CN104014342A - 一种双功能磁性纳米固体碱催化剂及其制备方法与应用 - Google Patents

一种双功能磁性纳米固体碱催化剂及其制备方法与应用 Download PDF

Info

Publication number
CN104014342A
CN104014342A CN201410283250.0A CN201410283250A CN104014342A CN 104014342 A CN104014342 A CN 104014342A CN 201410283250 A CN201410283250 A CN 201410283250A CN 104014342 A CN104014342 A CN 104014342A
Authority
CN
China
Prior art keywords
magnetic nano
base catalyst
catalyst
nano solid
solid base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410283250.0A
Other languages
English (en)
Inventor
王睿
刘康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong University
Original Assignee
Shandong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University filed Critical Shandong University
Priority to CN201410283250.0A priority Critical patent/CN104014342A/zh
Publication of CN104014342A publication Critical patent/CN104014342A/zh
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Landscapes

  • Catalysts (AREA)

Abstract

本发明公开了一种双功能磁性纳米固体碱催化剂,是利用水热合成法和溶胶-凝胶法,负载氢氧化钾后高温煅烧得到的,为达到纳米级别的双功能磁性纳米固体碱催化剂K/ZrO2-Fe3O4,该催化剂颗粒呈圆球状,粒径为15~20nm,在液相中分散效果好,最大饱和磁强度为15.3emu/mg,是一种有序纳米介孔材料。本发明的双功能磁性纳米固体碱催化剂,具有高的反应活性,在液相中分散效果好,可作为非均相反应催化剂应用于生物柴油的制备生产(利用大豆油和甲醇为反应原料),与均相酸碱催化剂相比,反应速度明显更快,反应后催化剂可用磁铁进行回收循环使用,工艺成本明显降低,易于工业化推广。

