CN1290574A - 磁性固体超强酸催化剂及其制备方法 - Google Patents

磁性固体超强酸催化剂及其制备方法 Download PDF

Info

Publication number
CN1290574A
CN1290574A CN 00133474 CN00133474A CN1290574A CN 1290574 A CN1290574 A CN 1290574A CN 00133474 CN00133474 CN 00133474 CN 00133474 A CN00133474 A CN 00133474A CN 1290574 A CN1290574 A CN 1290574A
Authority
CN
China
Prior art keywords
magnetic
solid super
acidic catalyst
solid
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 00133474
Other languages
English (en)
Other versions
CN1132688C (zh
Inventor
张密林
王君
景晓燕
段雪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Engineering University
Original Assignee
Harbin Engineering University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Engineering University filed Critical Harbin Engineering University
Priority to CN 00133474 priority Critical patent/CN1132688C/zh
Publication of CN1290574A publication Critical patent/CN1290574A/zh
Application granted granted Critical
Publication of CN1132688C publication Critical patent/CN1132688C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

磁性固体超强酸催化剂是由具有超顺磁性的磁性物种Fe3O4或Ni-Fe3O4、Co-Fe3O4、Mn-Fe3O4和固体酸通过采用改进的化学共沉淀和均匀化工艺组合制备而成,其主要工艺流程为:磁性流体的制备、超声分散处理、溶胶—凝胶溶液的形成、磁分离洗涤、分离产物烘干及焙烧处理。由于具有磁性,使该催化剂与反应物的分离和回收更为方便,并具有较高的酸强度和孔隙率,在烃类烷基化、异构化、酯化等反应中是一种对环境友好高效并有着广泛的应用前景。

Description

磁性固体超强酸催化剂及其制备方法
本发明涉及一种新的固体酸--磁性固体超强酸催化剂。本发明还涉及该催化剂的制备方法。
目前国内外应用在烃类烷基化、异构化、酯化等反应中的固体超强酸主要有SO4 2-促进的Ni,Zr,Sn等氧化物超强酸,研究人员为了提高固体超强酸催化剂的催化活性,而尽可能提高其酸强度,如2000年8月中国高等学校化学学报Vo121第1240~1243页由作者雷霆等发表的MCM-41负载SO4 2-/ZrO2超强酸性能研究一文,作者采用浸渍工艺制备出了MCM-41负载SO4 2-/ZrO2型固体超强酸,但上述制备的固体超强酸催化剂在应用上其缺点是,催化剂与产物的分离困难,反应界面小及传质阻力大。当前在已有的固体超强酸催化剂的制备方法中,最常用的即两步合成法和一步合成法,这两种方法在制备过程中均采用了浸渍工艺,其缺点是在制备过程中原材料浪费大、成本高,在催化液相反应时,反应物与催化剂分离也相当困难。
本发明的目的是,为了克服已有固体超强酸催化剂及其制备方法上的缺点,提供一种即具有超顺磁性又具有较高酸强度的磁性固体超强酸催化剂及其一种新的合成该催化剂的制备方法。该磁性固体超强酸催化剂的优点是,由于具有超顺磁性,在应用上可利用磁分离技术使催化剂与产物的分离变得容易;该催化剂为多孔蜂窝状,所以具有较大的比表面和孔隙率,这种多孔的表面有利于催化剂的高比表面和高比表面自由能的产生,对于提高反应活性和降低反应活化能都很有利,外加磁场带动催化剂在反应体系中运动,使得反应界面增大,传质阻力变小。由于制备该磁性固体超强酸催化剂采用了改进的化学共沉淀和均匀化工艺,赋予固体超强酸一种超顺磁性,其优点是可以实现多种氧化的复合,增强了磁性固体超强酸催化剂的酸强度,使催化剂的活性大大提高,并且节约了原材料降低了成本。
本发明磁性固体超强酸是由具有超顺磁性的磁性物种Fe3O4或Ni-Fe3O4、Co-Fe3O4、Mn-Fe3O4等与固体酸通过采用改进的化学共沉淀和均匀化工艺组合而成,由于该催化剂具有磁性物种,在应用中通过外加磁场,带动磁性催化剂在反应体系中运动,使催化剂在体系中均匀分散和旋转,起到了搅拌作用,避免了微粒子间的聚集,增大了催化剂与反应物间的接触面积,反应结束后,利用磁分离技术可以很方便的实现催化剂与反应产物的相互分离与回收。另外磁场对化学反应的影响是不可忽略的,带动磁性固体超强酸催化剂在体系中运动的外加磁场和磁性固体超强酸具有的超顺磁性将与固体酸发挥协作效应,因此该磁性固体超强酸催化剂在烃类烷基化、异构化、酯化等反应中是一种对环境友好、高效和有着广泛应用前景的固体超强酸催化剂。
为了获得磁性固体超强酸催化剂,实现该发明的技术方案是:通过采用改进的化学共沉淀制得磁响应性高、可悬浮的磁性流体,采用均匀化工艺,对磁流体进行超声分散,以磁性流体作为反应介质,在碱性条件下实现金属盐的沉淀,形成溶胶-凝胶溶液,利用磁分离技术分离沉淀物,用蒸馏水反复冲洗沉淀物,至到无其它杂质离子为止,沉淀物经烘干、焙烧处理,便可得到多孔蜂窝状具有超顺磁性的磁性固体超强酸催化剂。其具体详细制备方法包括下述实验技术步聚:
1.可稳定悬浮磁性流体的制备
利用改进的化学共沉淀,在配有搅拌器、回流冷凝管、氮气囊的四颈瓶中加入摩尔比为1∶2的Fe2+盐和Fe3+盐,在油浴中升温至55℃,滴入氨水调节pH值至11~13之间,反应30min,冷却至室温。用蒸馏水反复冲洗磁分离沉降物至中性,即得铁基磁性流体。其它条件不变,若加入摩尔比为1∶1∶4的Co2+(Mn2+、Ni2+)、Fe2+和Fe3+盐,可分别制得钴基磁性流体(Co-Fe3O4)、锰基磁性流体(Mn-Fe3O4)和镍基磁性流体(Ni-Fe3O4)。
2.磁性流体的预先处理
将制备好的磁性流体取适量,超声分散处理30min,超声振动频率为20~50KHz,使磁性流体分散均匀,然后将其转移到三颈瓶中,在油浴中升温到65℃,机械搅拌4h,搅拌速度为600~800rpm。
3.磁性固体超强酸的合成:
称取适量ZrOCl2,溶解后加入到入配有分液漏斗中的上述三颈瓶中,氨水置于另一个分液漏斗中,通过控制实验反应条件,同时滴入ZrOCl2和氨水至ZrOCl2全部滴完,调节溶液pH=13时,停止滴加氨水,沉淀物经搅拌陈化后转移到烧杯中,利用磁分离技术使之沉降,倾去上清液,加蒸馏水,反复洗涤到溶液中性且无Cl-,抽滤后转入小烧杯中,置烘箱中于80~90℃下烘干,取出研细,得浅褐色粉末,将此粉末放入坩埚,置于马沸炉内于600℃~700℃焙烧4~6小时,取出即为制得的磁性固体超强酸催化剂。
4.浸酸的磁性固体超强酸催化剂
将制得的催化剂浸于0.5mol/L的H2SO4中,可制得浸酸的磁性固体超强酸催化剂。
从上述为本发明设计出的磁性固体超强酸催化剂的制备方法,可以实现多种氧化物的复合,更好的发挥固体酸的协作效应,大大提高固体超强酸的酸强度,使得产物具有比组分线性加和更好的性能,同时赋予固体超强酸以磁性,利用磁分离技术可以彻底容易与产物分离,节约了原材料降低了成本,减小了对环境的污染。
下面结合几个实施例对本发明作进一步详细说明。
实施例1
称取Fe3O4与ZrO2摩尔比为1∶80的磁性固体超强酸1g加入到配有温度计、油水分离器、冷凝管的三颈烧瓶中,同时加入8ml的冰乙酸、51ml的正丁醇,在磁力搅拌下加热回流,使物料在沸腾状态下反应6h。利用磁分离装置回收催化剂,继续做酯化反应,反应产物用气相色谱仪分析含量,计算酯的产率为96.4%。
实施例2
取75mL磁性流体(0.01molFe3O4/L),加入300mL蒸馏水超声分散30min(超声振动频率为20~50kHz)转移至三颈瓶中,油浴中升温到65℃,机械搅拌30min(搅拌速度600~800rpm);准确称取19.335gZrOCl2,加50mL蒸馏水溶解后倒入分液漏斗中,氨水装入另一个分液漏斗中,升温至75℃,同时滴入氯氧化锆和氨水(滴速为2滴/秒)至ZrOCl2全部滴完;调节溶液pH=13时,停止滴加氨水;恒温搅拌陈化2h;将溶液转入1000mL的烧杯中,利用磁分离技术使之沉降;倾去上清液,加入蒸馏水,反复洗涤至溶液中性且无Cl-为止;产物经抽滤后,置于80℃~90℃的烘箱中干燥10小时;干燥物置于马沸炉中于600℃焙烧4~6小时,即可得到Fe3O4与ZrO2摩尔比为1∶80的磁性固体超强酸催化剂,记为Fe3O4/ZrO2
实施例3
改变Fe3O4与ZrO2摩尔配比,铁基磁性流体(0.01molFe3O4/L)取25mL,ZrOCl2称取8.056g,其它实验条件同实施例2,可制得Fe3O4与ZrO2摩尔比为1∶100的磁性固体超强酸,记为Fe3O4/ZrO2
实施例4
取70mL的钴基磁性流体(0.01molCo-Fe3O4/L),其它条件同实施例2,即可得到Co-Fe3O4与ZrO2摩尔比为1∶80的磁性固体超强酸催化剂,记为Co-Fe3O4/ZrO2
实施例5
取50mL磁性流体(0.01molFe3O4/L),加入300mL蒸馏水超声分散30min,转移至三颈瓶中,油浴中升温到65℃,机械搅拌30min;称取12.890gZrOCl2和2.968gAL(NO3)3·9H2O加80mL蒸馏水溶解后倒入分液漏斗中,其它实验条件同实施例2,可制得Al促进型磁性固体超强酸催化剂,记为Fe3O4/Al2O3-ZrO2
实施例6
称取摩尔比为1∶80的Co-Fe3O4/ZrO2型磁性固体超强酸2g加入到20mL的0.5mol/L的H2SO4溶液中浸渍3小时,采用磁分离技术,倾去上层清液,100℃下干燥6小时,最后在600℃焙烧4~6小时,便可制得SO4 2-/Co-Fe3O4-ZrO2型磁性固体超强酸催化剂。

Claims (4)

1.一种磁性固体超强酸催化剂,其特征在于它由超顺磁性的磁性物种Fe3O4或Ni-Fe3O4、Co-Fe3O4、Mn-Fe3O4和固体酸组合而成,超顺磁性的磁性物种的引入赋予了固体酸以磁性,同时磁性物种也参与了超强酸结构的形成,磁性固体超强酸磁性的强弱由磁性物种的含量决定。
2.如权利要求1所述的磁性固体超强酸催化剂,其特征在于磁性物种Fe3O4或Ni-Fe3O4、Co-Fe3O4、Mn-Fe3O4和固体酸的摩尔配比为1∶60~100。
3.一种制备权利要求1所述的磁性固体超强酸催化剂的方法,其特征在于首先采用改进的化学共沉淀制得磁性流体,通过控制实验条件,采用均匀化工艺对磁性流体进行超声分散,使磁性流体形成稳定的均匀悬浮体系,以此悬浮体系作为反应介质,在碱性条件下实现能形成超强酸结构的金属盐的沉淀,从而形成溶胶-凝胶溶液,利用磁分离技术分离洗涤沉淀物,沉淀物经烘干、熔烧处理,便可得到具有一定磁响应性的磁性固体超强酸催化剂。
4.实现权利要求3所述制备磁性固体超强酸催化剂的方法,其特征在于在制备过程中其控制实验条件所选参数为:
机械搅拌速度:600~800rpm 熔烧时间:4~6h
熔烧温度:600℃~700℃    超声振动频率:20~50kHz
CN 00133474 2000-11-08 2000-11-08 磁性固体超强酸催化剂及其制备方法 Expired - Fee Related CN1132688C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 00133474 CN1132688C (zh) 2000-11-08 2000-11-08 磁性固体超强酸催化剂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 00133474 CN1132688C (zh) 2000-11-08 2000-11-08 磁性固体超强酸催化剂及其制备方法

Publications (2)

Publication Number Publication Date
CN1290574A true CN1290574A (zh) 2001-04-11
CN1132688C CN1132688C (zh) 2003-12-31

Family

ID=4595742

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 00133474 Expired - Fee Related CN1132688C (zh) 2000-11-08 2000-11-08 磁性固体超强酸催化剂及其制备方法

Country Status (1)

Country Link
CN (1) CN1132688C (zh)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003090927A1 (fr) * 2002-04-24 2003-11-06 Beijing University Of Chemical Technology Catalyseur acide solide surfin magnetique a structure a double coque et son procede de preparation
CN100340539C (zh) * 2005-10-21 2007-10-03 哈尔滨工业大学 促进乳酸铵酯化反应的二元催化体系在乳酸铵酯化反应中的应用
CN100463718C (zh) * 2005-10-21 2009-02-25 哈尔滨工业大学 促进乳酸铵酯化反应的二元催化体系中磁性固体酸催化剂的制备方法
CN101417822B (zh) * 2008-11-24 2010-12-08 中国科学院长春应用化学研究所 超顺磁介孔四氧化三铁纳米粒子的制备方法
CN101757949B (zh) * 2009-12-22 2011-09-14 华东师范大学 一种磁性固体酸催化剂及其制备方法和应用
CN102516322A (zh) * 2011-12-20 2012-06-27 华北电力大学 利用磁性固体磷酸催化剂制备左旋葡萄糖酮的方法
CN102532206A (zh) * 2011-12-20 2012-07-04 华北电力大学 利用固体磷酸催化热解纤维素制备左旋葡萄糖酮的方法
CN101492603B (zh) * 2008-01-23 2012-11-28 华中农业大学 利用乌桕籽油生产生物柴油的方法及专用固体催化剂
CN103055942A (zh) * 2011-10-19 2013-04-24 华东理工大学 一种磁性全氟磺酸树脂/SiO2-Co0.5Fe2.5O4固体酸催化剂的制备方法
CN104437655A (zh) * 2014-11-18 2015-03-25 成都理想财富投资咨询有限公司 魔芋飞粉的磁性固体酸催化剂的制备方法
CN104693023A (zh) * 2015-02-13 2015-06-10 湘潭大学 一种生物质糖制备乙酰丙酸酯的方法
CN109232225A (zh) * 2017-07-11 2019-01-18 万华化学集团股份有限公司 一种裂解丙烯酸重组分生成丙烯酸的方法

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003090927A1 (fr) * 2002-04-24 2003-11-06 Beijing University Of Chemical Technology Catalyseur acide solide surfin magnetique a structure a double coque et son procede de preparation
CN100340539C (zh) * 2005-10-21 2007-10-03 哈尔滨工业大学 促进乳酸铵酯化反应的二元催化体系在乳酸铵酯化反应中的应用
CN100463718C (zh) * 2005-10-21 2009-02-25 哈尔滨工业大学 促进乳酸铵酯化反应的二元催化体系中磁性固体酸催化剂的制备方法
CN101492603B (zh) * 2008-01-23 2012-11-28 华中农业大学 利用乌桕籽油生产生物柴油的方法及专用固体催化剂
CN101417822B (zh) * 2008-11-24 2010-12-08 中国科学院长春应用化学研究所 超顺磁介孔四氧化三铁纳米粒子的制备方法
CN101757949B (zh) * 2009-12-22 2011-09-14 华东师范大学 一种磁性固体酸催化剂及其制备方法和应用
CN103055942A (zh) * 2011-10-19 2013-04-24 华东理工大学 一种磁性全氟磺酸树脂/SiO2-Co0.5Fe2.5O4固体酸催化剂的制备方法
CN102532206A (zh) * 2011-12-20 2012-07-04 华北电力大学 利用固体磷酸催化热解纤维素制备左旋葡萄糖酮的方法
CN102516322A (zh) * 2011-12-20 2012-06-27 华北电力大学 利用磁性固体磷酸催化剂制备左旋葡萄糖酮的方法
CN102532206B (zh) * 2011-12-20 2015-04-15 华北电力大学 利用固体磷酸催化热解纤维素制备左旋葡萄糖酮的方法
CN102516322B (zh) * 2011-12-20 2015-06-10 华北电力大学 利用磁性固体磷酸催化剂制备左旋葡萄糖酮的方法
CN104437655A (zh) * 2014-11-18 2015-03-25 成都理想财富投资咨询有限公司 魔芋飞粉的磁性固体酸催化剂的制备方法
CN104693023A (zh) * 2015-02-13 2015-06-10 湘潭大学 一种生物质糖制备乙酰丙酸酯的方法
CN109232225A (zh) * 2017-07-11 2019-01-18 万华化学集团股份有限公司 一种裂解丙烯酸重组分生成丙烯酸的方法
CN109232225B (zh) * 2017-07-11 2021-07-23 万华化学集团股份有限公司 一种裂解丙烯酸重组分生成丙烯酸的方法

Also Published As

Publication number Publication date
CN1132688C (zh) 2003-12-31

Similar Documents

Publication Publication Date Title
CN1132688C (zh) 磁性固体超强酸催化剂及其制备方法
CN101492603B (zh) 利用乌桕籽油生产生物柴油的方法及专用固体催化剂
CN108097261B (zh) 一种高效稳定的铁锰复合氧化物催化剂及其制备方法与应用
CN103611540B (zh) 一种用于co加氢的催化剂及其制备方法和应用
CN105772077A (zh) 一种磁性凹凸棒土负载离子液体催化剂及其制备方法
CN101298046A (zh) 一种用于催化费托合成反应的含钛沉淀铁催化剂及其制法
CN105214663A (zh) 一种用于低温浆态床费托合成的铁基催化剂及其制备方法和用途
CN110252407A (zh) 一种羧基功能化离子液体制备核-壳结构催化剂的方法
CN101905168B (zh) 具有硫转移剂功能的催化裂化多产丙烯助剂
CN110394170A (zh) 一种钙钛矿型锆酸钙催化剂的制备方法及其在催化臭氧氧化中的应用
CN103769182A (zh) 一种负载型钒磷氧化物及其制备方法和用途
CN110180584A (zh) 一种去除油品中二苯并噻吩的沸石分子筛负载型复合催化剂及其制备方法
CN101898946A (zh) 一种催化甘油氢解的方法
CN1274416C (zh) 丙烷氧化脱氢制丙烯用的复合氧化物催化剂及其制备方法
CN103962148A (zh) 用于合成气直接制备低碳烯烃的流化床催化剂及其生产方法
CN110152722B (zh) 一种利用聚乙烯吡咯烷酮协助合成沸石分子筛负载型复合催化剂的方法
CN104014342A (zh) 一种双功能磁性纳米固体碱催化剂及其制备方法与应用
CN1197651C (zh) 苯选择加氢非晶态含钌硼催化剂及其制备方法
CN111617799A (zh) 用于丙烯齐聚反应制壬烯的新型催化剂及其制备方法
CN111215124A (zh) 协同脱除垃圾气化污染物中硫化氢和单质汞的催化剂的制备方法
CN1136972C (zh) 一种钴锆费托合成催化剂及其制备方法和应用
CN103157517A (zh) TiZrO2载体和贵金属/TiZrO2催化剂及其制备与应用
CN1073891A (zh) 甲烷偶联制乙烯催化剂及过程
CN111974408B (zh) 一种固载化非均相芬顿催化剂及其制备方法和应用
CN107335444A (zh) 一种合成气制备低碳醇高效催化剂及其制备方法

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee