CN1235941C - 环氧化物聚合用双金属氰化物催化剂 - Google Patents

环氧化物聚合用双金属氰化物催化剂 Download PDF

Info

Publication number
CN1235941C
CN1235941C CNB991021118A CN99102111A CN1235941C CN 1235941 C CN1235941 C CN 1235941C CN B991021118 A CNB991021118 A CN B991021118A CN 99102111 A CN99102111 A CN 99102111A CN 1235941 C CN1235941 C CN 1235941C
Authority
CN
China
Prior art keywords
catalyst
catalyzer
dmc
cyano group
epoxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB991021118A
Other languages
English (en)
Other versions
CN1229805A (zh
Inventor
L·K·比
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lyondell Chemical Technology LP
Original Assignee
Arco Chemical Technology LP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US08/173,290 external-priority patent/US5426081A/en
Application filed by Arco Chemical Technology LP filed Critical Arco Chemical Technology LP
Publication of CN1229805A publication Critical patent/CN1229805A/zh
Application granted granted Critical
Publication of CN1235941C publication Critical patent/CN1235941C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • B01J31/068Polyalkylene glycols
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • B01J27/26Cyanides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/80Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4829Polyethers containing at least three hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/04Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers only
    • C08G65/06Cyclic ethers having no atoms other than carbon and hydrogen outside the ring
    • C08G65/08Saturated oxiranes
    • C08G65/10Saturated oxiranes characterised by the catalysts used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/26Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds
    • C08G65/2642Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds characterised by the catalyst used
    • C08G65/2645Metals or compounds thereof, e.g. salts
    • C08G65/2663Metal cyanide catalysts, i.e. DMC's
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/26Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds
    • C08G65/2642Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds characterised by the catalyst used
    • C08G65/2693Supported catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/20Complexes comprising metals of Group II (IIA or IIB) as the central metal
    • B01J2531/26Zinc
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/40Regeneration or reactivation
    • B01J31/4015Regeneration or reactivation of catalysts containing metals
    • B01J31/4023Regeneration or reactivation of catalysts containing metals containing iron group metals, noble metals or copper
    • B01J31/403Regeneration or reactivation of catalysts containing metals containing iron group metals, noble metals or copper containing iron group metals or copper
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0008Foam properties flexible
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0083Foam properties prepared using water as the sole blowing agent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Toxicology (AREA)
  • General Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Polyethers (AREA)
  • Epoxy Resins (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

公开以聚氨酯泡沫材料为载体的双金属氰化物(DMC)催化剂作为有用的环氧化物聚合催化剂。该泡沫材料载体催化剂易于制备,且与传统粉末状DMC催化剂相比具有更高的活性,其诱导期也较短。本发明催化剂可从环氧化物的聚合产物中回收并再用来催化其它的环氧化物聚合反应。

