power monitor
US6615072B1 (en) * 1999-02-04 2003-09-02 Olympus Optical Co., Ltd. Optical imaging device
JP2000304965A (ja) 1999-04-19 2000-11-02 Namiki Precision Jewel Co Ltd 端部レンズ付きファイバ
US6445939B1 (en) * 1999-08-09 2002-09-03 Lightlab Imaging, Llc Ultra-small optical probes, imaging optics, and methods for using same
US6496265B1 (en) * 2000-02-16 2002-12-17 Airak, Inc. Fiber optic sensors and methods therefor
AU2001247563A1 (en) 2000-03-17 2001-10-03 Corning Incorporated Optical waveguide lens and method of fabrication
KR20020032564A (ko) * 2000-07-04 2002-05-03 나미키 쇼지 광 파이버/마이크로 렌즈, 광 파이버 및 광 파이버의 배치방법
US20020106156A1 (en) * 2000-08-09 2002-08-08 Edward Vail Suppression of undesired wavelengths in feedback from pumped fiber gain media
US6501878B2 (en) * 2000-12-14 2002-12-31 Nortel Networks Limited Optical fiber termination
US6792008B2 (en) * 2001-04-30 2004-09-14 Jds Uniphase Corporation Tracking error suppression and method of reducing tracking error
US7336988B2 (en) * 2001-08-08 2008-02-26 Lucent Technologies Inc. Multi-photon endoscopy
US6813416B2 (en) * 2002-02-20 2004-11-02 Lightwaves 2020, Inc. Miniature fiberoptic filter and method of manufacture therefor
US6904197B2 (en) * 2002-03-04 2005-06-07 Corning Incorporated Beam bending apparatus and method of manufacture

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102103230A (zh) * 2009-12-16 2011-06-22 韩国电子通信研究院 光学耦合器以及包括其的有源光学模块
CN103608701A (zh) * 2011-06-15 2014-02-26 康宁股份有限公司 经激光处理的grin透镜和使用它的光学接口设备与组件
US9435917B2 (en) 2011-06-15 2016-09-06 Corning Incorporated Laser-processed grin lenses and optical interface devices and assemblies using same
CN103608701B (zh) * 2011-06-15 2017-03-29 康宁股份有限公司 经激光处理的grin透镜和使用它的光学接口设备与组件
CN104382548A (zh) * 2014-12-04 2015-03-04 南京沃福曼医疗科技有限公司 一种微型侧面发光成像探头
CN106058619A (zh) * 2015-04-03 2016-10-26 株式会社东芝 激光照射设备和激光喷丸处理方法
CN110998393A (zh) * 2017-05-19 2020-04-10 阿道特公司 具有3d聚合物波导的光学互连模块
CN110609353A (zh) * 2019-09-10 2019-12-24 武汉博昇光电股份有限公司 一种转角透镜光纤阵列及其制作方法
CN111025483A (zh) * 2019-12-26 2020-04-17 苏州阿格斯医疗技术有限公司 一种光纤透镜的制备方法及光纤透镜
CN111025483B (zh) * 2019-12-26 2022-03-01 苏州阿格斯医疗技术有限公司 一种光纤透镜的制备方法及光纤透镜

Also Published As

Publication number Publication date
EP1481274B1 (en) 2006-04-26
DE60304841D1 (de) 2006-06-01
EP1481274A1 (en) 2004-12-01
CN1307448C (zh) 2007-03-28
TWI252338B (en) 2006-04-01
WO2003076993A1 (en) 2003-09-18
TW200403457A (en) 2004-03-01
JP5070330B2 (ja) 2012-11-14
DE60304841T2 (de) 2006-11-23
AU2003219941A1 (en) 2003-09-22
US20030165291A1 (en) 2003-09-04
US6904197B2 (en) 2005-06-07
JP2005519342A (ja) 2005-06-30
JP2011123493A (ja) 2011-06-23

Similar Documents

Publication Publication Date Title
CN1650207A (zh) 光束弯曲装置及其制造方法
US6963682B2 (en) Beam altering fiber lens device and method of manufacture
US6014483A (en) Method of fabricating a collective optical coupling device and device obtained by such a method
JP3863144B2 (ja) 光結合素子の製作方法、光結合素子、光結合素子組み立て体及び光結合素子を利用したレンズ結合型光ファイバ
KR20060131726A (ko) 광파이버 결합부품
US9494739B2 (en) Cladding mode spatial filter
JPH11218641A (ja) レンズ付き光ファイバとレーザモジュール
JPH08136772A (ja) 光源結合用光ファイバインターフェイスおよびその製造方法
CN100529816C (zh) 聚焦光纤
JP2004126588A (ja) 透過および反射光ファイバ部品に使用される対称的両非球状レンズ
WO2006021093A1 (en) Manufacturing a microlens at the extremity of a lead waveguide
US20020057873A1 (en) Laser collimator for a free space optical link
TWI234016B (en) Lensed fiber having small form factor and method of making the same
US20030165290A1 (en) Optical signal altering lensed apparatus and method of manufacture
JP2004126563A (ja) レンズ一体型光ファイバとその製造方法
WO2020166386A1 (ja) レンズ構造体及び光接続構造
JP2002182074A (ja) レーザダイオードモジュール
CN1692294A (zh) 光纤双锥形透镜和制造方法
CN1771446A (zh) 光束整形及降低将外部光源和光学器件连接至薄硅波导引起的损耗的实用方法
JPH08220378A (ja) レンズ付きファイバ
JPH0990158A (ja) 光モジュール及びその組立方法
JPH112746A (ja) 光モジュール
JP2024129214A (ja) 光ファイバ接続構造
JPH06130244A (ja) 多チャネル光デバイス及びその製造方法
JPH06201946A (ja) レンズ付き光ファイバとその製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20070328

Termination date: 20100227