Description

一种双功能磁性纳米固体碱催化剂及其制备方法与应用
技术领域
本发明涉及一种双功能磁性纳米固体碱催化剂及其制备方法,以及其作为非均相催化剂在生物柴油生产中的应用,属于绿色、可再生能源生产的技术领域。
背景技术
化石燃料中的硫和氮化合物的燃烧带来了诸多环境问题,如酸雨,光化学烟雾和雾霾。随着世界各国对能源需求的不断增长和环境保护的日益加强,清洁能源的推广应用已成必然趋势。因此,开发可再生、环保、替代性的绿色燃料已成为21世纪人类有关能源问题研究的重要的课题。清洁能源技术是指在可再生能源及新能源、煤的清洁高效利用等领域开发的有效控制温室气体排放的新技术。其中,可再生能源指原材料可以再生的能源,如水力发电、风力发电、太阳能、生物能、海潮能等。由于可再生能源不存在能源耗竭的问题,当今发展可再生能源日益受到全球各国、尤其是能源短缺国家的重视。而生物柴油作为一种绿色可再生能源,不含硫和芳香烃、闪点高,并且润滑性能好,可生物降解,是一种新兴的绿色环保型可再生能源。
目前制备生物柴油的技术方法主要分为物理法、化学法和超临界法。物理法包括直接混合法和微乳化法,其原理均是将植物油与石化柴油和改良剂等按比例混合后添加到燃油发动机中使用,但物理法制备的生物柴油如果长期使用会导致气阀积碳等不良效应。而超临界甲醇法对反应环境和设备的要求很高、是限制其广泛应用的主要障碍。化学法包括热裂解法、酯化法和酯交换法。热解法制备生物柴油反应可控性差,生物柴油产率低,杂质多。酯化法中所需的脂肪酸大大提高了生物柴油的生产成本,因此其应用及发展受到了限制。
酯交换反应是目前生产生物柴油的主要技术手段。酯交换法是采用动植物油脂与醇(特别是甲醇)在催化剂存在条件下进行酯交换反应,将甘油三酸酯的甘油酯基依次取代下来,形成3个单独的长链脂肪酸单酯和甘油。酯交换反应可以在较温和的条件下进行,而催化剂的选择对生物柴油品质和产率有很大影响。酯交换反应是可逆反应,一般应用酸碱作为催化剂。目前,在工业生产中主要通过均相酸、碱催化酯化反应或酯交换反应制备生物柴油,具有反应速度快、转化率高等优点,但同时存在废液多、催化剂分离困难、工艺复杂等缺点。而离子液体及生物酶等催化剂存在价格高、易失活等诸多问题,因此制备简单、环保,高效、易再生、原料适应性强的环保型非均相催化剂将成为该领域的研究热点。
以固体碱作为酯交换反应的催化剂,不仅可避免传统均相催化剂存在的问题,而且具有反应条件温和、催化剂可重复使用、可自动化连续生产、对设备无腐蚀、对环境无污染等优点。但固体碱催化剂反应活性催化反应后难回收重复利用。因此,为了减少固体碱催化剂在使用过程中的损失,研究易于回收的固体碱催化剂已成为当前研究的一大热点。
发明内容
针对上述现有技术,本发明提供了一种双功能磁性纳米固体碱催化剂,及其制备方法,以及其作为催化剂在生物柴油生产中的应用。
本发明是通过以下技术方案实现的:
一种双功能磁性纳米固体碱催化剂,是利用水热合成法和溶胶-凝胶法,负载氢氧化钾后高温煅烧得到的,为达到纳米级别的双功能磁性纳米固体碱催化剂K/ZrO2-Fe3O4,该催化剂颗粒呈圆球状,粒径为15~20nm,在液相中分散效果好,最大饱和磁强度为15.3emu/mg,是一种有序纳米介孔材料。
具体的,其制备方法步骤如下:
(一)磁性凝胶载体Zr(OH)4-Fe3O4的制备(通过溶胶-凝胶法):
(1)称取9.731g六水合三氯化铁(FeCl3﹒6H2O)和3.5786g四水合氯化亚铁(FeCl2﹒4H2O)(二者摩尔比2:1),溶于200ml蒸馏水中,得溶液;
(2)向上述溶液中加入一定量的八水合氯氧化锆(ZrOCl2﹒8H2O),Zr:Fe摩尔比为15:1,以聚四氟乙烯为机械搅拌杆,进行不间歇搅拌1~2h;
(3)利用滴液漏斗向上述反应体系中逐滴加入氨水至pH=11.0,反应完成后(滴加氨水后)剧烈搅拌1~2h,然后静置陈化1~3h;用磁铁在反应容器底部吸取胶体聚沉,抽滤,并用蒸馏水反复洗涤至pH中性(pH=7.0),105℃干燥,得磁性凝胶载体Zr(OH)4-Fe3O4
(二)磁性纳米固体碱K/ZrO2-Fe3O4的合成:
将磁性凝胶载体Zr(OH)4-Fe3O4置于容器中,按照10%~40%(质量百分数)的KOH负载量(负载量是指KOH与磁性凝胶载体Zr(OH)4-Fe3O4的质量之比),加入质量分数为10%~30%的KOH溶液,搅拌均匀,静置2小时,然后80℃烘干水分,再在马弗炉中500~800℃煅烧2~5小时,冷却至室温,即得双功能磁性纳米固体碱催化剂K/ZrO2-Fe3O4,用密封袋保存并放置于干燥器中,备用。
本发明的双功能磁性纳米固体碱催化剂,是以唯一一种具有酸性、碱性、还原能力及氧化能力四种化学特性的金属氧化物ZrO2为载体包覆磁核,凝胶负载氢氧化钾后高温煅烧制备而成。本发明的双功能磁性纳米固体碱催化剂,具有高的反应活性,在液相中分散效果好,可作为非均相反应催化剂应用于生物柴油的制备生产,反应后催化剂可用磁铁进行回收循环使用。具体应用时,以本发明的双功能磁性纳米固体碱催化剂为非均相反应催化剂,以甲醇和原料油品为原料,方法如下:在反应器中加入原料油品和甲醇(原料油品和甲醇的摩尔比8:1~11:1;大豆油平均分子量的测定参照GB9104-1988和GB9104.3-1988,平均分子量的计算依据测得的大豆油皂化值和酸值),调整温度至30~80℃,加入双功能磁性纳米固体碱催化剂(加入量为原料油品和甲醇总重量的2%~8%),搅拌下反应1~4小时,旋转蒸发去除剩余的甲醇,静置分层,上层为生物柴油(金黄色),下层为甘油(无色透明);双功能磁性纳米固体碱催化剂在反应完成后可以使用磁铁进行回收,甲醇冲洗后循环使用。