Description

环氧化物聚合用双金属氰化物催化剂
本发明涉及环氧化物聚合用催化剂。本发明尤其涉及载于聚氨酯泡沫材料上的双金属氰化物(DMC)催化剂。
双金属氰化物(DMC)化合物是著名的环氧化物聚合催化剂。该催化剂具有高活性,而且可使聚醚多元醇较之用传统碱催化剂制得的类似多元醇具有低不饱和度。传统DMC催化剂通过金属盐与金属氰化物盐的水溶液反应生成DMC化合物沉淀来制得。该催化剂可用于制备多种聚合物,其中包括聚醚、聚酯和聚醚酯多元醇。这类多元醇中的许多都可应用于制造各种聚氨酯涂料、合成橡胶、密封胶、泡沫材料及粘合剂。
传统的双金属氰化物催化剂通常在诸如甘醇二甲醚等低分子量有机络合剂存在下制得。醚与DMC化合物络合,且有利于加强催化剂对环氧化物聚合反应的活性。在一种传统制备方法中,氯化锌过量)溶液和六氰基钴酸钾化合,生成的六氰基钴酸锌沉淀再与甘醇二甲醚(二甲氧基乙烷)水溶液混合。制得的活性催化剂分子式为:
Zn3〔Co(CN)62·xZnCl2·yH2O·z甘醇二甲醚
传统DMC催化剂的一个缺点在于在环氧化物聚合过程中催化剂分散得很细或者实际上溶于聚醚多元醇混合物中。人们希望从聚合反应后生成的多元醇中除去催化剂,因为在储存多元醇时催化剂残留会促进我们所不希望的挥发性物质(如丙醛)的积累。不幸的是,DMC催化剂残留物通常难以从多元醇中完全除去,而且一般的清除催化剂技术常常使DMC催化剂失活。
双金属氰化物催化剂对环氧化物聚合具有良好活性。然而,由于该催化剂相当贵,为减少催化剂用量人们希望进一步改善催化剂活性。
最后,DMC催化剂通常需要一段“诱导”期。与碱催化剂不同,将环氧化物和引发剂多元醇与催化剂接触后,催化剂不能立即使环氧化物聚反应开始进行。相反,需要用一小部分环氧化物活化剂之后方可开始安全地连续加入其余的环氧化物。一小时或更久的诱导期是典型的,而按照多元醇生产装置中所增加的循环时间而言则很浪费。因而人们希望消除或缩短诱导期。
DMC催化剂尚需改进。人们希望催化剂活性更高以提高生产率并降低生产成本。对环氧化物聚合具有较短诱导期的双金属氰化物催化剂会使得生产过程更安全,生产率更高,更好的催化剂应能从合成后的聚醚多元醇产物中被离出来并可再用于聚合反应。
本发明涉及环氧化物聚合催化剂。该催化剂含有载于泡沫状固体上的双金属氰化物(DMC)催化剂。更可取的泡沫材料为在催化剂作用下合成的,例如,合成泡沫塑料。尤其可取的是聚氨酯。令人惊奇的是,甚至在将DMC催化剂配制进泡沫塑料中后,DMC催化剂仍保持着对环氧化物聚合反应的活性。而且本发明以聚氨酯泡沫材料为载体的催化剂较之传统粉末状DMC催化剂活性更高,诱导期更短。
本发明包括以泡沫材料为载体的催化剂的制备方法,该方法包括在(DMC)催化剂存在下制备泡沫材料,其中的泡沫材料为聚氨酯。该方法包括用一种多元醇,一种聚异氰酸酯、水、表面活性剂、发泡催化剂及DMC催化剂制备泡沫材料。除了要将DMC催化剂包括进泡沫材料配方中外,该泡沫材料可按本领域所熟知的方法容易地制得。制得的聚氨酯泡沫材料,其中载有DMC催化剂,可用作环氧化物聚合催化剂。
本发明亦包含制备聚醚多元醇的方法。该方法包含在以聚氨酯泡沫材料为载体的DMC催化剂作用下进行环氧化物聚合。用本发明催化剂制得的聚醚多元醇含有的低分子量多元醇杂质异常少。
本发明以聚氨酯泡沫材料为载体的催化剂易于制备且具有优越的环氧化物聚合反应活性。此外,本发明以聚氨酯泡沫材料为载体的催化剂可从多元醇合成后生成的聚醚多元醇产物中分离出来并可再用作另一环氧化物聚合反应的催化剂。
本发明催化剂包括载于泡沫材料上的双金属氰化物(DMC)催化剂。正如本申请所定义的,“双金属氰化物催化剂”或者说“DMC催化剂”是指当无催化剂载体,即以粉末状使用时,对环氧化物聚合反应有活性的任何DMC化合物或络合物。具体包括如下几类:(1).传统DMC催化剂,(2)基本无定形的DMC络合物和化合物,(3).含有作为DMC催化剂一部分的聚醚的固态DMC催化剂,(4)用仅稍过量的金属卤化物盐制得的晶态DMC络合物。
适用的传统DMC催化剂是本领域众所周知的。传统DMC催化剂的制备在许多文献中均有充分描述,其中包括美国专利5,158,922,4,843,054,4,477,589,3,427,335,3,427,334,3,427,256,3,278,457和3,941,849。这里引入这些文献中有关催化剂制备和合适的DMC化合物的论述作为参考。下面的实施例1说明了如何由传统DMC催化剂制备本发明以泡沫材料为载体的DMC催化剂。
一般而言,DMC催化剂为水性金属盐和水溶性金属氰化物盐的反应产物。优选的水溶性金属盐通式为M(X)n,其中M选自Zn(II),Fe(II),Ni(II),Mn(II),Co(II),Sn(II),Pb(II),Fe(III),Mo(IV),Mo(VI),Al(III),V(V),V(IV),Sr(II),W(IV),W(VI),Cu(II)和Cr(III)。优选的M为Zn(II),Fe(II),Co(II)和Ni(II)。式中X最好选自下列阴离子:卤离子、氢氧根离子、硫酸根离子、碳酸根离子、氰氢酸根离子、草酸根离子、硫氰酸根离子,异氰酸根离子、异硫氰酸根离子、羧酸根离子和硝酸根离子。n值由1至3并满足M的化合价态。合适的金属盐例子包括:但不限于:氯化锌、溴化锌、乙酸锌、丙酮基乙酸锌、苯甲酸锌、硝酸锌、硫酸铁(II)、溴化铁(II)、氯化钴(II)、硫氰酸钴(II)、甲酸镍(II)、硝酸镍(II)、以及类似物,或其混合物。
用来制备本发明用DMC催化剂的优选的水溶性金属氰化物盐有如下通式:(Y)aM′(CN)b(A)c,其中M′选自Fe(II)、Fe(III)、CO(II)、Co(III)、Cr(II)、Cr(III)、Mn(II)、Mn(III)、Ir(III)、Ni(II)、Rh(III)、Ru(II)、V(IV)和V(V)。更优选的M′可选自Co(II)、Co(III)、Fe(II)、Fe(III)、Cr(III)、Ir(III)和Ni(II)。水溶性金属氰化物盐可含有一种或多种这些金属。式中Y为碱金属阳离子或碱土金属阳离子。A为阴离子,可选自卤素离子、氢氧根离子、硫酸根离子、碳酸根离子、氰氢酸根离子、革酸根离子、硫氰酸根离子、异氰酸根离子、异硫氰酸根离子、羧酸根离子和硝酸根离子。a和b均为大于或等于1的整数,a、b和c的电荷总和与M′的电荷平衡。适宜的水溶性金属氰化物盐包括,但不限于:六氰基钴(III)酸钾、六氰基铁(II)酸钾、六氰基高铁(III)酸钾、六氰基钴(III)酸钾、六氰基铱(III)酸锂,以及类似物质。
按照本领域熟知的方法,在水介质中将水溶性金属盐与水溶性金属氰化物盐化合,可制得不溶于水的DMC化合物沉淀。例如,在室温下将氯化锌水溶液与六氰基钴酸钾水溶液化合,立即生成不溶于水的六氰基钴酸锌沉淀。通常,所用的水溶性金属盐过量于水溶性金属氰化物盐,这样可使催化剂聚合反应活性高。
可载于泡沫材料上来制备本发明催化剂制品的DMC催化剂的例子有六氰基钴(III)酸锌,六氰基高铁(III)酸锌,六氰基铁(II)酸锌,六氰基铁(II)酸镍(II)、六氰基钴(III)酸钴(II)及其类似物。适宜的DMC催化剂的其它例子列于美国专利5,158,922,这里引入其作为参考。六氰基钴(III)酸锌是优选的。
通常可在制备DMC催化剂过程中或形成DMC催化剂沉淀后将双金属氰化物催化剂与过量的有机络合剂化合使其进一步活化。这种有机络合剂为水溶性含杂原子有机液态化合物,可与DMC化合物络合,正如美国专利5,158,922所充分描述的那样。适宜的有机络合剂包括,但不限于:醇、醛、酮、醚、酯、酰胺、脲、腈、硫化物及上述物质的混合物。较佳的络合剂为如下水溶性脂肪族醇:乙醇、异丙醇、正—丁醇、异丁醇、仲-丁醇和叔-丁醇。叔-丁醇为最佳。
除了上述传统DMC催化剂以外,用来制备本发明以泡沫材料为载体的DMC催化剂的合适的DMC催化剂亦包括下述较新型的DMC催化剂。
最近,我发现一种新型DMC催化剂对环氧化物聚合反应活性有所改善,并且这类催化剂亦可载于本申请中所描述的泡沫材料上,与传统DMC催化剂不同,这种新型催化剂含有大部分基本无定形的DMC络合物。较佳DMC催化剂含有至少约70wt.%的基本无定形DMC络合物。更佳的DMC催化剂含有至少约90wt.%的基本无定形DMC络合物。最佳DMC催化剂含有至少约99wt.%的基本无定形DMC络合物。
正如本申请中所定义的那样,“基本无定形”意味着基本上非晶态,缺少明确的晶体结构,或者说其特征在于其组分的粉末X射线衍射图上基本上无尖线存在。
传统双金属氰化物催化剂的粉末X射线衍射(XRD)图显示出了对应于存在着大量高晶态DMC组分的尖线。无有机络合剂存在时制得的高晶态六氰基钴酸锌对环氧化物聚反应无活性,在晶面距离约为5.07,3.59,2.54和2.28埃处显示出了特征XRD尖线。
当在有机络合剂存在下按传统方法制备DMC催化剂时,XRD图显示对应于高晶态物质的尖线以及对应于相对无定形物质的较宽信号,这说明用于环氧化物聚合的传统DMC催化剂事实上是高晶态DMC化合物和一种较为无定形的组分的混合物。一般地,传统DMC催化剂,它通常通过简单混合而制得。至少含有约35wt.%的高晶态DMC化合物。
例如,当使用叔-丁醇作络合剂来制备本发明基本无定形的六氰基钴酸锌催化剂时,制得的催化剂的粉末X射线衍射图基本上未显示出晶态六氰基钴酸锌的尖线(5.07,3.59,2.54,2.28埃),反而在晶面距离为4.82和3.76埃处仅出现了两条主线,都较宽。X射线分析表明这种DMC催化剂含有不到约1wt.%的高晶态DMC化合物。
用于制备本发明以泡沫材料为载体的催化剂的基本无定形DMC催化剂可用如下方法制备。首先,将水溶性金属盐水溶液与水溶性金属氰化物盐的水溶液均匀混合并在络合剂的存在下反应生成含有DMC络合物催化剂沉淀的含水混合物。其次,将催化剂分离出来并且最好进行烘干。可将络合剂加入任一种或两种盐的水溶液中,或在催化剂沉淀生成后立即加入DMC化合物中,最好在均匀混合反应物前,将络合剂与水溶性金属盐和水溶性金属氰化物盐两者之一或与两者都进行预混合。制得的催化剂为基本无定形的,正如粉末X射线衍射分析证明的那样,基本上不存在高晶态DMC化合物。
要制备低晶态的催化剂必需将反应物均匀混合。在传统方法中,水溶性金属盐和水溶性金属氰化物盐在水介质中化合并简单混合在一起,通过采用电磁或机械搅拌。这种制备方法通常使制得的催化剂含有大量高晶态DMC组分,一般地其含量大于35wt.%。我发现采用一种能使反应物均匀混合的有效方法将反应物混合可制得对环氧化物聚合特别有用的基本无定形催化剂。反应物均匀混合的合适方法包括均化,冲击混合、高剪切搅拌及类似的方法。例如,将反应物均一化,则催化剂制品中高晶态物质量被减至极小量或被消除,并大大低于采用简单混合制备的催化剂中所含晶态物质量。下面的实施例11说明了基本无定形DMC催化剂的制备及将其用于本发明泡沫材料载体上的催化剂的制备。
另一用于制备本发明泡沫材料载体上的催化剂的非传统型DMC催化剂为含有聚醚的DMC催化剂。该DMC催化剂含有一种DMC化合物,一种有机络合剂和5-80wt.%的聚醚。聚醚最好其数均分子量大于500;且最好不易与水互溶。合适的DMC化合物和有机络合剂如上所述。
较佳的催化剂含有约10-70wt.%的聚醚;更佳的催化剂含有约15-60wt.%的聚醚。催化剂至少需含5wt.%的聚醚才能较不含聚醚的催化剂其活性有显著地改善。含有大于80wt.%聚醚的催化剂其活性不再提高,而且由于此时催化剂成为粘稠糊状而非粉末状固体,事实上已不能分离和使用。
用于制备本发明含聚醚DMC催化剂的合适聚醚包括环醚开环聚合制得的聚醚,还包括环氧化物聚合物,螺〔4,4〕二氧己烷(oxetane)聚合物、四氢呋喃聚合物,以及类似物质。可采用任何催化方法制备聚醚。聚醚可带有任何所希望的端基团,如羟基,胺,酯、醚及类似的基团。聚醚最好不与水互溶。较佳的聚醚为平均羟基官能度约在2至8且数均分子量约在1,000至10,000的聚醚多元醇,数均分子量约在1,000至5,000的聚醚多元醇则更佳。通常通过将环氧化物在活性的含氢引发剂和碱性、酸性或有机金属催化剂(包括DMC催化剂)的存在下聚合制备聚醚多元醇。有用的聚醚多元醇包括聚(氧化丙烯)多元醇,环氧乙烷封端的聚(氧化丙烯)多元醇,混合物环氧乙烷—氧化丙烯多元醇,氧化丁烯聚合物,氧化丁烯与环氧乙烷和/或氧化丙烯的共聚物,聚四-亚甲基醚乙二醇,及类似物质。最优选的是聚(氧化丙烯)多元醇,尤其是其数均分子量约在2,000至4,000的二元醇和三元醇。
下面的实施例12说明了其中含有聚醚多元醇的粉末状DMC催化剂的制备方法。象实施例11中制得的DMC催化剂一样,粉末X-射线衍射分析表明该催化剂也是基本无定形的,实施例12亦说明了如何由含聚醚DMC催化剂制备本发明载于泡沫材料上的催化剂。
用于本发明的双金属氰化物催化剂包括某些晶态形的DMC络合物。这些催化剂可采用仅仅金属卤化物盐微过量的方法制得,这样可使得催化剂基本上为晶态的,这一点可为X-射线衍射分析所证明,同时催化剂对环氧化物聚合又具有良好活性。制备晶态而又具有活性的催化剂的另一方法是先使用多于微过量的金属卤化物盐,而后在制备过程中采用行之有效的方法清洗催化剂,使得清洗后的DMC催化剂中仅存留微过量的金属卤化物盐。
例如,用氯化锌和六氰基钴酸钾制备六氰基钴酸锌催化剂时,若氯化锌无过量,产物中Zn/Co精确摩尔比为1.50。催化剂中若不含有过量的金属氯化物盐则对环氧化物聚合反应无活性。当有微过量的金属卤化物盐存在,且产物中Zn/Co摩尔比约在1.5至1.8范围内时,DMC催化剂为晶态且具有活性。当这一比值超过约1.8时,X-射线衍射分析表明催化剂较为无定形,即其X-射线衍射图中无尖线。下面的实施例13说明了用微过量的水溶性金属盐(氯化锌)制备晶态DMC催化剂及使用DMC催化剂制备本发明泡沫材料载体上的催化剂的方法。
上面涉及的任一种DMC催化剂都可载于泡沫材料上制备本发明“以泡沫材料为载体的”催化剂。其中的泡沫材料可在催化剂作用下合成,这可通过将DMC催化剂与泡沫材料(例如聚氨酯泡沫材料)配方中的其它各反应物化合完成,较佳的泡沫材料应易于制造,成本低。制造聚氨酯泡沫材料的方法已有描述,例如美国专利4,910,231和5,177,119,这里引入其作为参考。
本发明包括按照本发明制造载于泡沫材料载体上的催化剂的简单工艺方法。该方法包括由多元醇、聚异氰酸酯、水、表面活性剂、发泡催化剂和DMC催化剂制备聚氨酯泡沫材料。最好在泡沫材料配方中将一种胺催化剂和一种诸如有机锡化合物的有机金属催化剂都包括进去作为发泡催化剂。可以采用任何已知的制造聚氨酯泡沫材料的方法,包括聚氨酯泡沫材料制造领域的熟练人员所熟知的一步法和预聚合方法。可以方便地用多元醇(“B-面”)组分与DMC催化剂混合成浆,在一步法泡沫材工艺中再将A-面和B-面反应物化合。令人惊奇的是通常敏感的发泡工艺反而未受到大量DMC催化剂存在的影响。DMC催化剂也令人惊奇地保持了环氧化物聚合反应活性。
当粉末DMC催化剂作为如上所述的聚氨酯泡沫材料的配方组分时,制得的典型泡沫材料载体上的催化剂比无载体的粉末状催化剂在环氧化物聚合中的诱导期短。
在本发明的一个实施方案中,制得了不需诱导期的活化催化剂。在该方法中,将DMC催化剂在一定温度下与环氧化物和含羟基官能团的引发剂混合一段时间至能有效地引发环氧化物聚合,但一旦催化剂活化开始,即将DMC催化剂与引发剂和未反应环氧化物分离。将分离的活化的DMC催化剂与聚异氰酸酯、水和多元醇一起在表面活性剂和发泡催化剂的存在下配制成聚氨酯泡沫材料。
在制备活化的催化剂的第二个实施方案中,在一定温度和一段能有效地引发环氧化物聚合的时间内,将DMC催化剂与环氧化物和含羟基官能团的引发剂混合,并生成活化了的DMC催化剂/引发剂混合物。而后,用聚异氰酸酯、水、活化的DMC催化剂/引发剂混合物和任选的多元醇在表面活性剂和发泡催化剂作用下进行反应,制得聚氨酯泡沫材料。所得产物为活化的、载于聚氨酯泡沫材料上的DMC催化剂,可用于环氧化物聚合而且无需诱导期。
第一个实施方案的主要优点在于它可使制造者选择可快速活化催化剂的含羟基官能团的引发剂(如1-辛醇),同时可使用在泡沫材料配制中更有用的不同多元醇来制备泡沫材料。第二个实施方案的优点在于进行催化剂活化和泡沫材料配制时不需要将活化的催化剂与引发剂分离的步骤。
一般地说,羟基官能团的引发剂可具有1至8个羟基官能团,且可为任何所希望的分子量。只要催化剂已完成活化,可用所希望的任意量环氧化物与引发剂反应。催化剂的活化可由环氧化物和含羟基官能团的引发剂化合后反应器压强加速下降所证实(见实施例2-4)。
尽管可用所希望的任意量DMC催化剂制备本发明泡沫材料载体上的催化剂,但在制得的以泡沫材料为载体的催化剂总量中含有约1-20wt.%的DMC催化剂通常较为可取。更可取的是含有5-15wt.%的DMC催化剂。
制得泡沫材料后,最好对其进行真空干燥以除去湿分及其它易挥发杂质。我惊奇地发现在催化剂制备时包括真空干燥步骤会改善催化剂活性。较可取的真空干燥温度范围约在20℃至90℃,30℃至60℃更为可取,真空度小于约100mmHg。
本发明包括制备聚醚多元醇的方法,该方法包括在本发明以泡沫材料为载体的催化剂作用下进行环氧化物聚合。优选的环氧化物有环氧乙烷、氧化丙烯、氧化丁烯、氧化苯乙烯,以及类似物质和上述物质的混合物。可用该方法由环氧化物制备无规或嵌段共聚物,正如用无载体的DMC催化剂制备环氧化物共聚物所用的方法一样。
在DMC催化剂作用下可与环氧化物共聚的其它单体亦可被包括在本发明方法中来制备改性的聚醚多元醇。本领域熟知的用无载体DMC催化剂制备的任何共聚物均可用本发明以泡沫材料为载体的催化剂制备。例如,环氧化物与螺〔4,4,〕二氧己烷(oxetanes)共聚(如美国专利3,278,457和3,404,109所述的)制聚醚,或与酸酐共聚(如美国专利5,145,883和3,538,043所述的)制聚酯或聚醚酯多元醇。用DMC催化剂制聚醚、聚酯和聚醚酯多元醇己有充分的描述,如在美国专利5,223,583,5,145,883,4,472,560,3,941,849,3,900,518,3,538,043,3,404,109,3,278,458,3,278,457和J.L.Schuchardt与S.D.Harper在SPI Proceed-ings,32nd Annual Polyurethane Tech.Mark.Conf.(1989)360一文中所描述的那样。这里全文引入这些文献关于DMC催化剂合成多元醇作为参考。
溶剂可选择性在包括在用本发明方法制备聚醚多元醇中。合适的溶剂为环氧化物和含羟基引发剂在其中可溶解且不使双金属氰化物催化剂失活的溶剂。较佳的溶剂有脂肪族和芳香族烃、醚、酮和酯。然而溶剂通常并非是必需的,由于经济原因常常选择不用溶剂来进行聚醚的制备。
本发明以泡沫材料为载体的催化剂与无载体粉末状催化剂相比,其关键性的优势在于具有更高的活性。一般而言,与使用同样浓度的传统DMC催化剂正常的聚合速率相比,其聚合反应速率提高了两倍或两倍多。聚合速率提高的结果,使得多元醇生产者可以减少相对昂贵的催化剂的使用量从而节约财力。催化剂活性的提高亦可使生产者减少操作时间,提高劳动生产率。
本发明用于制备聚醚多元醇的以泡沫材料为载体的催化剂的另一优势在于其诱导期缩短。传统无载体的DMC催化剂对环氧化物聚合不能立即活化。一般而言,将引发剂多元醇,催化剂及少量的环氧化物混合并加热到所希望的反应温度后,环氧化物并不能立即聚合。多元醇制造者必须等候(通常一小时或几小时)直到催化剂活化、加入的环氧化物开始反应才能将其余的环氧化物安全地连续加入聚合反应器。带泡沫材料载体的催化剂比常规粉末催化剂更快速地活化。催化剂诱导期变短这一特点是个经济上的优势。因为加入环氧化物时所延误的时间缩短了。使用上述方法制备的活化聚氨酯泡沫材料载体上的催化剂可以消除诱导期。
本发明泡沫材料载体上的催化剂的另一优点在于可通过过滤从聚醚多元醇产物中分离出催化剂并可将其重新用于催化其它环氧化物聚合反应。这一点通过下面的实施例10予以说明。大多数分离催化剂的方法都不可逆地使催化剂失活(例如参见美国专利5,144,093,5,099,075,4,987,271,4,877,906,4,721,818和4,355,188),因而不能重新使用催化剂。美国专利5,010,047中所描述的各种方法亦可用于从多元醇中回收本发明载体上的催化剂。
本发明泡沫材料载体上的催化剂可用于间歇、连续、或半连续过程。这种泡沫材料可原样用,也可在用作催化剂前将其切断、磨碎或碾成小块。最好使泡沫材料成为网状的,即对其进行有效的处理使其中大量微孔暴露出来。制造网状泡沫材料的一种方法是在制得以泡沫材料为载体的催化剂后不久即对其挤压,使其开孔数达最大,因而可使最大量的空气流过泡沫材料。网状的泡沫材料可原样用,亦可切断用。切断成磨碎的泡沫塑料很适用于间歇操作过程。
适用于连续过程的固定床催化剂系统可通过使含有DMC催化剂的聚氨酯混合物,在塔中适当位置发泡获得。而后可在所希望的反应温度与有效的反应条件下将环氧化物及引发剂多元醇通过塔以制得具有所希望分子量的聚合物产物。
用本发明泡沫材料载体上的催化剂制得的聚醚多元醇含有特别少量的低分子量多元醇杂质。当使用传统粉末状催化剂时(甘醇二甲醚为络合剂),通过多元醇产品含有高达约5-10wt.%的低分子量多元醇杂质,正如产品的凝胶渗透色谱分析所证明的那样。令人惊奇的是,采用本发明以泡沫材料为载体的催化剂(其中甘醇二甲醇用来制备粉末状催化剂)制得的多元醇不含有可检测出量的低分子量多元醇杂质。
下面的例子仅用来说明本发明。本领域的熟练人员将会认识到在本发明精神与权利要求范围内的各种变化。
实施例1
制备以聚氨酯泡沫材料为载体的六氰基钴酸锌
按照一步法制备弹性聚氨酯泡沫材料。混合ARCOL 3520多元醇(分子量3500,均为氧化丙烯三元醇,ARCO化学公司产品,56.8克)与水(2.28克),L-6202表面活性剂(0.5克,Dow Coming产品)、A-1胺催化剂(0.1克,Air Products产品)、A-33催化剂(0.02克,Air Products产品)、T-12催化剂(0.5克,Air Products产品)和六氰基钴酸锌粉末状催化剂(10.0克,以甘醇二甲醚作络合剂,按美国专利5,158,922所述方法制备)。将一份甲苯二异氰酸酯(2,4-和2,6-同分异构80∶20的混合物,29.8克,110 NCO指数)加入B面组分中,在室温下迅速混合,将所得混合物倒入容器中,容器内混合物隆起并凝固,形成凝固的聚氨酯泡沫材料。将泡沫材料在110℃固化30分钟,而后将其切成小块。切断的泡沫塑料送入真空炉在50℃下干燥90分钟以除去易挥发物质。经干燥处理的泡沫材料载体催化剂作为催化剂A。
再依上法制备另外的泡沫材料载体催化剂,但省去在50℃下真空干燥的步骤。将这一“未经干燥”的催化剂作为催化剂B。
实施例2-4
用泡沫材料载体上的六氰基钴酸锌(催化剂A:干燥过的催化剂)制备聚醚多元醇
在一升容量的不锈钢带搅拌反应器中放入聚(氧化丙烯)三元醇(分子量为700)引发剂(50克)和聚氨酯载体六氰基钴酸锌催化剂(0.5-1.0克,按实施例1方法制备,在多元醇产物中浓度为110-222ppm)。将混合物搅拌并在真空下汽提除去三元醇引发剂带入的痕量水。将庚烷(130克)加入反应器,并将混合物加热至105℃。用氮气给反应器加压至约2磅/英寸2。将一部分氧化丙烯(15-20克)加入反应器中,并仔细监测反应器压力。至反应器压强加速下降时,才能加入另外的氧化丙烯,压力加速下降说明催化剂已活化。催化剂活化一经证实,即在105℃及约25磅/英寸2的恒定压力下在约1-3小时时间内逐步加入催化剂的氧化丙烯(380-385克)。添加完氧化丙烯后,将混合物保持在105℃下直至观察到某一恒定压力。而后在真空下汽提除去多元醇产物中残留的未反应单体,并将多元醇冷却、回收。对经干燥泡沫材料载体催化剂在各催化剂浓度T1所测得的聚合速率与诱导期列于表1。
比较例5-7
用粉末状六氰基钴酸锌制备聚醚多元醇
重复实施例2-4步骤,但所使用的催化剂不同,为以甘醇二甲醚作络合剂按美国专利5,158,922方法制备的无载体、粉末状六氰基钴酸锌催化剂。催化剂浓度在100-250ppm。对这些各催化剂浓度下的粉末状催化剂所测得的聚合反应速率与诱导期亦列于表1。
实施例2-4和比较例5-7的结果表明,当每次在同一六氰基钴酸锌浓度下使用催化剂时,泡沫材料载体上的六氰基钴酸锌催化剂较粉末状催化剂更具有活性,且诱导期更短。例如,与浓度为250ppm粉末状催化剂(活性=3.5克/分,诱导期=180分)相比,浓度仅为110ppm的泡沫材料载体催化剂更具有活性(3.4克/分),且缩短了诱导期(175分)。
                         表1
用以泡沫材料为载体的及粉末状的六氰基钴酸锌催化剂合成多元醇:
催化剂活性与诱导期
  实施例序  号   催化剂类  别     催化剂浓度(ppm)     聚合速率(克/分)     诱导期(分)
    234   以泡沫材料为载体     110167222     3.45.78.0     175155145
    C5C6C7   粉末状     100130250     1.461.783.50     230175180
实施例8-9
用泡沫材料载体六氰基钴酸锌催化剂制备聚醚多元醇:湿度对催化剂活性与诱导期的影响(泡沫材料载体催化剂)
用2克泡沫材料载体催化剂重复进行实施例2-4的步骤。在实施例8中,用经干燥的泡沫材料载体催化剂(催化剂A)。实施例9用未经真空干燥的泡沫材料载体催化剂(催化剂B)。
用催化剂A(经干燥)时,氧化丙烯聚合速率为13.3克/分,诱导期为140分。用催化剂B(未经干燥)时,速率为7.3克/分,诱导期为160分。
结果表明催化剂制得后进行真空干燥对泡沫材料载体六氰基钴酸锌催化剂性能有所改善。
实施例10
泡沫材料载体六氰基钴酸锌催化剂的回收与再利用
在一升容量的带搅拌不锈钢反应器中加入聚(氧化丙烯)三元醇(分子量700)引发剂(50克)和聚氨酯泡沫载体六氰基钴酸锌催化剂(催化剂B,4克,按实施例1中步骤制得,在多元醇产品中浓度为700ppm)。将混合物搅拌并在真空下汽提除去三元醇引发剂带入的痕量水。将庚烷(130克)加入反应器,并将混合物加热至105℃。充氮气使反应器加压至约6磅/英寸2,将一部份氧化丙烯(11克)加入反应器,并密切监测反应器压强。在有反应器压强加速下降时,方可加入其余氧化丙烯;反应器压力加速下降说明催化剂已经活化。催化剂活化一经证实,就在105℃及约25磅/英寸2恒定压力下在约1-3小时时间内逐渐加入其余的氧化丙烯(389克)。添加完氧化丙烯后,使混合物处于105℃下直至观察到某一恒定压力。而后在真空下汽提除去多元醇产物中残留的未反应单体,并将多元醇冷却,回收。聚合速率为7.6克/分。生成的聚醚多元醇羟基数为27.9毫克KOH/克,不饱和度为0.017毫克当量/克。
聚合反应后,通过过滤从混合物中回收泡沫材料载体催化剂。催化剂用丙酮清洗并烘干。用所回收的催化剂按本实施例所述步骤催化第二个氧化丙烯聚合反应。催化剂第二次使用时测得的聚合速率为3.4克/分。聚醚多元醇产物羟基数为28.3毫克KOH/克,其不饱和度为0.019毫克当量/克。
实施例11
按实施例1步骤制备泡沫材料载体六氰基钴酸锌催化剂,只是所用粉末状六氰基钴酸锌催化剂为按下述方法制得的基本无定形DMC催化剂。用叔-丁醇作络合剂。
将六氰基钴酸钾(8.0克)加入烧杯内去离子水(150毫升)中,用均化器将其混合至固体溶解。在第二个烧杯中将氯化锌(20克)溶入去离子水(30毫升)中。将氯化锌水溶液与第一个烧杯中的钴盐化合,并使用均化器使溶液均匀混合。溶液化合后立即将叔-丁醇(100毫升)和去离子水(100毫升)缓慢加入六氰基钴酸锌悬浮液中,将混合物均化10分钟。将固体离心分离后,再用250毫升体积比为70∶30的叔-丁醇和去离子水的混合物均化10分钟。再将固体离心分离,最后用250毫升叔-丁醇均化10分钟。将催化剂离心分离出来,并在真空炉中于50℃和30英寸(Hg)下干燥至恒重。
六氰基钴酸锌的粉末X-射线衍射分析图在晶面距离约为4.82和3.76埃处有两个宽信号。这表明催化剂为基本上无定形的络合物。
按前面实施例1所述方法将粉末状六氰基钴酸锌催化剂配制进聚氨酯泡沫材料中,所得聚氨酯泡沫材料载体催化剂可望用作环氧化物聚合反应催化剂。
实施例12
按照实施例1中方法制备聚氨酯泡沫材料载体DMC催化剂,但其中所用粉末状六氰基钴酸锌催化剂还包含一种聚醚多元醇作为催化剂的组成部分,该粉末状六氰基钴酸锌催化剂的制法如下。
将六氰基钴酸锌(8.0克)溶于去离子(DI)水(140毫升)置于一个烧杯中(溶液1)。将氯化锌(25克)溶于DI水(40毫升)中置于第二个烧杯内(溶液2)。第三个烧杯盛有溶液3:DI水(200毫升)、叔-丁醇(2毫升)和多元醇(由双金属氰化物催化剂制得的分子量为4000的聚(氧化丙烯)二元醇2克)的混合物。
使用均化器将溶液1和2混合起来。立即将体积比为50/50的叔-丁醇和DI水混合物(总量为200毫升)加入六氰基钴酸锌混合物中,将产物均化10分钟。
将溶液3(多元醇/水/叔-丁醇混合物)加入六氰基钴酸锌含水悬浮液中,并用电磁搅拌产物3分钟。将混合物通过5-微米过滤层进行压滤,分离出固体。可将滤饼加入叔-丁醇(140毫升)、DI水(60毫升)和附加的分子量为4000的聚(氧化丙烯)二元醇(2.0克)中形成悬浮液,再均化10分钟,而后按上述方法过滤。
再将滤饼加入叔-丁醇(200毫升)和附加的分子量为4000的聚(氧化丙烯)二元醇(1.0克)中形成悬浮液,再均化10分钟,而后过滤。所得固体催化剂在50℃(30英寸Hg)下真空干燥至恒重。干燥后的粉末状催化剂量为10.7克。固体催化剂的元素分析,热重分析和质谱分析表明:多元醇=21.5wt.%,叔-丁醇=7.0wt.%;钴=11.5wt.%。
将所得粉末状六氰基钴酸锌催化剂按前面实施例1所述方法配制进聚氨酯泡沫材料中,形成的聚氨酯泡沫材料载体DMC催化剂可望用作环氧化物聚合催化剂。
实施例13
按实施例1的步骤制备本发明泡沫材料载体上的DMC催化剂,只是其中所用粉末状六氰基钴酸锌由X-射线衍射分析表明为基本上结晶态的,且其Zn/Co比在约1.5-1.8范围内。
在烧杯中将六氰基钴酸锌溶于去离子(DI)水(150毫升)中(溶液1)。在第二个烧杯中将氯化锌(20克)溶水DI水(30毫升)中(溶液2)。第三个烧杯中含有溶液3:叔-丁醇(100毫升)和DI水(300毫升)的混合物。用Tekmar高速均化器混合溶液1和3并加热至反应温度50℃。将溶液2缓慢加入,而后将混合物在50℃均化10分钟。用1.2微米尼龙滤布过滤催化剂悬浮液。滤出固体再放入DI水(100毫升)和叔-丁醇(100毫升)中形成悬浮液,将混合物均化20分钟。按如上所述过滤悬浮液,用50%叔-丁醇水溶液重复清洗步骤。将固体加入100%叔-丁醇(200毫升)中成为悬浮液,再将混合物均化20分钟。再过滤出固体,而后在真空炉中于50-60℃干燥4-5小时。将干燥后的六氟基钴酸锌(8.2克)的Zn/Co摩尔比为1.55的催化剂分离。按前述实施例1方法将粉末状六氰基钴酸锌配制进聚氨酯泡沫材料中,所得聚氨酯泡沫材料载体DMC催化剂可用作环氧化物聚合催化剂。
前面的各例仅是用来说明本发明的;本发明范围由下列权利要求所确定。

