CN1263159C - 半导体器件及其制造方法 - Google Patents

半导体器件及其制造方法 Download PDF

Info

Publication number
CN1263159C
CN1263159C CNB001216392A CN00121639A CN1263159C CN 1263159 C CN1263159 C CN 1263159C CN B001216392 A CNB001216392 A CN B001216392A CN 00121639 A CN00121639 A CN 00121639A CN 1263159 C CN1263159 C CN 1263159C
Authority
CN
China
Prior art keywords
film
electronic equipment
silicon nitride
insulating film
tft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB001216392A
Other languages
English (en)
Other versions
CN1276630A (zh
Inventor
坂间光范
浅见勇臣
石丸典子
山崎舜平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Publication of CN1276630A publication Critical patent/CN1276630A/zh
Application granted granted Critical
Publication of CN1263159C publication Critical patent/CN1263159C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4908Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET for thin film semiconductor, e.g. gate of TFT

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Thin Film Transistor (AREA)

Abstract

目的是提供一种适用于一般为TFT的半导体器件的绝缘膜和一种制造该绝缘膜的方法。提供一种利用这种绝缘膜作栅绝缘膜、基膜、保护绝缘膜或层间绝缘膜的半导体器件,及其制造方法。利用SiH4、N2O和H2作原料气,通过等离子体CVD由氢化氧氮化硅膜制造该绝缘膜。其成分是氧浓度设定为55-70原子%、氮浓度设定为0.1-6原子%和氢浓度设定为0.1-3原子%。为了制造这种成分的膜,基片温度设定在350-500℃,较好在400-450℃之间,放电功率密度设定在0.1-1W/cm2

Description

半导体器件及其制造方法
技术领域
本发明涉及一种薄膜晶体管及其制造方法,特别涉及形成薄膜晶体管需要的绝缘膜材料及晶体管的制造方法。
背景技术
人们已开发出薄膜晶体管(此后称为TFT),其有源层由结晶半导体膜构成,结晶半导体膜利用例如激光退火或热退火法,由形成于如玻璃等具有透光性的绝缘基片上的非晶半导体膜结晶而成。主要用于TFT制造的基片有例如钡硼硅玻璃或铝硼硅玻璃等玻璃基片。与石英基片相比,这类玻璃基片具有较差的耐热性,但它们的优点在于低市场价格和容易制造大表面积基片的事实。
就栅极的设置而言,TFT的结构可大致分为顶栅型和底栅型。在顶栅型中,有源层形成于例如玻璃基片等绝缘基片上,栅绝缘膜和栅极依次形成于有源层上。另外。在许多情况下,基膜形成于基片和有源层之间。另一方面,底栅型中,栅极形成于类似的基片上,栅绝缘膜和有源层依次形成于栅极上。此外,保护绝缘膜或层间绝缘膜形成于有源层上。
栅绝缘膜、基膜、和保护绝缘膜或层间绝缘膜由例如氧化硅膜、氮化硅膜或氮氧化硅膜形成。采用这些类型的材料的理由是,要相对于构成有源层的非晶硅膜或结晶硅膜形成良好的界面,较好是由具有硅作一种主要成分的材料形成绝缘膜。
一般认为较好是利用等离子体CVD或低压CVD制造上述绝缘膜。等离子体CVD是一种在辉光放电中分解原材料气,并通过形成等离子体形成游离基(这里是指化学活性游离基),然后将它们淀积于基片上的技术。在等离子体CVD中,可以在一般为400℃以下的低温下,高速淀积膜。然而,等离子体中还存在离子,因此,必须熟练地控制由于屏蔽区内产生的电场造成的被加速离子对衬底的损伤。另一方面,低压CVD是一种热分解原材料气,并在基片上淀积膜的技术。没有象等离子体CVD那样的离子所致损伤,但低压CVD的缺点是淀积速度慢。
无论用什么技术,都必须充分减小界面态密度和膜内的缺陷态密度(体缺陷密度),以便将该膜制成TFT的栅绝缘膜、基膜、或保护绝缘膜或层间绝缘膜。此外,必须考虑由于内部应力或热处理造成的改变量。
为了形成良好质量的绝缘膜,在膜淀积工艺期间基本上不要引入任何缺陷是很重要的,要采用能减小所形成膜缺陷态密度的成分。为此考虑的一种方法是利用具有高分解率的原材料气。例如,用TEOS(四乙氧基原硅烷,化学式为Si(OC2H5)4)和氧(O2)的气体混合物,通过等离子体CVD制造氧化硅膜,是能够形成良好质量绝缘膜的一种方法。如果用这种氧化硅膜制造MOS结构,然后,进行BTS(偏置,热,应力)试验,已知平带电压(此后称作Vfb)的改变会减小到实际应用的范围,
然而,TEOS的辉光放电分解过程中容易产生水(H2O),水容易进入膜。因此,必须在膜淀积后,在400-600℃间进行热退火,以形成如上所述的良好质量膜。由于会导致制造成本增加,所以,在TFT制造工艺中引入这类高温退火步骤是不合适的。
另一方面,利用SiH4和N2O的气体混合物,通过等离子体CVD形成的氧氮化硅膜,被含于膜中的百分之几的氮原子致密化,可以不必进行热退火制造良好质量的膜。然而,根据制造条件,Si-N键会形成缺陷态,在某些情况下,这会增大Vfb的改变量,并引起作为TFT特性之一的阈值电压(此后称为Vth)的移动。类似地,利用等离子体CVD,由例如SiH4、NH3和N2制造氮化硅膜,可以提供致密且硬的膜,但缺陷态密度较大。另外,内应力较大,因此,如果直接接触形成有源层,会造成变形,对TFT的特性造成不良影响,Vth移位,亚阈值系数(此后称作S值)变大。
发明内容
本发明是一种解决上述问题的技术,因此,本发明的目的是提供一种适用于一般为TFT的半导体器件的绝缘膜及其制造方法。另外,本发明的目的是提供一种利用这种绝缘膜作栅绝缘膜、基膜、保护绝缘膜或层间绝缘膜的半导体器件及其制造方法。
根据本发明,提供了一种电子设备,包括形成于基片上的薄膜晶体管,所说薄膜晶体管包括:形成于所说基片上的基膜;形成于所说基膜上的所说薄膜晶体管的有源层;形成于所说有源层上的栅绝缘膜;形成为与所说栅绝缘膜接触的栅极;及形成于所说栅极上的层间绝缘膜;其中包括所说基膜、所说栅绝缘膜和所说层间绝缘膜的组中的至少一个由包括浓度为55-70原子%的氧、浓度为0.1-6原子%的氮和浓度为0.1-3原子%的氢的氢化氧氮化硅膜形成。
本发明还提供了一种电子设备,包括形成于基片上的薄膜晶体管,所说薄膜晶体管包括:形成于所说基片上的栅极;形成于所说栅极上的栅绝缘膜;形成于所说栅绝缘膜上的有源层;形成于所说有源层上的保护绝缘膜或层间绝缘膜;其中包括所说栅绝缘膜和所说保护绝缘膜或所说层间绝缘膜的组中的至少一个由包括浓度为55-70原子%的氧、浓度为0.1-6原子%的氮和浓度为0.1-3原子%的氢的氢化氧氮化硅膜形成。
本发明还提供了一种制造电子设备的方法,所说电子设备包括形成于基片上的薄膜晶体管,所说方法包括以下步骤:在所说基片上形成基膜;在所说基膜上形成所说薄膜晶体管的有源层;在所说有源层上形成栅绝缘膜;形成与所说栅绝缘膜接触的栅极;及在所说栅极上形成层间绝缘膜;其中所说基膜、所说栅绝缘膜和所说层间绝缘膜中的至少一个包括由SiH4、N2O和H2形成的氢化氧氮化硅膜;其中所说氢化氧氮化硅膜包括浓度为55-70原子%的氧、浓度为0.1-6原子%的氮和浓度为0.1-3原子%的氢。
本发明还提供了一种制造电子设备的方法,所说电子设备包括形成于基片上的薄膜晶体管,所说方法包括以下步骤:在所说基片上形成栅极;在所说栅极上形成栅绝缘膜;在所说栅绝缘膜上形成所说薄膜晶体管的有源层;以及在所说有源层上形成保护绝缘膜或层间绝缘膜;其中所说栅绝缘膜、所说保护绝缘膜和所说层间绝缘膜中的至少一个包括由SiH4、N2O和H2形成的氢化氧氮化硅膜;其中所说氢化氧氮化硅膜包括浓度为55-70原子%的氧、浓度为0.1-6原子%的氮和浓度为0.1-3原子%的氢。
为了解决上述问题,本发明采用利用SiH4、N2O和H2作原材料气,通过等离子体CVD制造的氢化氧氮化硅膜作一般为TFT的半导体器件的绝缘膜材料。利用这类氢化氧氮化硅膜作栅绝缘膜、基膜、保护绝缘膜或层间绝缘膜,可以制造Vth不移位,BTS稳定的TFT。
关于利用SiH4、N2O和H2作原材料气,通过等离子体CVD制造的氢化氧氮化硅膜的报道,例如Yeh,Jiun-Lin和Lee,Si-Chen发表于Journal ofApplied Physics第79卷,第2期,第656-663页的“非晶氧氮化硅的结构和光学性质”一文,讨论了用250℃的分解温度,以固定在0.9-1.0的氢(H2)与SiH4+N2O的混合比,通过等离子体CVD制造的氢化氧氮化硅膜,其中表示为Xg=[N2O]/([SiH4]+[N2O])的混合比Xg的值从0.05变到0.975。然而,利用傅利叶变换红外光谱分析法(FT-IR)法,清楚地观察到了所制造的氢化氧氮化硅膜中HSi-O3键和H2Si-O2键的存在。这些键彻底降低了热稳定性,另外,恐怕配位数的变化将在键的外围形成缺陷态密度。因此,甚至用相同的氢化氧氮化硅膜,如果不具体检测组分、或包括杂质元素的成分,也不能用作例如对TFT特性有重要影响的栅绝缘膜等绝缘膜。
因此,本发明的绝缘膜材料即氢化氧氮化硅膜是利用SiH4、N2O和H2作原材料,通过等离子体CVD制造的膜。其组分是氧浓度设定为55-70原子%,氮浓度设定为0.1-6原子%,较好是0.1-2原子%,氢浓度设定为0.1-3原子%。为了形成这种组分的膜,基片温度设定为350-500℃,较好在400-450℃之间,放电功率密度设定在0.1-1W/cm2
在利用等离子体CVD制造氢化氧氮化硅膜时,通过在通常使用的SiH4和N2O中加氢,防止SiH4分解产生的游离基气相聚合(在反应空间内),从而避免了产生颗粒。另外,在膜生长表面上,可以防止过量氢因被氢游离基表面吸附的氢的吸附反应进入膜中。这种作用与膜淀积期间基片的温度密切相关,除非基片温度设定在本发明的范围内,否则不可以实现。结果,可以形成小缺陷密度的致密膜,膜内含有的微量氢,会在释放晶格翘曲时有效地发挥作用。为了分解水,增大产生的氢游离基的浓度,合适的是将产生辉光放电的高频电源的频率设定为在13.56-120MHz之间,较好是27-70MHz。
以此方式,本发明可有效地利用通过将氢化氧氮化硅膜中的氧、氮和氢的量设定为优化量实现的效果,这些效果在其它情况下无法获得。甚至对于由相同制造方法形成的氢化氧氮化硅膜,根据制造条件,可以形成具有不同组分的这种膜。例如,包含过量的氢会产生如上所述的增大膜不稳定性的后果。
此外,通过用这种氢化氧氮化硅膜形成TFT的栅绝缘膜、基膜、和保护绝缘膜或层间绝缘膜,并在300-500℃的温度下进行热处理,可以发射氢化氧氮化硅膜中的氢。通过将发射的氢扩散到有源层中,可以有效地进行有源层的氢化。下面详细介绍本发明的优选实施例。
附图说明
图1A-1F是展示制造TFT的工艺的剖面图;
图2A-2F是展示制造TFT的工艺的剖面图;
图3A-3C是展示每个都利用氢化氧氮化硅膜的MOS晶体管的C-V特性的图;
图4是展示氢化氧氮化硅膜的红外光谱特性的示图;
图5A-5E是展示制造TFT的工艺的剖面图;
图6A-6E是展示制造TFT的工艺的剖面图;
图7A-7E是展示制造TFT的工艺的剖面图;
图8A-8D是展示制造TFT的工艺的剖面图;
图9A-9D是展示制造像素TFT和驱动电路TFT的工艺的剖面图;
图10A-10D是展示制造像素TFT和驱动电路TFT的工艺的剖面图;
图11A-11D是展示制造像素TFT和驱动电路TFT的工艺的剖面图;
图12A-12C是展示制造像素TFT和驱动电路TFT的工艺的剖面图;
图13是展示像素TFT和驱动电路TFT的剖面图;
图14A-14C是展示制造驱动电路TFT的工艺的俯视图;
图15A-15C是展示制造像素TFT的工艺的俯视图;
图16A-16C是展示制造驱动电路TFT的工艺的剖面图;
图17A-17C是展示制造像素TFT的工艺的剖面图;
图18是展示液晶显示器件的输入/输出端子、布线和电路设置的俯视图;
图19是展示液晶显示器件的结构的剖面图;
图20是展示液晶显示器件的结构的透视图;
图21是展示显示区中的像素的俯视图;
图22A和22B是展示有源矩阵型有机EL显示器件的结构示图;
图23A-23F是展示半导体器件的各实例的示图;
图24A-24D是展示投影仪的各实例的示图;
图25A和25B是分别展示EL显示器件的结构的俯视图和剖面图;
图26A和26B是展示EL显示器件的像素部分的剖面图;
图27A和27B分别是EL显示器件的像素部分的俯视图和电路图;
图28A-28C是另一EL显示器件的另一像素部分的电路图的各实例。
具体实施方式
下面按实施例介绍制造适用于一般为TFT的半导体器件的绝缘膜的方法。氢化氧氮化硅膜适合用作这类绝缘膜,本发明的氢化氧氮化硅膜是利用SiH4、N2O和H2作原材料气,通过等离子体CVD制造的膜。这里图示了利用氢化氧氮化硅膜制造MOS结构试验片得到的电容—电压特性(此后称为C-V特性)。
这里可以使用电容耦合型等离子体CVD装置,制造氢化氧氮化硅膜。表1中示出了典型的制造条件。表1中包括三种制造条件,与本发明有关的制造条件是#1883和#1884。条件#1876是常规氧氮化硅膜的制造条件,为了比较列出这些条件。表1中包括氢化氧氮化硅膜的膜淀积条件和膜淀积前进行的工艺的预处理条件,该预处理不是必须的,但有利于提高氢化氧氮化硅膜特性的再现性,和在将这种氢化氧氮化硅膜应用于TFT时TFT特性的重复性。
表1
  条件号  #1883  #1884   #1876
  等离子体清洗   气体(sccm)   H2  200  200   100
  O2  0  0   100
  压力(Pa)  20  20   20
  RF功率(W/cm2)  0.2  0.2   0.2
  处理时间(分钟)  2  2   2
  膜形成   气体(sccm)   SiH4  5  5   4
  N2O  120  120   400
  H2  500  125   0
  压力(Pa)  20  20   40
  RF功率(W/cm2)  0.4  0.4   0.4
  基片温度(℃)  400  400   400
参见表1,预处理条件是以338Pa-1/秒引入氢,在压力为20Pa,高频电源设定为0.2W/cm2的条件下,产生等离子体,然后,处理2分钟。另外,通过以169Pa-1/秒引入氢,和169Pa-1/秒引入氧,然后,在压力为40Pa的条件下,类似地产生等离子体,进行处理。此外,尽管表中未示出,但可以通过引入N2O和氢,并将压力设定在10-70Pa,将高频功率密度设定在0.1-0.5W/cm2,处理数分钟,进行处理。这种预处理期间,基片的温度可以在300-450℃,较好是400℃。预处理的效果包括对将在其上淀积膜的基片的清洗作用,和对以后淀积的氢化氧氮化硅膜的界面特性的稳定作用,稳定作用通过使淀积表面吸附氢,暂时不活化表面实现。另外,通过同时引入氧和N2O,具有如淀积表面的最上表面及其附近被氧化、减小界面态密度的希望的作用。
本发明的氢化氧氮化硅膜的淀积条件是:以1-17Pa-1/秒引入SiH4,以169-506Pa-1/秒引入N2O,以169-1266Pa-1/秒引入氢;反应压力设定为10-70Pa;高频功率密度设定为0.1-1.0W/cm2;基片温度为300-450℃,较好为400℃。用#1883条件时,用以下条件制造氢化氧氮化硅膜:以8.44Pa-1/秒引入SiH4,以203Pa-1/秒引入N2O,以844Pa-1/秒引入氢;反应压力设定为20Pa;高频功率密度设定为0.4W/cm2;基片温度为400℃。可以以13.56-120MHz,较好27-60MHz的频率加高频电源,这里用60MHz。另外,条件#1884与#1883相同,氢流量设定在211Pa-1/秒。各气体流量不限于这些绝对值,但它们的流量比则更有效。如果Xh=[H2]/([SiH4]+[N2O]),则合适的Xh为0.1-7。另外,如上所述,如果Xg=[N2O]/([SiH4]+[N2O]),则合适的Xg为0.90-0.996。表1所示的#1876条件是常规条件,是不加氢制造氢化氧氮化硅膜的典型制造条件。
首先通过制造MOS结构试验片,并利用BTS试验研究其C-V特性和Vfb波动,研究这样制造的氢化氧氮化硅膜的特性。在最希望的C-V特性中Vfb为0V,BTS试验的最希望结果是Vfb不改变。该值偏离0,意味着在界面和绝缘膜中存在许多缺陷态密度。试验片是单晶硅基片(CZ-p型,<100>,电阻率为3-7Ωcm),其上在表1所示的各条件下形成了155nm厚的氢化氧氮化硅膜。溅射形成400nm厚的铝(Al)电极,电极表面积设定为78.5mm2。另外,在单晶硅基片的背面上,形成同样厚度的Al电极,在350℃的氢气氛中,进行30分钟热处理,进行烧结。在BTS试验中,在氢化氧氮化硅膜上的电极上加-1.7MV的电压,在150℃允许持续该过程1小时。
图3A-3C展示了这种试验片的C-V特性。用Yokokawa Hewlett PackardCorp.YHP-4192A进行测量。图3A示出了在#1876条件下制造的氢化氧氮化硅膜的C-V特性,观察到BTS试验前后特性发生了明显的变化。另一方面,图3B示出了在#1883条件下制造的试验片的特性,图3C示出了#1884条件下制造的试验片的特性。从图3B和3C可以证实,BTS试验前后特性的变化很小。表2包括从C-V特性得到的Vfb值的资料,初始值和第一BTS试验后的值,改变量表示为ΔVfb。#1883条件下的试验片的Vfb初始值为-2.25V,#1884条件下的试验片的Vfb初始值为-0.66V,#1876条件下试验片的Vfb初始值为-2.84V。它们的ΔVfb值分别为-0.55V、-0.15V和-1.35V。换言之,#1884条件下制造的试验片具有最小Vfb初始值和最小ΔVfb值。
表2
  条件号   #1883   #1884   #1876
  C-V数据   Vfb(V)   初始   -2.25   -0.66   -2.84
  第一BTS   -2.8   -0.81   -4.19
  ΔVfb  (V)   (-BT)-(初始)   -0.55   -0.15   -1.35
  ε’   4.017   3.796   3.569
C-V特性的结果表明,在制造氢化氧氮化硅膜的各条件下,对于SiH4和N2O来说,混合的氢的比例有一个最佳范围。从图3A-3C的结构可知,在Xh=1,Xg=0.96时,可以得到很好的结果。
图4是利用FT-IR光谱分析仪(所用装置:Nicolet Magna-IR 760)测量试验片中所含氢量的红外吸收光谱特性得到的。用于该测量的试验片淀积于单晶硅基片上(FZ-N型,<100>,电阻率为1000Ωcm以上)。由于所有样品中都观察到了Si-O-Si键,所以,拉伸模式吸收时,在1080-1050cm-1处有峰值,弯曲模式吸收时,在810cm-1处有峰值。然而,在2300-2000cm-1附近观察到与Si-H键有关的吸收,并观察到与HSi-O键有关的较弱吸收。如果在Si-H键在2000cm-1具有拉伸模式吸收峰值的前提下,量化各试验片中所含的氢,则在#1876和#1884条件下制造的试验片中无法量化氢,确定该键的浓度为1×1019cm-3以下。对于在#1883条件下制造的试验片来说,Si-H键浓度量化为4×1019cm-3。另一方面,如果估算从3250-3400cm-1积分得到的N-H键浓度,对于在#1883条件下制造的试验片来说,浓度量化为6×1020cm-3。对于#1884条件下制造的试验片来说,浓度量化为4×1020cm-3。然而,在常规#1876条件下制造的试验片无法量化。
所以可以证实,在利用根据表1所示三种条件下制造的氢化氧氮化硅膜的MOS结构测试片之间,C-V特性明显不同,并可以证实,存在着BTS试验前后Vfb初始值和其变化都很小的制造条件。还可以证实,各膜中所含氢的浓度不同,从与C-V特性的关系可知,存在着最佳组分。
表1和表2示出了典型实例,但适用于一般为TFT的半导体器件的绝缘膜的组分可以如下设定:氧浓度为55-50原子%;氮浓度为0.1-6原子%,较好为0.1-2原子%;氢浓度为0.1-3原子%。
实施例1
在实施例1中,用图1A-2F,按工艺步骤介绍在同一基片上形成CMOS电路所需要的制造n沟道TFT和p沟道TFT的方法。由本发明的氢化氧氮化硅膜构成的绝缘膜应用作TFT的基膜、栅绝缘膜、层间绝缘膜。
图1A中的基片101采用例如钡硼硅玻璃基片或铝硼硅玻璃基片等基片,一般为Coming Corp.的#7059玻璃或#1737玻璃基片。尽管是微量的,但这种玻璃基片中含有例如钠等碱金属元素。这种玻璃基片会由于热处理期间的温度而收缩约几ppm至几十ppm,因此,可以在低于玻璃变形点10-20℃的温度下先进行热处理。在其上将形成TFT的基片101的表面上,形成基膜102,以防止来自基片101的碱金属元素和其它杂质造成的沾污。基膜102由用SiH4、NH3和N2O制造的氧氮化硅膜102a和用SiH4、N2O和H2制造的氢化氧氮化硅102b构成。氧氮化硅膜102a形成为厚10-100nm(较好为20-60nm),氢化氧氮化硅膜形成为厚10-200nm(较好为20-100nm)。
这些膜利用常规的平行板型等离子体CVD形成。为制备氧氮化硅膜102a,向反应室中以16.9Pa-1/秒引入SiH4,以169Pa-1/秒引入NH3,以33.8Pa-1/秒引入N2O,基片温度设定为325℃,反应压力为40Pa,放电功率密度为0.41W/cm2,放电频率为60MHz。另一方面,为制备氢化氧氮化硅膜102b,向反应室中,以8.4Pa-1/秒引入SiH4,以203Pa-1/秒引入N2O,以211Pa-1/秒引入H2,基片温度设定为400℃,反应压力为20Pa,放电功率密度为0.41W/cm2,放电频率为60MHz。可以通过只改变基片温度和改变反应气体连续形成这些膜。
这里形成的氧氮化硅膜102a的密度为9.28×1022/cm3,是致密的硬膜,该膜在20℃下,在含7.13%氟化氢铵(NH4HF2)和15.4%的氟化铵(NH4F)的混合溶液(STELLA CHEMIFA Corp,产品名为LA1500)中的腐蚀速率较低,为63nm/分钟。如果这种膜用作基膜,则可以有效地防止碱金属元素从玻璃基片扩散到形成于基膜上的半导体层中。
然后,利用例如等离子体CVD或溅射等已知方法,形成厚25-80nm(较好是30-60nm)的非晶硅结构的半导体层103a。在实施例1中,利用等离子体CVD,形成厚55nm的非晶硅膜。非晶半导体膜和微晶半导体膜可以作为具有非晶结构的半导体膜存在,也可以采用例如非晶硅锗膜等具有非晶结构的化合物半导体膜。另外,基膜102和非晶半导体层103a可连续形成。例如,在如上所述连续淀积了氧氮化硅膜102a和氢化氧氮化硅膜102b后,如果反应气从SiH4、N2O和H2变为SiH4和H2或SiH4,则可以在不暴露于大气的情况下连续形成这些膜。结果,可以防止氢化氧氮化硅膜102b表面被沾污,防止所制造的TFT特性波动,可以减小其阈电压的改变。
进行结晶步骤,由非晶半导体层103a形成结晶半导体层103b。例如,可应用激光退火和热退火(固相生长法)和快速热退火(RTA)。按RTA法,例如红外灯、卤素灯、金属卤化物灯或氙灯等灯用作光源。或者,根据日本专利申请公开平7-130652中公开的技术,利用催化元素的结晶法形成结晶半导体层103b。必需排出非晶半导体层中含有的氢,因此,希望首先进行在400-500℃下约1小时的热处理,将非晶半导体层中包含的氢量减少到5原子%以下,然后,进行结晶(图1B)。
在利用激光退火进行结晶时,用脉冲振荡型或连续光发射型准分子激光器或氩激光器作光源。如果用脉冲振荡型准分子激光器,则在将激光形成了直线形后进行激光退火。激光退火条件可由操作者适当地选择,但例如设定如下:激光脉冲振荡频率为30Hz,激光能量密度为100-500mJ/cm2(一般为300-400mJ/cm2)。直线形束照射在基片的整个表面上,进行照射使直线形束的重叠率为80-98%。于是形成结晶半导体层。
对于热退火的情况来说,利用退火炉,在约600-660℃的温度下,在氮气氛中进行退火。无论用那种方法,非晶半导体层结晶期间,原子重新排列,使之精细化和微小化,所制造的结晶半导体层的厚度从原始的非晶半导体层(本实施例中为55nm)的厚度减小约1-15%。
然后在结晶半导体层103b上形成光刻胶图形,并通过干法腐蚀将结晶半导体层隔成岛形,形成岛状半导体层104和105a作有源层。干法腐蚀用CF4和O2的混合气。然后,用由等离子体CVD、低压CVD或溅射形成的厚50-100nm的氧化硅膜,形成掩模层106。例如,如果用等离子体CVD,则混合四乙氧基原硅烷(TEOS)和O2,反应压力设定为40Pa,基片温度设为300-400℃,在高频(13.56MHz)功率密度为0.5-0.8W/cm2的条件下进行放电,形成100-150nm,一般为130nm的厚度。(图1C)
然后,形成光刻胶掩模107,在形成n沟道TFT的岛状半导体层105a中,以1×1016-5×1017原子/cm3的浓度,掺入产生P型导电的杂质元素,以控制阈值电压。元素周期表第13族元素例如硼(B)、铝(Al)和镓(Ga)已知为产生半导体p型导电的杂质元素。这里通过利用乙硼烷(B2H6)的离子掺杂掺入硼(B),不总是需要进行硼(B)掺杂,省略它没什么问题,但掺杂硼的半导体层105b可形成为使n沟道TFT的阈值电压在预定范围内(图1D)。
为了形成n沟道TFT的LDD(轻掺杂漏)区,选择性地在岛状半导体层105b中掺入形成n型导电的杂质元素。元素周期表中的15族元素例如磷(P)、砷(Aa)和锑(Sb)等已知为使半导体产生n型导电的杂质元素。形成光刻胶掩模108,这里通过利用磷化氢(PH3)的离子掺杂掺入磷(P)。杂质区109中的磷(P)浓度为2×1016-5×1019原子/cm3。整个说明书中,包含于杂质区109中、产生n型导电的杂质元素的浓度是指n-型(图1E)。
利用例如用纯水稀释的氢氟酸等腐蚀溶液,去掉掩模层106。然后,进行激活图1D和1E中掺入岛状半导体层105b中的杂质元素的步骤。激活可利用如在500-600℃下,在氮气氛中热退火1-4小时或激光退火等方法进行。另外,可以一起进行这两种方法。该实施例中,进行利用KrF准分子激光(248nm波长)的激光激活。激光形成直线形束,振荡频率设定为5-50Hz,能量密度设定为100-500mJ/cm2。直线形束以80-98%的重叠率扫描,处理其上形成岛状半导体层的衬底的整个表面。注意,激光的照射条件不限于这些条件,操作者可以适当地设定。
然后,利用等离子体CVD,由含硅绝缘膜形成厚40-150nm的栅绝缘膜110。在淀积栅绝缘膜之前,先进行等离子体清洗工艺。通过以338Pa-1/秒引入氢,然后在压力设定为20Pa,高频功率设定为0.2W/cm2的条件下,产生等离子体,进行2分钟的等离子体清洗工艺。或者,在169Pa-1/秒引入氢,以169Pa-1/秒引入氧,在压力为40Pa的条件下类似地产生等离子体。基片温度设定为300-450℃,较好为400℃。通过在该阶段对岛状半导体层104和105b的表面进行等离子体清洗,可以去除例如吸附硼或磷或有机物质等沾污物质。另外,通过同时引入氧和N2O,氧化淀积表面的最上表面和其附近区域,于是产生希望的作用,例如减少与栅绝缘膜界面的界面态密度。可以在等离子体清洗工艺后连续形成栅绝缘膜110的工艺,并与上述氢化氧氮化硅膜102b类似,通过向反应室中以8.4Pa-1/秒引入SiH4,以203Pa-1/秒引入N2O,以211Pa-1/秒引入H2,并将基片温度设定为400℃,反应压力设定为20Pa,放电功率密度为0.41W/cm2,放电频率为60MHz,形成栅绝缘膜。(图1F)
在栅绝缘膜110上形成导电层,以形成栅极。该导电层可形成单层,但需要时,也可以形成叠层结构。该实施例中,层叠由导电金属氮化物膜形成的导电层(A)111和由金属膜构成的导电层(B)112。导电层(B)112可由选自钽(Ta)、钛(Ti)、钼(Mo)、钨(W)中的一种元素构成,或由这些元素之一作其主要成分的合金构成,或由这些元素结合(一般为Mo-W合金膜或Mo-Ta合金膜)的合金膜构成。导电层(A)111由氮化钽(TaN)、氮化钨(WN)、氮化钛(TiN)或氮化钼(MoN)形成。另外,硅化钨、硅化钛、或硅化钼等可用作导电层(A)111。所含杂质的浓度可以减小到能够使导电层(B)112的电阻较小,具体说,较好是氧浓度减小到30ppm以下。例如,通过使钨中氧浓度减小到30ppm以下,可以用钨(W)实现20μΩcm以下的电阻率。(图2A)。
导电层(A)111厚可以为10-50nm(较好为20-30nm),导电层(B)112厚可以为200-400nm(较好是250-350nm)。该实施例中,用30nm厚的TaN膜作导电层(A)111,用350nm厚的Ta膜作导电层(B)112,两层都通过溅射形成。用Ta作靶,并用Ar和氮的混合气作溅射气,形成TaN。利用Ar作溅射气形成Ta。另外,如果在这些溅射气中加入适当量的Xe或Kr,则可以释放所形成膜的内部应力,防止剥离。α相Ta膜的电阻率约为20μΩcm,可以用于栅极,但β相Ta膜的电阻率约为180μΩcm,不适于作栅极。TaN膜具有接近α相的结晶结构,因此,如果在TaN膜上形成Ta膜,容易获得α相的Ta膜。注意,尽管图中未示出,但有效地是利用磷(P)掺杂导电膜(A)111下的厚约2-20nm的硅膜。这样作,可以在提高形成于硅膜上的导电膜的粘附性,并防止氧化的同时,可以防止导电层(A)或导电层(B)含有的微量碱金属元素扩散到栅绝缘膜110中。无论用什么方法,较好是使导电层(B)的电阻率在10-500μΩcm。
然后,形成光刻胶掩模113,一起腐蚀导电层(A)和导电层(B),形成栅极114和115。例如,可以通过利用CF4和O2的混合气或用Cl2气、在1-20Pa的反应压力下的干法腐蚀,进行腐蚀。栅极114和115由导电层114a和115a及114b和115b构成,导电层114a和115a由导电层(A)构成,导电层114b和115b由导电层(B)构成。n沟道TFT的栅极115通过栅绝缘膜110重叠部分杂质区109。另外,可以只由导电层(B)形成栅极。(图2B)
然后,形成杂质区117作p沟道TFT的源区和漏区。这里,用栅极114作掩模,掺入产生p型导电的杂质元素,以自对准方式形成该杂质区。此时,构成n沟道TFT的岛状半导体层由光刻胶掩模116覆盖。然后,利用乙硼烷(B2H6)进行离子掺杂,形成杂质区117。该区中的硼(B)浓度为3×1020-3×1021原子/cm3。整个说明书中,包含于杂质区117中产生p型导电的杂质元素的浓度是指p+。(图2C)
然后,形成构成n沟道TFT的源区或漏区的杂质区118。这里利用磷化氢(PH3)进行离子掺杂,该区中磷(P)浓度设定为1×1020-1×1021原子/cm3。整个说明书中,包含于杂质区118中产生n型导电的杂质元素的浓度是指n+。同时在杂质区117中掺杂磷(P),但与已在先前步骤掺杂的硼的浓度相比,掺入杂质区117的磷(P)浓度约为硼的1/3-1/2,因此,确保了p型导电,并且不会影响TFT特性。
此后,通过热退火进行产生n型或p型导电,并具有以各自浓度掺入的杂质元素的激活。该步骤可以用退火炉。此外,也可以采用激光退火或快速热退火(RTA)。退火工艺在400-700℃,一般为500-600℃的温度下,在氧浓度为1ppm以下较好为0.1ppm以下的氮气氛中进行。该实施例中,在550℃,进行4小时热处理。另外,合适的是在退火之前,由氧氮化硅膜或氧化硅膜形成厚50-200nm的保护绝缘膜119。较好是在表1所示的条件#1883或#1884下形成氢化和硝化氧化硅膜。然而,这种情况下,也可以根据#1876形成该膜,而不会产生任何问题。
激活步骤后,在300-500℃的温度下,在含3-100%氢的气氛中,进行附加热处理1-12小时,氢化岛状半导体层。该步骤利用热激发的氢终止半导体层中的悬挂键。可以进行等离子体氢化(利用等离子体激发氢)作为氢化的另一种方法。(图2E)。
然后,在表1所示的#1883或#1884条件下,在保护绝缘膜上附加地淀积氢化氧氮化硅膜,形成层间绝缘膜120。在实施例1中,通过以8.4Pa-1/秒引入SiH4,以200Pa-1/秒引入N2O,以844Pa-1/秒引入氢,将反应压力设定为40Pa,基片温度设定为400℃,放电功率密度设定为0.4W/cm2,形成厚500-1500nm(较好是600-800nm)的氢化氧氮化硅膜。
然后,在层间绝缘层120和保护绝缘层119中形成接触孔,达到TFT的源区或漏区。于是,形成源布线121和124及漏布线122和123。尽管图中未示出,但该实施例中,这些电极是具有三层结构的叠层膜,三层结构分别是依次溅射形成的100nm厚的Ti膜、300nm厚的含Ti铝膜,和150nm厚的Ti膜。
然后,形成厚50-500nm(一般为100-300nm)的氮化硅膜或氧氮化硅膜作钝化膜125。如果这种状态下进行氢化处理,则可以产生使TFT特性较好的希望的结果。例如,合适的是在含3-100%氢的气氛中,在300-500℃的温度下,进行1-12小时的热处理。如果形成由致密氮化硅膜构成的钝化膜125,并在这样的温度范围内进行热处理,则构成层间绝缘膜120的氢化氧氮化硅膜中包含的氢会释放出来,由于被致密氮化硅膜帽盖,所以,可以防止上层侧上氢扩散。因此,释放的氢基本上扩散到下层侧。于是可以利用从氢化氧氮化硅膜释放的氢,进行岛状半导体层104和105b的氢化。类似地,氢也从用作基膜的氢化氧氮化硅膜释放,因此,可以从上下两侧氢化岛状半导体层104和105b。另外,用等离子体氢化作氢化工艺,也可以得到类似的结果。
于是在基片101上完成了n沟道TFT 134和p沟道TFT 133。p沟道TFT 133在岛状半导体层104中具有沟道形成区126、源区127和漏区128。n沟道TFT 134在岛状半导体层105中具有沟道形成区129、重叠栅极115的LDD区130(此后称这类LDD区为Lov区)、源区132和漏区131。对于3-8微米的沟道长度来说,Lov区在沟道长度方向的长度设定为0.5-3.0微米(较好是1.0-1.5微米)。图2A-2F的各TFT取单栅结构,但也可以用双栅结构,另外,还可以用形成有多个栅极的多栅结构,不会有什么问题。(图2F)
评价以此方式制造的TFT的特性。对于由TFT构成的电路在希望的驱动电压下正常工作来说重要的TFT特性包括例如Vth、S值、和电场效应迁移率等特性,特别引人注目的是Vth和S值。TFT的尺寸如下:对于p沟道和n沟道TFT来说,沟道长度L=8微米,沟道宽度W=8微米,n沟道TFT中,用Lov=2微米的LDD区作为LDD区。
结果,在完成的TFT的n沟道TFT中,可以使S值为0.10-0.30V/dec,可以使Vth为0.5-2.5V,可以使电场效应迁移率为120-250cm2/V.秒。另外,在完成的TFT的p沟道TFT中,可以使S值为0.10-0.30V/dec,可以使Vth为-2.5到-0.5V,可以使电场效应迁移率为80-150cm2/V.秒。由于由利用SiH4、N2O和H2制造的氢化氧氮化硅膜形成TFT的基膜、栅绝缘膜、和保护绝缘膜或层间绝缘膜,并从所含氢量开始适当地设定组分,所以可以获得这些特性,并具有良好的可再现性。
实施例2
制造用作TFT的有源层的结晶半导体膜的方法不限于激光退火,可以结合使用激光退火和热退火。另外,还可以在通过热退火的结晶方法中应用日本专利申请公开平7-130652中公开的采用催化元素的结晶方法。结合图5A-5E介绍这种方法。
如图5A所示,与实施例1类似,在基片101上形成氧氮化硅膜102a和氢化氧氮化硅膜102b。然后,利用例如等离子体CVD或溅射等方法,形成厚25-80nm的非晶半导体膜103a。例如,形成55nm厚的非晶硅膜。通过旋涂法,施加含按重量计10ppm的催化元素的水溶液,形成含催化元素的层150(图中未示出)。可以用例如镍(Ni)、锗(Ge)、铁(Fe)、钯(Pd)、锡(Sn)、铅(Pb)、钴(Co)、铂(Pt)、铜(Cu)和金(Au)等元素作催化元素。除旋涂外,含催化元素的层150可以通过利用溅射或真空蒸发,形成1-5nm厚的上述催化元素层制作。
在图5B所示的结晶步骤中,首先,在400-500℃下进行约1小时热处理,使非晶硅膜中所含氢的量为5原子%以下。然后,利用热退火炉,在550-600℃下,在氮气氛中,进行1-8小时的热退火。于是通过上述步骤得到结晶半导体膜(结晶硅膜)103c。然而,如果利用例如透射电子显微镜等装置,显微式观察通过到本步骤为止的热退火制造的结晶半导体膜103c,则会发现,该膜由大量晶粒构成,晶体的尺寸和排列不均匀,是随机的。另外,从利用喇曼光谱仪的光谱观察和利用光学显微镜的显微观察,发现局部仍保留了非晶区。
为了进一步提高结晶半导体膜103c的结晶度,有效地是在该阶段进行激光退火。在激光退火时,在变成融熔态后,结晶半导体膜103c重结晶,因此可以实现提高结晶度的上述目标。例如,用XeCl准分子激光器(波长为308nm),通过光学系统形成的直线形束,振荡频率设定为5-50Hz,能量密度设定为100-500mJ/cm2,直线形束以80-98%的重叠比照射。于是可以使结晶半导体膜103c的结晶度更高。然而,这种状态下,留在结晶半导体膜103c表面中的催化元素的浓度为3×1010-2×1011原子/cm3
然后,采用日本专利申请公开平10-247735所公开的吸杂工艺,进行一种有效方法。该吸杂步骤可以将结晶半导体膜103c中的催化元素的浓度降低到1×1017原子/cm3以下,较好是1×1016原子/cm3。首先,如图5C所示,在结晶半导体膜103c的表面上形成厚150nm的掩模绝缘膜151,并构图形成开口152,暴露部分结晶半导体膜。然后进行磷掺入步骤,在结晶半导体膜103c中形成含磷区152。如果在500-800℃(较好是500-550℃),在氮气氛中,花5-24小时,例如在525℃,花12小时,在这种状态下进行热处理,如图5D所示,则含磷区153可用作吸杂点,留在结晶硅膜103c中的催化元素可以被分凝到含磷区153中。然后,通过去掉掩模绝缘膜152和含磷区153,形成岛状半导体层104’和105’,如图5E所示,可以获得将结晶步骤中所用催化元素的浓度减小到1×1017原子/cm3以下的结晶硅膜。
如果根据实施例1的图1C开始的步骤进行随后的步骤,则可以利用岛状半导体层104’和105’完成TFT。另外,吸杂步骤不限于实施例2的方法,如以后将介绍的,还可以与激活源区和漏区的步骤同时进行吸杂。
实施例3
结合图6A-8D介绍实施例3。首先,制备例如Coming Corp.#1737基片等玻璃基片作为基片601。然后,在基片601上形成栅极602。这里用溅射形成厚200nm的钽(Ta)膜。另外,可以用氮化钽(TaN)膜(厚50nm)和钽(Ta)膜(厚250nm)的两层结构作栅极602。利用Ar气,用Ta作靶,通过溅射形成Ta膜,如果用在Ar气中加入Xe气的气体混合物进行溅射,则内部应力的绝对值可以为2×108Pa以下。(图6A)
然后,在不暴露于大气的情况下,依次形成栅绝缘膜603和非晶半导体层604。栅绝缘膜603由厚25nm的富氮的氧氮化硅膜603a,和在其上形成的厚125nm的氢化氧氮化硅膜603b构成,富氮的氧氮化硅膜603a用等离子体CVD形成,氢化氧氮化硅膜由表1所示的#1884条件制造。另外,利用等离子体CVD,形成厚20-100nm较好是40-75nm的非晶半导体层604。(图6B)
利用退火炉,在450-550℃,进行1小时的热处理。通过热处理,氢从非晶半导体层604释放出来,所以保留的氢量减少到5原子%以下。然后进行结晶非晶半导体层604的步骤,形成结晶半导体层605。在此结晶步骤中,可以利用激光退火或热退火。按激光退火法,例如利用KrF准分子激光(波长248nm),形成直线形束,脉冲振荡频率设定为30Hz,激光能量密度设定为100-500mJ/cm2,直线束的重叠比为96%,进行结晶化,从而使非晶半导体层结晶。(图6C)另外,也可采用实施例2中介绍的结晶法。
然后,与结晶半导体层605紧密接触形成用于保护沟道形成区的氢化氧氮化硅膜606。该氢化氧氮化硅膜606也可以利用表1所示的#1884条件制造,厚为200nm。如果在淀积氢化氧氮化硅膜606之前,在等离子体CVD设备的反应室内进行实施例1所述的等离子体清洗工艺,处理结晶半导体层605的表面,则可以减轻TFT特性中Vth的波动。然后,通过利用背面曝光进行构图,形成与氢化氧氮化硅膜606接触的抗蚀掩模607。这里,栅极602用作掩模,抗蚀掩模607以自对准的方式形成。如图所示,由于光的环绕,抗蚀掩模的尺寸变得稍小于栅极宽度。(图6D)
利用抗蚀掩模607,腐蚀氢化氧氮化硅膜606,形成沟道保护绝缘膜608,然后去掉抗蚀掩模607。在该步骤中,暴露未与沟道保护绝缘膜608接触的结晶半导体层605区的表面。除起到在以后的掺杂步骤中防止杂质掺入到沟道形成区的作用外,沟道保护绝缘膜608还能有效地减少结晶半导体层的界面态密度。(图6E)
然后,通过利用光掩模构图,形成抗蚀掩模609,覆盖p沟道TFT和n沟道TFT的一部分,并进行在结晶半导体层605的表面暴露区掺入产生n型导电的杂质元素的步骤。于是形成n+区610a。这里,利用磷化氢(PH3),以5×1014原子/cm2的剂量,以10keV的加速电压,通过离子掺杂掺入磷(P)。另外,通过由操作者适当地设定,上述抗蚀掩模609的图形确定n+区610a的宽度,也可以形成n-区和具有希望宽度的沟道形成区。(图7A)
去掉抗蚀掩模609后,形成保护绝缘膜611a。该膜也由用表1所示#1884条件制造的氢化氧氮化硅膜形成,厚50nm。(图7B)然后,进行在其上形成了保护绝缘膜611a的结晶半导体层中掺入产生n型导电的杂质元素的步骤,形成n-区612。注意,必需考虑保护绝缘膜611a的厚度,设定合适的条件,以便通过保护绝缘膜611a将杂质掺入膜611a下的结晶半导体层。这里,剂量设定为3×1013原子/cm2,加速电压设定为60keV。这样形成于n+区610b和沟道形成区间的n-区612用作LDD区。(图7C)
然后,形成抗蚀掩模614,覆盖n沟道TFT,并进行在形成了p沟道TFT的区域中掺入产生p型导电的杂质元素。这里,利用乙硼烷(B2H6),通过离子掺杂掺入硼(B)。剂量设定为4×1015原子/cm2,加速电压设定为30keV,形成p+区613。(图7D)然后,通过激光退火或热退火,进行激活杂质元素的步骤。(图7E)剥离沟道形成区608和保护绝缘膜611a,利用抗蚀剂650作掩模,通过已知构图技术,将结晶半导体层腐蚀成希望的形状。(图8A)
于是,通过上述步骤,在n沟道TFT中形成源区615、漏区616、LDD区617和618及沟道形成区619,在p沟道TFT中形成源区621、漏区622和沟道形成区620。然后,形成第一层间绝缘膜623,覆盖n沟道TFT和p沟道TFT。形成用表1所示#1883条件制造的氢化氧氮化硅膜,作为第一层间绝缘膜623,厚度为100-500nm。(图8B)然后,由用表1所示的#1876条件制造的具有100-500nm类似厚度的氢化氧氮化硅膜形成第二层间绝缘膜624。(图8C)
这种状态下,进行第一氢化步骤。例如可以在300-550℃较好为350-500℃的温度下,在3-100%氢的气氛中,进行该工艺1-12小时。或者,可以在含制成等离子体的氢气氛中,在类似的温度下,进行10-60分钟的处理。由于本热处理工艺,第一层间绝缘膜中包含的氢和由上述热处理从气相提供给第二层间绝缘膜的氢扩散,部分氢到达半导体层,因此,可以有效地进行结晶半导体层的氢化。
然后,形成预定的抗蚀掩模,,并在第一层间绝缘膜623和第二层间绝缘膜624中,形成达到各TFT的源区和漏区的接触孔。然后,形成源极625和627,及漏极626。尽管图中未示出,但可以用依次溅射形成的100nm的Ti膜、300nm含Ti铝膜和150nm膜的三层结构电极作为实施例3的各电极。(图8D)
此外,进行形成钝化膜628的步骤。该钝化膜由利用SiH4、N2O、和NH3形成的氧氮化硅膜,或利用SiH4、N2O和NH3制造的氮化硅膜,通过等离子体CVD形成。在形成该膜之前,首先,通过引入例如N2O、N2或NH3等物质,进行等离子体氢化工艺。气相制成等离子体的氢提供到第二层间绝缘膜中,如果将基片加热到200-500℃,氢会扩散到第一层间绝缘膜和第一层间绝缘膜下的各层中,由此进行第二氢化步骤。对钝化膜的制造条件没有特别限制,但较好是形成致密膜。最后,在含氢或氮气氛中,在300-550℃下,进行1-12小时的热处理,从而进行第三氢化步骤。此时,氢从钝化膜628中扩散到第二层间绝缘膜624,从第二层间绝缘膜624扩散到第一层间绝缘膜623,从第一层间绝缘膜623扩散到结晶半导体层,可以有效地进行结晶半导体层的氢化。氢也会从这些膜内气相释放,但致密钝化膜可以一定程度地防止这种释放。如果向热处理气氛中供应氢,则可以补偿释放的氢。
于是,通过上述步骤,在同一基片上,形成了颠倒交错结构的p沟道TFT和n沟道TFT。在颠倒交错TFT中,通过用本发明的氢化氧氮化硅膜作例如栅绝缘膜603b、沟道保护绝缘膜608和保护绝缘膜611等绝缘膜,可以使完成TFT的n沟道TFT的S值为0.10-0.30V/dec,Vth可以从0.5-2.5V,电场效应迁移率可以为120-250cm2/V.秒。另外,在完成TFT的p沟道TFT中,S值为0.10-0.30V/dec,Vth可以从-2.5V到-0.5V,电场效应迁移率可以为80-150cm2/V.秒。这些特性是由例如中性缺陷和电荷缺陷等氢化氧氮化硅膜的缺陷态密度低,和与半导体层的界面态密度低的事实产生的。
实施例4
结合图9A-13介绍本发明的实施例4。这里,具体介绍在同一基片上制造像素部分的像素TFT和形成于像素部分的外围中的驱动电路TFT的方法。注意,为了简化介绍,这些图中示出了例如移位寄存器电路和缓冲电路等控制电路的基本电路和构成取样电路的n沟道TFT。
用钡硼硅酸盐玻璃基片或铝硼硅酸盐玻璃基片作图9A中的基片201。实施例4中用硼硅酸盐玻璃基片。在其上将形成TFT的基片201的表面上,形成基膜202。为防止例如碱金属元素等杂质元素从基片201扩散,基膜202由氧氮化硅膜202a形成,该膜是利用等离子体CVD由SiH4、NH3和N2O制造的厚50nm的膜。此外,为保持半导体层的良好界面,在膜202a上形成根据表1所示#1884条件由SiH4、N2O和H2制造的厚100nm的氢化氧氮化硅膜202b,由此制成基膜202。
利用例如等离子体CVD或溅射等已知方法,形成厚25-80nm(较好是30-60nm)的非晶结构的半导体膜203a。该例中,利用等离子体CVD形成厚55nm的非晶硅膜。由于可以用相同的方法形成基膜202和具有非晶结构的半导体层203a,所以可以连续形成这两种膜。在形成了基膜后,不将表面暴露于大气,可以防止表面沾污和所制造的TFT的特性波动,并可以减小阈值电压的改变。(图9A)
然后,利用已知结晶技术,由具有非晶结构的半导体层203a形成结晶半导体层203b。这里用非晶硅膜作具有非晶结构的半导体层203a,所以结晶硅膜由该膜形成。结晶可以采用激光退火或热退火(固相生长方法),但这里根据实施例2中提到的日本专利申请公开平7-130652中公开的技术,通过利用催化元素的结晶法形成结晶半导体层203b。首先,旋涂按重量计含10ppm催化元素的水溶液,形成含催化元素层(图中未示出)。催化元素可以用例如镍(Ni)、锗(Ge)、铁(Fe)、钯(Pd)、锡(Sn)、铅(Pb)、钴(Co)、铂(Pt)、铜(Cu)和金(Au)等元素。在结晶步骤中,首先在400-500℃进行约1小时热处理,使非晶硅膜中含有的氢量为5原子%以下。然后,利用退火炉,在550-600℃,在氮气氛中,进行1-8小时热退火。于是可以通过上述步骤获得结晶硅膜。这种状态下表面上残留的催化元素的浓度为3×1010和2×1011原子/cm3。还可以激光退火与热退火结合进行,以提高结晶率。例如,用XeCl准分子激光器(波长为308nm),利用光学系统形成直线形束,振荡频率设定在5和50Hz之间,能量密度设定在100-500mJ/cm2,束以80-98%的直线形束的重叠比照射。于是得到结晶半导体层203b。(图9B)
然后,腐蚀并将结晶半导体层203b分隔成岛形,形成用作有源区的岛形半导体层204-207。然后,利用等离子体CVD、低压CVD或溅射等由氧化硅膜形成厚50-100nm的掩模层208。例如,通过利用SiH4和O2混合气、并在266Pa的压力下加热到400℃,通过低压CVD法,形成氧化硅膜。(图9C)
然后,进行沟道掺杂。首先形成光刻胶掩模209,在形成n沟道TFT的岛形半导体层205-207中,以约1×1016-5×1017原子/cm3的浓度,根据控制阈值电压的目标,掺入硼(B)作产生p型导电的杂质元素。离子掺杂可用于硼(B)掺杂,硼(B)可在形成非晶硅膜的同时掺入。这里并不总是需要掺硼(B),但较好是形成掺硼的半导体层210-212,以将n沟道TFT的阈值电压设定在预定范围。实施例2或3所示的方法也可以用于该沟道掺杂步骤。(图9D)
为了形成驱动电路的n沟道TFT的LDD区,在岛状半导体层210和211中选择性掺入产生n型导电的杂质元素。为此,先形成光刻胶掩模213-216。为掺磷(P),这里进行用磷化氢(PH3)的离子掺杂。形成杂质区(n-)217和218的磷(P)浓度设定为1×1017和5×1017原子/cm3之间。另外,杂质区219是形成像素部分的存储电容器的半导体层,以同样的浓度在该区中掺磷(P)。(图10A)
然后,用例如氢氟酸等物质,去掉掩模层208,并进行激活图9D和图10A所示的步骤中掺入的杂质元素的步骤。可以在500-600℃之间,在氮气氛中,通过1-4小时的热退火,或激光退火,进行该激活。另外,两种方法可一起进行。该实施例中用激光激活,用形成直线形束的KrF准分子激光(波长为248nm),振荡步骤为5-50Hz,能量密度设定在100-500mJ/cm2之间,用重叠率为80-98%的直线形束进行扫描,处理其上形成有岛状半导体层的整个基片表面。注意,并不限于这些激光照射条件,操作者可以适当地设定。
然后,利用等离子体CVD,形成厚40-150nm的栅绝缘膜220。这里采用多室隔离型等离子体CVD设备,在淀积栅绝缘膜之前,在与形成栅绝缘膜相同的反应室中,或在指定为等离子体清洗的反应室内,对其上形成有岛状半导体层的基片进行等离子体清洗。以338Pa-1/秒引入氢,在设定压力为20Pa,高频功率为0.2W/cm2的条件下产生等离子体,进行2分钟等离子体清洗工艺。或者,可以以169Pa-1/秒引入氢,以169Pa-1/秒引入氧,并在40Pa的压力下,类似地产生等离子体。基片温度设定为300-500℃,较好是400℃。通过在该阶段对岛状半导体层204及210-212的表面进行等离子体清洗工艺,可以去掉例如吸附的硼或磷等沾污或有机物质。另外,通过等离子体清洗,将氢吸附到表面上,使之不活泼。另外,通过同时引入氧和N2O,氧化淀积表面的最上表面和其附近区域,于是产生例如与栅绝缘膜的界面的界面态密度降低等希望的作用。较好是在等离子体清洗后,在不将基片201暴露于大气的条件下,连续形成栅绝缘膜220,向反应室以8.4Pa-1/秒引入SiH4、以203Pa-1/秒引入N2O,以211Pa-1/秒引入H2,并设定基片温度为400℃,反应室压力为20Pa,放电功率密度为0.41W/cm2,放电频率为60MHz,形成栅绝缘膜220。(图10B)。
然后,形成第一导电层,以形成栅极。该例中,层叠由具有导电性的金属氮化物膜构成的导电层(A)221和由金属膜构成导电层(B)222。通过利用Ta作靶的溅射,由钽(Ta)形成厚250nm的导电膜(B)222,由氮化钽(TaN)形成厚50nm的导电层(A)221。(图10C)
然后,形成光刻胶掩模223-227,同时腐蚀导电层(A)221和导电层(B)222,形成栅极228-231和电容布线232。栅极228-231和电容布线232分别由导电层(A)228a-232a和导电层(B)228b-232b构成。此时,形成于驱动电路中的栅极229和230形成为通过栅绝缘膜220与杂质区217和218的部分重叠。(图10D)
然后,为了形成驱动电路的p沟道TFT的源区和漏区,进行产生p型导电的杂质元素的掺入步骤。这里用栅极228作掩模,用自对准方式形成这些杂质区。形成n沟道TFT的区上覆盖光刻胶掩模233。然后,利用乙硼烷(B2H6)的离子掺杂,形成浓度为1×1021原子/cm3的杂质区(p+)234。(图11A)
然后,形成用作n沟道TFT的源区或漏区的杂质区。形成抗蚀掩模235-237,并掺入产生n型导电的杂质元素,形成杂质区238-242。利用磷化氢(PH3),通过离子掺杂,进行该工艺,杂质区(n+)238-242的磷(P)浓度设定为5×1020原子/cm3。杂质区238中已在先前的步骤中含有硼(B),但与之相比,磷(P)浓度是硼(B)的三分之一或二分之一,因此,无须考虑磷(P)的影响,不会对TFT的特性产生不良影响。(图11B)
然后,进行掺入产生n型导电的杂质的步骤,以形成像素部分的n沟道TFT的LDD区。用栅极231作掩模,以自对准方式,通过离子掺杂,掺入产生n型导电的杂质元素。掺入的磷(P)的浓度设定为5×1016原子/cm3,该浓度低于图10A、图11A和图11B所示步骤中掺杂的杂质元素的浓度,实际上只形成杂质区(n-)243和244。(图11C)
然后,进行热处理,激活产生n型或p型导电、并已以各自浓度掺入的杂质元素。该步骤可以使用利用退火炉的热退火、激光退火或快速热退火(RTA)。这里用退火炉进行激活步骤。在氧浓度为1ppm以下、较好为0.1ppm以下的氮气氛中,在400和700℃之间,一般在500-600℃间的温度下,进行该热处理步骤,该例中该步骤在550℃下进行4小时。
通过热退火,形成栅极228-231和电容布线232的Ta膜228b-232b变为具有从Ta膜表面形成到厚5-80nm由TaN构成的导电膜(C)228c-232c。此外,在导电层(B)228b-232b为钨(W)时,形成氮化钨(WN),在导电层为钛(Ti)时,可以形成氮化钛(TiN)。另外,通过将栅极228-231暴露于利用例如氮或氨等物质的含氮等离子体气氛,可类似地形成这些膜。此外,在含3-100%氢的气氛中,在300-500℃,进行氢化岛状半导体层的步骤1-12小时。该步骤是通过热激发氢,终止半导体层中悬挂键的步骤。可以象其它氢化方法一样,进行等离子体氢化(利用等离子体激发的氢)。
在象该例一样,在通过利用催化元素的结晶法由非晶硅膜制造岛状半导体层的情况下,少量(约1×1017-1×1019原子/cm3)的催化元素留在岛状半导体层内。自然,可以在此状态下完成TFT,但较好是至少去掉沟道形成区中的残余催化元素。去除催化元素的一种方法是利用磷(P)吸杂作用的方法。吸杂需要的磷(P)浓度可以与图11B所示的步骤形成的杂质区(n+)的磷浓度的量级类似,在这里进行的激活步骤中,通过热退火,催化元素可以从n沟道TFT和p沟道TFT的沟道形成区分凝到将被吸杂的杂质区238-242。结果,催化元素以约1×1017和1×1019原子/cm3的浓度分凝到杂质区238-242。(图11D)
图14A和15A分别是直到本步骤的TFT的俯视图,沿线A-A’和C-C’取的剖面图分别对应于图11D中的A-A’和C-C’。另外,沿线B-B’和线D-D’取的剖面图分别对应于图16A和17A中的B-B’和D-D’。图14A-14C和图15A-15C的俯视图中略去了栅绝缘膜,但在到此的各步骤中,在岛状半导体层204-207上形成了至少栅极228-231和电容布线232,如图所示。
完成了激活和氢化步骤后,形成第二导电层作栅布线。第二导电层由用铝(Al)或铜(Cu)作其主要成分的低阻材料构成的导电层(D)形成。无论用什么方法,第二导电层的电阻率设定在0.1和10μΩcm。应理解,在导电层(D)上层叠由钛(Ti)、钽(Ta)、钨(W)或钼(Mo)构成的导电层(E)。该例中,含按重量计0.1和2%的钛(Ti)的铝(Al)膜形成为导电层(D)245,钛(Ti)膜形成为导电层(E)246。导电层(D)245可以形成为厚200-400nm(较好是250-350nm),导电层(E)可以形成为厚50-200nm(较好是100-150nm)。(图12A)
然后,为形成与栅极连接的栅布线,腐蚀导电层(E)246和导电层(D)245,形成栅布线247和248及电容布线249。在腐蚀工艺中,首先,进行利用SiCl4、Cl2和BCl3的混合气,进行干法腐蚀,去掉导电层(E)的表面至导电层(D)中部的大量材料。然后,通过利用磷酸基腐蚀液的湿法腐蚀去除导电层(D),可以在保持与基膜的选择处理性的同时形成栅布线。
图14B和15B是该状态的俯视图,和沿线A-A’和C-C’取的剖面图分别对应于图12B中的A-A’和C-C’。另外,沿线B-B’和D-D’取的剖面图分别对应于图16B和图17B中的B-B’和D-D’。图14B和15B中,栅布线247和248的一部分与栅极228、229和231的一部分重叠并电接触。从对应于沿B-B’和D-D’取的剖面图的图16B和17B的剖面结构图可以清楚地看到这种状态,形成第一导电层的导电层(C)与形成第二导电层的导电层(D)电连接。
用根据表1所示的#1883或#1884条件制造的氢化氧氮化硅膜,淀积厚500-1500nm的第一层间绝缘膜250,形成层间绝缘膜120。这里,向反应室以8.4Pa-1/秒引入SiH4,以203Pa-1/秒引入N2O,以844Pa-1/秒引入H2,设定反应压力为40Pa,基片温度为400℃,放电功率密度为0.4W/cm2,形成厚1000nm的氢化氧氮化硅膜。然后,在岛状半导体层中,形成到达源区和漏区的接触孔,形成源布线251-254,漏布线255-258。尽管图中未示出,但可以用溅射连续形成的100nm厚的Ti膜、300nm厚的含Ti铝膜、和150nm厚的Ti的三层结构电极作为实施例4中的电极。
然后,形成厚50-500nm(一般为100-300nm)的氮化硅膜、氧化硅膜或氧氮化硅膜作钝化膜259。无论用什么膜,形成变为隔开外部湿气的致密膜,并具有作为以后进行的第二氢化步骤中帽盖层的附加作用。例如,由厚200nm的致密氮化硅膜构成钝化膜259,如果在此状态下进行氢化处理,则可以获得希望的结果,提高TFT的特性。该处理步骤可以在3-100%氢的气氛或氮气氛中,在300-500℃的温度下,进行1-12小时。如果在该温度范围进行热处理,则构成第一层间绝缘膜250和栅绝缘膜220的氢化氧氮化硅膜中的氢会释放出来。然而,由于被覆盖致密氮化硅膜,所以,可以防止氢在上侧扩散,所以释放的氢基本扩散到下层侧。然后,进行氢化,氢从第一层间绝缘膜250扩散到底下的栅绝缘膜220,从栅绝缘膜220扩散到岛状半导体层204和210-212。类似地,氢从用于基膜202的氢化氧氮化硅膜释放出来,因此,可以从上下两侧氢化岛状半导体层204和210-212。自然,除该方法外,通过在淀积上述氮化硅膜之前进行氢化或利用等离子体氢化,可以得到类似的效果。此外,可以与上述氢化法一起使用等离子体氢化法。注意,可以在以后将要形成连接像素电极和漏布线的接触孔的位置,在钝化膜259中形成开口。(图12C)
图14C和15C是该状态的俯视图,和沿线A-A’和线C-C’取的剖面图分别对应于图12C的A-A’和C-C’。另外,沿线B-B’和D-D’取的剖面图分别对应于图16C和图17C中的B-B’和D-D’。图14C和15C中,略去了第一层间绝缘膜,源布线251、252和254及漏布线255、256和258分别通过形成于第一层间绝缘膜中的接触孔,与这些图中未示出的岛状半导体层204、205和207的源和漏区连接。
然后,用有机树脂形成厚1.0-1.5微米厚的第二层间绝缘膜260。可以用例如聚酰亚胺、丙稀酸、聚酰胺、聚酰亚胺酰胺和BCB(苯丙环丁稀)作有机树脂。这里可以用热聚合型聚酰亚胺,涂于基片上后,在300℃下煅烧。然后,在第二层间绝缘膜260中形成到达漏布线258的接触孔,以形成像素电极261和262。在透射型液晶显示器件中,用透明导电膜作像素电极,在反射型液晶显示器件中,用金属膜。本例中采用透明型液晶显示器件,因此,溅射形成厚100nm的氧化铟锡(ITO)膜。(图13)
于是完成了在同一基片上具有驱动电路的TFT和像素部分的像素TFT的基片。在驱动电路中,形成p沟道TFT301、第一n沟道TFT302和第二n沟道TFT303,在像素部分,形成像素TFT304和存储电容器305。为方便起见,整个说明书中这类基片称为有源矩阵基片。
驱动电路的p沟道TFT 301在岛状半导体层204中具有沟道形成区306、源区307a和307b,漏区308a和308b。第一n沟道TFT 302在岛状半导体层205内具有沟道形成区309、与栅极229重叠的LDD区(Lov)310、源区311和漏区312。Lov区在沟道长度方向的长度为0.5-3.0微米,较好是1.0-1.5微米。沟道形成区313、Lov区和Loff区(不与栅极重叠的LDD区314和315,以后称之为Loff区)形成于第二n沟道TFT 303的岛状半导体层206内,Loff在沟道长度方向上的长度为0.3-2.0微米,较好是0.5-1.5微米。LDD区314位于沟道形成区313和源区316之间,LDD区315位于沟道形成区313和漏区317之间。像素TFT 304的岛状半导体层207具有沟道形成区318和319、Loff区320-323和源或漏区324-326。Loff区在沟道长度方向的长度为0.5-3.0微米,较好是1.5-2.5微米。此外,存储电容器305由电容布线232和249、利用与栅绝缘膜相同材料构成的绝缘膜、与像素TFT 304的漏区326连接且具有产生n型导电的掺入杂质元素的半导体层327构成。图13中,像素TFT 304采用双栅结构,但也可以用单栅结构,也可以用形成有多个栅极的多栅结构,不会出现问题。
于是,如上所述,本发明的特征在于,例如构成TFT的基膜、栅绝缘膜、和层间绝缘膜等绝缘膜,采用利用SiH4、N2O和H2制造的氢化氧氮化硅膜。利用氢化氧氮化硅膜,可以降低例如中性缺陷和电荷缺陷等缺陷态密度,另外,还可以降低与半导体层的界面的界面态密度。所以,所制造的TFT的特征如下:对于n沟道TFT来说,S值可以形成为0.10-0.30V/dec,Vth可以形成为0.5-2.5V,电场效应迁移率可以形成为120-250cm2/V.秒。对于p沟道TFT来说,S值可以形成为0.10-0.30V/dec,Vth可以形成为-2.5至-0.5V,电场效应迁移率可以形成为80-150cm2/V秒。于是降低了驱动电压,降低了功耗。可以利用这类有源矩阵基片实现高质量显示器件。
实施例5
该例中,介绍由实施例4的有源矩阵基片制造有源矩阵型液晶显示器件的工艺。如图19所示,有图13的状态下,在有源矩阵基片上形成校准膜601。常常用聚酰亚胺树脂作为液晶显示器件的校准膜。然后,在与该有源矩阵基片相对的相对基片602上形成光屏蔽膜603、透明导电膜604和校准膜605。形成校准膜后,进行磨擦工艺,使液晶分子的取向为具有某一固定预倾斜角。然后,根据已知的单元构造工艺,通过密封材料或衬垫(两者都未在图中示出)将其上形成有像素部分和CMOS电路的有源矩阵基片和相对基片结合在一起。然后,在两基片间注入液晶材料606,并利用端部密封材料(图中未示出)完全密封单元。液晶材料可以采用已知的液晶材料。于是,完成了图19所示的有源矩阵型液晶显示器件。
然后,利用图20的透视图和图21的俯视图,介绍有源矩阵型液晶显示器件的结构。注意,图20和图21对应于图9A-13和图19的剖面结构图,因此,采用相同的符号。另外,沿图21所示的线E-E’取的剖面结构对应于图13所示的像素矩阵电路的剖面图。
图20中,有源矩阵基片由形成于玻璃基片201上的像素部分406、扫描信号驱动电路404和图像信号驱动电路405构成。像素TFT 304形成在显示区,形成在其外围区的驱动电路由CMOS电路构成。扫描信号驱动电路404和图像信号驱动电路405分别通过栅布线248和源布线254与像素TFT304连接。另外,FPC(柔性印刷电路)731与外部输出端子734连接,输入布线402和403与各驱动电路连接。参考数字732和733是IC芯片。
图21是展示显示区406的一个几乎全像素的俯视图。栅布线248通过图中未示出的栅绝缘膜与底下的半导体层交叉。源区、漏区和由n-区构成的Loff区形成于半导体层中,尽管图中未示出。另外,参考数字263表示源布线254与源区324(未示出)的接触区,参考数字264表示漏布线258与漏区326(未示出)的接触区,参考数字265表示漏布线258与像素电极261的接触区。存储电容器305由从像素TFT304的漏区延伸的半导体层327通过栅绝缘膜与电容布线232和249重叠的区域构成。
注意,结合实施例4介绍的结构介绍了实施例5的有源矩阵型液晶显示器件,但该结构不限于实施例4的结构,可以采用应用图3所示结构制造的有源矩阵基片。无论用那一种基片,都由利用本发明的氢化氧氮化硅膜形成的绝缘膜的TFT完成有源矩阵基片,操作者可以适当地设定例如TFT结构和电路设置等设计参数。
实施例6
图18展示了液晶显示器件的输入—输出端子、显示区和驱动电路的设置方式的实例。在像素部分406中,具有以矩阵形式交叉的M个栅布线和N个源布线。例如,在像素密度为VGA(视频图形阵列)时,形成480个栅布线407和640个源布线408,在XGA(延伸图形阵列)的情况下,形成768个栅布线407和1024个源布线408。对于对角长度为13英寸的那一类来说,显示区的屏尺寸变为340mm,对于对角线为18英寸的那一类来说,变为460mm。需要如实施例3所示的由低阻材料形成栅布线,以实现这类液晶显示器件。如果栅布线的时间常数(电阻×电容)变大,则扫描信号的响应速率变低,不能高速驱动液晶。例如,在形成栅布线的材料的电阻率为100μΩcm时,则6英寸屏尺寸接近极限,但如果电阻率为3μΩcm时,则高达27英寸的屏尺寸是可以控制的范围。
扫描信号驱动电路404和图像信号驱动电路405形成于显示区406的外围中。这些驱动电路的栅布线的长度需要变得较长,增大了显示区的屏尽寸,因此,较好是如实施例4所示,由例如铝(Al)或铜(Cu)等低阻材料形成栅布线,以实现较大屏。另外,利用本发明,连接输入端401与每个驱动电路的输入布线402和403可以由与栅布线相同的材料形成,这可以使布线电阻降低。
另一方面,对于显示区的屏尺寸为2英寸、对角线长度变为45mm的情况,如果制造TFT,则器件会在50×50mm2内,包括形成于外围的驱动电路。这种情况下,不总是需要用例如实施例4所示的低阻材料形成栅布线,可以用与形成栅电极相同的材料例如Ta或W等形成栅布线。
可以利用实施例4中完成的有源矩阵基片完成具有这种构成的液晶显示器件。另外,可以通过采用实施例3-4所示的构成来实现。这里所示的电路设置的布局是一个实例,扫描信号驱动电路404可以形成于显示区406的两侧上。任何一种情况下,提供由利用本发明的氢化氧氮化硅膜形成的绝缘膜的TFT完成的有源矩阵基片,操作者可以适当地设定例如TFT结构和电路设置等设计参数。
实施例7
实施例1-4中示出了利用通过激光退火或热退火结晶化的非晶半导体膜的结晶半导体膜作为TFT的有源层的实例。然而,代替结晶半导体,用一般为非晶硅膜的非晶半导体膜作有源层,也可以用本发明的氢化氧氮化硅膜作基膜、栅绝缘膜或层间绝缘膜。
实施例8
下面结合图22A和22B介绍应用于利用有源矩阵有机电致发光(有机EL)材料(有机EL显示器件)的显示器件的本发明的实例。图22A示出了有源矩阵型有机EL显示器件的电路图,其中显示区和外围的驱动电路形成于玻璃基片上。有机EL显示器件由形成于基片上的显示区2211、x方向外围驱动电路2212和y方向外围驱动电路2213构成。显示区2211由开关TFT2230、存储电容器2232、电流控制TFT2231、有机EL元件333、x方向信号线2218a和2218b、电源线2219a和2219b、y方向信号线2220a、2220b、2220c等构成。
图22B示出了接近一个全像素的俯视图。开关TFT2230类似于图13所示的p沟道TFT301形成,电流控制TFT2231类似于图13所示的n沟道TFT303形成。
对于具有向着TFT的上部发光的工作模式的有机EL显示器件来说,用例如Al等反射电极形成像素电极。这里示出了有机EL显示器件的像素部分的构成,但本发明可以应用于带有类似于实施例1在像素部分的外围形成驱动电路的集成外围电路的有源矩阵形显示器件。尽管图中未示出,但可以提供带有滤色器的显示器,制造彩色显示器。提供一种形成实施例1所示的基层的有源矩阵基片,可以制造上述形式自由结合的有源矩阵型有机EL显示器件。
实施例9
通过实施本发明制造的有源矩阵基片、液晶显示器件和EL型显示器件,可用于各种电—光器件。本发明可应用于所有引入这种电—光器件作显示媒质的电子设备。以下可以给出这类电子设备:个人电脑、数字摄像机,视频摄像机、便携式信息终端(例如移动电脑,便携式电话,电子计事本等),及导航系统。图23A-23F示出了其中的某些例子。
图23A示出了个人电脑,该电脑由包括微处理器和存储器的主体2001、图像输入单元2002、显示器件2003、键盘2004构成。本发明的液晶显示器件和有机EL显示器件可用作显示器件2003。
图23B示出了视频摄像机,该摄像机由主体2101、显示器件2102、音频输入单元2103、操作开关2104、电池2105和图像接收单元2106构成。本发明的液晶显示器件和有机EL显示器件可用作显示器件2102。
图23C示出了便携式信息终端,它由主体2201、图像输入单元2202、图像接收单元2203、操作开关2204和显示器件2205构成。本发明的液晶显示器件和有机EL显示器件可用作显示器件2205。
图23D示出了例如电视游戏机或视频游戏机等电子游戏设备,它由装有例如CPU等电子电路2308的主体2301、记录介质2304、控制器2305、显示器件2303、和制造于主体2301内的显示器件2302构成。显示器件2303和引入主体2301的显示器件2302可以显示相同信息,或前者可以作为主显示器,后者可以作为副显示器,显示来自记录介质2304或设备操作状态的信息,或可以加进触摸式传感器,用作操作屏。另外,为了主体2301、控制器2305和显示器件2303彼此传输信号,可以用布线通信,或可以提供传感器单元2306和2307,用于无线通信或光通信。显示器件2302和2303可以采用本发明的液晶显示器件和有机EL显示器件。也可以采用常规CRT。
图23E示出了采用带有记录于其中的程序的记录介质(此后称之为记录介质)的播放器,它由主体2901、显示器件2902、扬声器单元2903、记录介质2904和操作开关2905构成。注意该器件用DVD(数字通用盘)或小型光盘(CD)作记录介质,该器件能够再现音乐程序、显示图像并通过视频游戏机(或电视游戏机)或通过国际互联网显示信息。显示器件2402可以采用本发明的液晶显示器件和有机EL显示器件。
图23F示出了数字摄像机,它由主体2501、显示器件2502、目镜部分2503。操作开关2504、和图像接收单元(图中未示出)构成。该液晶显示器件2502可以用本发明的液晶显示器件和有机EL显示器件。。
图24A示出了前置型投影仪,它由光学光源系统、显示器件2601和屏2602构成。本发明可应用于该显示器件和其它信号控制电路。图24B示出了背置型投影仪,它由主体2701、光学光源系统和显示器件2702、反射镜2703、屏2704构成。本发明可应于该显示器件和其它信号控制电路。
图24C是展示图24A和24B中的光学光源系统和显示器件2601和2702的实例的示图。光学光源系统和显示器件2601和2702每个都由光学光源系统2801、反射镜2802和2804-2806、分光镜2803、束分裂器2807、液晶显示器件2808、相差板2809、和光学投影系统2810构成。光学投影系统2810由多个光学透镜构成。图24C中,示出了其中采用了三个液晶显示器件2808的三板系统,但没有特别限制,例如也可以采用单板系统构成的光学系统。另外,操作者可以在图24C中箭头所示的光学路径中适当地设定例如光学透镜、偏振膜、调相膜、IR膜等光学系统。此外,图24D示出了图24C的光学光源系统2801的结构的实例。该例中,光学光源系统2801由反射器2811、光源2812、透镜阵列2813和2814、偏振转换元件2815及会聚透镜2816构成,注意,图24D所示的光学光源系统是一个实例,本发明不限于该图所示的结构。
另外,尽管各图中未示出,但可以将本发明应用于导航系统或图像传感器的读取电路。所以本发明的应用范围极广泛,可应用于所有领域的电子设备。另外,本例的电子设备可由利用实施例1-6的任何组合的结构实现。
实施例10
该实施例给出了关于利用电致发光(EL)材料由有源矩阵基片制造自发光型显示屏板(此后称之为EL显示器件)的方法实例的介绍。图25A是这种EL显示屏板的俯视图。图25A中,参考数字10表示基片,11表示像素部分,12表示源侧驱动电路,13表示栅侧驱动电路。各驱动电路通过布线14-16引导到FPC 17,于是与外部设备相连。
图25B示出了对应于沿图25A的线A-A’取的剖面图的剖面图。此时相对板80至少设置在像素部分上,较好在驱动电路和像素部分上。借助密封材料19,结合相对板80与其上形成有TFT和利用EL材料的自发光层的有源矩阵基片。一种填料(未示出)混入密封材料19中,两个基片可以通过该填料以几乎均匀的间距结合在一起。此外,在密封材料19的外部上和FPC 17的上部和外围上,利用端部密封材料81密封该结构。端部密封材料81可以用例如硅树脂、环氧树脂、苯芬树脂或丁基橡胶等材料。
如果有源矩阵基片10和相对基片80这样结合,则两基片间形成空间。填料83填充该空间。填料83也具有粘合相对板80的粘附作用。可以用例如PVC(聚氯乙稀)、环氧树脂、硅酮树脂、PVB(聚乙稀醇缩丁醛)和EVA(乙稀乙酸乙稀)等材料作填料83。另外,对于湿汽来说自发光层较弱,所以该层容易退化,因此,希望在填料83混合例如氧化钡等干燥剂,因而可以保证具有吸湿作用。此外,在自发光层上,由氮化硅膜或氧氮化硅膜形成钝化膜82,使该结构能防止由于含于填料83中的碱性元素造成的侵蚀。
可以用例如玻璃板、铝板、不锈钢板、FRP(玻璃纤维加强塑料)板、PVF(聚氯乙稀)膜、Mylar膜(Du pont公司的一种商标)、聚酯膜、丙稀酸膜等材料作相对板80。另外,通过采用具有在PVF膜间或Mylar膜间夹有几十微米铝箔的结构的薄片,可以提高耐湿性。于是,EL元件为气密态,与大气隔绝。
另外,在图25B中的基片10上的基膜21上,形成驱动电路TFT(注意,这里的各图中示出了结合了n沟道TFT和p沟道TFT的CMOS电路)22和像素TFT23(然而,这里各图中只示出了控制到EL元件的电流的TFT)。这些TFT中,特别是n沟道TFT具有LDD区,以防止由于热载流子效应而使导通电流减小,并防止由于Vth移位或偏置应力造成的特性退化。
例如,可以用图13所示的p沟道TFT301和n沟道TFT 302作为驱动电路TFT22。另外,尽管取决于驱动电压,但如果驱动电压为10V以上,图5A-5E所示的第一n沟道TFT204或具有类似结构的p沟道TFT可用作像素TFT。第一n沟道TFT 202具有LDD区形成为在漏侧与栅极重叠的结构,但如果驱动电压为10V以下,则多数情况下可以忽略由于热载流子效应造成的退化,因此,不必形成LDD区。
在由图13所示状态的有源矩阵基片制造EL显示器件期间,在源布线和漏布线上,由树脂材料形成层间绝缘膜(平面化膜)26,由透明导电膜形成与像素TFT23电连接的像素电极27。可以用氧化铟和氧化锡的复合物(此后称作ITO)或氧化铟和氧化锌复合物作为透明导电膜。形成了像素电极27后,形成绝缘膜28,以便在像素电极27上形成开口。
然后,形成自发光层。可以自由地结合已知EL材料(空穴注入层,空穴输运层,发光层、电子输运层,或电子注入层),并用于自发光层29的层叠结构或单层结构。另外,有一些低分子量材料和高分子量材料(聚合物)可以作为EL材料。蒸发法用于低分子量材料,对于高分子量材料,可以用例如旋涂、印刷或喷墨等简单方法。
自发光层可利用孔板,由例如蒸发法、喷墨法、或分散剂法等方法形成。无论用那种方法,通过形成对于每个像素来说可以发射不同波长光的发光层(发红光层,发绿光层和发蓝光层),彩色显示器成为可能。此外,存在结合颜色改变层(CCM)与滤色器的方法,和结合发白光层与滤色器的方法,也可以用这些方法。自然,还可以用单色光EL显示器件。
然后,在自发光层29上形成阴极30。较好是尽可能多地去除存在于阴极30和自发光层29界面间的湿汽和氧。因此,需要在真空中连续形成自发光层29和阴极30,或在惰性气氛中形成自发光层29,然后在不暴露于空气的情况下,在真空中形成阴极30。该实施例中,可以利用多室系统(族工具系统)淀积装置,进行上述膜淀积。
注意,该实施例中,用LiF(氟化锂)膜和Al(铝)膜的叠层结构作阴极30。具体说,通过蒸发法,在自发光层29上形成1nm厚的LiF(氟化锂)膜,并在其上形成300nm厚的铝膜。自然,也可以用如MgAg电极等已知的阴极材料。然后,阴极30在参考数字31所示的区域中与布线16连接。布线16是给阴极30提供预定电压的电源线,通过各向异性导电膏材料32与FPC17连接。此外,在FPC17上形成树脂层80,增强该区的粘附强度。
为了在参考数字31表示的区中电连接阴极30和布线16,需要在层间绝缘膜26和绝缘膜28中形成接触孔。可以在腐蚀层间绝缘膜26(在形成像素电极接触孔时)和在腐蚀绝缘膜28(在形成自发光层前形成开口时)期间,形成这些接触孔。另外,可以在腐蚀绝缘膜28时,从头至尾进行一次腐蚀。这种情况下,如果层间绝缘膜26和绝缘膜28是相同树脂材料,则可以给出具有良好形状的接触孔。
此外,通过密封材料19和基片10间的间隙,布线16电连接FPC17。注意,这里已介绍了布线16,布线14和15也通过类似地穿过底下的密封材料19与FPC17电连接。
图26A和26B中示出了像素部分的更详细剖面结构,图27A示出了其上表面结构,图27B示出了电路图。图26A中,形成于基片2401上的TFT2402形成有与图13所示的像素TFT 304相同的结构。利用双栅结构,该结构基本上是两个串联的TFT,这样的优点是可以通过形成LDD降低截止电流值。注意,尽管该例使用了双栅结构,但也可以用单栅结构,也可以用三栅结构和具有许多栅的多栅结构。
另外,利用图13所示的第一n沟道TFT 302形成电流控制TFT2403。该TFT结构是一种LDD区形成为仅在漏侧与栅极重叠的结构,由于该结构,可以减小栅和漏间的寄生电容,及串联电阻,从而可以提高电流驱动性能。从其它前景看,使用该结构这一事实具有极重要的意义。电流控制TFT是一种控制在EL元件中流动的电流量的元件,具有很大电流,它是一个极易由热或热载流子造成退化的元件。因此,通过在电流控制TFT中形成局部与栅极重叠的LDD区,可以防止TFT退化,提高操作稳定性。开关TFT2402的漏布线35通过布线36与电流控制TFT的栅极37电连接。另外,由参考数字38表示的布线是与开关TFT 2402的栅极39a和39b电连接的栅布线。
该实施例中,各图中示出了电流控制TFT 2403采用单栅结构,但也可以使用多栅结构,具有串联的多个TFT。此外,还可以用进行高效热辐射的结构,其中多个TFT并联,基本上将沟道形成区分成多个沟道形成区。这种结构是抗热退化的有效措施。
变为电流控制TFT 2403的栅极37的布线是由参考数字2404表示的区,该区通过绝缘膜与电流控制TFT 2403的漏布线40重叠,如图27A所示。此时,在参考数字2404所示的区域中形成电容器。电容器2404用作保持加于电流控制TFT2403上的电压的电容器。注意,漏布线40连接电流源线(电源线)2501,固定电压恒定地加于其上。
在开关TFT2402和电流控制TFT 2403上形成第一钝化膜41,并由绝缘树脂膜在其上形成平面化膜42。非常重要的是利用平面化膜42,整平由于TFT造成的高度差。以后形成的自发光层极薄,所以,存在着高度差引起发光故障的情况。因此,为形成与表面尽可能齐平的自发光层,较好是在形成像素电极前进行平面化。
参考数字43表示由高反射率的导电膜形成的像素电极(EL元件的阴极),该电极与电流控制TFT2403的漏电连接。较好是用低阻导电膜例如铝合金膜、铜合金膜和银合金膜或这些膜的叠层膜作像素电极43。当然,也可以采用具有其它导电膜的叠层结构。另外,在由绝缘膜(较好是树脂)形成的堤44a和44b之间的沟槽(对应于像素)中形成发光层45。注意,这里图中只示出了一个像素,但发光层可以分成对应于R(红)、G(绿)和蓝(L)每种颜色。共轭聚合物基材料可用作发光层的有机EL材料。可以给出聚对亚苯基乙稀(PPVs)、聚乙稀咔唑(PVCs)和聚氟稀等作为典型的聚合物基材料。注意,可有几种PPV-基有机EL材料,例如,可以用Shenk,H.,Becher,H.,Gelsen,O.,Kluge,E.,Kreuder,W.,和Spreitzer,H.在1999年的Euro Display,Proceedings,第33-7页的“用于发光二极管的聚合物”中和日本专利申请公开平10-92576中介绍的材料。
关于特定的发光层,可以用氰基聚亚苯基乙稀作红光辐射发光层,可以用聚亚苯基乙稀作绿光辐射发光层,用聚亚苯基乙稀或聚甲亚苯基作蓝光辐射发光层。膜有厚度可以在30-150nm之间(希望在40-100nm之间)。然而,上述实例只是可用作发光层的有机EL材料的实例,不必将有机EL材料限于这些材料。可以自由地结合发光层、电荷输运层和电荷注入层等,形成自发光层(发光层和为发光进行载流子运动的层)。例如,该例示出了用聚合物基材料作发光层的例子,但也可以用低分子量有机EL材料。另外,可以用例如碳化硅等无机材料作电荷输运层和电荷注入层。已知材料可用作这些有机EL材料和无机材料。
其中在发光层44上由PEDOT(聚硫芬)PAni(polyaniline)形成空穴注入层46的叠层结构EL层用作该例中的自发光层。然后,由透明导电膜在空穴注入层46上形成阳极47。该例中,由发光层44产生的光向上表面辐射(向TFT的上部),所以阳极必须是透光的。可以用氧化铟和氧化锡复合物或氧化铟和氧化锌复合物作透明导电膜。然而,由于在形成低耐热发光层和空穴注入层后形成的,所以较好是用可以在尽可能低的温度下形成的材料。
在形成阳极47时,便完成了自发光元件2405。注意,这里称作EL元件2405的表示由像素电极(阴极)43、发光层44、空穴注入层46及阳极47构成的电容器。如图27A所示,像素电极43几乎与像素部分匹配,所以整个像素用作EL元件。因此,发光效率非常高,可以进行亮图像显示。
该例中,然后,在阳极47上形成附加的第二钝化膜48。较好是用氮化硅膜或氧氮化硅膜作第二钝化膜48。这样做的目的是隔离EL元件与外界,意义在于防止由于有机EL材料的氧化造成的退化,控制从有机EL材料的除气。所以,可以提高EL显示器件的可靠性。
于是,本发明的EL显示屏板具有由如图27A和27B所示结构的像素构成的像素部分,具有截止电流值相当低的开关TFT,具有极耐热载流子注入的电流控制TFT。因此,可以得到具有高可靠性和良好图像显示的EL显示屏板。
图26B中示出了反转自发光层结构的例子。电流控制TFT 2601形成为具有与图13中的p沟道TFT 301相同的结构。实施例1可以涉及制造工艺。该例中,用透明导电膜作像素电极(阳极)50。具体说,用由氧化铟和氧化锌的复合物构成的导电膜。当然,也可以用氧化铟和氧化锡的复合物构成的导电膜。
由绝缘膜形成堤51a和51b后,通过溶液旋涂法,由聚乙稀咔唑形成发光层52。在发光层52上,由乙酰丙酮钾(表示为acacK)形成电子注入层53,并在其上由铝合金形成阴极54。这种情况下,阴极54也用作钝化膜。于是形成EL元件2602。该例中,由发光层52产生的光向着其上形成TFT的基片辐射,如箭头所示。在采用与该例类似的结构时,较好是用p沟道TFT作电流控制TFT 2601。
例如该例中所示的EL显示器件可用作实施例9的电子设备的显示部分。
图28A-28C示出了像素结构不同于图27B所示电路图的例子。注意,该例中,参考数字2701表示开关TFT2702的源布线,参考数字2703表示开关TFT2702的栅布线,2704表示电流控制TFT,2705表示电容器,2706和2708表示电流源线,2707表示EL元件。
图28A是电流源线2706为两个像素共用的情况的例子。即,其特征是,两个像素形成为关于电流源线2706线性对称。这种情况下,可以减少电流源线的数量,因此,甚至可以制造更高清晰度的像素部分。
另外,图28B是电流源线2708形成为平行于栅布线2703的情况的例子。注意图28B中,结构形成为电流源线2708和栅布线2703不重叠,但如果它们都是形成于不同层上的布线,它们可以形成为通过绝缘膜重叠。这种情况下,该专用的表面区可以由电流源线2708和栅布线2703共享,因此,可以制造更高清晰度的像素部分。
另外,图28C的特征在于,电流源线2708和栅布线2703平行形成,与图28B的结构类似,此外,两个像素形成为关于电流源线2708线性对称。此外,可有效地形成电流源线2708,以便与栅布线2703之一重叠。这种情况下,可以减少电流源线的数量,因此,可以制造更高清晰度的像素部分。图28A和28B中,形成电容器2404,以存储加到电流控制TFT2403上的电压,但可以省略该电容器2404。
利用例如图26A所示的本发明的n沟道TFT作电流控制TFT2403,LDD区形成为通过栅绝缘膜与栅极重叠。所谓的寄生电容会形成于LDD区与电极重叠的区域中,但该例的特征是有效地使用该寄生电容替代电容器2404。寄生电容的电容量随栅极与LDD区重叠的表面积而改变,因此,由包含在重叠区中的LDD区的长度确定之。另外,还可以省略图28A-28C中的电容器2705。
注意,可通过选择实施例1所示TFT结构,并形成图28A-28C所示电路,可以形成该例中所示的EL显示器件的电路结构。另外,可以用该例的EL显示屏板作实施例9的电子设备的显示部分。
通过在一般为TFT的半导体器件中应用本发明的氢化氧氮化硅膜,并用之作栅绝缘膜、基膜和保护绝缘膜或层间绝缘膜,该氢化氧氮化硅膜是用SiH4、N2O和H2作原材料气,通过等离子体CVD制造的,可以制造其中Vth不移位,相对于BTS应力稳定的TFT。另外,通过使用这种绝缘膜,可以在玻璃基片上制造TFT,得到一般为液晶显示器件或有机EL显示器件的高质量半导体器件。

Claims (18)

1、一种电子设备,包括形成于基片上的薄膜晶体管,所说薄膜晶体管包括:
形成于所说基片上的基膜;
形成于所说基膜上的所说薄膜晶体管的有源层;
形成于所说有源层上的栅绝缘膜;
形成为与所说栅绝缘膜接触的栅极;及
形成于所说栅极上的层间绝缘膜;
其中包括所说基膜、所说栅绝缘膜和所说层间绝缘膜的组中的至少一个由包括浓度为55-70原子%的氧、浓度为0.1-6原子%的氮和浓度为0.1-3原子%的氢的氢化氧氮化硅膜形成。
2、根据权利要求1的电子设备,其中所说电子设备是选自包括个人电脑、视频摄像机、便携式信息终端、数字摄像机、数字视盘播放器、电子游戏设备和投影仪的组中的至少一种。
3、根据权利要求1的电子设备,其中所说电子设备是EL显示器件。
4、一种电子设备,包括形成于基片上的薄膜晶体管,所说薄膜晶体管包括:
形成于所说基片上的栅极;
形成于所说栅极上的栅绝缘膜;
形成于所说栅绝缘膜上的有源层;
形成于所说有源层上的保护绝缘膜或层间绝缘膜;
其中包括所说栅绝缘膜和所说保护绝缘膜或所说层间绝缘膜的组中的至少一个由包括浓度为55-70原子%的氧、浓度为0.1-6原子%的氮和浓度为0.1-3原子%的氢的氢化氧氮化硅膜形成。
5、根据权利要求4的电子设备,其中所说电子设备是选自包括个人电脑、视频摄像机、便携式信息终端、数字摄像机、数字视盘播放器、电子游戏设备和投影仪的组中的至少一种。
6、根据权利要求4的电子设备,其中所说电子设备是EL显示器件。
7、一种制造电子设备的方法,所说电子设备包括形成于基片上的薄膜晶体管,所说方法包括以下步骤:
在所说基片上形成基膜;
在所说基膜上形成所说薄膜晶体管的有源层;
在所说有源层上形成栅绝缘膜;
形成与所说栅绝缘膜接触的栅极;及
在所说栅极上形成层间绝缘膜,
其中所说基膜、所说栅绝缘膜和所说层间绝缘膜中的至少一个包括由SiH4、N2O和H2形成的氢化氧氮化硅膜;
其中所说氢化氧氮化硅膜包括浓度为55-70原子%的氧、浓度为0.1-6原子%的氮和浓度为0.1-3原子%的氢。
8、根据权利要求7的制造电子设备的方法,其中至少氢化氧氮化硅膜中所含的氢通过热处理扩散到所说有源层。
9、根据权利要求8的制造电子设备的方法,其中所说热处理的温度是在300-500℃的范围内。
10、根据权利要求7的制造电子设备的方法,其中在形成氢化氧氮化硅膜时,H2的流量是在SiH4和N2O总流量的0.1-7倍的范围内。
11、根据权利要求7的制造电子设备的方法,其中所说电子设备是选自包括个人电脑、视频摄像机、便携式信息终端、数字摄像机、数字视盘播放器、电子游戏设备和投影仪的组中的至少一种。
12、根据权利要求7的制造电子设备的方法,其中所说电子设备是EL显示器件。
13、一种制造电子设备的方法,所说电子设备包括形成于基片上的薄膜晶体管,所说方法包括以下步骤:
在所说基片上形成栅极;
在所说栅极上形成栅绝缘膜;
在所说栅绝缘膜上形成所说薄膜晶体管的有源层;以及
在所说有源层上形成保护绝缘膜或层间绝缘膜;
其中所说栅绝缘膜、所说保护绝缘膜和所说层间绝缘膜中的至少一个包括由SiH4、N2O和H2形成的氢化氧氮化硅膜;
其中所说氢化氧氮化硅膜包括浓度为55-70原子%的氧、浓度为0.1-6原子%的氮和浓度为0.1-3原子%的氢。
14、根据权利要求13的制造电子设备的方法,其中至少所说氢化氧氮化硅膜中所含的氢通过热处理扩散到所说有源层。
15、根据权利要求14的制造电子设备的方法,其中所说热处理的温度是在300-500℃的范围内。
16、根据权利要求14的制造电子设备的方法,其中在形成氢化氧氮化硅膜时,H2的流量是在SiH4和N2O总流量的0.1-7倍的范围内。
17、根据权利要求13的制造电子设备的方法,其中所说电子设备是选自包括个人电脑、视频摄像机、便携式信息终端、数字摄像机、数字视盘播放器、电子游戏设备和投影仪的组中的至少一种。
18、根据权利要求13的制造电子设备的方法,其中所说电子设备是EL显示器件。
CNB001216392A 1999-06-02 2000-06-02 半导体器件及其制造方法 Expired - Fee Related CN1263159C (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP15442999 1999-06-02
JP154429/99 1999-06-02
JP154429/1999 1999-06-02

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CNB2006100778032A Division CN100485943C (zh) 1999-06-02 2000-06-02 半导体器件

Publications (2)

Publication Number Publication Date
CN1276630A CN1276630A (zh) 2000-12-13
CN1263159C true CN1263159C (zh) 2006-07-05

Family

ID=15583996

Family Applications (3)

Application Number Title Priority Date Filing Date
CNB001216392A Expired - Fee Related CN1263159C (zh) 1999-06-02 2000-06-02 半导体器件及其制造方法
CN200610099729A Expired - Fee Related CN100592523C (zh) 1999-06-02 2000-06-02 半导体器件及其制造方法
CNB2006100778032A Expired - Fee Related CN100485943C (zh) 1999-06-02 2000-06-02 半导体器件

Family Applications After (2)

Application Number Title Priority Date Filing Date
CN200610099729A Expired - Fee Related CN100592523C (zh) 1999-06-02 2000-06-02 半导体器件及其制造方法
CNB2006100778032A Expired - Fee Related CN100485943C (zh) 1999-06-02 2000-06-02 半导体器件

Country Status (2)

Country Link
US (1) US20040238820A1 (zh)
CN (3) CN1263159C (zh)

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6512504B1 (en) 1999-04-27 2003-01-28 Semiconductor Energy Laborayory Co., Ltd. Electronic device and electronic apparatus
US6461899B1 (en) * 1999-04-30 2002-10-08 Semiconductor Energy Laboratory, Co., Ltd. Oxynitride laminate “blocking layer” for thin film semiconductor devices
JP5210473B2 (ja) 1999-06-21 2013-06-12 株式会社半導体エネルギー研究所 表示装置
US6777254B1 (en) 1999-07-06 2004-08-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and fabrication method thereof
US6967633B1 (en) * 1999-10-08 2005-11-22 Semiconductor Energy Laboratory Co., Ltd. Display device
JP4562835B2 (ja) * 1999-11-05 2010-10-13 株式会社半導体エネルギー研究所 半導体装置の作製方法
JP2003045874A (ja) 2001-07-27 2003-02-14 Semiconductor Energy Lab Co Ltd 金属配線およびその作製方法、並びに金属配線基板およびその作製方法
TWI288443B (en) * 2002-05-17 2007-10-11 Semiconductor Energy Lab SiN film, semiconductor device, and the manufacturing method thereof
US7541617B2 (en) 2003-02-14 2009-06-02 Canon Kabushiki Kaisha Radiation image pickup device
TWI380080B (en) * 2003-03-07 2012-12-21 Semiconductor Energy Lab Liquid crystal display device and method for manufacturing the same
TW582118B (en) * 2003-04-10 2004-04-01 Au Optronics Corp Asymmetry thin film transistor
CN100369270C (zh) * 2003-12-24 2008-02-13 三洋电机株式会社 光传感器及显示装置
JP2005208582A (ja) * 2003-12-24 2005-08-04 Sanyo Electric Co Ltd 光センサおよびディスプレイ
JP2005228819A (ja) * 2004-02-10 2005-08-25 Mitsubishi Electric Corp 半導体装置
US7687404B2 (en) * 2004-05-14 2010-03-30 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing display device
KR100536043B1 (ko) * 2004-06-25 2005-12-12 삼성전자주식회사 적층형 반도체 장치 및 그 제조 방법
KR100659759B1 (ko) * 2004-10-06 2006-12-19 삼성에스디아이 주식회사 바텀 게이트형 박막트랜지스터, 그를 구비하는평판표시장치 및 박막트랜지스터의 제조방법
CN100414357C (zh) * 2004-11-26 2008-08-27 三洋电机株式会社 光传感器及显示装置
CN100401484C (zh) * 2004-12-01 2008-07-09 中华映管股份有限公司 薄膜晶体管的制造方法
JP4455381B2 (ja) * 2005-03-28 2010-04-21 住友電工デバイス・イノベーション株式会社 半導体装置およびその製造方法、容量素子およびその製造方法、並びにmis型半導体装置およびその製造方法。
US7652291B2 (en) * 2005-05-28 2010-01-26 Samsung Mobile Display Co., Ltd. Flat panel display
KR100731745B1 (ko) * 2005-06-22 2007-06-22 삼성에스디아이 주식회사 유기전계발광표시장치 및 그 제조방법
KR100770268B1 (ko) * 2006-05-18 2007-10-25 삼성에스디아이 주식회사 박막트랜지스터의 제조방법
KR100770269B1 (ko) * 2006-05-18 2007-10-25 삼성에스디아이 주식회사 박막트랜지스터의 제조방법
US7673270B1 (en) * 2007-03-13 2010-03-02 Xilinx, Inc. Method and apparatus for compensating an integrated circuit layout for mechanical stress effects
US8669644B2 (en) 2009-10-07 2014-03-11 Texas Instruments Incorporated Hydrogen passivation of integrated circuits
US8766361B2 (en) 2010-12-16 2014-07-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and electronic device
JP5740270B2 (ja) 2011-09-27 2015-06-24 株式会社東芝 薄膜トランジスタ、その製造方法、および表示装置
KR102029986B1 (ko) * 2012-12-13 2019-10-10 삼성디스플레이 주식회사 액정 표시 장치 및 그 제조 방법
CN103985637B (zh) * 2014-04-30 2017-02-01 京东方科技集团股份有限公司 低温多晶硅薄膜晶体管及其制作方法和显示装置
CN105161421B (zh) * 2015-07-24 2018-06-26 武汉新芯集成电路制造有限公司 一种半导体器件的制备方法
CN105182589A (zh) * 2015-10-09 2015-12-23 信利(惠州)智能显示有限公司 触控显示装置及其制作方法
CN105304560A (zh) * 2015-10-10 2016-02-03 信利(惠州)智能显示有限公司 一种ips模式tft基板制备方法
KR102631102B1 (ko) 2016-01-08 2024-01-30 더 트러스티이스 오브 콜롬비아 유니버시티 인 더 시티 오브 뉴욕 스폿 빔 결정화를 위한 방법 및 시스템
JP2018170324A (ja) * 2017-03-29 2018-11-01 株式会社ジャパンディスプレイ 表示装置
JP2019200328A (ja) * 2018-05-17 2019-11-21 セイコーエプソン株式会社 プロジェクター
JP7023188B2 (ja) * 2018-06-11 2022-02-21 東京エレクトロン株式会社 クリーニング方法
CN110055007A (zh) * 2019-03-21 2019-07-26 苏州微邦材料科技有限公司 多层复合型压敏性导电胶膜在光伏叠瓦电池组件中的应用及应用方法
CN110797255B (zh) * 2019-10-14 2022-10-28 长江存储科技有限责任公司 薄膜堆叠结构、三维存储器及其制备方法
CN111987173B (zh) * 2020-09-15 2022-11-15 电子科技大学 一种可集成的二维光电突触器件阵列及其制备方法
WO2022267043A1 (zh) * 2021-06-25 2022-12-29 京东方科技集团股份有限公司 氧化物薄膜晶体管及其制备方法、显示装置

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3765935A (en) * 1971-08-10 1973-10-16 Bell Telephone Labor Inc Radiation resistant coatings for semiconductor devices
GB8909011D0 (en) * 1989-04-20 1989-06-07 Friend Richard H Electroluminescent devices
US5289030A (en) * 1991-03-06 1994-02-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device with oxide layer
US5414442A (en) * 1991-06-14 1995-05-09 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and method of driving the same
US5274602A (en) * 1991-10-22 1993-12-28 Florida Atlantic University Large capacity solid-state memory
JP2650543B2 (ja) * 1991-11-25 1997-09-03 カシオ計算機株式会社 マトリクス回路駆動装置
JP3587537B2 (ja) * 1992-12-09 2004-11-10 株式会社半導体エネルギー研究所 半導体装置
US5594569A (en) * 1993-07-22 1997-01-14 Semiconductor Energy Laboratory Co., Ltd. Liquid-crystal electro-optical apparatus and method of manufacturing the same
JPH07142743A (ja) * 1993-09-22 1995-06-02 Sharp Corp 薄膜トランジスタの製造方法
TW264575B (zh) * 1993-10-29 1995-12-01 Handotai Energy Kenkyusho Kk
US5923962A (en) * 1993-10-29 1999-07-13 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a semiconductor device
US7081938B1 (en) * 1993-12-03 2006-07-25 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and method for manufacturing the same
US6867432B1 (en) * 1994-06-09 2005-03-15 Semiconductor Energy Lab Semiconductor device having SiOxNy gate insulating film
US5508532A (en) * 1994-06-16 1996-04-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device with braded silicon nitride
US5970384A (en) * 1994-08-11 1999-10-19 Semiconductor Energy Laboratory Co., Ltd. Methods of heat treating silicon oxide films by irradiating ultra-violet light
US5684365A (en) * 1994-12-14 1997-11-04 Eastman Kodak Company TFT-el display panel using organic electroluminescent media
US5640067A (en) * 1995-03-24 1997-06-17 Tdk Corporation Thin film transistor, organic electroluminescence display device and manufacturing method of the same
JP3606991B2 (ja) * 1996-02-20 2005-01-05 株式会社半導体エネルギー研究所 被膜作製方法
US6380611B1 (en) * 1998-09-03 2002-04-30 Micron Technology, Inc. Treatment for film surface to reduce photo footing
US6524895B2 (en) * 1998-12-25 2003-02-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of fabricating the same
US6573195B1 (en) * 1999-01-26 2003-06-03 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a semiconductor device by performing a heat-treatment in a hydrogen atmosphere
US6291363B1 (en) * 1999-03-01 2001-09-18 Micron Technology, Inc. Surface treatment of DARC films to reduce defects in subsequent cap layers
US6306694B1 (en) * 1999-03-12 2001-10-23 Semiconductor Energy Laboratory Co., Ltd. Process of fabricating a semiconductor device
US6531713B1 (en) * 1999-03-19 2003-03-11 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and manufacturing method thereof
US6399988B1 (en) * 1999-03-26 2002-06-04 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor having lightly doped regions
EP2256808A2 (en) * 1999-04-30 2010-12-01 Semiconductor Energy Laboratory Co, Ltd. Semiconductor device and manufacturing method therof
US6461899B1 (en) * 1999-04-30 2002-10-08 Semiconductor Energy Laboratory, Co., Ltd. Oxynitride laminate “blocking layer” for thin film semiconductor devices
US6281694B1 (en) * 1999-11-30 2001-08-28 United Microelectronics Corp. Monitor method for testing probe pins
US6348420B1 (en) * 1999-12-23 2002-02-19 Asm America, Inc. Situ dielectric stacks
JP4493779B2 (ja) * 2000-01-31 2010-06-30 株式会社半導体エネルギー研究所 半導体装置およびその作製方法

Also Published As

Publication number Publication date
CN1881596A (zh) 2006-12-20
CN100592523C (zh) 2010-02-24
CN1276630A (zh) 2000-12-13
CN1855515A (zh) 2006-11-01
US20040238820A1 (en) 2004-12-02
CN100485943C (zh) 2009-05-06

Similar Documents

Publication Publication Date Title
CN1263159C (zh) 半导体器件及其制造方法
CN1227739C (zh) 电致发光显示装置和具有电致发光显示装置的电子装置
CN100352022C (zh) 半导体器件及其制造方法
CN1264199C (zh) 半导体器件的制造方法
CN1197157C (zh) 半导体器件及其制造方法
CN1269196C (zh) 薄膜半导体器件的制造方法
CN1146056C (zh) 有源矩阵显示器
CN1169015C (zh) 具有涂敷膜的薄膜器件、液晶屏以及薄膜器件的制造方法
CN1237617C (zh) 静态随机存取存储器
CN1294656C (zh) 半导体器件及其制造方法
CN1223017C (zh) 自发光设备及其制造方法
CN1276508C (zh) 半导体器件、显示器件和发光器件
CN1372325A (zh) 发光器件及其制造方法
CN1596045A (zh) 发光器件及其制造方法
CN1422104A (zh) 发光器件
CN1599056A (zh) 发光器件及其制造方法
CN1716650A (zh) 发光器件及制造发光器件的方法
CN1729719A (zh) 显示装置和显示装置的制作方法
CN1619772A (zh) 制造半导体器件的方法
CN1421907A (zh) 薄膜晶体管的制造方法
CN1677613A (zh) 半导体器件的制造方法、半导体器件、电光装置用基板、电光装置和电子设备
CN1235269C (zh) 半导体器件以及半导体器件的制造方法
CN1275300C (zh) 激光辐照方法和激光辐照装置以及制造半导体器件的方法
CN1591778A (zh) 制造半导体器件的方法
JP4663063B2 (ja) 半導体装置の作製方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20060705

Termination date: 20190602

CF01 Termination of patent right due to non-payment of annual fee