CN1261948C - 用于聚合物固体电解质的树脂组合物和聚合物固体电解质以及使用它们的聚合物电池 - Google Patents

用于聚合物固体电解质的树脂组合物和聚合物固体电解质以及使用它们的聚合物电池 Download PDF

Info

Publication number
CN1261948C
CN1261948C CNB018196306A CN01819630A CN1261948C CN 1261948 C CN1261948 C CN 1261948C CN B018196306 A CNB018196306 A CN B018196306A CN 01819630 A CN01819630 A CN 01819630A CN 1261948 C CN1261948 C CN 1261948C
Authority
CN
China
Prior art keywords
solid electrolyte
copolymer solid
acrylate
gram
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB018196306A
Other languages
English (en)
Other versions
CN1478284A (zh
Inventor
森哲
横岛実
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kayaku Co Ltd
Original Assignee
Nippon Kayaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kayaku Co Ltd filed Critical Nippon Kayaku Co Ltd
Publication of CN1478284A publication Critical patent/CN1478284A/zh
Application granted granted Critical
Publication of CN1261948C publication Critical patent/CN1261948C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/122Ionic conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/56Solid electrolytes, e.g. gels; Additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/025Solid electrolytes
    • H01G9/028Organic semiconducting electrolytes, e.g. TCNQ
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Dispersion Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Conductive Materials (AREA)
  • Secondary Cells (AREA)

Abstract

本发明提供具有高薄膜强度,离子电导率高和加工性优异的聚合物固体电解质,所述用于聚合物固体电解质的树脂组合物,该组合物包括0.5~5.0重量%的具有特殊结构的可固化树脂(A)、增塑剂(B)和电解质(C)。