Claims (6)

1.一种制备高活性结晶的双金属氰化物络合物催化剂的方法,所述方法包括:
(a)在有机络合剂存在下将卤化锌水溶液和六氰基钴酸金属盐反应以生成一个催化剂沉淀,所述卤化锌较六氰基钴酸金属盐过量使用;和
(b)用水和有机络合剂的混合物以有效地生产高活性双金属氰化物络合物催化剂的方式洗涤催化剂沉淀,其中催化剂中Zn/Co的摩尔比在1.5到1.8。
2.一种结晶双金属氰化物络合物,包括六氰基钴酸锌、有机络合剂和卤化锌,其中催化剂上Zn/Co摩尔比为1.5到1.8。
3.权利要求2的络合物,其特征在于有机络合物选自醇、醛、酮、醚、酯、酰胺、脲、腈、硫化物及其混合物。
4.权利要求3的络合物,其特征在于有机络合物是叔丁醇。
5.权利要求2的络合物,其特征在于催化剂上的Zn/Co摩尔比为1.55到1.8。
6.一种制备环氧化物聚合物的方法,所述方法包在权利要求2-5任一项的催化剂或权利要求1的方法制得的催化剂存在下聚合环氧化物。
CNB991021118A 1993-12-23 1994-12-23 环氧化物聚合用双金属氰化物催化剂 Expired - Fee Related CN1235941C (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US173,290 1993-12-23
US173290 1993-12-23
US08/173,290 US5426081A (en) 1993-12-23 1993-12-23 Polyurethane foam-supported double metal cyanide catalysts for polyol synthesis
US345644 1994-12-01
US08/345,644 US5498583A (en) 1993-12-23 1994-12-01 Polyurethane foam-supported double metal cyanide catalysts for polyol synthesis
US345,644 1994-12-01

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN94119219A Division CN1059681C (zh) 1993-12-23 1994-12-23 多元醇合成用带聚氨酯泡沫材料载体的双金属氰化物催化剂

Publications (2)

Publication Number Publication Date
CN1229805A CN1229805A (zh) 1999-09-29
CN1235941C true CN1235941C (zh) 2006-01-11

Family

ID=26868982

Family Applications (2)

Application Number Title Priority Date Filing Date
CNB991021118A Expired - Fee Related CN1235941C (zh) 1993-12-23 1994-12-23 环氧化物聚合用双金属氰化物催化剂
CN94119219A Expired - Fee Related CN1059681C (zh) 1993-12-23 1994-12-23 多元醇合成用带聚氨酯泡沫材料载体的双金属氰化物催化剂

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN94119219A Expired - Fee Related CN1059681C (zh) 1993-12-23 1994-12-23 多元醇合成用带聚氨酯泡沫材料载体的双金属氰化物催化剂

Country Status (12)

Country Link
US (6) US5525565A (zh)
EP (1) EP0659798B1 (zh)
JP (1) JP3369769B2 (zh)
KR (1) KR100327813B1 (zh)
CN (2) CN1235941C (zh)
AT (2) ATE178920T1 (zh)
AU (1) AU677878B2 (zh)
BR (1) BR9405222A (zh)
CA (1) CA2138063C (zh)
DE (2) DE69417859T2 (zh)
HU (1) HU215266B (zh)
RO (2) RO120485B1 (zh)

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5482908A (en) * 1994-09-08 1996-01-09 Arco Chemical Technology, L.P. Highly active double metal cyanide catalysts
US5627122A (en) * 1995-07-24 1997-05-06 Arco Chemical Technology, L.P. Highly active double metal cyanide complex catalysts
US5545601A (en) * 1995-08-22 1996-08-13 Arco Chemical Technology, L.P. Polyether-containing double metal cyanide catalysts
US5688861A (en) * 1995-11-30 1997-11-18 Arco Chemical Technology, L.P. Process for the preparation of polyol polymer dispersions
US5693584A (en) * 1996-08-09 1997-12-02 Arco Chemical Technology, L.P. Highly active double metal cyanide catalysts
US5714428A (en) * 1996-10-16 1998-02-03 Arco Chemical Technology, L.P. Double metal cyanide catalysts containing functionalized polymers
DE19709031A1 (de) 1997-03-06 1998-09-10 Basf Ag Verfahren zur Herstellung von Doppelmetallcyanidkatalysatoren
DE59808655D1 (de) * 1997-10-13 2003-07-10 Bayer Ag Kristalline doppelmetallcyanid-katalysatoren für die herstellung von polyetherpolyolen
DE19809539A1 (de) 1998-03-05 1999-09-09 Basf Ag Verfahren zur Herstellung von Doppelmetallcyanidkatalysatoren
DE19809538A1 (de) * 1998-03-05 1999-09-09 Basf Ag Verfahren zur Herstellung von Doppelmetallcyanidkatalysatoren
DE19840585A1 (de) * 1998-09-05 2000-03-09 Basf Ag Verfahren zur Herstellung von Polyetherolen durch ringöffnende Polymerisation von Alkylenoxiden
DE19840846A1 (de) * 1998-09-07 2000-03-09 Basf Ag Verfahren zur Herstellung von Fettalkoholalkoxylaten
DE19903274A1 (de) 1999-01-28 2000-08-03 Basf Ag Verfahren zur Herstellung von Polyetherpolyolen
US6800583B2 (en) 1999-06-02 2004-10-05 Basf Aktiengesellschaft Suspension of multimetal cyanide compounds, their preparation and their use
US6613714B2 (en) 1999-06-02 2003-09-02 Basf Aktiengesellschaft Multimetal cyanide compounds, their preparation and their use
US6423662B1 (en) 1999-07-09 2002-07-23 Dow Global Technologies Inc. Incipient wetness method for making metal-containing cyanide catalysts
AU2001255735A1 (en) 2000-04-28 2001-11-12 Synuthane International, Inc. Double metal cyanide catalysts containing polyglycol ether complexing agents
WO2001089685A1 (en) * 2000-05-19 2001-11-29 The Dow Chemical Company Dispersion of supported metal catalysts using sulfone or sulfoxide compounds as a dispersant
KR100418058B1 (ko) * 2001-04-18 2004-02-14 에스케이씨 주식회사 폴리올 제조용 복금속 시안계 착화합물 촉매
US6608012B2 (en) 2001-04-26 2003-08-19 Huntsman Petrochemical Corporation Process and formulations to remove paint and primer coatings from thermoplastic polyolefin substrates
US6804081B2 (en) * 2001-05-11 2004-10-12 Canon Kabushiki Kaisha Structure having pores and its manufacturing method
CN1304459C (zh) * 2002-04-29 2007-03-14 中国石化集团金陵石油化工有限责任公司 一种含硅碳链聚合物的双金属氰化物络合催化剂
US6716788B2 (en) * 2002-06-14 2004-04-06 Shell Oil Company Preparation of a double metal cyanide catalyst
US6977236B2 (en) * 2002-06-14 2005-12-20 Shell Oil Company Preparation of a double metal cyanide catalyst
US6806348B2 (en) * 2003-02-11 2004-10-19 Basf Corporation Process for removing and regenerating a double metal cyanide (DMC) catalyst from a polymer polyol
US6713599B1 (en) 2003-03-31 2004-03-30 Basf Corporation Formation of polymer polyols with a narrow polydispersity using double metal cyanide (DMC) catalysts
DE10333154A1 (de) * 2003-07-22 2005-02-24 Vega Grieshaber Kg Verfahren und Schaltungsanordnung zum Auswerten einer Messkapazität
US20050107643A1 (en) * 2003-11-13 2005-05-19 Thomas Ostrowski Preparation of polyether alcohols
US7977501B2 (en) * 2006-07-24 2011-07-12 Bayer Materialscience Llc Polyether carbonate polyols made via double metal cyanide (DMC) catalysis
CN101003622B (zh) * 2007-01-18 2010-05-26 浙江大学 一种负载型双金属氰化络合物催化剂及其制备方法和应用
JP5490372B2 (ja) * 2007-04-26 2014-05-14 三洋化成工業株式会社 結晶性ポリオキシアルキレンポリオールの製造方法およびこれを原料とした樹脂
CN107570156A (zh) * 2017-09-05 2018-01-12 苏州科尔玛电子科技有限公司 一种催化过氧化氢制备氧气的催化剂及其制备方法
CN110653005B (zh) * 2017-12-14 2022-03-15 吉林师范大学 一种非均相多金属氧酸盐催化剂的应用
CN110614122B (zh) * 2018-06-20 2023-03-24 万华化学集团股份有限公司 一种负载型硅氢加成催化剂的制备方法
CN111378107B (zh) * 2018-12-27 2022-08-05 万华化学集团股份有限公司 一种反应型密封胶树脂的制备方法
CN111303401B (zh) * 2020-04-07 2022-06-14 淮安巴德聚氨酯科技有限公司 一种双金属氰化物络合催化剂及其制备方法
CN112898555B (zh) * 2021-01-28 2022-07-12 万华化学集团股份有限公司 一种固载双金属催化剂及其制备方法和应用
CN115650828A (zh) * 2022-12-15 2023-01-31 山东一诺威新材料有限公司 丁醇聚醚及其制备方法