所述原料油品选自植物油,大豆油,动物油,地沟油,优选大豆油。
本发明的双功能磁性纳米固体碱催化剂的反应原理为:当KOH负载在磁性凝胶载体表面,进行高温煅烧时,氢氧化锆凝胶失去水分,转变为氧化锆晶体。熔融的KOH与氧化锆晶体发生反应,生成K-O-Zr的碱性活性物种。进行非均相反应时,碱性位点上的钾盐释放电子攻击甲醇,促进了酯交换反应的进行。
本发明的双功能磁性纳米固体碱催化剂,制备工艺简单,催化活性高且稳定性好,反应后易于回收和重复利用,生物柴油产率高,工艺设备简单且投资少,适用于工业化推广。
本发明具有以下有益效果:本发明制备了双功能纳米磁性固体碱K/ZrO2-Fe3O4,将其作为酯交换反应的催化剂用于生物柴油的生产,利用大豆油和甲醇为反应原料,在温和条件下进行反应。与均相酸碱催化剂相比,反应速度明显更快,在液相中的分散效果好。生物柴油的产率高,工艺成本明显降低。同时,该磁性纳米固体碱催化剂通过反应后磁铁回收,克服了固体碱催化剂在反应后难回收的问题,提供了一种新型、高效、可回收并循环利用的新型固体碱催化剂的制备方法,可实现催化剂的回收与生物柴油生产的双重目标,且整个过程生物柴油产率高,工艺设备简单且投资少,易于工业化推广。
具体实施方式
下面结合实施例对本发明作进一步的说明。
实施例1双功能磁性纳米固体碱催化剂的制备方法
步骤如下:
(一)磁性凝胶载体Zr(OH)4-Fe3O4的制备(通过溶胶-凝胶法):
(1)称取9.731g六水合三氯化铁(FeCl3﹒6H2O)和3.5786g四水合氯化亚铁(FeCl2﹒4H2O),溶于200ml蒸馏水中,得溶液;
(2)向上述溶液中加入八水合氯氧化锆(ZrOCl2﹒8H2O),Zr:Fe摩尔比为15:1,以聚四氟乙烯为机械搅拌杆,进行不间歇搅拌2h;
(3)利用滴液漏斗向上述反应体系中逐滴加入氨水至pH=11.0,剧烈搅拌2h,然后静置陈化2h;用磁铁在反应容器底部吸取胶体聚沉,抽滤,并用蒸馏水反复洗涤至pH中性(pH=7.0),105℃干燥,得磁性凝胶载体Zr(OH)4-Fe3O4
(二)磁性纳米固体碱K/ZrO2-Fe3O4的合成:
(1)将磁性凝胶载体Zr(OH)4-Fe3O4置于容器中,按照30%(质量百分数)的KOH负载量(负载量是指KOH与磁性凝胶载体Zr(OH)4-Fe3O4的质量之比),加入质量分数为20%的KOH溶液,搅拌均匀,静置2小时,然后80℃烘干水分,再在马弗炉中600℃煅烧4小时,冷却至室温,即得双功能磁性纳米固体碱催化剂K/ZrO2-Fe3O4,用密封袋保存并放置于干燥器中,备用。
经透视电镜(TEM)及振动样品磁强计(VSM)表征,该催化剂颗粒呈圆球状,粒径为15~20nm,最大饱和磁强度为15.3emu/mg,是一种有序纳米介孔材料。
实施例2双功能磁性纳米固体碱催化剂在生物柴油生产中的应用
以甲醇和大豆油为原料,在反应器中加入81.6g大豆油和24g甲醇,设定好所需的反应温度65℃,加入5.0%的双功能磁性纳米固体碱催化剂K/ZrO2-Fe3O4(实施例1制备),接入冷凝回流设备防止甲醇高温挥发,打开冷凝水,水浴条件下加入磁性转子,记录反应时间,3h后停止催化反应。将所得产品旋转蒸发去除剩余的甲醇,双功能磁性纳米固体碱催化剂使用磁铁进行回收,甲醇冲洗后循环使用,静止分液后上层为黄色的生物柴油产品,下层为无色的副产物甘油,采用内标法,以十七酸甲酯为内标物,利用气相色谱对生物柴油的产率进行计算,计算得到生物柴油的产率为93.6%。
实施例3双功能磁性纳米固体碱催化剂在生物柴油生产中的应用(催化剂第一次重复利用)
以甲醇和大豆油为原料,在反应器中加入81.6g大豆油和24g甲醇,设定好所需的反应温度65℃,加入实施例2回收的5.0%的双功能磁性纳米固体碱催化剂K/ZrO2-Fe3O4(催化剂第一次使用后用磁铁进行回收,甲醇冲洗后高温烘干,重新活化固体碱的活性位点)。反应器接入冷凝回流设备防止甲醇高温挥发,打开冷凝水,水浴条件下加入磁性转子,记录反应时间,3h后停止催化反应。将所得产品旋转蒸发去除剩余的甲醇,双功能磁性纳米固体碱催化剂使用磁铁进行回收,甲醇冲洗后循环使用,静止分液后上层为生物柴油产品,下层为副产物甘油,采用内标法,以十七酸甲酯为内标物,利用气相色谱对生物柴油的产率进行计算,计算得到生物柴油的产率为90.5%。
实施例4双功能磁性固体碱催化剂在生物柴油生产中的应用(催化剂第二次重复利用)
以甲醇和大豆油为原料,在反应器中加入81.6g大豆油和24g甲醇,设定好所需的反应温度65℃,加入实施例3回收的5.0%的双功能磁性纳米固体碱催化剂K/ZrO2-Fe3O4(催化剂第二次使用后用磁铁进行回收,甲醇冲洗后高温烘干,重新活化固体碱的活性位点)。反应器接入冷凝回流设备防止甲醇高温挥发,打开冷凝水,水浴条件下加入磁性转子,记录反应时间,3h后停止催化反应。将所得产品旋转蒸发去除剩余的甲醇,双功能磁性纳米固体碱催化剂使用磁铁进行回收,甲醇冲洗后循环使用,静止分液后上层为生物柴油产品,下层为副产物甘油,采用内标法,以十七酸甲酯为内标物,利用气相色谱对生物柴油的产率进行计算,计算得到生物柴油的产率为89.1%。

Claims (9)

1.一种双功能磁性纳米固体碱催化剂的制备方法,其特征在于:步骤如下:
(一)磁性凝胶载体Zr(OH)4-Fe3O4的制备:
(1)称取9.731g六水合三氯化铁和3.5786g四水合氯化亚铁,溶于200ml蒸馏水中,得溶液;
(2)向上述溶液中加入八水合氯氧化锆,Zr:Fe摩尔比为15:1,进行不间歇搅拌1~2h;
(3)向上述反应体系中逐滴加入氨水至pH=11.0,反应完成后剧烈搅拌1~2h,然后静置陈化1~3h;用磁铁在反应容器底部吸取胶体聚沉,抽滤,并用蒸馏水反复洗涤至pH中性,干燥,得磁性凝胶载体Zr(OH)4-Fe3O4
(二)磁性纳米固体碱K/ZrO2-Fe3O4的合成:
将磁性凝胶载体Zr(OH)4-Fe3O4置于容器中,按照10%~40%的KOH负载量,加入质量分数为10%~30%的KOH溶液,搅拌均匀,静置2小时,然后烘干水分,再在马弗炉中500~800℃煅烧2~5小时,冷却至室温,即得双功能磁性纳米固体碱催化剂K/ZrO2-Fe3O4
2.利用权利要求1所述的制备方法制备得到的双功能磁性纳米固体碱催化剂,其特征在于:催化剂颗粒呈圆球状,粒径为15~20nm,在液相中分散效果好,最大饱和磁强度为15.3emu/mg,是一种有序纳米介孔材料。
3.权利要求2所述的双功能磁性纳米固体碱催化剂在生物柴油生产中的应用。
4.根据权利要求3所述的应用,其特征在于:具体应用时,以双功能磁性纳米固体碱催化剂为非均相反应催化剂,以甲醇和原料油品为原料,方法如下:在反应器中加入原料油品和甲醇,调整温度至30~80℃,加入双功能磁性纳米固体碱催化剂,搅拌下反应1~4小时,旋转蒸发去除剩余的甲醇,静置分层,上层为生物柴油,分离即得。
5.根据权利要求4所述的应用,其特征在于:所述原料油品和甲醇的摩尔比为8:1~11:1。
6.根据权利要求4所述的应用,其特征在于:所述双功能磁性纳米固体碱催化剂的加入量为原料油品和甲醇总重量的2%~8%。
7.根据权利要求4所述的应用,其特征在于:所述原料油品选自植物油,大豆油,动物油,地沟油。
8.根据权利要求4所述的应用,其特征在于:所述原料油品为大豆油。
9.根据权利要求4所述的应用,其特征在于:制得生物柴油后,双功能磁性纳米固体碱催化剂使用磁铁进行回收,甲醇冲洗后循环使用。
CN201410283250.0A 2014-06-23 2014-06-23 一种双功能磁性纳米固体碱催化剂及其制备方法与应用 Pending CN104014342A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410283250.0A CN104014342A (zh) 2014-06-23 2014-06-23 一种双功能磁性纳米固体碱催化剂及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410283250.0A CN104014342A (zh) 2014-06-23 2014-06-23 一种双功能磁性纳米固体碱催化剂及其制备方法与应用

Publications (1)

Publication Number Publication Date
CN104014342A true CN104014342A (zh) 2014-09-03

Family

ID=51431506

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410283250.0A Pending CN104014342A (zh) 2014-06-23 2014-06-23 一种双功能磁性纳米固体碱催化剂及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN104014342A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106492839A (zh) * 2016-08-29 2017-03-15 中国科学院西双版纳热带植物园 一种以小桐子果壳为碳源载体制备的磁性催化剂及其应用
CN107488519A (zh) * 2017-07-24 2017-12-19 北京科技大学 一种利用磁性炭负载酸碱催化餐饮废油制生物柴油的方法
CN108219973A (zh) * 2017-12-21 2018-06-29 山东大学深圳研究院 利用餐厨或屠宰场动物固体废弃物制备生物柴油的方法
CN108295834A (zh) * 2018-03-05 2018-07-20 陕西师范大学 一种高效稳定的生产生物柴油的核壳型CeO2@CaO催化剂及其应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
刘康: ""磁性固体碱的制备、表征及其在生物柴油中的应用"", 《中国优秀硕士学位论文全文数据库 工程科技I辑》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106492839A (zh) * 2016-08-29 2017-03-15 中国科学院西双版纳热带植物园 一种以小桐子果壳为碳源载体制备的磁性催化剂及其应用
CN107488519A (zh) * 2017-07-24 2017-12-19 北京科技大学 一种利用磁性炭负载酸碱催化餐饮废油制生物柴油的方法
CN107488519B (zh) * 2017-07-24 2021-07-02 北京科技大学 一种利用磁性炭负载酸碱催化餐饮废油制生物柴油的方法
CN108219973A (zh) * 2017-12-21 2018-06-29 山东大学深圳研究院 利用餐厨或屠宰场动物固体废弃物制备生物柴油的方法
CN108219973B (zh) * 2017-12-21 2021-08-03 山东大学深圳研究院 利用餐厨或屠宰场动物固体废弃物制备生物柴油的方法
CN108295834A (zh) * 2018-03-05 2018-07-20 陕西师范大学 一种高效稳定的生产生物柴油的核壳型CeO2@CaO催化剂及其应用
CN108295834B (zh) * 2018-03-05 2020-10-16 陕西师范大学 一种高效稳定的生产生物柴油的核壳型CeO2@CaO催化剂及其应用

Similar Documents

Publication Publication Date Title
Basumatary et al. Production of renewable biodiesel using metal organic frameworks based materials as efficient heterogeneous catalysts
Ahmed et al. Recent trends in sustainable biodiesel production using heterogeneous nanocatalysts: function of supports, promoters, synthesis techniques, reaction mechanism, and kinetics and thermodynamic studies
Maroa et al. A review of sustainable biodiesel production using biomass derived heterogeneous catalysts
CN100569914C (zh) 一种利用高酸值油脂生产生物柴油的方法
CN101927182B (zh) 一种生物柴油催化剂和利用该催化剂制备生物柴油的方法
CN104324749B (zh) 一种合成碳酸甘油酯的基于poss的碱性离子液体催化剂及其制备方法
Fatimah et al. ZrO2-based catalysts for biodiesel production: A review
CN104014342A (zh) 一种双功能磁性纳米固体碱催化剂及其制备方法与应用
CN109433238A (zh) 一种有序分级孔的铁-氮掺杂氧还原碳催化剂及其制备方法
CN103212445A (zh) 一种合成生物柴油碱性离子液体修饰磁性纳米颗粒催化剂及其制备方法
CN104923235A (zh) 一种合成碳酸甘油酯的磁性钙基固体碱催化剂及其制备方法
CN105692714A (zh) 一种带有高密度氧空位的铁基尖晶石的水热合成方法
CN104014369A (zh) 一类杂多酸酸性离子液体及其在酯交换反应中的应用
CN103611539B (zh) 一种合成生物柴油的磁性钙基固体碱催化剂制备方法
Wang et al. Direct production of biodiesel via simultaneous esterification and transesterification of renewable oils using calcined blast furnace dust
CN102978012A (zh) 一种咪唑阴离子型碱性离子液体催化制备生物柴油的方法
CN102586031A (zh) 一种基于离子液体制备生物柴油的方法
CN106374118A (zh) 一种具备高效电催化氧还原性能的ZnO/rGO复合材料
CN101205473A (zh) 煅烧硅酸钠催化制备生物柴油
CN105056954A (zh) 一种加氢催化剂及其制备方法与应用
CN112023948A (zh) 一种高效光催化分解水产氢的光触媒及其制备方法
CN104014343A (zh) 一种双功能磁性固体碱催化剂及其制备方法与应用
CN101406842B (zh) 铝柱撑坡缕石改性固体酸催化剂及其制备和应用
CN103484258B (zh) 一种纳米羟基磷灰石催化甘油三脂制备生物柴油的方法
CN107099380A (zh) 一种生物柴油的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20140903