Description

用于聚合物固体电解质的树脂组合物和聚合物 固体电解质以及使用它们的聚合物电池
技术领域
本发明涉及用于聚合物固体电解质的树脂组合物和聚合物固体电解质,以及使用它们的聚合物电池,所述用于聚合物固体电解质的树脂组合物包含:0.5~5.0重量%的可固化树脂(A)、增塑剂(B)和电解质(C)。
背景技术
用于电化学装置如电池、电容器和传感器上的常规电解质呈溶液状或糊状,以保证离子电导率,但由此带来的问题是诸如泄漏对装置造成危害,以及必需配置浸渍电解质用的隔板,从而使装置的容积减少,局限于更小和更簿的装置。与之相反,使用固体电解质产品不存在这样的问题,因而可制作得更薄,此外,固体电解质的耐热性优异,并且有利于电池等的制作过程。
尤其是使用聚合物基的固体电解质的电池,产品不存在这样的问题,因而可制作得更薄。此外,固体电解质其优点是它比以基于无机材料的电池更有柔性,因此就可加工成各种形状。不过,迄今提出的聚合物固体电极由于离子电导率低,还存在输出电流小的问题。例如,所提出的方法包括在表氯醇基的橡胶和低分子量聚乙二醇衍生物的混合物中掺入特定的碱金属盐,制得聚合物固体电极(JPA HEI2-235957)或从而通过聚合反应交联聚乙二醇二丙烯酸酯,但是这些电解质的膜强度低,需要支承体,以进一步改进其膜强度、离子电导率,对电极的粘合性等。
最近,存储器备用电源等常常使用双导电层电容器,该双层电容器包括置于可极化电极间的离子导电溶液,可极化的电极由大比表面的碳素材料如活性碳或碳黑制成。例如,JPA SHO 63-244570揭示了用高导电率的Rb2Cu3I3Cl7作为无机基固体电解质的电容器。文献“功能材料”(1989年2月出版)第33页描述了用碳基极化电极和有机电解质的电容器。然后,使用导电的电解质溶液的双导电层电容器在长期使用和可靠性上存在问题,因为它们易泄漏到电容器外面或者在长期使用期间引起的各种麻烦或者如暴露于高压下引起的不正常现象。常用的无机基离子导电材料的另一问题是电解质的低电压而引起的输出电压低。
在电池和电容器中的聚合物固体电解质层只起到离子迁移的作用,于是这样制得的电池和电容器,由于电解质层变得更薄其总容积更小,能量密度更高。使用薄的聚合物固体电解质层的电池和电容器具有较低的电阻,较高的输出电流和充电电流,从而提高了电池的能量密度。而且,由于不易发生由离子特别是碱金属离子引起的腐蚀,所以循环寿命长。因此要求聚合物固体电解质具有尽可能高的离子电导率和优异的膜强度,从而将这些电解质成形为薄膜。此外,考虑到在低温环境如-10℃或更低温度下时使用,它们在低温时应具有足够的离子电导率。
发明的内容
本发明的目的是提供一种聚合物固体电解质用的树脂组合物,它具有足够的强度,因此即使成形为约数十微米的薄膜也不需要支承体,它在室温和低温时也具有高的离子电导率,而且它还具有优异的可加工性。
本发明者为解决上述问题进行了精心研究,结果发现:使用含有0.5~5.0重量%的具有特定结构的可固化树脂(A)、增塑剂(B)和电解质(C)的组合物可实现本发明的目的。还发现:使用通过固化电池内所述组合物而制得的聚合物固体电解质可改善上述问题,诸如在室温和低温时的离子电导率,膜强度和加工性等。最终完成了本发明。
因此,本发明涉及:
(1)聚合物固体电解质用的树脂组合物,它包含0.5~5.0重量%的可固化树脂(A)、增塑剂(B)和电解质(C);
(2)聚合物固体电解质用的树脂组合物,它包含0.5~3.0重量%的可固化树脂(A)、增塑剂(B)和电解质(C);
(3)如上述(1)或(2)所述的聚合物固体电解质用的树脂组合物,其中,可固化树脂(A)是在一个分子内有四个或四个以上的活性官能团且活性官能团的当量为150或150以下的可固化单体(A-1);
(4)如上述(1)或(2)定义的聚合物固体电解质用的树脂组合物,其中,可固化树脂(A)是在一个分子内有四个或四个以上的活性官能团和活性官能团的当量为100或100以下的可固化单体(A-1);
(5)如上述(3)或(4)定义的聚合物固体电解质用的树脂组合物,其中,可固化单体(A-1)中的活性官能团是(甲基)丙烯酸酯基;
(6)如上述(3)到(5)中任何一项所定义的聚合物固体电解质用的树脂组合物,其中,可固化单体(A-1)是由1摩尔的多元醇和1~5摩尔的己内酯反应而得到的(甲基)丙烯酸酯;
(7)如上述(3)到(6)中任何一项所述的聚合物固体电解质用的树脂组合物,其中,可固化单体(A-1)选自己内酯改性的季戊四醇的四(甲基)丙烯酸酯己内酯改性的双三羟甲基丙烷的四(甲基)丙烯酸酯,己内酯改性的双季戊四醇的五(甲基)丙烯酸酯,以及己内酯改性的双季戊四醇的六(甲基)丙烯酸酯;
(8)如上述(1)或(2)所述的聚合物固体电解质用的树脂组合物,其中,可固化树脂(A)是主链内有醚键和侧链有烯键不饱和双键的可固化聚合物(A-2),烯键不饱和双键的当量为300或300以下;
(9)如上述(8)所述的聚合物固体电解质用的树脂组合物,其中,可固化聚合物(A-2)是由化合物(A-2-1)和化合物(A-2-2)经由羟基和环氧基的反应制得的聚合物,所述化合物(A-2-1)的一个分子内具有一个或多个羟基,化合物(A-2-2)的一个分子内具有一个烯键不饱和双键和一个环氧基;
(10)如上述(1)或(2)所述的聚合物固体电解质用的树脂组合物,其中,可固化树脂(A)是具有含6个或6个以下碳原子的脂族链和侧链上具有烯键不饱和双键的可固化聚合物(A-3),所述烯键不饱和双键的当量为850或850以下;
(11)如上述(1)到(10)中任何一项所述的聚合物固体电解质用的树脂组合物,它还含有光引发剂(D);
(12)如上述(11)所述的聚合物固体电解质用的树脂组合物,其中,光引发剂(D)在350~450纳米波长时的最大摩尔消光系数为50或50以上;
(13)如上述(1)到(10)中任何一项所述的聚合物固体电解质用的树脂组合物,它还含有熟聚合引发剂(E);
(14)如上述(13)所述的聚合物固体电解质用的树脂组合物,其中,所述热聚合物引发剂(E)在10℃或10℃以上温度时的半衰期为10小时;
(15)如上述(1)到(14)中任何一项所述的聚合物固体电解质用的树脂组合物,其中所述电解质(C)是至少一种选自碱金属盐、季铵盐、季鏻盐或过渡金属盐中的物质;
(16)聚合物固体电解质,它包含如上述(1)到(15)的任何一个定义的聚合/物固体电解质用的树脂组合物的固化产物;
(17)如上述(16)所述的聚合物固体电解质,它呈片状;
(18)聚合物电池,它包含如上述(16)或(17)所述的聚合物固体电解质。
本发明的最佳实施方式
本发明用于聚合物固体电解质的树脂组合物包含0.5~5.0重量%的具有特定结构的可固化树脂(A)、增塑剂(B)和电解质(C),其中可固化树脂(A)优选可固化单体(A-1)或可固化聚合物(A-2)或(A-3)。
本发明的用于聚合物固体电解质的树脂组合物,可用具有已知活性官能团的可固化树脂(A),其中所述的活性官能团包括:(甲基)丙烯酸酯基、乙烯基、环氧基、羟基、羧基,以及异氰酸酯基,最好是(甲基)丙烯酸酯基。可固化树脂(A)的用量为树脂组合物总量的0.5~5.0重量%为宜,最好是0.5~3.0重量%。如果该用量超过5.0重量%,膜的强度好,但室温和低温时的离子电导率下降。如果用量等于或低于0.5重量%,就不能得到足够的膜强度。
当可固化单体(A-1)被用作本发明的可固化树脂时,所述可固化单体(A-1)在一个分子内宜具有四个或四个以上活性官能团且活性官能团的当量为150或150以下,这样就可在树脂浓度即使为5.0重量%或5.0重量%以下,也能得到足够的膜强度,这样的可固化单体有例如,双三羟甲基丙烷四(甲基)丙烯酸酯、环氧乙烷改性的季戊四醇四(甲基)丙烯酸酯,环氧丙烷改性的季戊四醇四(甲基)丙烯酸酯等。更优选的可固化单体(A-1)的活性官能团当量为100或100以下,例如,季戊四醇四丙烯酸酯,双季戊四醇五丙烯酸酯,双季戊四醇六丙烯酸酯等。
用于本发明的可固化单体(A-1)较好的是由1摩尔多元醇与1~5摩尔己内酯反应所得的(甲基)丙烯酸酯。多元醇优选四官能或更高级多元醇,例如,季戊四醇,双三羟甲基丙烷,双季戊四醇等。多元醇和己内酯的反应产物可由1摩尔多元醇和1~5摩尔己内酯反应制得,如JPB HEI1-58176(日本专利号1571324)所述。具体例子包括己内酯改性的季戊四醇的四(甲基)丙烯酸酯,己内酯改性的双三羟甲基丙烷的四(甲基)丙烯酸酯,以及己内酯改性的双季戊四醇的五或六(甲基)丙烯酸酯。作为起始材料的己内酯是如γ、δ或ε-己内酯,优选ε-己内酯。
可固化树脂(A)也可优选聚合物(A-2),聚合物(A-2)在主链上具有醚键,并在侧链上具有烯键不饱和双键,烯键不饱和双键的当量为300或300以下。可固化聚合物(A-2)的分子量优选500~1,000,000,更优选1,000~500,000。
本发明所用的可固化聚合物(A-2)宜为由化合物(A-2-1)和化合物(A-2-2)通过羟基和环氧基反应所得的聚合物,所述化合物(A-2-1)的一个分子上具有一个或多个羟基,化合物(A-2-2)的一个分子内具有一个烯键不饱和双键和一个环氧基。
用于本发明的一个分子内具有一个或多个羟基的化合物(A-2-1)包括:单官能醇,例如甲醇、乙醇、丙醇、丁醇、己醇、甲氧基乙二醇、甲氧基聚乙二醇、以及甲氧基聚丙二醇;双官能醇,例如乙二醇、二乙二醇、聚乙二醇、丙二醇、二丙二醇、聚丙二醇、新戊二醇、1,6-己二醇、双酚A和乙氧基双酚A;多官能醇,例如三羟甲基丙烷、乙氧基化三羟甲基丙烷、丙氧基化三乙二醇、甘油、乙氧基化甘油、丙氧基化甘油、季戊四醇、乙氧基化季戊四醇、丙氧基化季戊四醇、双季戊四醇、乙氧基化双季戊四醇和丙氧基化双季戊四醇;以及酚类,例如苯酚可溶酚醛和甲酚可溶酚醛。
用于本发明的在一个分子内具有一个烯键不饱和双键和一个环氧基的化合物(A-2-2)包括:例如(甲基)丙烯酸缩水甘油酯、(甲基)丙烯酰甲基环己烯化氧和乙烯基环己烯化氧。
在一个分子内具有一个或多个羟基的化合物(A-2-1)宜与其一个分子内具有一个烯键不饱和双键和一个环氧基的化合物(A-2-2)反应,即该化合物(A-2-2)的,其摩尔比为1∶1~100000,特别好为1∶10~50000。可固化聚合物(A-2)的分子量可由化合物(A-2-1)和化合物(A-2-2)间的比例来控制。
在反应过程中,可使用催化剂。催化剂包括有机碱类,例如胺类(如甲胺、乙胺、丙胺和哌嗪),吡啶和咪唑;有机酸类,例如甲酸、乙酸和丙酸;无机酸类,例如硫酸和盐酸;烷基金属醇盐,例如甲醇钠;碱类,例如KOH和NaOH;路易氏(Lewis)酸类,例如BF3、ZnCl2、AlCl3和SnCl4或其络合物;有机金属化合物,例如三乙基铝和二乙基锌。这些催化剂的用量宜占反应物的0.01%~10%,特别优选0.1%~5%。
反应温度取决于所用催化剂的活性,宜为-50℃至200℃,特别优选-30℃~100℃范围。反应周期宜为30分钟至48小时,特别优选1~24小时。在反应过程中,可加入阻聚剂,例如,氢醌、甲基氢醌、甲氧基苯酚和吩噻嗪。
在反应过程中可使用溶剂,对溶剂没有特别限制,只要溶剂不含活性氢,所述溶剂包括:酮类,如丙酮,甲乙酮和甲基异丁酮;芳烃类,如苯、甲苯和二甲苯,以及醚类,脂肪烃类和酯类。
可固化树脂(A)也可优选可固化聚合物(A-3),可固化聚合物(A-3)具有含6个或6个以下碳原子的脂族链并在侧链上具有烯键不饱和双键,所述烯键不饱和双键的当量为850或850以下。可固化聚合物(A-3)的制备如下,首先制备具有含6个或6个以下碳原子的脂族链和烯键不饱和双键的化合物与上述化合物(A-2-2)的共聚物,然后使其与一个分子中具有一个不饱和双键和一个羧基的化合物反应。可固化聚合物(A-3)的分子量宜为1,000~1,000,000,更好为2,000~500,000。