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3278458A (en) * 1963-02-14 1966-10-11 Gen Tire & Rubber Co Method of making a polyether using a double metal cyanide complex compound
GB1063525A (en) * 1963-02-14 1967-03-30 Gen Tire & Rubber Co Organic cyclic oxide polymers, their preparation and tires prepared therefrom
US3427335A (en) * 1963-02-14 1969-02-11 Gen Tire & Rubber Co Double metal cyanides complexed with an acyclic aliphatic saturated monoether,an ester and a cyclic ether and methods for making the same
US3427256A (en) * 1963-02-14 1969-02-11 Gen Tire & Rubber Co Double metal cyanide complex compounds
US3278457A (en) * 1963-02-14 1966-10-11 Gen Tire & Rubber Co Method of making a polyether using a double metal cyanide complex compound
US3427334A (en) * 1963-02-14 1969-02-11 Gen Tire & Rubber Co Double metal cyanides complexed with an alcohol aldehyde or ketone to increase catalytic activity
DE1770548A1 (de) * 1967-06-02 1972-02-10 Gen Tire & Rubber Co Polyester und ihre Herstellung
US3900518A (en) * 1967-10-20 1975-08-19 Gen Tire & Rubber Co Hydroxyl or thiol terminated telomeric ethers
US3941849A (en) * 1972-07-07 1976-03-02 The General Tire & Rubber Company Polyethers and method for making the same
US4276199A (en) * 1980-07-21 1981-06-30 Shell Oil Company Supported molybdenum/tungsten compositions
CA1155871A (en) * 1980-10-16 1983-10-25 Gencorp Inc. Method for treating polypropylene ether and poly-1,2- butylene ether polyols
AU551979B2 (en) * 1982-03-31 1986-05-15 Shell Internationale Research Maatschappij B.V. Epoxy polymerisation catalysts
AU552988B2 (en) * 1982-03-31 1986-06-26 Shell Internationale Research Maatschappij B.V. Polymerizing epoxides and catalyst suspensions for this
US4843054A (en) * 1987-02-26 1989-06-27 Arco Chemical Technology, Inc. Preparation of filterable double metal cyanide complex catalyst for propylene oxide polymerization
US4721818A (en) * 1987-03-20 1988-01-26 Atlantic Richfield Company Purification of polyols prepared using double metal cyanide complex catalysts
US4789538A (en) * 1987-07-17 1988-12-06 Standard Oil Method of preparing ammonia and ammonia synthesis catalysts
US4877906A (en) * 1988-11-25 1989-10-31 Arco Chemical Technology, Inc. Purification of polyols prepared using double metal cyanide complex catalysts
US4987271A (en) * 1989-02-17 1991-01-22 Asahi Glass Company, Ltd. Method for purifying a polyoxyalkylene alcohol
US5010047A (en) * 1989-02-27 1991-04-23 Arco Chemical Technology, Inc. Recovery of double metal cyanide complex catalyst from a polymer
JP2995568B2 (ja) * 1989-05-09 1999-12-27 旭硝子株式会社 ポリアルキレンオキシド誘導体の製造法
JP3097854B2 (ja) * 1989-05-12 2000-10-10 旭硝子株式会社 ポリウレタン類の製造方法
US5099075A (en) * 1990-11-02 1992-03-24 Olin Corporation Process for removing double metal cyanide catalyst residues from a polyol
US5144093A (en) * 1991-04-29 1992-09-01 Olin Corporation Process for purifying and end-capping polyols made using double metal cyanide catalysts
US5158922A (en) * 1992-02-04 1992-10-27 Arco Chemical Technology, L.P. Process for preparing metal cyanide complex catalyst
JPH06248068A (ja) * 1993-02-26 1994-09-06 Asahi Glass Co Ltd ポリエーテル化合物および複合金属シアン化物錯体触媒の製造方法

Also Published As

Publication number Publication date
RO117798B1 (ro) 2002-07-30
JPH07278275A (ja) 1995-10-24
DE69417859T2 (de) 1999-08-26
DE69433826T2 (de) 2005-06-16
US5523386A (en) 1996-06-04
DE69417859D1 (de) 1999-05-20
BR9405222A (pt) 1995-08-08
CN1059681C (zh) 2000-12-20
EP0659798A1 (en) 1995-06-28
EP0659798B1 (en) 1999-04-14
CN1229805A (zh) 1999-09-29
RO120485B1 (ro) 2006-02-28
CA2138063C (en) 2007-02-20
AU8174794A (en) 1995-06-29
KR100327813B1 (ko) 2002-03-09
CN1111255A (zh) 1995-11-08
US5652329A (en) 1997-07-29
US5596075A (en) 1997-01-21
HUT70860A (en) 1995-11-28
US5641858A (en) 1997-06-24
AU677878B2 (en) 1997-05-08
JP3369769B2 (ja) 2003-01-20
HU215266B (hu) 1998-11-30
HU9403757D0 (en) 1995-08-28
US5527880A (en) 1996-06-18
US5525565A (en) 1996-06-11
DE69433826D1 (de) 2004-07-08
ATE178920T1 (de) 1999-04-15
ATE268347T1 (de) 2004-06-15
CA2138063A1 (en) 1995-06-24

Similar Documents

Publication Publication Date Title
CN1235941C (zh) 环氧化物聚合用双金属氰化物催化剂
CN1063984C (zh) 改进的双金属氰化物络合催化剂
JP3479175B2 (ja) 固体2金属シアン化物触媒とその製造方法
CN1104953C (zh) 含官能化聚合物的双金属氰化物催化剂
RU2177828C2 (ru) Высокоактивные двойные металлоцианидные катализаторы
JP4043061B2 (ja) 改良されたポリエーテル含有二重金属シアン化物触媒並びにその製法および用途
KR100429297B1 (ko) 고활성의이중금속시안화물착체촉매
CN1137780C (zh) 制备聚醚多元醇用的改良双金属氰化物催化剂
CN1882634A (zh) 聚醚醇的制备方法
EP1060020A1 (de) Geträgerte doppelmetallcyanidkatalysatoren, verfahren zu ihrer herstellung sowie ihre verwendung zur herstellung von polyetheralkoholen
KR100346929B1 (ko) 폴리올합성용발포체지지형이중금속시안화물촉매및그제조방법
CN1628905A (zh) 不饱和叔醇作为配体在活性dmc催化剂中的应用
US5891818A (en) Cyanide complex catalyst manufacturing process
CN1342178A (zh) 聚氧亚烷基二醇的制备

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee