CN1591779A - 晶片清洗方法与设备 - Google Patents

晶片清洗方法与设备 Download PDF

Info

Publication number
CN1591779A
CN1591779A CNA2004100832983A CN200410083298A CN1591779A CN 1591779 A CN1591779 A CN 1591779A CN A2004100832983 A CNA2004100832983 A CN A2004100832983A CN 200410083298 A CN200410083298 A CN 200410083298A CN 1591779 A CN1591779 A CN 1591779A
Authority
CN
China
Prior art keywords
resistivity
solution
wafer
value
clean
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2004100832983A
Other languages
English (en)
Other versions
CN1311520C (zh
Inventor
宫崎邦浩
火口隆司
中岛俊贵
松尾弘之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Seiko Epson Corp
Original Assignee
Toshiba Corp
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Seiko Epson Corp filed Critical Toshiba Corp
Publication of CN1591779A publication Critical patent/CN1591779A/zh
Application granted granted Critical
Publication of CN1311520C publication Critical patent/CN1311520C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • H01L21/6704Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing
    • H01L21/67057Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing with the semiconductor substrates being dipped in baths or vessels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/06Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a liquid

Abstract

公开了一种晶片清洗方法,其包括将清洁水供给用化学溶液清洗的晶片(2),测量包括化学溶液和清洁水的溶液(6)的电阻率,并将该测量值对时间微分,以及用清洁水持续清洗晶片(2),直到电阻率的时间微分值等于或小于预定值,并在该预定值保持预定时间。