具有含6个或6个以下碳原子的脂族链和烯键不饱和双键的化合物与上述化合物(A-2-2)的共聚物可通过使具有含6个或6个以下碳原子的脂族链和烯键不饱和双键的化合物,如(甲基)丙烯酸甲酯、(甲基)丙烯酸乙酯、(甲基)丙烯酸丙酯、(甲基)丙烯酸异丙酯、(甲基)丙烯酸丁酯、(甲基)丙烯酸异丁酯、(甲基)丙烯酸叔丁酯、(甲基)丙烯酸己酯与上述化合物(A-2-2)共聚制得。这些化合物的一个或多个可共聚,或者一个或多个烯键型不饱和单体,如丙烯酸-2-羟乙酯、(甲基)丙烯酸-2-羟丙酯、(甲基)丙烯酸、苯乙烯、(甲基)丙烯酸苯氧基乙酯、(甲基)丙烯酸苄酯和α-甲基苯乙烯,可进行共聚。上述化合物(A-2-2)的用量宜为占制备共聚物(A-3)所用的不饱和单体总量的0.1~90重量%,特别优选1~50重量%。
上述这些聚合物用公知的聚合工艺制取,例如溶液聚合或乳液聚合。以溶液聚合为例,烯键不饱和单体混合物在合适的有机溶剂中,于氮气流下,并在50~100℃加热条件下和聚合反应引发剂一起搅拌。合适的有机溶剂包括:醇类,如乙醇、丙醇、异丙醇、丁醇、异丁醇、2-丁醇、己醇和乙二醇;酮类,如甲乙酮和环己酮;芳烃类,如甲苯和二甲苯;溶纤剂类,如溶纤剂和丁基溶纤剂;卡必醇类,如卡必醇和丁基卡必醇;丙二醇烷基醚类,如丙二醇甲基醚;聚丙二醇烷基醚类,如二丙二醇甲基醚;醋酸酯类,如醋酸乙酯,醋酸丁酯,醋酸溶纤酯和丙二醇单甲基醋酸酯;乳酸酯类,如乳酸乙酯和乳酸丁酯;二烷基乙二醇醚类;以及碳酸酯类,如碳酸亚乙酯和碳酸亚丙酯;上述这些有机溶剂可单独使用或组合使用。
聚合反应的引发剂优选过氧化物,例如过氧化苯甲酰,或偶氮化合物,例如偶氮二异丁腈。反应温度为40~150℃,反应周期为1~50小时。
然后,所述共聚物与分子内具有一个不饱和双键和一个羧基的化合物(如(甲基)丙烯酸)反应。所述的一个分子内具有一个不饱和双键和一个羧基的化合物宜以0.8~1.1当量对共聚物中1当量的环氧基的比例进行反应。为了促进反应,在反应溶液中加入0.1~1%的碱性化合物作为反应催化剂,所述碱性化合物,例如有三苯基膦、三苯基锑、三乙胺、三乙醇胺、氯化四甲铵或氯化苄基三乙铵。为了防止反应过程中的聚合,最好在反应溶液中加入0.05~0.5%的阻聚剂(如甲氧基酚、甲基氢醌、氢醌、吩噻嗪)。反应温度通常为90~150℃,反应周期5~40小时。
在本发明中使用增塑剂(B),优选一种低分子量化合物作为增塑剂(B)加入本发明的组合物中,这样可进一步改进固化后所制得的聚合物固体电解质的离子电导率。增塑剂(B)的用量,以组分(A)的用量为100重量份计,它为1,600~19,900重量份,特别优选2800~19900重量份。聚合物固体电解质的离子电导率随着增塑剂(B)的用量增加而上升,但如果太过量,则聚合物固体电解质的机械强度下降。
适合用作增塑剂(B)的化合物具有下列性能:与组分(A)优异的相容性,高介电常数,沸点在70℃以上,以及宽的电化学稳定性范围。这样的增塑剂(B)包括:醚类低聚物(oligoether),如三乙二醇甲基醚和四乙二醇二甲基醚;碳酸酯类,如碳酸亚乙酯、碳酸亚丙酯、碳酸二甲酯、碳酸二乙酯、碳酸亚乙烯基酯和(甲基)丙烯酰碳酸酯(methyacrylol corbonate);芳族腈类,如苄腈和苄基氰;以及二甲基甲酰胺、二甲基亚砜、N-甲基吡咯烷酮、环丁砜和磷酸酯。其中,优选醚类低聚物和碳酸酯,特别优选碳酸酯类。
本发明使用电解质(C),电解质(C)在本发明组合物中所占比例宜为0.1~50重量%,特别优选1~30重量%。如果电解质(C)过量,则离子的迁移受到严重抑制,而如果离子绝对量太少,离子绝对量不充分,则离子电导率下降。
本发明所用的电解质(C)不受特别限制,只要是含有所要求电荷载体的离子并在固化后的聚合物固体电解质中具有高的电离常数的任何一种电解质。
推荐的电解质(C),例如有碱金属盐类、季铵盐类如(CH3)4NBF6,季鏻盐类,如(CH3)4PBF6,过渡金属盐类,如AgClO4或质子酸如盐酸、高氯酸和氟硼酸。其中,优选碱金属盐类、季铵盐类、季鏻盐类或过渡金属盐类。
碱金属盐类包括:LiCF3SO3、LiPF6、LiClO4、LiI、LiBF4、LiSCN、LiAsF6、NaCF3SO3、NaPF6、NaClO4、NaI、NaBF4、NaAsF6、KCF3SO3、KPF6和KI。
在本发明中可使用光引发剂(D),光引发剂(D)可以是任何公知的光引发剂,优选使用在波长350~450纳米范围具有50以上最大摩尔消光系数的光引发剂。使用这类光引发剂(D)的本发明树脂组合物可用紫外线(UV)进行固化。光引发剂(D)的用量,以组分(A)为100重量份计,宜为0.5~70重量份,特别优选1~30重量份。
合适的光引发剂(D)包括:如2-苄基-2-二甲基氨基-1-(4-吗啉代苯基)丁酮-1(Ciba Specialty Chemicals出品,商品牌号Irgacure 369),2,4-二乙基硫代噻吨酮、2-异丙基噻吨酮、米蚩酮、4,4’-双(二乙基氨基)二苯甲酮,二酰基氧化膦等。特别优选磷化物,如二酰基氧化膦类。二酰基氧化膦类的例子包括:双(2,4,6-三甲基苯甲酰)-苯基氧化膦、双(2,6-二甲氧基苯甲酰)-2,4,4-三甲基苯基氧化膦等。
这些光引发剂(D)可与其它光引发剂组合使用,例如1-羟基-2-环己基苯酮、2-羟基-2-甲基苯基·乙基酮、甲基苯基二羟乙酸酯和2,2-二乙氧基苯乙酮。
在本发明中可使用热聚合引发剂(E)。热聚合引发剂(E)可以是任何公知的热聚合引发剂,优选在温度10℃以上时的半衰期为10小时的热聚合引发剂。本发明的树脂组合物是用所述热聚合引发剂(E)进行热固化。热聚合引发剂(E)的用量,以组分(A)100重量份计,宜为0.5~70重量份,特别优选0.1~30重量份。
热聚合引发剂(E)的具体例子包括:
有机过氧化物,例如酮过氧化物,如甲乙酮过氧化物,甲基异丁基酮过氧化物,甲基环乙酮过氧化物和环己酮过氧化物;氢过氧化物,如2,4,4-三甲基苯基氢过氧化物、二异丙基苯氢过氧化物、异丙基苯氢过氧化物、氢过氧化枯烯和氢过氧化叔丁基;二酰基过氧化物,如异丁酰过氧化物、过氧2,4-二氯苯甲酰、过氧邻氯苯甲酰、过氧化双-3,5,5-三甲基己酰、过氧化月桂酰、过氧化苯甲酰和过氧化对氯苯甲酰;二烷基过氧化物,如过氧化二枯基、2,5-二甲基-2,5-二(叔丁基过氧)己烷、1,3-双-(叔丁基过氧异丙基)苯、过氧化二-叔丁基、2,5-二甲基-2,5-二-(叔丁基过氧)己炔-3、以及三-(叔丁基过氧)三嗪;过氧缩酮类、如1,1-二-叔丁基过氧-3,3,5-三甲基环己烷、1,1-二-(叔丁基过氧)环己烷、2,2-二-(叔丁基过氧)丁烷、4,4-二-(叔丁基过氧)戊酸-正丁酯和2,2-双(4,4-二-叔丁基过氧-环己基)丙烷;烷基过酸酯类,如2,4,4-三甲基戊基过氧新癸酸酯、α-枯基过氧新癸酸酯、叔丁基过氧新癸酸酯和叔丁基过氧新戊酸酯;烷基过酸酯类,如2,2,4-三甲基戊基过氧-2-乙基癸酸酯、叔戊基过氧-2-乙基癸酸酯、叔丁基过氧-2-乙基癸酸酯、叔丁基过氧异丁酸酯、二叔丁基过氧六氢对苯二酸酯、叔丁基过氧-3,3,5-三甲基癸酸酯、叔丁基醋酸叔丁酯、过氧苯甲酸叔丁酯和过氧三甲基己二酸二叔丁酯;以及过碳酸酯类,如二-3-甲氧基过氧二碳酸酯、二-2-乙基己基过氧二碳酸酯、双(4-叔丁基环己基)过氧二碳酸酯、二异丙基过氧二碳酸酯、过氧异丙基碳酸叔丁酯、1,6-双(叔丁基过氧羰基氧)己烷和二乙二醇-双(过氧碳酸叔丁酯);以及
偶氮化合物类,例如1,1’-偶氮双(环己烷-1-腈),2,2’-偶氮双(2-甲基-丁腈),2,2’-偶氮双异丁腈、2,2’-偶氮双{2-甲基-N-[1,1-双(羟甲基)-2-羟乙基]丙酰胺},2,2’-偶氮双[2-甲基-N-(2-羟乙基)丙酰胺]、2,2’-偶氮双[2-甲基丙酰胺]脱水物、偶氮双叔辛烷和2-氰基-2-丙基偶氮甲酰胺,它们可单独使用,也可二个或多个组合使用。
在本发明中,除了可固化树脂(A)以外,还可加入活性单体(F)和活性低聚物(G)及其类似物。这些活性单体(F)和活性低聚物(G)的用量比例,以组分(A)为100重量份计,宜为0~100重量份。
活性单体(F)包括:例如甲基丙烯酸卡必醇酯、聚二(甲基)丙烯酸乙二醇酯、新戊二醇羟基新戊酸酯二(甲基)丙烯酸酯、三羟甲基丙烷三(甲基)丙烯酸酯、三羟甲基丙烷聚氧乙烯三(甲基)丙烯酸酯等。
活性低聚物(G)包括:例如聚酯聚(甲基)丙烯酸酯、氨基甲酸酯(甲基)丙烯酸酯、环氧(甲基)丙烯酸酯等。
聚酯聚(甲基)丙烯酸酯包括:例如,含有多元醇与多元酸或多元酸酐组成的聚酯多元醇与(甲基)丙烯酸的反应产物。其中,多元醇包括:例如,乙二醇、新戊二醇、聚乙二醇、三羟甲基丙烷等。多元酸包括:例如,琥珀酸、己二酸、苯二甲酸、四氢化邻苯二甲酸、六氢化邻苯二甲酸、三黄木樨酸等。
氨基甲酸酯(甲基)丙烯酸酯包括:多元醇和有机异氰酸酯与含单羟基的甲基丙烯酸酯的反应产物。其中,多元醇包括:例如,聚乙二醇、聚丙二醇、聚酯多元醇、聚己内酯多元醇、聚碳酸酯多元醇、聚丁二醇等。有机异氰酸酯包括:例如,甲苯二异氰酸酯、异佛尔酮二异氰酸酯、1,6-己二异氰酸酯、二苯基甲烷二异氰酸酯、氢化二苯基甲烷二异氰酸酯等。含单羟基的(甲基)丙烯酸酯包括:例如,(甲基)丙烯酸-2-羟乙酯、(甲基)丙烯酸-2-羟丙酯、单(甲基)丙烯酸聚乙二醇酯、三(甲基)丙烯酸季戊四醇酯等。
环氧(甲基)丙烯酸酯包括:例如,脂族聚缩水甘油醚和(甲基)丙烯酸的反应产物。脂族聚缩水甘油醚包括:例如,甘油二缩水甘油醚、聚乙二醇二缩水甘油醚、聚丙二醇二缩水甘油醚等。
用于本发明聚合物固体电解质的树脂组合物可通过均匀混合可固化树脂(A)、增塑剂(B)、电解质(C)、光引发剂(D)和/或上述任选的热聚合引发剂(E)与上述活性单体(F)和活性低聚物(G),以及其它聚合物(H)和/或溶剂(I)制得。如果使用溶剂(I),溶剂可以是不阻碍聚合反应的任何溶剂,如四氢呋喃,甲苯等。
具有如上述各种配方的聚合物固体电解质用的树脂组合物,其特征在于,组合物中可固化树脂(A)的含量为0.5~5.0重量%。
在本发明中,任选使用的聚合物(H)包含:聚乙二醇、聚丙烯腈、聚丁二烯、聚(甲基)丙烯酸酯、聚苯乙烯、聚磷腈、聚硅氧烷或聚硅烷等。这些聚合物(H)的用量比例,以组分(A)为100重量份计,优选0~100重量份。
本发明的聚合物固体电解质包括上述用于聚合物固体电解质的树脂组合物的固化后产物。固化后产物的制取可通过用电磁波(能量射线),如紫外(UV)线(即在1~100,000mJ/cm2的紫外线),使上述聚合物固体电解质的树脂组合物辐射聚合获得,或可通过20~200℃加热使它们聚合获得。尤其是,上述用于聚合物固体电解质的树脂组合物宜形成片材(涂层、膜)等,然后用电磁波,如电子射线或紫外线辐射进行聚合,或加热进行聚合,以制取片形聚合物产物,片形聚合物产物由于其加工性的自由度很大而有利于各种应用。片形聚合物固体电解质的制备通常可采用各种涂布机或其类似设备,如辊涂机、蘸涂机和帘流涂布机。将上述用于聚合物固体电解质的树脂组合物涂布于载体上制得。然后,用电磁波如紫外线使树脂组合物辐射固化,或加热使树脂组合物固化。载体可用例如沉积铝的PET膜。为了使表面固化更可靠,随后可在树脂组合物的固化薄膜表面施用另一种载体,并用电磁波如紫外线进一步辐照,或进一步加热。所述的另一种载体可以是例如聚丙烯薄膜。这样制得的固化产品通常在去除载体后使用。
本发明的聚合物电池的结构包括例如夹在阴极和阳极之间的聚合物固体电解质。所述的聚合物电池宜为片材,所以聚合物固体电解质,阴极和阳极也优选片材。
阴极可以是与粘合集电极如铝、铜、镍箔或类似物和阴极活性材料用的粘合剂树脂结合而加工成片材的阴极活性材料。用于制取高电压和高电容电池的阴极活性材料宜为具有碱金属离子作为载体的低氧化还原电势材料,所述低氧化还原电势材料包括:碱金属、碱金属合金例如锂/铝合金或锂/铅合金或锂/锑合金和碳素材料及其混合物。特别优选碳素材料,因为它们在低氧化还原电势时负载锂离子,而且它们是稳定和安全的。可以负载和释放锂离子的碳素材料包括天然石墨、人造石墨、气相生长石墨、石油焦、焦炭、沥青碳、聚烯烃、富勒烯(fullerenes)如C60和C70
阳极可以是用粘合集电极如铝、铜、镍箔或类似物和阳极活性材料用的粘合剂加工成片材的阳极活性材料。用于制取高电压和高电容的电池的阳极活性材料具有高氧化还原电势材料为宜,所述高氧化还原电势材料例如金属氧化物、金属硫化物、导电聚合物或碳素材料或其混合物。特别优选金属氧化物,如氧化钴、氧化镁、氧化钒、氧化镍和氧化钼,以及金属硫化物,如硫化钼、硫化钛和硫化钒,用于获得高填充密度和高体积能量密度,同时为了获得高电容和高电压,优选氧化镁、氧化镍、氧化钴及其类似物。这些阳极活性材料优选与锂元素一起使用,例如,所述锂元素以LiCoO2或LiMnO2形式插入或(与之络合)金属氧化物或金属硫化物中。阳极的制备可采用上述插入锂元素的方法,或采用如美国专利NO.4357215所述将如Li2CO3的盐和金属氧化物混合,并加热混合物的方法。
导电聚合物也宜用作阳极活性材料,因为它有足够的柔性,很易成型为薄膜。导电聚合物包括:例如,聚苯胺、聚乙炔及其衍生物、聚吡咯及其衍生物、聚噻吩烯及其衍生物、聚吡啶二基及其衍生物、聚异硫茚烯(Polyisothianaphthenylene)及其衍生物、聚呋喃烯(polyfurylene)及其衍生物、聚噻吩(polyselnophene)及其衍生物,以及聚(亚芳基亚乙烯)(Polyarylene vinylenes),例如,聚对亚芳基亚乙烯、聚噻吩烯基亚乙烯(polythienylene vinylene)、聚呋喃烯基亚乙烯(polyfurylenevinylene)、聚萘次甲烯基亚乙烯(polynaphthenylene vinylene)、聚噻吩亚乙烯(polyselenophene vinylene)、聚吡啶二基亚乙烯(polypyrindinediylvinylene)及其衍生物。特别优选可溶于有机溶剂的苯胺衍生物的聚合物。
在这些电池和电极中,用作电极活性材料的导电聚合物可用化学方法或电化学方法或其它公知的方法制备。
实施例
本发明通过以下具有代表性的实施例作进一步说明,这些实施例仅用作说明本发明,而并非限制本发明。
合成实施例1(可固化聚合物(A-2)的合成实施例)
在配置有搅拌器和冷凝管的园底烧瓶内,加入100克作为反应介质的乙二醇二甲醚,15.0克作为(A-2-1)的三乙二醇,0.1克甲氧基苯酚和0.1克BF3醚合物,加热到50℃。然后在2小时内边搅拌边滴加85.2克作为(A-2-2)的甲基丙烯酸缩水甘油酯,再反应10小时。制得可固化聚合物溶液,其甲基丙烯酸酯当量为167,含固量50%,重均分子量为2000[用GPC法]。
合成实施例2(可固化聚合物(A-2)的合成实施例)
在配置有搅拌器和冷凝管的园底烧瓶内,加入100克作为反应介质的乙二醇二甲醚,5.0克作为(A-2-1)的三乙二醇,0.1克甲氧基苯酚和0.1克BF3醚合物,加热到50℃。然后在2小时内边搅拌边滴加95.0克作为(A-2-2)的甲基丙烯酸缩水甘油酯,再反应10小时。制得的可固化聚合物溶液,其甲基丙烯酸酯当量为149,含固量50%,重均分子量为6000[用GPC法]。
合成实施例3(可固化聚合物(A-2)的合成实施例)
在配置有搅拌器和冷凝管的园底烧瓶内,加入100克作为反应介质的乙二醇二甲醚,6.7克作为(A-2-1)的三羟甲基丙烷,0.1克甲氧基苯酚和0.1克BF3醚合物,加热到50℃。然后在2小时内边搅拌边滴加93.3克作为(A-2-2)的甲基丙烯酸缩水甘油酯,反应10小时。制得可固化聚合物溶液,其甲基丙烯酸酯当量为151,含固量50%,重均分子量为4000[用GPC法]。
合成实施例4(可固化聚合物(A-2)的合成实施例)
在配置有搅拌器和冷凝管的园底烧瓶内,加入100克作为反应介质的乙二醇二甲醚,3.4克作为(A-2-1)的三羟甲基丙烷,0.1克甲氧基苯酚和0.1克BF3醚合物,加热到50℃。然后在2小时内边搅拌边滴加96.3克作为(A-2-2)的甲基丙烯酸缩水甘油酯,再反应10小时。制得可固化聚合物溶液,其甲基丙烯酸酯当量为146,含固量50%,重均分子量为8000[用GPC法]。
合成实施例5(可固化聚合物(A-3)的合成实施例)
在配置有搅拌器和冷凝管的园底烧瓶内,加入105克甲基丙烯酸异丁酯,45克甲基丙烯酸缩水甘油酯,150克碳酸亚丙酯和4.5克过氧化苯甲酰,在氮气流下于75℃反应5小时,制得含固量50%和重均分子量为20,000[用GPC法]的聚合物溶液。将22.0克丙烯酸、0.16克甲基氢醌、0.9克三苯基膦和22.0克碳酸亚丙酯加到300克所述聚合物溶液中进行混合,并在95℃反应32小时,制得聚合物溶液,其丙烯酸酯当量为563,含固量50%,重均分子量为23000[用GPC法]。
合成实施例6(可固化聚合物(A-3)的合成实施例)
在配置有搅拌器和冷凝管的园底烧瓶内,加入65克甲基丙烯酸异丁酯,40克丙烯酸甲酯,45克甲基丙烯酸缩水甘油酯,150克碳酸亚丙酯和4.5克过氧化苯甲酰,在氮气流下于75℃反应5小时,制得含固量50%和重均分子量为20000[用GPC法]的聚合物溶液。将22.0克丙烯酸、0.16克甲基氢醌、0.9克三苯基膦和22.0克碳酸亚丙酯加到300克所述聚合物溶液中,使其混合并在95℃时反应32小时,制得聚合物溶液,其丙烯酸酯当量563,含固量为50%,以及重均分子量为23000[用GPC法]。
合成实施例7(可固化聚合物(A-3)的合成实施例)
在配置有搅拌器和冷凝管的园底烧瓶内,加入120克丙烯酸乙酯,30克甲基丙烯酸缩水甘油酯,150克碳酸亚丙酯和4.5克过氧化苯甲酰,在氮气流下于75℃反应5小时,制得含固量50%和重均分子量为20000[用GPC法]的聚合物溶液。将15.0克丙烯酸、0.16克甲基氢醌、0.9克三苯基膦和15.0克碳酸亚丙酯加到300克所述聚合物溶液中,使其混合并在95℃时反应32小时,制得聚合物溶液,其丙烯酸酯当量为792,含固量50%,重均分子量为23000[用GPC法]。
实施例1
在氩气氛中充分混合0.3克作为可固化单体(A-1)的己内酯改性的六丙烯酸二季戊四醇酯(用2摩尔ε-己内酯改性)(官能度6,丙烯酸酯当量=134;KAYARAD DPCA-20(Nippon Kayaku Co.Ltd.生产),4.85克碳酸亚乙酯和4.85克碳酸二乙酯作为增塑剂(B),1.0克作为电解质(C)的LiPF6,以及0.03克作为热聚合引发剂(E)的过氧化苯甲酰(热聚合引发剂),制得混合的电解质溶液。用涂布机将混合后的溶液在氩气氛中施涂于沉积铝的PET薄膜(30微米)的铝层上,涂层厚度为30微米。然后,覆以聚丙烯薄膜(30微米),再将上述组合件于80℃加热5小时,剥离顶部和底部的薄膜后制得呈透明的自支承薄膜形式的聚合物固体电解质,其厚度约30微米。测得该薄膜的离子电导率在25℃和-20℃时分别为3.0ms/cm(25℃)和0.3ms/cm(-20℃)。
实施例2
在氩气氛中充分混合0.4克作为(A-1)的双三羟甲基丙烷四丙烯酸酯(官能度4,丙烯酸酯当量=116;KAYARAD T-1420(Nippon Kagnaku Co.Ltd.生产)),4.8克碳酸亚乙酯和4.8克碳酸二乙酯(作为(B)),1.0克作为(C)的LiBF4,以及0.05克作为光引发剂(D)的双(2,4,6-三甲基苯甲酰)-苯基氧化膦(自由基光引发剂),制得混合的电解质溶液。用涂布机将混合后的溶液在氩气氛中涂布于沉积铝的PET薄膜(30微米)的铝层上,涂层厚度为30微米。接着,用高压汞灯以200mJ/cm2辐照,形成聚合物固体电解质。然后,在聚合物固体电解质上施用聚丙烯薄膜(30微米),再用高压汞灯以300mJ/cm2辐照,分离顶部和底部的薄膜后制得呈透明的自支承薄膜形式的聚合物固体电解质,其厚度约30微米。测得该薄膜的离子电导率在25℃和-20℃时分别为4.2ms/cm(25℃)和0.4ms/cm(-20℃)。
实施例3
在氩气氛中充分混合0.2克作为(A-1)的六丙烯酸二季戊四醇酯(官能度6,丙烯酸酯当量=91)和五丙烯酸二季戊四醇酯(官能度5,丙烯酸酯当量=105;KAYARAD DPCA(Nippon Kagnaku Co.Ltd.生产))的混合物,4.9克碳酸亚乙酯和4.9克碳酸二乙酯(作为增塑剂(B)),1.0克作为(C)的LiPF6,以及0.05克作为光引发剂(D)的双(2,4,6-三甲基苯甲酰)-苯基氧化膦(自由基光引发剂),制得混合的电解质溶液。用涂布机将混合后的溶液在氩气氛中涂布于沉积铝的PET薄膜(30微米)的铝层上,涂层厚度为30微米。接着,用高压汞灯以200mJ/cm2辐照,形成聚合物固体电解质。然后,在该聚合物固体电解质上施用聚丙烯薄膜(30微米),再用高压汞灯以300mJ/cm2辐照,分离顶部和底部的薄膜后制得呈透明的自支承薄膜形式的聚合物固体电解质,其厚度约30微米。测得薄膜的离子电导率在25℃和-20℃时分别为3.8ms/cm(25℃)和0.4ms/cm(-20℃)。
实施例4
在氩气氛中充分混合1.0克作为可固化聚合物(A-2)的由合成实施例1制得的可固化聚合物溶液,4.5克碳酸亚乙酯和4.5克碳酸二乙酯(作为(B)),1.0克作为(C)的LiPF6,以及0.05克作为光引发剂(D)的双(2,4,6-三甲基苯甲酰)-苯基氧化膦(自由基光引发剂),制得混合的电解质溶液。用涂布机将混合后的溶液在氩气氛中涂布于沉积铝的PET薄膜(30微米)的铝层上,涂层厚度为30微米。接着,用高压汞灯以200mJ/cm2辐照,形成聚合物固体电解质。然后,在聚合物固体电解质上施用聚丙烯薄膜(30微米),再用高压汞灯以300mJ/cm2辐照,分离顶部和底部的薄膜后制得呈透明的自支承薄膜形式的聚合物固体电解质,其厚度约30微米。测得薄膜的离子电导率在25℃和-20℃时分别为3.0ms/cm(25℃)和0.3ms/cm(-20℃)。
实施例5
在氩气氛中充分混合1.0克作为(A-2)的由合成实施例2制得的可固化聚合物溶液,4.5克碳酸亚乙酯和4.5克碳酸二乙酯(作为(B)),1.0克作为(C)的LiPF6,以及0.03克作为(E)的过氧化苯甲酰(热聚合引发剂),制得混合的电解质溶液。用涂布机将混合后的溶液在氩气氛中涂布于沉积铝的PET薄膜(30微米)的铝层上,涂布厚度为30微米。然后,覆以聚丙烯薄膜(30微米),再将上述组合件于80℃加热5小时,分离顶部和底部的薄膜制得呈透明的自支承薄膜形式的聚合物固体电解质,其厚度约30微米。测得薄膜的离子电导率在25℃和-20℃时分别为2.5ms/cm(25℃)和0.3ms/cm(-20℃)。
实施例6
在氩气氛中充分混合1.0克作为(A-2)的由合成实施例3制得的可固化聚合物溶液,4.5克碳酸亚乙酯和4.5克碳酸二乙酯(作为(B)),1.0克作为(C)的LiPF6,以及0.03克作为(E)的过氧化苯甲酰(热聚合引发剂),制得混合的电解质溶液。用涂布机将混合后的溶液在氩气氛中涂布于沉积铝的PET薄膜(30微米)的铝层上,涂层厚度为30微米。然后,覆以聚丙烯薄膜(30微米),再将上述组合件于80℃加热5小时,分离顶部和底部的薄膜后制得呈透明的自支承薄膜形式的聚合物固体电解质,其厚度约30微米。测得薄膜的离子电导率在25℃和-20℃时分别为3.0ms/cm(25℃)和0.3ms/cm(-20℃)。
实施例7
在氩气氛中充分混合0.8克作为(A-2)的由合成实施例4制得的可固化聚合物溶液,4.6克碳酸亚乙酯和4.6克碳酸二乙酯(作为(B)),1.0克作为(C)的LiPF6,以及0.03克作为(E)的过氧化苯甲酰(热聚合引发剂),制得混合的电解质溶液。用涂布机将混合后的溶液在氩气氛中涂布于沉积铝的PET薄膜(30微米)的铝层上,涂层厚度为30微米。然后,覆以聚丙烯薄膜(30微米),再将上述组合件于80℃加热5小时,分离顶部和底部的薄膜制得呈透明的自支承薄膜形式的聚合物固体电解质,其厚度约30微米。测得薄膜的离子电导率在25℃和-20℃时分别为3.0ms/cm(25℃)和0.3ms/cm(-20℃)。
实施例8
在氩气氛中充分混合0.4克作为(A-1)的双三羟甲基丙烷四丙烯酸酯(官能度4,丙烯酸酯当量和116;KAYARAD T-1420(Nippon Kagnaku Co.Ltd.生产)),4.7克碳酸亚乙酯和4.8克碳酸二乙酯(作为(B)),1.0克作为(C)的LiBF4,以及0.05克作为光引发剂(D)的双(2,4,6-三甲基苯甲酰)-苯基氧化膦(自由基光引发剂),以及0.1克作为活性单体(F)的三羟甲基丙烷三丙烯酸酯,制得混合的电解质溶液。用涂布机将混合后的溶液在氩气氛中涂布于沉积铝的PET薄膜(30微米)的铝层上,涂层厚度为30微米。接着,用高压汞灯以200mJ/cm2辐照,形成聚合物固体电解质。然后,在聚合物固体电解质上施用聚丙烯薄膜(30微米),再用高压汞灯以300mJ/cm2辐照,分离顶部和底部的薄膜制得呈透明的自支承薄膜形式的聚合物固体电解质,其厚度约30微米。测得薄膜的离子电导率在25℃和-20℃时分别为3.8ms/cm(25℃)和0.4ms/cm(-20℃)。
实施例9
在氩气氛中充分混合0.4克作为(A-1)的双三羟甲基丙烷四丙烯酸酯(官能度4,丙烯酸酯当量=116;KAYARAD T-1420(Nippon Kagnaku Co.Ltd.生产)),4.7克碳酸亚乙酯和4.7克碳酸二乙酯(作为(B)),1.0克作为(C)的LiBF4,以及0.05克作为光引发剂(D)的双(2,4,6-三甲基苯甲酰)-苯基氧化膦(自由基光引发剂),以及0.2克作为活性低聚物(G)的聚乙二醇二缩水甘油醚的二丙烯酸酯,制得混合电解质溶液。用涂布机将混合后的溶液在氩气氛中涂布于沉积铝的PET薄膜(30微米)的铝层上,涂层厚度为30微米。接着,用高压汞灯以200mJ/cm2辐照,形成聚合物固体电解质。然后,在聚合物固体电解质上施用聚丙烯薄膜(30微米),再用高压汞灯以300mJ/cm2辐照,分离顶部和底部的薄膜制得呈透明的自支承薄膜形式的聚合物固体电解质,其厚度约30微米。测得薄膜的离子电导率在25℃和-20℃时分别为3.6ms/cm(25℃)和0.3ms/cm(-20℃)。
实施例10
在氩气氛中充分混合0.4克作为(A-1)的双三羟甲基丙烷四丙烯酸酯(官能度4,丙烯酸酯当量=116;KAYARAD T-1420(Nippon Kagnaku Co.Ltd.生产)),4.7克碳酸亚乙酯和4.8克碳酸二乙酯(作为(B)),1.0克作为(C)的LiBF4,以及0.05克作为光引发剂(D)的双(2,4,6-三甲基苯甲酰)-苯基氧化膦(自由基光引发剂),以及0.1克作为其它聚合物(H)的聚丙烯腈,制得混合电解质溶液。用涂布机将混合后的溶液在氩气氛中涂布于沉积铝的PET薄膜(30微米)的铝层上,涂层厚度为30微米。接着,用高压汞灯以200mJ/cm2辐照,形成聚合物固体电解质。然后,在聚合物固体电解质上施用聚丙烯薄膜(30微米),再用高压汞灯以300mJ/cm2辐照,分离顶部和底部的薄膜制得呈透明的自支承薄膜形式的聚合物固体电解质,其厚度约30微米。测得薄膜的离子电导率在25℃和-20℃时分别为3.9ms/cm(25℃)和0.4ms/cm(-20℃)。
实施例11
在氩气氛中充分混合1.0克作为可固化聚合物(A-2)的由合成实施例1制得的可固化聚合物溶液,3.9克碳酸亚乙酯和4.0克碳酸二乙酯(作为(B)),1.0克作为(C)的LiPF6,以及0.05克作为光引发剂(D)的双(2,4,6-三甲基苯甲酰)-苯基氧化膦(自由基光引发剂),0.1克作为活性单体(F)的三羟甲基丙烷三丙烯酸酯,以及1.0克作为溶剂(I)的四氢呋喃,制得混合的电解质溶液。用涂布机将混合后的溶液在氩气氛中涂布于沉积铝的PET薄膜(30微米)的铝层上,涂层厚度为30微米。接着,用高压泵灯以200mJ/cm2辐照,形成聚合物固体电解质。然后,在聚合物固体电解质上施用聚丙烯薄膜(30微米),再用高压汞灯以300mJ/cm2辐照,分离顶部和底部的薄膜制得呈透明的自支承薄膜形式的聚合物固体电解质,其厚度约30微米。测得薄膜的离子电导率在25℃和-20℃时分别为3.0ms/cm(25℃)和0.3ms/cm(-20℃)。
实施例12
在氩气氛中充分混合1.0克作为可固化聚合物(A-3)的由合成实施例5制得的可固化聚合物溶液,4.5克碳酸亚乙酯和4.5克碳酸二乙酯(作为(B)),1.0克作为(C)的LiPF6,以及0.05克作为光引发剂(D)的双(2,4,6-三甲基苯甲酰)-苯基氧化膦(自由基光引发剂),制得混合的电解质溶液。用涂布机将混合后的溶液在氩气氛中涂布于沉积铝的PET薄膜(30微米)的铝层上,涂层厚度为30微米。接着,用高压泵灯以200mJ/cm2辐照,形成聚合物固体电解质。然后,在聚合物固体电解质上施用聚丙烯薄膜(30微米),再用高压汞灯以300mJ/cm2辐照,分离顶部和底部的薄膜制得呈透明的自支承薄膜形式的聚合物固体电解质,其厚度约30微米。测得薄膜的离子电导率在25℃和-20℃时分别为3.0ms/cm(25℃)和0.3ms/cm(-20℃)。
实施例13
在氩气氛中充分混合0.8克作为可固化聚合物(A-3)的由合成实施例6制得的可固化聚合物溶液,4.6克碳酸亚乙酯和4.6克碳酸二乙酯(作为(B)),1.0克作为(C)的LiPF6,以及0.05克作为光引发剂(D)的双(2,4,6-三甲基苯甲酰)-苯基氧化膦(自由基光引发剂),制得混合的电解质溶液。用涂布机将混合后的溶液在氩气氛中涂布于沉积铝的PET薄膜(30微米)的铝层上,涂层厚度为30微米。接着,用高压泵灯以200mJ/cm2辐照,形成聚合物固体电解质。然后,在聚合物固体电解质上施用聚丙烯薄膜(30微米),再用高压汞灯以300mJ/cm2辐照,分离顶部和底部的薄膜制得呈透明的自支承薄膜形式的聚合物固体电解质,其厚度约30微米。测得薄膜的离子电导率在25℃和-20℃时分别为3.2ms/cm(25℃)和0.3ms/cm(-20℃)。
实施例14
在氩气氛中充分混合0.6克作为可固化聚合物(A-3)的由合成实施例5制得的可固化聚合物溶液,4.7克碳酸亚乙酯和4.7克碳酸二乙酯(作为(B)),1.0克作为(C)的LiPF6,以及0.05克作为光引发剂(D)的双(2,4,6-三甲基苯甲酰)-苯基氧化膦(自由基光引发剂),制得混合的电解质溶液。用涂布机将混合后的溶液在氩气氛中涂布于沉积铝的PET薄膜(30微米)的铝层上,涂层厚度为30微米。接着,用高压泵灯以200mJ/cm2辐照,形成聚合物固体电解质。然后,在聚合物固体电解质上施用聚丙烯薄膜(30微米),再用高压汞灯以300mJ/cm2辐照,分离顶部和底部的薄膜制得呈透明的自支承薄膜形式的聚合物固体电解质,其厚度约30微米。测得薄膜的离子电导率在25℃和-20℃时分别为3.2ms/cm(25℃)和0.3ms/cm(-20℃)。
比较实施例1
在氩气氛中充分混合1.0克的己内酯改性的六丙烯酸二季戊四醇酯(用12摩尔ε-己内酯改性)(官能度6,丙烯酸酯当量=325;KAYARAD DPCA-120(NipponKagnaku Co.Ltd.生产))代替可固化树脂(A),4.5克碳酸亚乙酯和4.5克碳酸二乙酯(作为增塑剂(B),1.0克作为电解质(C)的LiPF6,以及0.05克作为光引发剂(D)的双(2,4,6-三甲基苯甲酰)-苯基氧化膦(自由基光引发剂),制得混合的电解质溶液。用涂布机将混合后的溶液在氩气氛中涂布于沉积铝的PET薄膜(30微米)的铝层上,涂层厚度为30微米。接着,用高压泵灯以200mJ/cm2辐照,形成聚合物固体电解质。然后,在聚合物固体电解质上施用聚丙烯薄膜(30微米),再用高压汞灯以300mJ/cm2辐照,分离顶部和底部的薄膜制得呈透明的自支承薄膜形式的聚合物固体电解质,其厚度约30微米。测得薄膜的离子电导率在25℃和-20℃时分别为2.5ms/cm(25℃)和0.2ms/cm(-20℃)。
比较实施例2
在氩气氛中充分混合0.6克的环氧乙烷改性的三羟甲基丙烷三丙烯酸酯(官能度3,丙烯酸酯当量=142;KAYARAD THE-330(Nippon Kagnaku Co.Ltd.生产))代替可固化树脂(A),4.7克碳酸亚乙酯和4.7克碳酸二乙酯(作为增塑剂(B),1.0克作为电解质(C)的LiPF6,以及0.03克作为(E)的过氧化苯甲酰(热聚合引发剂),制得混合的电解质溶液。用涂布机将混合后的溶液在氩气氛中涂布于沉积铝的PET薄膜(30微米)的铝层上,涂层厚度为30微米。然后,将其于80℃加热5小时,制得呈透明的自支承薄膜形式的聚合物固体电解质,其厚度约30微米。测得薄膜的离子电导率在25℃和-20℃时分别为3.0ms/cm(25℃)和0.2ms/cm(-20℃)。
比较实施例3
在氩气氛中充分混合0.3克的环氧乙烷改性的三羟甲基丙烷三丙烯酸酯(官能度3,丙烯酸酯当量=142;KAYARAD THE-330(Nippon Kagnaku Co.Ltd.生产))代替可固化树脂(A),4.85克碳酸亚乙酯和4.85克碳酸二乙酯(作为增塑剂(B),1.0克作为电解质(C)的LiPF6,以及0.03克作为(E)的过氧化苯甲酰(热聚合引发剂),制得混合的电解质溶液。用涂布机将混合后的溶液在氩气氛中涂布于沉积铝的PET薄膜(30微米)的铝层上,涂层厚度为30微米。然后,将其于80℃加热5小时,但是,混合后的溶液不固化,不能制得任何呈自支承薄膜形式的聚合物固体电解质。
上述结果显示:在树脂浓度3%时组合物不固化,为使组合物固化要求高的树脂浓度,当使用具有高官能团当量如325,而不是如比较实施例1中的官能度为6的可固化单体时,或者当使用具有低官能度如3,而不是如比较实施例2和3中的低官能团当量的可固化单体时,在低温时离子电导率下降。然后,上述结果还显示:通过固化使用本发明可固化单体(A-1)的树脂组合物制得的聚合物固体电解质具有足够强度,因此它们可与它们的载体分离,并具有优异的薄膜强度和高离子电导率,特别在低温时它们也具有优异的离子电导率。还显示使用可固化聚合物(A-2,A-3)的聚合物固体电解质具有足够强度使之能从载体上分离,并具有优异的薄膜强度和高离子电导率,特别是即使官能团当量较高,也具有优异的低温离子电导率。这被认为是固体电解质中树脂浓度低的缘故。
工业应用
本发明的用于聚合物固体电解质的树脂组合物包括:0.5~5.0重量%的具有特定结构的可固化树脂(A)、增塑剂(B)和电解质(C),它们具有优异的薄膜加工性,因此它们易于加工成型为具有优异薄膜强度的薄膜。由固化树脂组合物制得的聚合物固体电解质,其特征在于薄膜强度高和离子电导率高。

Claims (10)

1、一种用于聚合物固体电解质的树脂组合物,它包含0.5~5.0重量%的可固化树脂A、增塑剂B和电解质C,所述可固化树脂A是可固化单体A-1、可固化聚合物A-2或可固化聚合物A-3,所述可固化单体A-1是由1摩尔的多元醇与1~5摩尔的已内酯反应而得的丙烯酸酯或甲基丙烯酸酯;所述可固化聚合物A-2是由在一个分子内具有一个或多个羟基的化合物A-2-1和在一个分子内具有一个烯键式不饱和双键和一个环氧基的化合物A-2-2通过羟基和环氧基反应制得的聚合物,其中烯键式不饱和双键的当量为300或300以下;所述可固化聚合物A-3含有6个或6个以下碳原子的脂族链并在侧链上有烯键式不饱和双键,其中烯键式不饱和双键的当量为850或850以下。
2、如权利要求1所述的用于聚合物固体电解质的树脂组合物,其特征在于所述可固化单体A-1是选自下列物质中的一种或多种:已内酯改性的季戊四醇的四丙烯酸酯或四甲基丙烯酸酯,已内酯改性的双三羟甲基丙烷的四丙烯酸酯或四甲基丙烯酸酯,已内酯改性的双季戊四醇的五丙烯酸酯或五甲基丙烯酸酯,以及已内酯改性的双季戊四醇的六丙烯酸酯或六甲基丙烯酸酯。
3、如权利要求1所述的用于聚合物固体电解质的树脂组合物,其特征在于所述电解质C是选自碱金属盐、季铵盐、季鏻盐或过渡金属盐中的至少一个。
4、如权利要求1所述的用于聚合物固体电解质的树脂组合物,其特征在于它还含有光引发剂D。
5、如权利要求4所述的用于聚合物固体电解质的树脂组合物,其特征在于所述光引发剂D在350~450纳米波长时的最大摩尔消光系数为50或50以上。
6、如权利要求1所述的用于聚合物固体电解质的树脂组合物,其特征在于它还含有热聚合引发剂E。
7、如权利要求6所述的用于聚合物固体电解质的树脂组合物,其特征在于所述热聚合引发剂E在10℃或10℃以上温度时的半衰期为10小时。
8、一种聚合物固体电解质,它含有如权利要求1到7中任何一项所述的用于聚合物固体电解质的树脂组合物的固化产物。
9、如权利要求8所述的聚合物固体电解质,所述电解质呈片状。
10、一种聚合物电池,它含有如权利要求8所述的聚合物固体电解质。
CNB018196306A 2000-11-30 2001-11-29 用于聚合物固体电解质的树脂组合物和聚合物固体电解质以及使用它们的聚合物电池 Expired - Fee Related CN1261948C (zh)

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP2000364083 2000-11-30
JP364083/00 2000-11-30
JP364083/2000 2000-11-30
JP39298/2001 2001-02-16
JP39298/01 2001-02-16
JP2001039298 2001-02-16
JP243125/2001 2001-08-10
JP243125/01 2001-08-10
JP2001243125 2001-08-10
JP255437/2001 2001-08-27
JP2001255437 2001-08-27
JP255437/01 2001-08-27

Publications (2)

Publication Number Publication Date
CN1478284A CN1478284A (zh) 2004-02-25
CN1261948C true CN1261948C (zh) 2006-06-28

Family

ID=27481831

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB018196306A Expired - Fee Related CN1261948C (zh) 2000-11-30 2001-11-29 用于聚合物固体电解质的树脂组合物和聚合物固体电解质以及使用它们的聚合物电池

Country Status (8)

Country Link
US (1) US7033706B2 (zh)
EP (1) EP1347462B1 (zh)
KR (1) KR100760276B1 (zh)
CN (1) CN1261948C (zh)
CA (1) CA2429835A1 (zh)
DE (1) DE60117874T2 (zh)
TW (1) TW541749B (zh)
WO (1) WO2002045099A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104981930A (zh) * 2013-02-14 2015-10-14 加州理工学院 交联聚合物电解质

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100440939B1 (ko) * 2002-02-16 2004-07-21 삼성에스디아이 주식회사 고분자 전해질 및 이를 채용한 리튬 전지
JP2004071560A (ja) * 2002-08-07 2004-03-04 Samsung Sdi Co Ltd リチウム−硫黄電池用高分子電解質及びこれを含むリチウム−硫黄電池
WO2006079250A1 (en) * 2005-01-31 2006-08-03 Hua Qiao University A super water absorbent resin-based solid polymer electrolyte, a method of preparing the same and the use thereof
KR100759377B1 (ko) * 2005-04-21 2007-09-19 삼성에스디아이 주식회사 리튬 이차 전지
EP1845143A1 (en) 2006-04-14 2007-10-17 Cytec Surface Specialties, S.A. Aqueous radiation curable polyurethane compositions
GB0623108D0 (en) * 2006-11-20 2006-12-27 Sericol Ltd A printable composition
KR101201166B1 (ko) 2009-02-09 2012-11-13 도요타지도샤가부시키가이샤 고체 전해질 재료 함유 시트의 제조 방법
KR101640937B1 (ko) 2009-11-13 2016-07-20 삼성에스디아이 주식회사 리튬 이차 전지
KR101718370B1 (ko) * 2010-09-29 2017-03-22 동우 화인켐 주식회사 고체 폴리머 전해질 조성물 및 이를 이용한 전기 변색 소자
KR101716799B1 (ko) * 2010-09-29 2017-03-16 동우 화인켐 주식회사 겔 폴리머 전해질 조성물 및 이를 이용한 전기 변색 소자
KR101256067B1 (ko) * 2011-03-24 2013-04-18 삼성에스디아이 주식회사 리튬 이차 전지용 음극, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
US10840542B2 (en) * 2011-11-17 2020-11-17 Solvay Specialty Polymers Italy S.P.A. Method for manufacturing a polymer electrolyte separator and polymer electrolyte separator therefrom
KR101987008B1 (ko) 2012-06-15 2019-06-12 한국전자통신연구원 고체 고분자 전해질, 그 제조방법, 및 이를 포함하는 리튬전지
US9123970B2 (en) 2012-07-03 2015-09-01 Electronics And Telecommunications Research Institute Lithium battery binder composition, method for preparing the same and lithium battery including the same
CN107430946B (zh) * 2015-03-31 2020-05-08 株式会社大阪曹达 电化学电容器
CN105789695B (zh) * 2016-05-17 2018-08-31 中国科学院化学研究所 一种复合聚合物电解质及其在电池负极保护中的应用
CN106898811B (zh) * 2017-05-08 2019-07-23 北京化工大学 一种具有双重导离子网络的固态电解质及其制备方法
US20210143475A1 (en) * 2017-06-16 2021-05-13 National Research Council Of Canada Solid Polymer Electrolyte for Batteries
US20190103627A1 (en) * 2017-10-04 2019-04-04 Wildcat Discovery Technologies, Inc. Solid electrolyte compositions
KR102420296B1 (ko) * 2017-11-28 2022-07-13 주식회사 엘지화학 전해질 조성물, 고분자 전해질 및 전기화학 발광 소자
KR102476864B1 (ko) * 2018-03-27 2022-12-12 미쯔비시 케미컬 주식회사 비수계 전해액 및 그것을 사용한 축전 디바이스
CN109270761B (zh) * 2018-09-14 2021-09-03 上海洞舟实业有限公司 一种柔性热熔胶型全固态柔性电致变色器件
FR3098349B1 (fr) 2019-07-04 2022-12-09 Commissariat Energie Atomique Electrolyte polymérique solide
CN110739488B (zh) * 2019-09-06 2023-03-28 江汉大学 一种超交联聚合物电解质的制备方法
KR102665811B1 (ko) * 2020-10-13 2024-05-13 코오롱인더스트리 주식회사 고체 고분자 전해질용 조성물, 이로부터 형성된 고체 고분자 전해질 및 이를 포함하는 리튬 이차 전지

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03210351A (ja) 1990-01-11 1991-09-13 Mitsubishi Petrochem Co Ltd イオン伝導性フレキシブル固体状電解質
GB9027804D0 (en) * 1990-12-21 1991-02-13 Ici Plc Solid electrolytes
JP3221694B2 (ja) 1991-07-23 2001-10-22 三洋化成工業株式会社 導電性組成物および電気化学素子
JPH05315007A (ja) 1992-05-01 1993-11-26 Ube Ind Ltd 固体電解質電池
JPH0772624A (ja) 1993-09-02 1995-03-17 Goou Kagaku Kogyo Kk 感光性樹脂組成物並びにそれを用いた被膜、レジストインク、レジスト、ソルダーレジスト及びプリント回路基板
EP0864926A4 (en) * 1993-09-02 1999-07-14 Goo Chemical Ind Co Ltd PHOTOSENSITIVE RESIN COMPOSITION AND THIN COATING LAYER, RESIST INK, WELDING RESIST AND PRINTED CIRCUIT BOARD MADE THEREWITH
US5622791A (en) * 1995-08-25 1997-04-22 Valence Technology, Inc. Photoelectrochemical cell
US6399254B1 (en) * 1997-05-23 2002-06-04 Dai-Ichi Kogyo Seiyaku Co., Ltd. Solid electrolyte
JP3104127B2 (ja) 1997-05-23 2000-10-30 第一工業製薬株式会社 固体電解質
JP4005192B2 (ja) 1997-12-09 2007-11-07 第一工業製薬株式会社 固体電池
JP2000080138A (ja) 1998-09-03 2000-03-21 Nippon Kayaku Co Ltd 高分子固体電解質用樹脂組成物、高分子固体電解質及びポリマー電池

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104981930A (zh) * 2013-02-14 2015-10-14 加州理工学院 交联聚合物电解质

Also Published As

Publication number Publication date
EP1347462A1 (en) 2003-09-24
EP1347462A4 (en) 2005-03-23
US7033706B2 (en) 2006-04-25
KR20030063402A (ko) 2003-07-28
CA2429835A1 (en) 2002-06-06
KR100760276B1 (ko) 2007-09-19
TW541749B (en) 2003-07-11
EP1347462B1 (en) 2006-03-08
DE60117874T2 (de) 2006-08-10
CN1478284A (zh) 2004-02-25
DE60117874D1 (de) 2006-05-04
WO2002045099A1 (fr) 2002-06-06
US20040076886A1 (en) 2004-04-22

Similar Documents

Publication Publication Date Title
CN1261948C (zh) 用于聚合物固体电解质的树脂组合物和聚合物固体电解质以及使用它们的聚合物电池
CN1311584C (zh) 聚合物电解质、采用该电解质的锂电池和制备该聚合物电解质以及锂电池的方法
CN1855604A (zh) 锂二次电池
CN1320686C (zh) 聚合物电解质和使用该聚合物电解质的锂电池
CN1302069C (zh) 聚合物电解质、其制备方法以及使用该电解质的锂电池
JP2002280075A (ja) ポリアルキレンオキシド系固体高分子電解質組成物
CN1272228A (zh) 固体电解质二次电池
CN109830707A (zh) 一种提高粘接性能的方法和膜电极及膜电极的制备方法
CN100346527C (zh) 可充电锂电池用聚合物电解质组合物和使用该聚合物电解质组合物的可充电锂电池
CN1502644A (zh) 电化学装置用含硼化合物、离子导电性高分子和高分子电解质
CN1735984A (zh) 固体电解质组合物、电池阴极薄膜及其制造方法
JPWO2007086518A1 (ja) 二次電池用電解質組成物、電解質フィルムおよび二次電池
KR20170092933A (ko) 친환경 고분자를 함유하는 자외선 경화형 겔 고분자 전해질 조성물 및 그의 제조방법
JP2000351843A (ja) ポリカーボネートポリオール、ポリカーボネートポリオール(メタ)アクリレート、およびその用途
JP3877581B2 (ja) 高分子固体電解質用樹脂組成物、高分子固体電解質及びポリマー電池
JP3914088B2 (ja) 高分子固体電解質用樹脂組成物、高分子固体電解質及びポリマー電池
CN1392879A (zh) 氟类型粘合剂树脂组合物
WO2007119460A1 (ja) 固体電解質組成物、固体電解質フィルムおよびリチウム二次電池
JP7235415B2 (ja) 全固体電池および該全固体電池に用いる樹脂層形成用材料
JP2001123040A (ja) 高分子固体電解質用樹脂組成物、高分子固体電解質及びポリマー電池
JP2003068137A (ja) 高分子固体電解質用樹脂組成物、高分子固体電解質及びポリマー電池
JP2003068138A (ja) 高分子固体電解質用樹脂組成物、高分子固体電解質及びポリマー電池
JP2003317540A (ja) 高分子固体電解質用樹脂組成物、高分子固体電解質及びポリマー電池
JP4442999B2 (ja) 高分子固体電解質用樹脂組成物、高分子固体電解質及びポリマー電池
JP2000198840A (ja) ポリカ―ボネ―ト(メタ)アクリレ―トおよびその用途

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee