CN1423840A - 高速凹槽双扩散金属氧化物半导体 - Google Patents

高速凹槽双扩散金属氧化物半导体 Download PDF

Info

Publication number
CN1423840A
CN1423840A CN01805809A CN01805809A CN1423840A CN 1423840 A CN1423840 A CN 1423840A CN 01805809 A CN01805809 A CN 01805809A CN 01805809 A CN01805809 A CN 01805809A CN 1423840 A CN1423840 A CN 1423840A
Authority
CN
China
Prior art keywords
source region
groove
grid
tagma
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN01805809A
Other languages
English (en)
Other versions
CN1288762C (zh
Inventor
石甫渊
苏根政
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Semiconductor Inc
Original Assignee
General Semiconductor Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Semiconductor Inc filed Critical General Semiconductor Inc
Publication of CN1423840A publication Critical patent/CN1423840A/zh
Application granted granted Critical
Publication of CN1288762C publication Critical patent/CN1288762C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4916Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4916Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen
    • H01L29/4925Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen with a multiple layer structure, e.g. several silicon layers with different crystal structure or grain arrangement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4916Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen
    • H01L29/4925Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen with a multiple layer structure, e.g. several silicon layers with different crystal structure or grain arrangement
    • H01L29/4933Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen with a multiple layer structure, e.g. several silicon layers with different crystal structure or grain arrangement with a silicide layer contacting the silicon layer, e.g. Polycide gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • H01L29/4236Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • H01L29/4238Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out characterised by the surface lay-out
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • H01L29/456Ohmic electrodes on silicon

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

提供了一种凹槽栅DMOS(1)和相应制造方法,其中栅极材料包括硅化物或耐熔金属层(39)。BPSG层可以形成于栅极结构之上。而且,栅极的一部分(61)可以置于源区(63)之上。

Description

高速凹槽双扩散金属氧化物半导体
发明领域
本发明一般涉及MOSFET晶体管,尤其是涉及具有凹槽结构(trench structure)的双扩散金属氧化物半导体(DMOS)晶体管。
发明背景
DMOS(双扩散MOS)晶体管是一类使用扩散形成晶体管区域的典型的MOSFET(金属半导体场效应管)。典型地,DMOS晶体管为用于电源集成电路提供高电压电路的功率管。当需要低的前向压降时,DMOS晶体管提供较高的每单元电流。
典型的分立DMOS电路包括并列制造的两个或多个单独的DMOS晶体管单元。单独DMOS晶体管单元共用一个公共的漏区(衬底),而他们的源区全部用金属短接起来,它们的栅用多晶硅短接在一起。因此,尽管分立的DMOS电路是由更小的晶体管矩阵构成的,它表现出的行为却好像是一个单个大晶体管。对于分立的DMOS电路而言,最理想的是当由栅打开晶体管矩阵时,使每单元区域的导电性最大。
在被称作凹槽DMOS晶体管的一类特殊的DMOS晶体管中,沟道是垂直形成的,而栅则形成于源与漏之间延伸的凹槽内。沿薄氧化层排列并以多晶填充的凹槽允许较小的电流流过,因此提供较小的特定开启电阻(on-resistance)。在U.S.Patent Nos.5,072,266,5,541,425,和5,866,931中公开了凹槽DMOS晶体管的例子。
凹槽DOMS晶体管经常遇到的一个问题是孔穿效应(punch-through)。在晶体管沟道已耗尽时发生的孔穿,典型地雪崩击穿前以非破坏性的泄漏电流形式在出现。已经发现在晶体管密度较高,特别是密度高于18M/in3时,孔穿非常有害。尽管有多种原因导致孔穿,一类显著的孔穿成因在凹槽栅的形成过程中出现。具体而言,当凹槽已经被刻蚀后,要进行去氧化步骤以平滑凹槽侧壁,其后进行薄氧化层淀积。在去除氧化物和氧化物淀积步骤中,由于在处于高温下进行的去氧化步骤中,掺杂物(典型地为硼)从硅中析出并进入氧化物,掺杂物浸出临近的沟道(称之为本体)。这种问题在更高的单元密度中更加加重,因为相对于由凹槽包围的表面面积而言,沟道的相对宽度降低了。
当淀积多晶硅以填充凹槽时,也会加重穿孔效应,因为多晶硅中使用的掺杂物(典型为磷)能够穿透栅进入本体,这将显著降低沟道中载流子的浓度。当排列在凹槽的栅氧化厚度减少时,这个问题变得更为严重。
U.S.Patent No.5,702,266公开了用于制造凹槽DMOS晶体管的常规处理步骤。在该过程中,本体通道和源区先于凹槽之前形成。然而,如前所述,在凹槽的形成期间掺杂物会从本体中浸出,增加了孔穿效应。结果就必须增加凹槽和本体的深度以补偿孔穿效应的增加。此外,因为在形成凹槽栅时采用的氧化步骤期间所引起的源区中的硅缺陷的原因,源区也可能在凹槽形成期间受到负面影响。
U.S.Patent No.5,468,982尝试通过在刻蚀且填充凹槽栅后形成本体来减少孔穿效应。然而,这种措施并不很令人满意,因为本体的形成需要涉及高温下的(典型为1100-1150℃)扩散步骤。这样的高温使得填充凹槽的多晶硅中的掺杂物以更高速率穿透栅氧化物,因此使孔穿效应增加。
现有的凹槽DMOS存在的另一个问题是开关速度。产业上非常强调以更高的单元密度生产分立的DMOS电路。然而,当单元密度增加后,必须要缩小凹槽宽度以满足设计需要,而较窄的凹槽宽度导致更高的栅电阻。因此,开关速度成为重要的考虑因素。
在高级的逻辑处理中,已使用了诸如WSi2和TiSi2的多晶硅化物(polycide),和诸如W和TiW的耐熔金属和合金以增加器件和IC电路的开关速度。然而,部分如下原因,即使用这些材料在理论上能够达到的较高开关速度在事实上还未实现,在凹槽DMOS中使用多晶硅化物或合金金属的技术并不常用。通过考察典型的已有技术的带有双层栅的凹槽DMOS能够了解该原因。通过选择CVD钨制造栅。在这类凹槽DMOS中,本体和源在凹槽栅形成之前形成。这类晶体管至少有两个缺点。首先,在随后的诸如去氧化和栅氧化的氧化过程期间,很容易在源区形成硅缺陷。因为源区典型地为砷的重掺杂,这导致该区中栅氧化完整性很差。第二,因为在随后的氧化过程中需要较深的本体(p-body)和凹槽以防止孔穿,这类晶体管具有较深的源接合深度。从而,器件有较高的寄生电容,减少了钨/多栅带来的益处。
因此,在本技术领域中需要一种凹槽DMOS及其制造方法,其中,凹槽DMOS具有低栅电阻和低电容,从而减少分布RC栅传输延迟,并提高用于高频应用中的开关速度。在本技术领域中也需要一种制造凹槽DMOS的方法,其减少或消除了孔穿效应。正如下文所述,本发明满足了这种和其他方面的需要。
发明内容
本发明涉及生产凹槽DMOS的方法和用这种方法制造出来的凹槽DMOS。根据本发明,使用多晶硅化物和耐熔技术制造具有低栅电阻,低栅电容的,减小分布RC栅传输延迟,较少孔穿效应,和提高的高频应用的开关速度的凹槽DMOS。
一方面,本发明设计生产凹槽DMOS的方法,和用这种方法制造出来的凹槽DMOS。根据所述方法,源(可以是N+源)形成于栅氧化之后。这使得结合深度能够控制在一个非常窄的范围内(例如,0.2到0.5um),这样,通过使用较窄的本体和较窄的凹槽深度减小寄生电容而又不增加漏/源孔穿效应的危险。栅氧化之后形成的源的优点在于提高了栅氧化完整性,因为它去除了氧化过程所导致的源区中的硅缺陷(典型地为砷的重掺杂)。此外,因为在CVD多晶硅化物或合金淀积后,器件未暴露在任何高温过程中,这种方法导致在多晶硅与多晶硅化物或耐熔金属之间产生较小的应力或空隙形成(voidformation)。
另一方面,本发明涉及具有至少三层的栅结构的凹槽DMOS,和用于制造这样的凹槽DMOS的方法。在栅结构中,第一层典型地暴露在栅氧化层之上,包括无掺杂的多晶硅,第二层包括掺杂的多晶硅,以及第三层包括从多晶硅化物和耐熔金属构成的组中选择出的材料。第一层用作缓冲区,在BPSG过程中,阻挡磷穿透栅氧化物,从而防止漏/源孔穿。
另一个方面,本发明涉及制造凹槽DMOS的方法和用这种方法制造的凹槽DMOS,其中,在凹槽形成期间阻止掺杂物从本体中浸出。根据本方法,通过使用图形为凹槽的掩模,结合刻蚀过程,完成凹槽的形成。移去掩模之前,可用去氧化层使凹槽的侧壁平滑。因为在移去掩模之前完成凹槽的形成,也因为掩模充当了掺杂物的盖层(cap)或阻挡层(barrier),基本上消除了掺杂物从本体中浸出,从而减少了孔穿。
又一方面,本发明涉及一种凹槽DMOS及其制造方法,其中栅层的一部分暴露在源区之上,使得其较源区来说离漏区更远。这种构造具有更低的栅电阻(尤其是在浅凹槽器件中),和更高的开关速度。
附图简要说明
图1为根据本发明的所构造的凹槽DMOS晶体管的一个实施例的示意截面图;
图2A-2G为示意截面图,说明形成根据本发明的DMOS晶体管加工过程的各步骤;
图3A-3B为示意截面图,说明形成根据本发明的DMOS晶体管加工过程的各步骤;
图4A-4B为示意截面图,说明形成根据本发明的DMOS晶体管加工过程的各步骤。
具体实施方式
本发明提供使用多晶硅化物和耐熔技术制造凹槽DMOS的方法。根据这些方法制造的凹槽DMOS显示出低栅电阻,低栅电容,减小的分布RC栅传播延迟,减少的孔穿,和改善的高频应用的开关速度。
图1示出根据本发明制造的凹槽DMOS结构1。该结构包括在其上生长有轻n-掺杂外延层5的n+衬底3。在掺杂的外延层上,提供了相反导电性的体区7。覆盖在大部分体区上的掺杂外延层9作为源。外延层中放有六角形的凹槽11,敞开于结构的上表面。与每个晶体管单元相连的凹槽限定了在水平截面上的单元区域13也是六角形的。在单元区域中,体区上升到结构的上表面并在单元区顶层的水平截面图中形成曝漏的图形15。
图1中所示的MOSFET的栅位于垂直方向的矩形凹槽中。这种结构常被称为凹槽垂直DMOSFET。说它是“垂直”的因为漏接触出现在衬底的下层或背面,还因为从源到漏的沟道电流是大致垂直的。这种结构使得与弯曲或弯折的电流路径或与寄生效应结构相关的较高电阻最小。该器件还是双扩散的(由前缀“D”标出)因为源区扩散到具有相反导电性的先前已扩散的一部分体区的顶部的外延物中。这种结构使用凹槽侧壁区域通过栅来控制电流,并且具有与之相关的基本上垂直的电流。如前面提到,当需要流过给定的横向硅区载流最大时,该器件尤其适合用作功率开关晶体管。
应当注意的是,晶体管单元13中作为基本晶体管的功能结构不需要为六角形,更通常地,可以是任何多边形。然而,正矩形和正六角形最方便于布图。可选地,晶体管单元可以具有是敞开的或具有条状几何图形而非图中所示的具有封闭单元的几何图形。在前面提到的对比文件中示出了不同的晶体管单元几何图形的例子。此外,应当注意到,图1及其后的示图中,仅仅示出了衬底,和与之相关的掺杂区和凹槽。为清晰起见,以及本领域技术人员熟知的缘故,未示出其它层,诸如覆盖的绝缘层,栅结构和导电连线。
图2A-2G示出本发明的方法的第一实施例,其可用于制造图1中所示类型的DMOS器件。图2A中,N掺杂的外延层21生长在常规的N+掺杂的衬底23上。对于30V的器件,外延层典型地为5.5微米厚。接着,在注入和扩散步骤,形成本体区25。因为本体注入是均匀地通过衬底的,所以不需要掩模。在40-60Kev下,以5.5×1013/cm3的剂量向本体区注入硼。
在图2B中,通过用氧化物层覆盖外延层的表面形成氧化层掩模,然后将其曝光并刻图只留下掩模部分27。掩模部分27用于限定凹槽29的位置,利用活性离子刻蚀,通过掩模开口,将凹槽29干刻蚀至典型值为1.5到2.5微米深度。
图2C中,掩模部分典型地被缓冲氧化物刻蚀或HF刻蚀移去。因为在已刻图的凹槽掩模板之前完成凹槽的形成步骤,还因为已刻图的凹槽掩模在凹槽形成期间作为盖帽或缓冲之用,因此掺杂物不会浸出本体。通过阻止掺杂物从本体中浸出,本发明方法减小了孔穿效应。
在移去掩模部分后,在整个结构上淀积栅氧化层31,使得其覆盖凹槽侧壁和本体25的表面。栅氧化层31的典型厚度在500-800埃之间。
图2D中,淀积栅氧化层后,淀积非掺杂多晶层35,接着淀积掺杂多晶层37,即,对多晶硅掺杂含磷氯化物或注入砷或磷以减小它的电阻,该电阻典型地在20欧姆内。在BPSG过程期间,非掺杂多晶硅层作为缓冲层以阻挡磷穿过栅氧化层,因此阻止漏/源孔穿。接下来,淀积诸如WSi2或TiSi2的多晶硅化物层39或诸如TiW或W的耐熔金属层。
在图2E中,非掺杂多晶、掺杂多晶和多晶硅化物层被刻蚀以暴露出在本体表面延伸的栅氧化层部分。接下来,使用光刻掩模工艺来形成刻图掩模层41。刻图掩模层限定了N源区43,在随后使用砷或磷进行注入和扩散过程来形成该区域。例如,在80Kev下,向第一源区以典型值在8×1015到1.2×1016/cm3的范围内的浓度注入砷。注入之后,砷被扩散到大约0.5微米的深度。形成N源区后,以常规方式移去掩模层以形成图2F所示的结构,并且一个或多个P源区45被注入。
通过在结构上形成并刻图BPSG层完成凹槽DMOS晶体管,以限定与栅极相连的BPSG区。通过接触掩模和刻蚀过程刻图BPSG,此后通过金属掩模和刻蚀过程逐次淀积Ti/TiN层48和AL/Si/.Cu层50。同样地,在衬底的下表面上形成漏接触层。最后,使用焊盘掩模来限定含盘接触点(pad contact)。
图3A-3B示出本发明的第二实施例。在此实施例中,基本上按照图2A-2D中示出的步骤形成凹槽DMOS。然而,在非掺杂多晶层53、掺杂多晶硅55和栅氧化物56上淀积多晶硅化物或耐熔金属51后,多晶硅掩模57被置于凹槽59上,并且所形成的结构易于刻蚀以将非掩模多晶硅和多晶硅化物层移去。于是,以类似于图2E-2G所示的方法完成制造凹槽DMOS,得到图3B所示的器件。在已完成的器件中,栅层61置于源区63上,因此栅层61部分与漏的距离大于漏与源的距离。其结果是,这种安排具有较低的栅电阻(尤其在浅凹槽器件中),因此可获得较高的开关速度。
图4A-4B示出本发明第三个实施例。在此实施例中,除了使用的掺杂多晶硅65厚得足以填充凹槽67外,以用于形成图3A-3B中所示器件相类似的方式形成凹槽DMOS。如图3A-3B所示器件中,在已完成的器件中至少栅层部分69置于源区71之上,因而至少漏与栅层的至少一部分间的距离大于漏与源之间的距离。这种结构,与图3A-3B所示的配置一样,,也具有较低的栅电阻(尤其在浅凹槽器件中),和较高的开关速度。
根据本发明的方法,在栅氧化之后形成N源区,因此,根据典型地为900到950℃范围的BPSG温度循环过程,,结合深度可被控制在很浅的深度(例如,在0.2到0.5微米之内)。由于不发生漏/源的孔穿就可获得较浅的本体和凹槽深度,因此寄生电容也减小了。此外,由于在CVD多晶硅化物或耐熔金属积淀后没有进行高温过程,使得多晶硅与多晶硅化物或耐熔金属之间的应力或虚形成较小。
本发明的不同实施例中,也可以通过分两个步骤用多晶硅填充凹槽来减小孔穿。第一步,在栅氧化层上淀积非掺杂的多晶硅层以排齐(line)凹槽侧壁。在淀积掺杂多晶硅层后得到非掺杂多晶硅层。典型地,掺杂多晶硅层的厚度大于非掺杂多晶硅层的厚度。例如,掺杂多晶硅层的厚度与非掺杂多晶硅层的厚度比可以是7∶1或更高,典型的总厚度约为8000埃.
更有利地,非掺杂多晶硅层可以用作禁止掺杂物穿过栅氧化层并进入本体的缓冲层,因此,进一步减少了孔穿。当在移去凹槽掩模之前形成凹槽时,可以使用这两个步骤。可选地,两层淀积过程可以利用其自身来减少孔穿。也就是,即使在形成凹槽之前就移去凹槽掩模,也可以用具有多晶硅的非掺杂和掺杂层填充凹槽。
尽管在此说明并介绍了不同的特定实施例,应当理解,在不背离本发明的精神或本质特征的情况下对本发明的修改和变更都被以上教导所覆盖,并且落在所附如权利要求范围内。例如,可以用本发明的方法来制造与在此介绍的导电性相反的各种半导体领域中的凹槽DMOS。

Claims (59)

1.一种形成凹槽DMOS的方法,包括步骤:
提供一种产品,其包括具有第一导电类型的衬底和具有第二导电类型的体区,所述产品具有延伸穿过所述体区和所述衬底的凹槽;
在所述凹槽中淀积栅氧化层;
在所述凹槽中形成栅,所述栅具有至少一层,该层包括选自多晶硅化物和耐熔金属组成的组的材料;和
在所述体区中形成源区;
其中,所述源区形成于栅氧化层淀积之后。
2.如权利要求1所述的方法,其中所述栅包括含有非掺杂多晶硅的第一层,含有掺杂多晶硅的第二层,和含有选自多晶硅化物和耐熔金属组成的组中的材料的第三层。
3.如权利要求2所述的方法,其中所述第一层与所述栅氧化层相邻。
4.如权利要求1所述的方法,其中所述栅具有至少一层,该层含有耐熔金属。
5.如权利要求4所述的方法,其中所述耐熔金属选自由W和TiW组成的组。
6.如权利要求1所述的方法,其中所述栅具有包含合金的至少一层:
7.如权利要求6所述的方法,其中所述多晶硅化物选自由WSi2和TiSi2组成的组。
8.如权利要求1所述的方法,其中,所述凹槽通过提供限定至少一个凹槽的掩模层形成,并形成由所述掩模层限定的凹槽。
9.如权利要求8所述的方法,其中,在形成所述凹槽之前,将所述掩模层置于所述体区之上。
10.如权利要求8所述的方法,其中,在形成所述凹槽之后,所述掩模被移去。
11.如权利要求1所述的方法,其中所述体区为本体.
12.如权利要求1所述的方法,其中,通过向衬底注入和扩散掺杂物形成所述体区。
13.如权利要1所述的方法,其中所述体区置于所述衬底上。
14.如权利要求1所述的方法,其中所述源区是具有所述第一导电类型的源区。
15.如权利要求14所述的方法,进一步包括形成具有第三导电类型的源区的步骤。
16.如权利要求15所述的方法,其中所述第一导电类型为N+,第三导电类型为P+。
17.如权利要求1所述的方法,其中所述源区为N+源区。
18.如权利要求1所述的方法,其中所述源区与所述凹槽相邻。
19.如权利要求1所述的方法,其中,以小于0.5um的结合深度形成所述源区。
20.如权利要求1所述的方法,其中以范围在0.2到0.5um的结合深度形成所述源区。
21.如权利要求1所述的方法,,进一步包括步骤:
在所述凹槽上形成刻图的BPSG层。
22.如权利要求21所述的方法,,其中,以温度循环范围在900到950℃在所述凹槽之上形成所述刻图BPSG层。
23.如权利要求19制造的凹槽DMOS,所述凹槽DMOS包括多个栅极,其中每个所述栅极具有与之相连的BPSG区。,
24.如权利要求1制造的DMOS.。
25.如权利要求24所述的DMOS,进一步包含漏区,其中所述栅的至少一部分与所述漏区之间的距离大于所述源区与所述漏区的距离。
26.如权利要求1所述的方法,其中所述在凹槽中形成栅的步骤包括步骤:用多晶硅填充所述凹槽,和在多晶硅上淀积包括选自多晶硅化物和耐熔金属组成的组的材料的一层。
27.一种用于制造凹槽DMOS的方法,包括以下步骤:
提供具有第一导电类型的衬底;
在所述衬底上形成体区,所述体区具有第二导电类型;
形成限定至少一个凹槽的掩模层;
形成由所述掩模层限定的所述凹槽,所述凹槽延伸经过所述体区和衬底;
在所述凹槽中形成栅,所述栅包括:含有非掺杂多晶硅的第一层,含有掺杂多晶硅的第二层,和含有选自多晶硅化物和耐熔金属组成的组的材料的第三层;以及
在临近所述凹槽的体区中形成第一导电类型的第一源区。
28.如权利要求27所述的方法,进一步包括步骤:
形成与所述第一源区相邻的具有第三导电类型的第二源区。
29.如权利要求28所述的方法,其中,所述第一源区为n+源,而所述第二源区为p+源。
30.如权利要求27所述的方法,其中在所述栅形成之前,用绝缘层覆盖所述凹槽。
31.如权利要求30所述的方法,其中所述绝缘层为栅氧化层。
32.一种凹槽DMOS,包括:
具有第一导电类型的衬底;
具有第二导电类型的体区;
延伸经过所述体区和所述衬底的凹槽;
置于所述凹槽中的栅;
置于所述体区中的源区;和
漏区;
其中,所述栅的至少一部分与所述漏区之间的距离大于所述源区与所述漏区的距离。
33.如权利要求32所述的凹槽DMOS,其中,所述衬底具有基本平坦的大部分表面,其轴与所述大部分平面垂直。
34.如权利要求32所述的凹槽DMOS,进一步包括置于所述栅和所述凹槽表面之间的栅氧化层。
35.如权利要求32所述的凹槽DMOS,其中,所述栅包括:含有非掺杂多晶硅的第一层,含有掺杂多晶硅的第二层,和含有选自多晶硅化物和耐熔金属组成的组的材料的第三层。
36.如权利要求35所述的凹槽DMOS,其中,所述第一层与所述氧化层层相邻。
37.如权利要求32所述的DMOS,其中,所述栅具有包括耐熔金属的至少一层。
38.如权利要求37所述的DMOS,其中所述耐熔金属选自由W和TiW组成的组。
39.如权利要求32所述的凹槽DMOS,其中,所述栅具有包括多晶硅化物的至少一层。
40.如权利要求39所述的凹槽DMOS,其中,所述多晶硅化物选自由WSi2和TiSi2组成的组。
41.如权利要求32所述的凹槽DMOS,其中所述体区为本体..
42.如权利要求32所述的凹槽DMOS,其中所述体区置于所述衬底之上。
43.如权利要求32凹槽的DMOS,其中,所述源区为所述具有第一导电类型的源区。
44.如权利要求32的凹槽DMOS,进一步包括具有第三导电类型的源区。
45.如权利要求44的凹槽DMOS,其中所述第一导电类型为N+,所述第三导电类型为P+.
46.如权利要求32的凹槽DMOS,其中,所述源区为N+源区。
47.如权利要求32的凹槽DMOS,其中,所述源区与所述凹槽相邻。
48.如权利要求32的凹槽DMOS,其中,所述源区具有小于0.5um的结合深度。
49.如权利要求32的凹槽DMOS,其中,所述源区具有范围在0.2到0.5微米的结合深度。
50.如权利要求32的凹槽DMOS,进一步包括置于所述凹槽上的刻图BPSG层。
51.用于形成凹槽DMOS晶体管单元的方法,包括步骤:
提供一种产品,包括具有第一导电类型的衬底和具有第二导电类型的体区,所述产品具有延伸穿过所述体区和所述衬底的凹槽;
形成覆盖在所述凹槽和所述体区的栅,所述栅具有至少一层,该层包括选自多晶硅化物和耐熔金属组成的组的材料;
在所述凹槽上放置掩模;
去除所述栅的未掩模部分;和
在所述体区中形成第一源区。
52.如权利要求51的方法,其中,在形成所述栅之前,用一于绝缘层排列所述栅凹槽和体区。
53.如权利要求51的方法,其中所述第一源区具有第一导电类型。
54.如权利要求51的方法,其中第一源区于所述凹槽相邻。
55.如权利要求51的方法,进一步包括步骤:
形成具有第三导电类型的第二源区。
56.如权利要求51的方法,其中,所述第一源区为N+源区。
57.如权利要求55的方法,其中所述第一导源区为N+源区,第二源区为P+源区.。
58.如权利要求51的方法,其中形成所述栅的步骤包括:用多晶硅填充所述凹槽,和在多晶硅层上淀积包括选自多晶硅化物和耐熔金属组成的组的材料的一层。
59.如权利要求51的方法,其中,所述栅包含至少一层,该层选自多晶硅化物和耐熔金属组成的组的材料。
CNB018058094A 2000-02-29 2001-02-15 高速凹槽双扩散金属氧化物半导体 Expired - Fee Related CN1288762C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/515,749 US6312993B1 (en) 2000-02-29 2000-02-29 High speed trench DMOS
US09/515,749 2000-02-29

Publications (2)

Publication Number Publication Date
CN1423840A true CN1423840A (zh) 2003-06-11
CN1288762C CN1288762C (zh) 2006-12-06

Family

ID=24052591

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB018058094A Expired - Fee Related CN1288762C (zh) 2000-02-29 2001-02-15 高速凹槽双扩散金属氧化物半导体

Country Status (8)

Country Link
US (3) US6312993B1 (zh)
EP (1) EP1266407B1 (zh)
JP (1) JP2004504711A (zh)
KR (1) KR20030064270A (zh)
CN (1) CN1288762C (zh)
AU (1) AU2001241502A1 (zh)
TW (1) TW508824B (zh)
WO (1) WO2001065608A2 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7586152B2 (en) 2007-06-26 2009-09-08 Nanya Technology Corp. Semiconductor structure
CN101114674B (zh) * 2006-07-27 2010-06-09 东部高科股份有限公司 半导体器件及其制造方法
CN101211965B (zh) * 2006-12-25 2011-06-15 万国半导体股份有限公司 极度圆孔屏蔽的栅槽mosfet器件及其生产工艺
CN104465728A (zh) * 2014-12-24 2015-03-25 上海华虹宏力半导体制造有限公司 分离栅功率器件的栅极结构及工艺方法
CN105810732A (zh) * 2014-12-31 2016-07-27 帅群微电子股份有限公司 沟槽式功率金氧半场效晶体管与其制作方法
CN106060742A (zh) * 2016-06-08 2016-10-26 钰太芯微电子科技(上海)有限公司 一种麦克风电路及其中的mos管
CN106409904A (zh) * 2015-08-03 2017-02-15 爱思开海力士有限公司 Mos传输晶体管和包括其的电平移位器
CN113299757A (zh) * 2021-05-21 2021-08-24 江苏东海半导体科技有限公司 一种抑制尖峰电压的mosfet结构及其制造方法

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6518621B1 (en) * 1999-09-14 2003-02-11 General Semiconductor, Inc. Trench DMOS transistor having reduced punch-through
TW543146B (en) * 2001-03-09 2003-07-21 Fairchild Semiconductor Ultra dense trench-gated power device with the reduced drain-source feedback capacitance and miller charge
GB0117949D0 (en) * 2001-07-24 2001-09-19 Koninkl Philips Electronics Nv Trench-gate semiconductor devices and their manufacture
US6635544B2 (en) * 2001-09-07 2003-10-21 Power Intergrations, Inc. Method of fabricating a high-voltage transistor with a multi-layered extended drain structure
US6677205B2 (en) * 2001-09-28 2004-01-13 Infineon Technologies Ag Integrated spacer for gate/source/drain isolation in a vertical array structure
US6573560B2 (en) * 2001-11-06 2003-06-03 Fairchild Semiconductor Corporation Trench MOSFET with reduced Miller capacitance
US6674124B2 (en) * 2001-11-15 2004-01-06 General Semiconductor, Inc. Trench MOSFET having low gate charge
TW511297B (en) * 2001-11-21 2002-11-21 Mosel Vitelic Inc Manufacture method of DMOS transistor
US6781196B2 (en) * 2002-03-11 2004-08-24 General Semiconductor, Inc. Trench DMOS transistor having improved trench structure
US6861701B2 (en) * 2003-03-05 2005-03-01 Advanced Analogic Technologies, Inc. Trench power MOSFET with planarized gate bus
JP2004342863A (ja) * 2003-05-16 2004-12-02 Shindengen Electric Mfg Co Ltd 半導体装置
US6974750B2 (en) * 2003-06-11 2005-12-13 International Rectifier Corporation Process for forming a trench power MOS device suitable for large diameter wafers
JP4623956B2 (ja) * 2003-11-12 2011-02-02 株式会社豊田中央研究所 Igbt
JP4917246B2 (ja) * 2003-11-17 2012-04-18 ローム株式会社 半導体装置およびその製造方法
JP4059846B2 (ja) * 2003-12-26 2008-03-12 Necエレクトロニクス株式会社 半導体装置及びその製造方法
KR100607177B1 (ko) * 2004-04-06 2006-08-01 삼성전자주식회사 비대칭 채널영역을 갖는 트랜지스터를 구비하는 반도체 소자 및 그 제조방법.
US7582931B2 (en) * 2004-06-04 2009-09-01 Samsung Electronics Co., Ltd. Recessed gate electrodes having covered layer interfaces and methods of forming the same
KR100683089B1 (ko) 2005-08-24 2007-02-15 삼성전자주식회사 리세스된 게이트 구조물, 리세스된 게이트 구조물의 형성방법, 리세스된 게이트 구조물을 포함하는 반도체 장치 및그 제조 방법
US7667264B2 (en) * 2004-09-27 2010-02-23 Alpha And Omega Semiconductor Limited Shallow source MOSFET
US20060113588A1 (en) * 2004-11-29 2006-06-01 Sillicon-Based Technology Corp. Self-aligned trench-type DMOS transistor structure and its manufacturing methods
US7867845B2 (en) * 2005-09-01 2011-01-11 Micron Technology, Inc. Transistor gate forming methods and transistor structures
US20070075362A1 (en) * 2005-09-30 2007-04-05 Ching-Yuan Wu Self-aligned schottky-barrier clamped trench DMOS transistor structure and its manufacturing methods
KR100764439B1 (ko) * 2006-04-25 2007-10-05 주식회사 하이닉스반도체 반도체 소자의 형성 방법
US7679146B2 (en) * 2006-05-30 2010-03-16 Semiconductor Components Industries, Llc Semiconductor device having sub-surface trench charge compensation regions
US7838364B2 (en) * 2006-09-29 2010-11-23 Hynix Semiconductor Inc. Semiconductor device with bulb-type recessed channel and method for fabricating the same
US7589377B2 (en) * 2006-10-06 2009-09-15 The Boeing Company Gate structure with low resistance for high power semiconductor devices
US7812409B2 (en) * 2006-12-04 2010-10-12 Force-Mos Technology Corp. Trench MOSFET with cell layout, ruggedness, truncated corners
KR100861213B1 (ko) * 2007-04-17 2008-09-30 동부일렉트로닉스 주식회사 반도체 소자 및 그 제조방법
US7808222B2 (en) * 2007-10-12 2010-10-05 Monolithic Power Systems, Inc. Method and apparatus for high performance switch mode voltage regulators
US8022472B2 (en) * 2007-12-04 2011-09-20 Rohm Co., Ltd. Semiconductor device and method of manufacturing semiconductor device
US20100013009A1 (en) * 2007-12-14 2010-01-21 James Pan Structure and Method for Forming Trench Gate Transistors with Low Gate Resistance
KR100988776B1 (ko) 2007-12-27 2010-10-20 주식회사 동부하이텍 리세스드 게이트 트랜지스터의 제조 방법
JP5494474B2 (ja) * 2008-03-24 2014-05-14 日本電気株式会社 半導体装置及びその製造方法
US20090242973A1 (en) 2008-03-31 2009-10-01 Alpha & Omega Semiconductor, Ltd. Source and body contact structure for trench-dmos devices using polysilicon
JPWO2009122486A1 (ja) * 2008-03-31 2011-07-28 三菱電機株式会社 半導体装置
WO2010008617A1 (en) * 2008-07-15 2010-01-21 Maxpower Semiconductor Inc. Mosfet switch with embedded electrostatic charge
KR101036528B1 (ko) * 2010-05-13 2011-05-24 벽진산업 주식회사 다양한 관의 연결이 가능한 안샘 맨홀용 플랜지식 연결구조
US9553185B2 (en) * 2010-05-27 2017-01-24 Fuji Electric Co., Ltd. MOS-driven semiconductor device and method for manufacturing MOS-driven semiconductor device
CN102737993B (zh) * 2011-04-01 2015-02-04 无锡华润上华半导体有限公司 沟槽dmos器件及其制造方法
KR20130104200A (ko) * 2012-03-13 2013-09-25 에스케이하이닉스 주식회사 반도체 장치 및 그 제조 방법
ITMI20121599A1 (it) * 2012-09-25 2014-03-26 St Microelectronics Srl Dispositivo elettronico comprendente un transistore vtmos ed un diodo termico integrati
JP6221922B2 (ja) * 2014-04-25 2017-11-01 トヨタ自動車株式会社 半導体装置の製造方法
US9525045B1 (en) * 2016-03-10 2016-12-20 Vanguard International Semiconductor Corporation Semiconductor devices and methods for forming the same
EP3671860A1 (en) * 2018-12-20 2020-06-24 Infineon Technologies Austria AG Semiconductor transistor device and method of manufacturing the same

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61190981A (ja) * 1985-02-20 1986-08-25 Casio Comput Co Ltd 半導体装置
US5283201A (en) * 1988-05-17 1994-02-01 Advanced Power Technology, Inc. High density power device fabrication process
US4971929A (en) * 1988-06-30 1990-11-20 Microwave Modules & Devices, Inc. Method of making RF transistor employing dual metallization with self-aligned first metal
US5072266A (en) * 1988-12-27 1991-12-10 Siliconix Incorporated Trench DMOS power transistor with field-shaping body profile and three-dimensional geometry
JPH0417371A (ja) * 1990-05-10 1992-01-22 Matsushita Electron Corp Mos電界効果トランジスタの製造方法
JPH05315620A (ja) * 1992-05-08 1993-11-26 Rohm Co Ltd 半導体装置およびその製造法
JPH0653514A (ja) * 1992-08-03 1994-02-25 Nippon Telegr & Teleph Corp <Ntt> 半導体装置の製造方法
JP3316027B2 (ja) * 1993-03-16 2002-08-19 株式会社半導体エネルギー研究所 絶縁ゲート型電界効果半導体装置の作製方法
US5410170A (en) 1993-04-14 1995-04-25 Siliconix Incorporated DMOS power transistors with reduced number of contacts using integrated body-source connections
JP3400846B2 (ja) 1994-01-20 2003-04-28 三菱電機株式会社 トレンチ構造を有する半導体装置およびその製造方法
JP3338178B2 (ja) * 1994-05-30 2002-10-28 株式会社東芝 半導体装置およびその製造方法
US5468982A (en) 1994-06-03 1995-11-21 Siliconix Incorporated Trenched DMOS transistor with channel block at cell trench corners
JPH0823092A (ja) * 1994-07-06 1996-01-23 Mitsubishi Electric Corp 半導体装置およびその製造方法
US5567634A (en) * 1995-05-01 1996-10-22 National Semiconductor Corporation Method of fabricating self-aligned contact trench DMOS transistors
JP3201221B2 (ja) * 1995-07-05 2001-08-20 日本電気株式会社 半導体装置の製造方法
AU6722396A (en) * 1995-08-21 1997-03-12 Siliconix Incorporated Low voltage short channel trench dmos transistor
US5684319A (en) * 1995-08-24 1997-11-04 National Semiconductor Corporation Self-aligned source and body contact structure for high performance DMOS transistors and method of fabricating same
US6043126A (en) 1996-10-25 2000-03-28 International Rectifier Corporation Process for manufacture of MOS gated device with self aligned cells
WO1998040919A1 (en) * 1997-03-11 1998-09-17 Matsushita Electric Industrial Co., Ltd. Secondary battery
KR100225411B1 (ko) * 1997-03-24 1999-10-15 김덕중 LDMOS(a lateral double-diffused MOS) 트랜지스터 소자 및 그의 제조 방법
JP3326366B2 (ja) * 1997-08-08 2002-09-24 三洋電機株式会社 半導体装置及びその製造方法
US6125149A (en) * 1997-11-05 2000-09-26 At&T Corp. Successively refinable trellis coded quantization
JP4090516B2 (ja) * 1998-01-22 2008-05-28 三菱電機株式会社 絶縁ゲート型バイポーラ半導体装置
KR100304717B1 (ko) * 1998-08-18 2001-11-15 김덕중 트렌치형게이트를갖는반도체장치및그제조방법
US6461918B1 (en) * 1999-12-20 2002-10-08 Fairchild Semiconductor Corporation Power MOS device with improved gate charge performance

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101114674B (zh) * 2006-07-27 2010-06-09 东部高科股份有限公司 半导体器件及其制造方法
CN101211965B (zh) * 2006-12-25 2011-06-15 万国半导体股份有限公司 极度圆孔屏蔽的栅槽mosfet器件及其生产工艺
US7586152B2 (en) 2007-06-26 2009-09-08 Nanya Technology Corp. Semiconductor structure
CN104465728A (zh) * 2014-12-24 2015-03-25 上海华虹宏力半导体制造有限公司 分离栅功率器件的栅极结构及工艺方法
CN104465728B (zh) * 2014-12-24 2017-12-05 上海华虹宏力半导体制造有限公司 分离栅功率器件的栅极结构及工艺方法
CN105810732A (zh) * 2014-12-31 2016-07-27 帅群微电子股份有限公司 沟槽式功率金氧半场效晶体管与其制作方法
CN105810732B (zh) * 2014-12-31 2019-01-22 帅群微电子股份有限公司 沟槽式功率金氧半场效晶体管与其制作方法
CN106409904A (zh) * 2015-08-03 2017-02-15 爱思开海力士有限公司 Mos传输晶体管和包括其的电平移位器
CN106409904B (zh) * 2015-08-03 2021-04-02 爱思开海力士系统集成电路有限公司 Mos传输晶体管和包括其的电平移位器
CN106060742A (zh) * 2016-06-08 2016-10-26 钰太芯微电子科技(上海)有限公司 一种麦克风电路及其中的mos管
CN113299757A (zh) * 2021-05-21 2021-08-24 江苏东海半导体科技有限公司 一种抑制尖峰电压的mosfet结构及其制造方法

Also Published As

Publication number Publication date
US20010031551A1 (en) 2001-10-18
WO2001065608A3 (en) 2002-08-22
CN1288762C (zh) 2006-12-06
WO2001065608A2 (en) 2001-09-07
EP1266407A2 (en) 2002-12-18
EP1266407B1 (en) 2011-07-13
US20040072404A1 (en) 2004-04-15
US6312993B1 (en) 2001-11-06
TW508824B (en) 2002-11-01
US6849899B2 (en) 2005-02-01
JP2004504711A (ja) 2004-02-12
AU2001241502A1 (en) 2001-09-12
KR20030064270A (ko) 2003-07-31
US6627951B2 (en) 2003-09-30

Similar Documents

Publication Publication Date Title
CN1288762C (zh) 高速凹槽双扩散金属氧化物半导体
EP1292990B1 (en) Trench mosfet with double-diffused body profile
CN111969059B (zh) 一种屏蔽栅沟槽式金属氧化物半导体场效应管
US10211334B2 (en) Semiconductor device and method of manufacturing semiconductor device
CN101800243B (zh) 双栅极结构沟槽型dmos晶体管制造方法
CN1183583C (zh) 具有减轻的击穿现象的沟道型双扩散金属氧化物半导体晶体管
US7586148B2 (en) Power semiconductor device having a voltage sustaining region that includes doped columns formed by terraced trenches
EP2043158B1 (en) Trench DMOS transistor with trench bottom implant
CN1552101B (zh) 具有轻掺杂源结构的凹槽dmos晶体管
US20030107080A1 (en) Trench MOSFET device with polycrystalline silicon source contact structure
US20220052170A1 (en) Mosfet with distributed doped p-shield zones under trenches
US11380787B2 (en) Shielded gate trench MOSFET integrated with super barrier rectifier having short channel
US11462638B2 (en) SiC super junction trench MOSFET

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20061206

Termination date: 20170215