Description

晶片清洗方法与设备
技术领域
本发明涉及一种晶片清洗方法。本发明尤其涉及用化学溶液化学清洗晶片后,在最后的晶片清洗过程中使用清洁水清洗晶片的方法与设备。
背景技术
采取了多种措施以保护晶片不受半导体制造过程中的污染和用于提高晶片上提供的半导体元件的特性和产量的其它意外的污染。一般来说,用化学溶液来清洗晶片。用来清洗晶片的普通化学溶液包括盐酸和过氧化氢的混合水溶液,氨水和过氧化氢的混合水溶液,以及浓硫磺酸和过氧化氢的混合溶液。也普遍使用氢氟酸的水溶液。最近,也使用氢氟酸和臭氧水的混合水溶液或氢氟酸和过氧化氢的混合水溶液。
晶片的清洗方法大致可以分为以下两种类型。一种是将多个晶片浸入盛满化学溶液的处理槽中的方法。这称之为批量清洗方法。另一种是通过逐个旋转,将化学溶液供给到多个晶片的表面。这称之为单晶片清洗方法。
化学清洗完毕后,同过使用超纯水清除附在晶片上的化学溶液,并且干燥晶片。然后,进行下一个半导体制造工序。如果用一种化学溶液很难清除附在晶片上的杂质,可以使用两种或多种化学溶液,并且使用每种化学溶液持续清洗晶片。将使用超纯水的清洗步骤插入到使用化学溶液的晶片清洗过程。在清洗过程的最后,通过用高纯水的最后清洗,充分清除附在晶片上的化学溶液,并且干燥晶片。使用高纯水的最后清洗旨在充分清除附在晶片上的化学溶液。
然而,不可能直接知道附在晶片上的化学溶液被充分清除的清洗的结束。在批量清洗方法中,一般基于在处理槽中的液体中存在的化学溶液中包含的特定离子的浓度来确定清洗的结束(清洗时间)。具体地,通过监测在最后的清洗过程中从处理槽中流出的溶液的电阻率或其倒数电导率来测量化学溶液的离子浓度。当测量的化学溶液的离子浓度等于或小于表明附在晶片上的化学溶液被充分清除的值时,最后的清洗步骤就视为完成。通常通过实验来确定表明充分清除附在晶片上的化学溶液的值。尽管与晶片清洗方法不同,作为一种在提纯用于清洗晶片的高纯水的设备中控制电阻率的方法,在日本专利申请公开NO.9-1138中公开了使用电阻率终点的技术和决定清洗时间的方法。
发明内容
根据本发明的一个方面,提供了一种晶片清洗方法,包含:将清洁水供给用化学溶液清洗的晶片;测量包括化学溶液和清洁水的溶液的电阻率,并将该测量值对时间微分;以及用清洁水持续清洗晶片,直到电阻率的时间微分值等于或小于预定值,并在该预定值保持预定的时间。
根据本发明的另一方面,提供了一种晶片清洗方法,包含:将清洁水供给用化学溶液清洗的晶片;测量包括化学溶液和清洁水的溶液的电导率,并将该测量值对时间微分;以及用清洁水持续清洗晶片,直到电导率的时间微分值等于或大于预定值,并在该预定值保持预定的时间。
根据本发明的另一方面,提供了一种晶片清洗设备,包含:清洗槽,包含用化学溶液清洗的晶片;清洁水供应单元,向所述清洗槽供应清洁水以清洗晶片;电学特性测量单元,测量包括用于清洗晶片的清洁水和化学溶液的溶液的电阻率;运算单元,将用所述电学特性测量单元测量的溶液的电阻率对时间微分;以及控制单元,操作所述清洁水供应单元,并向所述清洗槽供应清洁水,直到由所述运算单元计算的电阻率的时间微分值等于或小于预定值,并在该预定值保持预定时间。
根据本发明的再一方面,提供了一种晶片清洗设备,包含:清洗槽,包含用化学溶液清洗的晶片;清洁水供应单元,向所述清洗槽提供清洁水以清洗晶片;电学特性测量单元,测量包括用于清洗晶片的清洁水和化学溶液的溶液的电导率;运算单元,将用所述电学特性测量单元测得的溶液的电导率对时间微分;以及控制单元,操作所述清洁水供应单元,并向所述清洗槽供应清洁水,直到由所述运算单元计算的电导率的时间微分值等于或大于预定值,并在该预定值保持预定的时间。
附图说明
图1示出了根据第一实施例的晶片清洗方法的流程图;
图2示出了根据第一实施例的晶片清洗设备的简化框图;
图3示出了对于每一种化学清洗溶液和待清洗的晶片数量,根据第一实施例的清洗晶片的时间与电阻率的时间微分值之间的关系的曲线图;
图4示出了根据第二实施例的晶片清洗设备的简化框图;
图5A和5B示出了根据现有技术的简化的晶片清洗设备的剖面图;
图6示出了根据现有技术的清洗晶片的时间和电阻率之间的关系的曲线图;
图7示出了对于每一种化学清洗溶液和待清洗的晶片数量,根据现有技术的清洗晶片的时间与电阻率之间的关系的曲线图。
具体实施方式
下面将根据附图中所示的实施例详细说明本发明。
(第一实施例)
在说明实施例之前,将参考图5A-图7,说明根据作为该实施例的比较实例的现有技术的一种测量普通溶液的电阻率的方法。
测量普通常用溶液电阻率的方法使用两种如图5A和图5B所示的清洗设备101和102。在使用如图5A所示的清洗设备101的方法中,在包含晶片103的槽104的上部开口104a的附近,提供监视溶液105电阻率的电阻率测量单元(电阻率计量表)106。电阻率测量单元106测量从上部开口104a处溢出的溶液105的电阻率。在使用如图5B所示的清洗设备102的方法中,在槽107的中间提供端口108以从槽107中提取溶液105,并且在端口108处提供电阻率测量单元106。电阻率测量单元106测量通过端口108从槽107提取的抽样溶液105的电阻率。对于槽104和107,通常使用用来清洗附有化学溶液的晶片103的清洗槽或者具有在槽中用化学溶液清洗晶片103后用纯水取代供应给槽的溶液的装置的处理槽。
图6为通过如图5A所示的方法测得的溶液105的电阻率随时间变化的实例。通常,至少测量一次电阻率随时间的变化,并获得如图6所示的数据。如果电阻率上升并且稳定在某一个值,就可以认为槽104中的化学溶液几乎完全被纯水取代。在图6所示的实例中,最后的清洗时间设为10分钟。在这种情况下,溶液105的电阻率在清洗停止后的两分钟内基本上稳定在大约16MΩcm。也就是,可以认为槽104中的化学溶液几乎完全被纯水取代,以及附在晶片103上的化学溶液被充分清除。如上所述,清洗时间通常被设置为足够长。
然而,近年来,低价的半导体器件占据了市场,这就要求具有降低成本的半导体器件的规模生产。因此,通过在清洗晶片中减少纯水的量或通过减少清洗晶片所需的时间来减少清洗时间。例如,在上述通过测量溶液电阻率来决定最终的晶片清洗时间的清洗方法中,当电阻率达到预定值时结束清洗。在图6中,当溶液105的电阻率等于或大于16MΩcm时,就认为晶片清洗结束。因此,在这种情况下,将清洗的结束设定为溶液105的电阻率达到图6中实心箭头所标的A处的时刻。
在当溶液的电阻率达到预先设定值时完成清洗的晶片清洗方法中,有许多问题,如清洗时间随溶液种类和密度或待处理的晶片数量而变化,并且电阻率达不到预先设定的值。因此,实际上很难使用结合采用上述清洗方法的系统的晶片清洗设备。尤其是,在图5A所示的方法(设备)中,发生了所谓的空气卷入,且空气中的碳酸气等很容易溶解到从槽104的上部开口104a溢出的溶液105中。如果如二氧化碳的碳酸气体溶解于溶液105中,在清洗设备101的清洗系统中就会出现噪声,并且降低了溶液105的电阻率。此外,在图5A所示的方法(设备101)中,接触空气的溶液105的区域发生变化(表面波动)并且溶液105中碳酸气的溶解量很容易变化,很容易改变清洗系统中的噪声。
在传统的晶片清洗方法中,很难稳定、精确地测量溶液的电阻率(电导率)是否达到预定值。也就是说,很难稳定、精确地确定附在晶片上的化学溶液和杂质是否被充分清除,以及是否将晶片清洗到合适的清洁状态。很难通过减少用于清洗晶片的纯水的量或减少清洗时间来提高清洗晶片的效率。如果半导体元件被安装在由于没有充分清除化学溶液而被污染的晶片上,那么半导体元件的特性和产量都会降低。也就是说,使用污染的晶片的半导体器件具有较差的性能、品质、可靠性和产量。这样的半导体器件也具有低的生产效率,并且增加了生产成本。
本实施例就是为了解决上述问题。本实施例的一个目的是提供晶片清洗方法和设备,其中无论待清洗的晶片数量和化学溶液的种类和密度,该方法和设备都能将晶片清洗到合适的清洁状态,同时提高了清洗效率。本实施例的另一个目的是提供一种被充分清洗到没有化学溶液残留的合适的清洁状态的晶片,并提供具有上述清洁晶片并在性能、品质、可靠性和产量方面得到改善的半导体器件。下面将参考图1-图3详细说明本发明的第一个实施例。
图1示出了根据这一实施例的晶片清洗方法的流程图。图2示出了根据这一实施例的晶片清洗设备的简化框图。图3示出了对于每一种化学清洗溶液和晶片数量,根据这一实施例的晶片的清洗(清洁)时间与电阻率的时间微分值之间的关系的曲线图。
该实施例限定了用化学溶液清洗晶片后的最后清洗的结束时间,以减少晶片清洗过程中清洁水的量和净清洗时间(净处理时间:RPT),并将晶片清洗到合适的清洁状态。具体地,为了决定最后晶片清洗的结束,在最后清洗过程中连续监测包含清洁水的溶液的纯水电阻率(电导率)。将获得的电阻率数据微分以获得随时间倾斜度的变化。然后,基于随时间倾斜度的变化和连续的最后清洗时间来确定清洗的终点。这样,该方法减少了清洁水的量和RPT,并将晶片清洗到适当的清洁状态。下面将给出详细的说明。
首先,参照图2给出根据该实施例的晶片清洗设备1的说明。清洗设备1具有包含一个或多个用化学溶液清洗的晶片2的清洗槽3。清洗槽3或者是用于清洗附有化学清洗溶液的晶片2的处理槽,或者是具有在用化学溶液清洗晶片2之后将供给晶片2的溶液从化学溶液转换为清洁水的装置的处理槽。清洗槽3的底部被连接到将用于清洗晶片2的清洁水供给清洗槽3的内部的水供应管4。在水供应管4的中间,提供用作清洁水供应装置的清洁水供应阀5以将清洁水供应到清洗槽3的内部。在该实施例中,将超纯水用作清洁水。因此,清洁水供应阀也称为超纯水供应阀5。
清洗槽3在顶部具有开口3a。附在晶片2上的化学溶液和包含供应到清洗槽3的内部的纯水的溶液6从清洗槽的内部经开口3a溢出到清洗槽的外部。在清洗槽3的开口3a附近提供排泄口7以在一旦收到从清洗槽3的内部溢出的溶液6之后,将溶液6排泄到清洗槽3的外侧。将测量溶液6的电阻率或电导率的电学特性测量单元8设置为与排泄口7中的溶液6接触。
电阻率与电导率互为倒数。因此,溶液6的电阻率和电导率中至少一个的测量对应于另一个的测量。在该实施例中,用电学特性测量单元8测量溶液6的电阻率。因此,在该实施例中,使用电阻率计量表(电阻率测量单元)8作为电学特性测量单元。对于溶液6的电阻率,电阻率测量单元8测量从清洗槽3的内部经清洗槽3的顶部的开口3a排泄到清洗槽3的外部的溢出的水6a的电阻率。
将用电阻率测量单元8测量的溶液6的电阻率作为电信号传送到电阻率测量电路9。基于从电阻率测量单元8输出的电信号,电阻率测量电路9测量用电阻率测量单元8测量的溶液6的电阻率。
将用电阻率测量电路9测量的溶液6的电阻率作为电信号从电阻率测量电路9传送到A/D转换器10。在该实施例中,设置电阻率测量电路9以输出作为模拟信号的溶液6的测量的电阻率。设置运算控制电路11以接收数字信号。因此,在该实施例中,设置A/D转换器以将从电阻率测量电路9输出的模拟信号转换为数字信号,并将该数字信号传送给运算控制电路11。
将用A/D转换器10从模拟信号转换为数字信号的溶液6的电阻率传送给运算控制单元11。运算控制单元11在每隔预定时间获得用电阻率测量电路9侧量的溶液6的电阻率,保持预定的时间,将所获得的测量值对时间微分,并控制超纯水供应阀5的开/关。在该实施例中,运算控制单元11包括将用电阻率测量单元8侧量的溶液6的电阻率对时间微分的运算单元(运算部分、运算电路),以及与运算单元集成在一起并通过操作超纯水供应阀5将清洁水供应给清洗槽3,直到由运算单元计算的微分值等于或小于预定值并在预定值保持预定时间的控制单元(控制部分、控制电路)。
清洗槽3、水供应管4和超纯水供应阀5构成了清洗设备1的清洗系统12。电阻率测量单元8、电阻率测量电路9、A/D转换器10和运算控制单元11构成清洗设备1的测量系统13。
接着,将参考图1说明根据本实施例的晶片清洗方法。该实施例的晶片清洗方法具体是处于最后的晶片清洗过程的清洗方法,其清除如附在用化学溶液清洗的晶片2上的化学溶液的污染物,并将晶片2清洗到适当的清洁状态。该实施例的晶片清洗方法测量用于清洗晶片2的化学溶液和包含用于清洗用化学溶液清洗的晶片2的清洁水的电阻率,并将测量值对时间微分。持续清洗晶片2,直到微分值等于或小于预定值,并在该预定值保持预定的时间。在该实施例的晶片清洗方法中,通过使用晶片清洗设备1清洗晶片2。下面将给出详细的说明。
首先,将一个或多个晶片2放在清洗槽3中,所述晶片2已被清洗但没有充分清除清洗溶液。接着,通过将打开超纯水供应阀5的阀控制信号从运算控制单元11传送到超纯水供应阀5,打开超纯水供应阀5。将超纯水供应到清洗槽3的内部,并开始用超纯水清洗(用超纯水清洗)晶片2。同时,电阻率测量单元8开始测量从清洗槽3排出的溶液6(溢出的水6a)的电阻率。电阻率测量电路9持续测量用电阻率测量单元8测量的值(探测值)。A/D转换器10持续地将从电阻率测量电路9作为模拟信号(模拟值)输出的电阻率值转换为数字信号(数字值)。A/D转换器10将数字信号输出到运算控制单元11。
运算控制单元11接收从A/D转换器10输出的数字信号,并执行基于数字信号的预定程序。图1中的虚线表示由运算控制单元11执行的预定程序。下面将给出详细的说明。
首先,将每隔预定时间作为数字信号输入到运算控制单元11的电阻率值保持由运算控制单元11确定的预定时间。接着,基于电阻率的保持量和保持时间,运算控制单元11计算倾斜度(变化率),或相对于保持时间对电阻率的微分值。如果需要,可以在使电阻率值平滑之后,计算微分值。电阻率的微分值对应于在预定时间的电阻率的倾斜度。因而,也允许在保持为了获得微分值而保持的电阻率数据之前,通过实时地使保持的电阻率的预定量平滑而获得倾斜度。只要考虑在清洗设备1的测量系统13和清洗系统12中的噪声,就不规定平滑的方法和程度。允许加权平均数(加权平滑)、加权平均值或Savizky-Golay方法。
接着,通过运算控制单元11确定通过运算控制单元11获得的微分值是否等于或小于预定值并在该预定值保持预定的时间。当微分值等于或小于预定值并在该预定值保持预定的时间时,如附在晶片2上的化学溶液的污染物就视为被充分清除,以及就视为晶片2被清洗到适当的清洁状态。在该实施例中,设置运算控制单元11以确定微分值是否等于或小于0.05MΩcm/sec,并在通过最大值后将该值保持等于或大于5秒钟。当微分值等于或小于0.05MΩcm/sec并在通过最大值后将该值保持等于或大于5秒钟后,就视为晶片2被清洗到适当的清洁状态,并完成用超纯水清洗晶片2。
根据晶片2所需要的清洁度,将上述微分值的测量条件设定为适当的值。通过实验预先获得该条件的值。完成用超纯水的清洗的理想时间是电阻率的微分值达到0.00MΩcm/sec,或电阻率对时间的倾斜度变为零。然而,在清洗设备1的清洗系统12和测量系统13中会发生噪声(电信号噪声),电阻率的微分值实际上没有达到0.00MΩcm/sec。根据经验和发明人做的试验,能够看到,当在电阻率的微分值通过最大值后保持电阻率的微分值等于或小于0.05MΩcm/sec至少5秒钟后,无论晶片的数量和用于清洗的化学溶液的种类和密度,都能将晶片2清洗到适当的清洁状态。因此,在该实施例中,如果在电阻率的微分值通过最高值后保持电阻率的微分值等于或小于0.05MΩcm/sec至少5秒钟,则完成用超纯水清洗晶片2。
如果运算控制单元11确定没有保持微分值等于或小于0.05MΩcm/sec等于或大于5秒钟,则继续用超纯水清洗晶片2,且运算控制单元保持电阻率数据并重复基于那个数据的电阻率的微分,直到微分值满足条件。如果重复的保持数据并将数据保持较长的时间,增加了所保持的数据量并增加了运算控制单元11的负载。为了避免此,允许在通过预定时间后,设定放弃该数据。
如果运算控制单元11确定在微分值通过最大值后保持微分值等于或小于0.05MΩcm/sec等于或大于5秒钟,运算控制单元11将关闭超纯水供应阀5的阀控制信号传送到超纯水供应阀5,并关闭超纯水供应阀5。通过该操作,停止对清洗槽3供应超纯水,并完成晶片2的超纯水清洗。在晶片2的超纯水的清洗结束之后,从清洗槽3中取出晶片2,并干燥晶片。这就完成了最后的晶片清洗过程。
图3示出了在该实施例的一个实例的清洗方法中每隔一秒获得并保持一秒的电阻率数据和基于所保持的数据计算的电阻率相对于随时间变化的微分值的曲线图。在该实例中,通过大约每隔一秒获得电阻率数据并保持一秒来进行微分,但数据保持时间、微分值计算间隔和微分值保持时间并不局限于大约1秒。它们是相对于用超纯水清洗晶片2所需的净时间(RPT)充分短的时间。
图3的HF200/1wf表示通过使用包括纯水和50%氢氟酸的水溶液并被稀释到50%氢氟酸的水溶液与纯水的体积比为约1∶200的化学溶液清洗的一个晶片2的超纯水清洗(最后清洗)。图3的曲线图中的实线表示在HF200/1wf时相对于超纯水清洗时间电阻率的时间微分值的变化。HF500/1wf表示通过使用包括纯水和50%氢氟酸的水溶液并被稀释到50%氢氟酸的水溶液与纯水的体积比为约1∶500的化学溶液清洗的一个晶片2的超纯水清洗。图3的曲线图中的虚线表示在HF500/1wf时相对于超纯水清洗时间电阻率的时间微分值的变化。HF200/44wf表示通过使用包括纯水和50%氢氟酸的水溶液并被稀释到50%氢氟酸的水溶液与纯水的体积比为约1∶200的化学溶液清洗的44个晶片2的超纯水清洗。图3的曲线图中的点划线表示在HF200/44wf时相对于超纯水清洗时间电阻率的时间微分值的变化。HF500/44wf表示通过使用包括纯水和50%氢氟酸的水溶液并被稀释到50%氢氟酸的水溶液与纯水的体积比为约1∶500的化学溶液清洗的44个晶片2的超纯水清洗。图3的曲线图中的双点划线表示在HF500/44wf时相对于超纯水清洗时间电阻率的时间微分值的变化。
如从图3的曲线图所见,电阻率的微分值(倾斜度)一般显示为向上突出的曲线,并且无论晶片2的数量和化学清洗溶液的种类和密度,在一旦上升之后就下降。即使在四种条件下的每个延伸清洗时间,由于噪声分量,电阻率的微分值0不会保持不同。在四种条件中,微分值的峰值(最高)位置和扫过(sweep)时间有很大不同。根据图3的曲线图,电阻率的微分值能够采用除了峰值的不同点的相同值。图3表示直到微分值到达其峰值,电阻率变化很大。虽然电阻率如此变化,但仍然由超纯水代替化学溶液。考虑到此,显然必须保持清洗晶片2直到微分值达到图3的曲线图中的峰值。因此,当一旦达到峰值后电阻率的微分值达到预定值时,就视为晶片2被清洗到适当的清洁状态。
只要电阻率的微分值一旦达到峰值,就可以根据晶片2所需的清洁度,将视为晶片2被清洗到适当的清洁状态时的电阻率的微分值设定为适当的值。当将上面的微分值设定的较小时,晶片2的清洁度被提高,但完成超纯水清洗所需的时间变长。如果用超纯水的清洗时间较长,用超纯水的清洗的净处理时间(RPT)变长,降低了生产率,并随着超纯水的量的增加,增加了制造成本。
根据图3的曲线图,可以看出,微分值扫过的部分表示由于各种噪声分量而重复极大和极小微分值的状态。如果将视为晶片2被清洗到适当的清洁状态的值设置较小,到如图3所示的微分值扫过的状态,即使该值等于或小于0.05MΩcm/sec,也很难将该值保持等于或大于5秒。另外,不可能延长晶片2的清洗时间并完成使用超纯水清洗晶片2。因此,必须将视为晶片2被清洗到适当的清洁状态的电阻率的微分值设定为这样的值,在该值下晶片2的清洗时间为满足晶片2所需的清洁度的范围内的最短值。
因为上述原因,在图3所示的实施例中,在所有四种条件下,当电阻率的微分值通过最大值之后保持电阻率的微分值等于或小于0.05MΩcm/sec等于或大于5秒钟后,视为晶片2被清洗到适当的清洁状态,并完成晶片2的清洗。通过该方法,即使清洗槽3中的溶液6的电阻率因在用化学溶液清洗中的处理条件而不同,也能够在基本相同的状态中完成晶片2的最后清洗。即,无论待清洗的晶片2的数量、化学清洗溶液的种类和密度、或清洗槽3中溶液6的电阻率,都能够充分清除如附在晶片2上的化学溶液的污染物,并能够在不同的条件下,将晶片2清洗到基本相同的清洁态。如图3所示,在该实施例中,能够将晶片2清洗到适当的清洁状态,并对于所有四种清洗溶液,都能够在约7至8分钟内完成最后的清洗。
接着,将参考图7简要说明上述实施例的比较实例。图7示出了关于化学清洗溶液的种类和待清洗的晶片数量根据现有技术的晶片清洗时间(清洁时间)和电阻率之间的关系的曲线图。具体地,如上述实施例,图7的曲线图表示在HF200/1wf、HF500/1wf、HF200/44wf和HF500/44wf四种条件下,通过根据图5A中所示的现有技术的晶片清洗方法和清洗设备101测量的电阻率。图7的曲线图中的实线表示电阻率相对于在HF200/1wf中超纯水清洗时间、或电阻率恢复时间的变化。图7的曲线图中的虚线表示电阻率相对于在HF500/1wf中超纯水清洗时间、或电阻率恢复时间的变化。图7的曲线图中的点划线表示电阻率相对于在HF200/44wf中超纯水清洗时间、或电阻率恢复时间的变化。图7的曲线图中的双点划线表示电阻率相对于在HF500/44wf中超纯水清洗时间、或电阻率恢复时间的变化。
根据现有技术,通过溶液的电阻率是否达到预定值来确定晶片是否被清洗到适当的清洁状态。在该比较实例中,当溶液的电阻率达到16MΩcm时,视为晶片被清洗到适当的清洁状态。在四种条件中,在清洗44个晶片的HF200/44wf和HF500/44wf中,超纯水清洗时间根据化学溶液(氢氟酸)的密度而不同。在这两种条件下,溶液的电阻率都达到16MΩcm。因此,在HF200/44wf和HF500/44wf中,在上述设置中也可确定(确认)最后晶片清洗的终点。相反,在清洗1个晶片的HF200/1wf和HF500/1wf中,超纯水清洗时间根据化学溶液的密度而不同,而溶液的电阻率没有达到16MΩcm。因此,在HF200/1wf和HF500/1wf中,在上述设置中不能确定(确认)最后晶片清洗的终点。
例如,将视为晶片被清洗到适当的清洁状态时的溶液的电阻率设置为13MΩ,以便确定甚至在HF200/1wf和HF500/1wf中最后晶片清洗的终点。然后,当在HF200/1wf和HF500/1wf中溶液的电阻率达到13MΩcm时,完成最后晶片的清洗。然而,在HF200/44wf和HF500/44wf中,当溶液的电阻率达到13MΩcm时,包含在化学溶液中的离子残留在清洗槽中的溶液中。即,在HF200/44wf和HF500/44wf中,如果将视为晶片被清洗到适当的清洁状态时的溶液的电阻率设置为13MΩcm,将在充分清洗晶片之前完成最后的清洗。
因此,在现有技术中,将包括充分允许考虑由清洗条件引起的各种清洗时间的晶片清洗时间设定得较长,以便无论如晶片的数量、化学清洗溶液的种类和密度、和清洗槽中溶液的电阻率的各种条件,都可将晶片清洗到充分清洁的状态。例如,在图7所示的比较实例中,通常将清洗时间设置为大约10分钟。相反,在上述实施例中,如从图3所见,能够在所有四种条件中7-8分钟内将晶片2清洗到适当的清洁状态,并且能够完成最后的清洗。
例如,在HF200/44wf的条件下,现有技术能够通过将该实施例施加到清洗晶片需要约600秒(10分钟)的清洗槽中以减少大约200秒的清洗时间。在这种情况下,如果将供应到清洗槽的超纯水的每单位时间的流速设定为大约20L/min,能够减少大约67升的超纯水。在上述实例中,具有最长清洗时间的HF200/1wf与具有最短清洗时间的HF500/44wf之间的清洗时间之差为约70秒。即,根据该实施例,与HF200/1wf相比,HF500/44wf中的清洗时间减少了大约70秒。在这种情况下,如果将供应到清洗槽3的超纯水的每单位时间的流速设定为大约20L/min,能够减少大约23升的超纯水。相反,在现有技术中,如上所述,将HF200/1wf和HF500/44wf的清洗时间设定为大约600秒。因此,在现有技术中,HF500/44wf中浪费了大约70秒的清洗时间和大约23升的超纯水。
晶片2的最后清洗中电阻率恢复时间很易受晶片2的数量和化学溶液的种类和密度的影响。电阻率恢复时间不均匀。因此,在现有技术中,鉴于最长的清洗时间来确定晶片清洗时间。相反,在该实施例中,即使晶片2的清洗条件不同,能够将晶片清洗到相同的状态,同时控制超纯水的浪费,并完成晶片的清洗。即,根据该实施例,无论晶片2的清洗条件,都能将晶片2清洗到基本相同的适当的清洁状态。相比于现有技术,该实施例也能够通过减少超纯水的量和减少晶片2的净处理时间(RPT)来提高晶片2的清洗效率。
此外,该实施例使用电阻率的时间微分值。这对应于使用超纯水替换化学溶液。因此,当用超纯水清洗晶片2时,很难受到由清洗槽3中的溶液6的电阻率获得的最后电阻率值的影响。即,该实施例很少受到由待清洗的晶片2的数量不同引起的最后电阻率差异和由电阻率表的测量准确度的恶化引起的降低的最后电阻率的影响。
根据第一实施例,当用于清洗晶片2的化学溶液和包含用于清洗已清洗过的晶片2的清洁水的溶液6的电阻率的时间微分值等于或小于预定值,并在该值保持预定时间后,完成晶片2的清洗。无论待清洗的晶片2的数量和化学溶液的种类和密度,都能够将晶片2清洗到适当的清洁状态,同时提高晶片2的清洗效率。
已经通过根据本实施例的晶片清洗方法或晶片清洗设备1清洗了根据该实施例的晶片2。因此,已将该实施例的晶片2清洗到具有充分除去化学溶液的污染物的适当的清洁状态。另外,该实施例的晶片2提供了高产量(生产效率),并降低了生产成本。
另外,尽管没有显示,根据该实施例的半导体器件具有根据该实施例的晶片2。因此,提高了该实施例的半导体器件的性能、品质、可靠性和产量。另外,该实施例的晶片2提供了高生产效率,并降低了生产成本。
(第二实施例)
现在,将参考图4说明本发明的第二实施例。图4示出了根据本实施例的晶片清洗设备的简化框图。用相同的附图标记表示与第一实施例中相同的元件,并将省略详细的说明。
与根据第一实施例的晶片清洗设备不同,在根据该实施例的晶片清洗设备中,在清洗槽的中间部分附近提供电阻率表(电阻率测量单元)。下面将给出具体的说明。
如图4所示,在根据该实施例的晶片清洗设备21的清洗槽22的中间部分,提供取出部分(溶液抽出部分)23以从清洗槽22取出没有暴露于空气的溶液6。提供与通过溶液抽出部分23从清洗槽3取出的溶液6b接触的电阻率表(电阻率测量单元)。即,在该实施例中,设置电阻率测量单元8以测量没有与空气接触的溶液6b的电阻率。
根据该实施例的晶片清洗方法、晶片、以及半导体器件与第一实施例的相同,并将省略说明。
第二实施例能够提供与第一实施例相同的效果。在该实施例中,电阻率测量单元8测量没有接触空气的溶液6b的电阻率。因此,测量值很难受到由于所谓的空气侵入而通过清洗槽22的上部开口22a溶解在溶液6中的空气中的碳酸气等的影响。即,该实施例中电阻率的测量值很难受到包括清洗槽22、水供应管4和超纯水供应阀5的清洗设备21的清洗系统24中产生的噪声的影响。尤其是,测量值很难受到由于溶液6的表面波动而由溶液6的空气接触区中的变化引起的清洗系统24中的噪声变化的影响。因此,该实施例能够高精度地测量溶液6的电阻率,并将晶片2清洗到更清洁的状态。即,充分地清除如附在该实施例的晶片2上的化学溶液的污染物,并将晶片2清洗到更适当的清洁状态。此外,尽管没有显示,但提高了该实施例的半导体器件的性能、品质、可靠性和产量。
根据本发明的清洗方法和设备并不局限于第一和第二实施例。只要不脱离本发明的精神或基本特性修改的情况下可以用其它的具体形式实现本发明。可以部分修改或适当合并实施例的配置和过程。
例如,在第一和第二实施例中,可以在电阻率测量电路9和运算控制电路11之间提供A/D转换器10,但不总是需要A/D转换器10。如果将电阻率测量电路9和运算控制电路11设置为处理相同形式的模拟或数字信号,就不需要A/D转换器10。
将运算控制单元11的运算部分(运算电路)和控制部分(控制电路)构造成一个整体,但它们不用必须是一个整体。可将运算控制单元11的运算部分和控制部分构造成分离的独立单元。
不必在清洗槽3的上部开口3a附近或在清洗槽2的中间提供电阻率测量单元8。如果在晶片2的大气溶液之前不将抽出到电阻率单元8的溶液从化学溶液替换成纯水,那么可以在清洗槽3和22的底部附近提供电阻率测量单元8。在该设置中,溶液6的电阻率的测量值更难受到由溶解在溶液6中的碳酸气引起的在清洗系统12和24中发生的噪声的影响。
清洗槽3和22或者是所谓的能够同时清洗多个晶片2的批量型,或者是一个接一个清洗晶片2的单晶片型。
对于清洗系统12和24中的典型噪声,在溶解在溶液6中的空气中有如二氧化碳的碳酸气。即使溶解量很小,溶解在溶液6中的碳酸气也会显著影响电阻率。通过将超纯水供应到清洗槽3和22的速度、从清洗槽3和22排泄溶液6的速度、或者由于溶液6的表面波动而造成的溶液6的空气接触面积的变化,改变溶解在溶液6中的碳酸气的总量。碳酸气的溶解量的变化率主要受清洗槽3和22的形状、上部开口3a和22a的尺寸、或电阻率测量单元8的安装方法和位置影响。因此,使电阻率平滑以清除在清洗系统12和24中的噪声并不局限于加权平均数(加权平滑)、加权平均值、或Savizky-Golay方法。可以使用适合清洗系统12和24中的噪声的任何方法。
实际上,不能仅仅通过使电阻率值平滑来充分清除噪声分量。因此,视为晶片被清洗到适当的清洁状态的电阻率的微分值不必局限于0.05MΩcm/sec。等于或小于0.05MΩcm/sec的任何值都可用作视为晶片被清洗到适当的清洁状态的电阻率的微分值。
在第一和第二实施例中,视为晶片被清洗到适当的清洁状态的条件是在通过最大值后电阻率的微分值等于或小于0.05MΩcm/sec,并在该值保持等于或大于5秒,但条件并不必局限于此。可以根据待清洗的净片的数量、处理槽3和22的尺寸、开口3a和22a的形状、或用于使用化学溶液清洗的化学溶液的种类和密度以及各种条件,将视为晶片被清洗到适当的清洁状态的条件确定为适当的值。
在第一和第二实施例中,将作为清洁水的超纯水从底部供给清洗槽2和22,但该设置不局限于此。可以从清洗槽3和22的中部供应超纯水。例如,如果当将超纯水从上部开口3a和22a供给清洗槽3和22时超纯水被暴露于空气,就会发生空气介入并且空气中的碳酸气等会溶解在超纯水中。当测量溶液6的电阻率和电导率时,溶解在超纯水中的碳酸气等就引起清洗系统12和24中的噪声分量,并且测量精确度下降。相反,如果在不暴露于空气的情况下,将超纯水从底部或中间部分直接供给清洗槽3和22,就会将在超纯水中溶解碳酸气等的可能性降低到几乎为零。即,能够控制清洗系统12和24中的噪声分量,并能够提高测量溶液6的电阻率和电导率的精度。另外晶片2被清洗至更清洁的状态,同时提高了清洗效率。
在第一和第二实施例中,清洗槽3或者是用于清洗附有化学清洗溶液的晶片2的处理槽,或者是具有在用化学溶液清洗晶片2之后将供给晶片2的溶液从化学溶液转换为清洁水的装置的处理槽。通过将清洗槽3和22用作用于清洗的处理槽,能够减少要通过清洁水清除的化学溶液的量。因而,相比于将清洗槽3和22用作不用于清洗的处理槽,能够进一步提高晶片2的清洗效率。
在第一和第二实施例中,通过使用电阻率测量单元8测量溶液6的电阻率,但测量并不局限于此。允许测量溶液6的电导率代替电阻率。在这种情况下,可以使用电导率表代替作为电学特性测量单元的电阻率测量单元8(电阻率表)。可以继续用清洁水清洗晶片2,直到达到溶液6的电导率的时间微分值大于预定值并在该值保持预定时间的条件。具体地,可以继续用清洁水清洗晶片2,直到在通过最小值之后溶液的电导率的时间微分值等于或大于-20μS/cm·sec并在该值保持等于或大于5秒。
通常,无论待清洗晶片的数量和用于清洗的化学溶液的种类和密度,在测量起始时,包括用于清洗晶片的化学溶液和用于清洗晶片的清洁水的溶液的电导率的时间微分值基本上为零。随着测量时间过去并达到预定时间的峰值,电导率的时间微分值下降。然后,随着测量时间过去并基本上变为零,电导率的时间微分值上升。即,无论待清洗晶片的数量和用于清洗的化学溶液的种类和密度,通过电导率对时间微分获得的值描绘为向下突出的曲线。
当使用溶液的电导率的时间微分值以确定晶片的清洗时间时,使用电导率的时间微分值的特征。即,继续清洗晶片,直到清洗溶液的电导率的时间微分值大于基于将晶片清洗到适当的清洁状态时的试验数据的预定值,并在该值保持预定时间。因而,在将晶片清洗到适当的清洁状态后,能立刻完成使用清洁水的晶片清洗。结果,无论待清洗晶片的数量和用于清洗的清洗溶液的种类和密度,都能减少用于清洗晶片的清洁水的量,并将晶片清洗到适当的清洁状态,同时减少晶片的清洗时间。
类似于清洗溶液的电阻率的时间微分值,溶液的电导率的时间微分值并不必局限于-20μS/cm·sec。等于或大于-20μS/cm·sec的任何值都用可作视为晶片2被清洗到适当的清洁状态的电导率的微分值。视为晶片2被清洗到适当的清洁状态的条件也并不必局限于通过最小值之后电导率的微分值等于或大于-20μS/cm·sec,并在该值保持等于或大于5秒钟。根据待清洗的晶片2的数量、处理槽3和22的尺寸、开口3a和22a的形状、用于清洗的化学溶液的种类和密度以及其它各种条件,可以将视为晶片2被清洗到适当的清洁状态的条件确定为适当的值。
对本领域的技术人员来说,其它的优点和修改将是显而易见的。因此,本发明在其更宽范围内并不限于这里示出和说明的具体细节和代表性实施例。因此,只要不脱离所附权利要求书和其等同替换限定的总发明构思的精神或范围,可以进行各种修改。

Claims (14)

1、一种晶片清洗方法,其特征在于包括下列步骤:
将清洁水供给用化学溶液清洗的晶片;
测量包括化学溶液和清洁水的溶液的电阻率,并将该测量值对时间微分;以及
用清洁水持续清洗晶片,直到电阻率的时间微分值等于或小于预定值,并在该预定值保持预定的时间。
2、根据权利要求1的方法,其特征在于,用清洁水持续的清洗晶片,直到通过最大值之后电阻率的时间微分值等于或小于0.05MΩcm/sec,并在该值保持等于或大于5秒钟。
3、根据权利要求1的方法,其特征在于,对溶液的电阻率进行预定的平滑,并将平滑的值对时间微分。
4、一种晶片的清洗方法,其特征在于包括下列步骤:
将清洁水供给用化学溶液清洗的晶片;
测量包括化学溶液和清洁水的溶液的电导率,并将该测量值对时间微分;以及
用清洁水持续清洗晶片,直到电导率的时间微分值等于或大于预定值,并在该预定值保持预定的时间。
5、根据权利要求4的方法,其特征在于,用清洁水持续的清洗晶片,直到通过最小值之后电导率的时间微分值等于或大于-20μS/cm·sec,并在该值保持等于或大于5秒钟。
6、根据权利要求4的方法,其特征在于,对溶液的电导率进行预定的平滑,并将平滑值对时间微分。
7、根据权利要求1至6的方法,其特征在于,测量用清洁水清洗晶片时包含晶片的清洗槽中的溶液的电阻率或电导率,作为溶液的电阻率或电导率。
8、一种晶片清洗设备,其特征在于包括:
清洗槽,包含用化学溶液清洗的晶片;
清洁水供应单元,向所述清洗槽供应清洁水以清洗晶片;
电学特性测量单元,测量包括用于清洗晶片的清洁水和化学溶液的溶液的电阻率;
运算单元,将用所述电学特性测量单元测量的溶液的电阻率对时间微分;以及
控制单元,操作所述清洁水供应单元,并向所述清洗槽供应清洁水,直到由所述运算单元计算的电阻率的时间微分值等于或小于预定值,并在该预定值保持预定时间。
9、根据权利要求8的设备,其特征在于,所述控制单元操作所述清洁水供应单元并向所述清洗槽供应清洁水,直到通过最大值之后电阻率的时间微分值等于或小于0.05MΩcm/sec,并在该值保持等于或大于5秒钟。
10、根据权利要求8的设备,其特征在于,运算单元平滑溶液的电阻率,并将平滑值对时间微分。
11、一种晶片清洗设备,其特征在于包括:
清洗槽,包含用化学溶液清洗的晶片;
清洁水供应单元,向所述清洗槽提供清洁水以清洗晶片;
电学特性测量单元,测量包括用于清洗晶片的清洁水和化学溶液的溶液的电导率;
运算单元,将用所述电学特性测量单元测得的溶液的电导率对时间微分;以及
控制单元,操作所述清洁水供应单元,并向所述清洗槽供应清洁水,直到由所述运算单元计算的电导率的时间微分值等于或大于预定值,并在该预定值保持预定时间。
12、根据权利要求11的设备,其特征在于控制单元操作清洁水供应单元并向清洗槽供应清洁水,直到通过最大值之后电导率的时间微分值等于或小于-20μS/cm·sec,并在该值保持等于或大于5秒钟。
13、根据权利要求11的设备,其特征在于,所述运算单元平滑溶液的电导率,并将平滑值对时间微分。
14、根据权利要求8至13的设备,其特征在于,在所述清洗槽的中间提供从清洗槽取出溶液的取出端口,并提供与通过取出端口将要取出的清洗槽中的溶液接触的电学特性测量单元。
CNB2004100832983A 2003-09-05 2004-09-03 晶片清洗方法与设备 Expired - Fee Related CN1311520C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP314513/2003 2003-09-05
JP2003314513A JP4330959B2 (ja) 2003-09-05 2003-09-05 半導体基板の洗浄方法および洗浄装置、半導体基板、ならびに半導体装置

Publications (2)

Publication Number Publication Date
CN1591779A true CN1591779A (zh) 2005-03-09
CN1311520C CN1311520C (zh) 2007-04-18

Family

ID=34415088

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2004100832983A Expired - Fee Related CN1311520C (zh) 2003-09-05 2004-09-03 晶片清洗方法与设备

Country Status (5)

Country Link
US (2) US20050081886A1 (zh)
JP (1) JP4330959B2 (zh)
KR (1) KR100575171B1 (zh)
CN (1) CN1311520C (zh)
TW (1) TWI249766B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102468126A (zh) * 2010-11-05 2012-05-23 无锡华润上华半导体有限公司 圆片清洗方法
CN101582372B (zh) * 2008-05-12 2012-11-07 盛美半导体设备(上海)有限公司 用于处理单片半导体工件的溶液制备设备和方法
CN109108032A (zh) * 2018-06-25 2019-01-01 上海华力微电子有限公司 一种非生产性晶圆清洗方法
CN111715606A (zh) * 2020-03-30 2020-09-29 横店集团东磁股份有限公司 全自动清洗石墨舟装置及其清洗方法
CN113644009A (zh) * 2021-07-15 2021-11-12 长江存储科技有限责任公司 清洗液生成方法、装置及清洗系统的控制方法、装置

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060043073A1 (en) * 2004-08-24 2006-03-02 Dainippon Screen Mfg. Co., Ltd. Substrate treating method and apparatus
JP4693642B2 (ja) * 2006-01-30 2011-06-01 株式会社東芝 半導体装置の製造方法および洗浄装置
JP4917965B2 (ja) * 2007-05-28 2012-04-18 ソニー株式会社 基板洗浄方法および基板洗浄装置
JP2011520609A (ja) * 2008-05-19 2011-07-21 エンテグリース,インコーポレイテッド 液体内のガス無気泡溶液を作成するガス化システムおよび方法
US7838425B2 (en) * 2008-06-16 2010-11-23 Kabushiki Kaisha Toshiba Method of treating surface of semiconductor substrate
JP2010087138A (ja) * 2008-09-30 2010-04-15 Panasonic Corp 洗浄装置および洗浄方法
WO2010073725A1 (ja) * 2008-12-26 2010-07-01 三菱マテリアル株式会社 多結晶シリコンの洗浄方法及び洗浄装置並びに多結晶シリコンの製造方法
JP2013038260A (ja) * 2011-08-09 2013-02-21 Fujifilm Corp 光電変換素子の製造方法
TW201713751A (zh) * 2015-10-06 2017-04-16 聯華電子股份有限公司 酸槽補酸系統與方法
CN114871186A (zh) * 2022-01-19 2022-08-09 上海晶盟硅材料有限公司 外延片阻值测量前处理方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5275957A (en) * 1984-01-10 1994-01-04 Anatel Corporation Instrument and method for measurement of the organic carbon content of water
JPH0192475A (ja) * 1987-09-30 1989-04-11 Takemoto Oil & Fat Co Ltd 合成繊維処理用油剤組成物
US5518933A (en) * 1989-03-10 1996-05-21 Unitika Ltd. Method of analyzing washings for free acids and ions
JPH05296959A (ja) * 1992-04-23 1993-11-12 Fuji Electric Co Ltd ウェーハ洗浄槽の純水比抵抗測定装置
JP3209489B2 (ja) * 1995-06-23 2001-09-17 オルガノ株式会社 イオン交換式純水製造装置の終点検知方法
AU8777598A (en) * 1997-08-11 1999-03-01 Motorola, Inc. Apparatus and method for processing an object
JP2001058277A (ja) * 1999-06-17 2001-03-06 Nadex Co Ltd ワーク抵抗の時間変化の検出が高精度化された抵抗溶接装置とその方法
JP2001029903A (ja) * 1999-07-22 2001-02-06 Matsushita Electronics Industry Corp 洗浄装置および洗浄方法
JP4046486B2 (ja) * 2001-06-13 2008-02-13 Necエレクトロニクス株式会社 洗浄水及びウエハの洗浄方法
JP5092367B2 (ja) * 2006-01-13 2012-12-05 旭硝子株式会社 含フッ素弾性共重合体の製造方法および架橋フッ素ゴム

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101582372B (zh) * 2008-05-12 2012-11-07 盛美半导体设备(上海)有限公司 用于处理单片半导体工件的溶液制备设备和方法
CN102468126A (zh) * 2010-11-05 2012-05-23 无锡华润上华半导体有限公司 圆片清洗方法
CN102468126B (zh) * 2010-11-05 2013-10-23 无锡华润上华半导体有限公司 圆片清洗方法
CN109108032A (zh) * 2018-06-25 2019-01-01 上海华力微电子有限公司 一种非生产性晶圆清洗方法
CN111715606A (zh) * 2020-03-30 2020-09-29 横店集团东磁股份有限公司 全自动清洗石墨舟装置及其清洗方法
CN113644009A (zh) * 2021-07-15 2021-11-12 长江存储科技有限责任公司 清洗液生成方法、装置及清洗系统的控制方法、装置
CN113644009B (zh) * 2021-07-15 2023-11-07 长江存储科技有限责任公司 清洗液生成方法、装置及清洗系统的控制方法、装置

Also Published As

Publication number Publication date
CN1311520C (zh) 2007-04-18
JP2005085892A (ja) 2005-03-31
KR100575171B1 (ko) 2006-05-02
US20050081886A1 (en) 2005-04-21
JP4330959B2 (ja) 2009-09-16
US20080202559A1 (en) 2008-08-28
TW200515471A (en) 2005-05-01
TWI249766B (en) 2006-02-21
KR20050024610A (ko) 2005-03-10

Similar Documents

Publication Publication Date Title
CN1311520C (zh) 晶片清洗方法与设备
CN1059878C (zh) 电子元件的清洗方法及装置
CN1947869B (zh) 一种硅料清洁方法
CN1135604C (zh) 半导体器件清洗装置和清洗半导体器件的方法
CN1947870B (zh) 一种废硅料清洗方法
CN103464415B (zh) 太阳能单晶硅片清洗液及清洗方法
CN1423830A (zh) 用于多种处理的立式配置腔室
EP2381017B1 (en) Method for washing polycrystalline silicon, washing device, and method for producing polycrystalline silicon
CN1329748A (zh) 晶片清洗和蒸汽干燥系统和方法
CN1161825C (zh) 清洗电子元件的方法
CN1444259A (zh) 半导体器件的制造方法
EP2039654A2 (en) Washing method, Washing apparatus for polycrystalline silicon and method of producing polycrystalline
CN1933759A (zh) 利用相容化学品的基板刷子擦洗和接近清洗干燥程序、接近基板制备程序和实施前述程序的方法、设备和系统
CN1649100A (zh) 高效能臭氧水清洗半导体晶圆的系统及其方法
CN1096400A (zh) 清洗半导体器件的方法及其清洗半导体器件的设备
JP4692709B2 (ja) 多結晶シリコンの洗浄方法
JP2007201367A (ja) 半導体装置の製造方法および洗浄装置
CN107611016A (zh) 一种太阳能硅片料的清洗方法
CN1645570A (zh) 移除晶片上颗粒与金属颗粒的方法
CN1296973C (zh) 在制造半导体器件过程中清洗半导体晶片的镶嵌结构的方法
CN105087184A (zh) 清洗试剂、清洗半导体器件中刻蚀残留物的方法及金属互连层的制作方法
CN1881538A (zh) 用以改善硅片表面金属离子污染的清洗方法
TWI728368B (zh) 防止晶圓被金屬離子汙染之方法及系統
CN1546627A (zh) 解决湿法剥离氮化硅薄膜新的清洗溶液
CN106252201A (zh) 一种硅片的水清洗方法和系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
ASS Succession or assignment of patent right

Owner name: JAPAN SKILLING MANUFACTURING CO., LTD.; SEIKO EPS

Free format text: FORMER OWNER: TOSHIBA CORPORATION; JAPAN SKILLING MANUFACTURING CO., LTD.; SEIKO EPSON CORP.

Effective date: 20070202

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20070202

Address after: Kyoto Japan

Co-patentee after: Seiko Epson Corp.

Patentee after: Toshiba K. K.

Address before: Tokyo, Japan, Japan

Co-patentee before: Toshiba K. K.

Patentee before: Toshiba Corp

Co-patentee before: Seiko Epson Corp.

C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20070418

Termination date: 20160903