CN1233041C - 半导体器件及其制作方法 - Google Patents
半导体器件及其制作方法 Download PDFInfo
- Publication number
- CN1233041C CN1233041C CNB018176437A CN01817643A CN1233041C CN 1233041 C CN1233041 C CN 1233041C CN B018176437 A CNB018176437 A CN B018176437A CN 01817643 A CN01817643 A CN 01817643A CN 1233041 C CN1233041 C CN 1233041C
- Authority
- CN
- China
- Prior art keywords
- diaphragm
- drift region
- semiconductor
- layer
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 157
- 238000000034 method Methods 0.000 title claims description 47
- 239000000758 substrate Substances 0.000 claims abstract description 137
- 238000009413 insulation Methods 0.000 claims description 34
- 230000015556 catabolic process Effects 0.000 claims description 24
- 230000003628 erosive effect Effects 0.000 claims description 11
- 230000000694 effects Effects 0.000 claims description 10
- 230000005611 electricity Effects 0.000 claims description 10
- 238000004519 manufacturing process Methods 0.000 claims description 8
- 238000002347 injection Methods 0.000 claims description 6
- 239000007924 injection Substances 0.000 claims description 6
- 238000001312 dry etching Methods 0.000 claims description 5
- 230000002028 premature Effects 0.000 claims description 5
- 230000002441 reversible effect Effects 0.000 claims description 5
- 238000000151 deposition Methods 0.000 claims description 3
- 239000011810 insulating material Substances 0.000 claims description 3
- 238000001039 wet etching Methods 0.000 claims description 3
- 238000009792 diffusion process Methods 0.000 claims description 2
- 239000012528 membrane Substances 0.000 abstract description 6
- 239000010410 layer Substances 0.000 description 200
- 230000004888 barrier function Effects 0.000 description 26
- 238000005516 engineering process Methods 0.000 description 20
- 230000005684 electric field Effects 0.000 description 16
- 238000002955 isolation Methods 0.000 description 15
- 239000000463 material Substances 0.000 description 15
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 13
- 229910052710 silicon Inorganic materials 0.000 description 13
- 239000010703 silicon Substances 0.000 description 13
- 230000000903 blocking effect Effects 0.000 description 12
- 230000007797 corrosion Effects 0.000 description 12
- 238000005260 corrosion Methods 0.000 description 12
- 229910003460 diamond Inorganic materials 0.000 description 12
- 239000010432 diamond Substances 0.000 description 12
- 238000009826 distribution Methods 0.000 description 12
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical compound [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 9
- 229910052751 metal Inorganic materials 0.000 description 9
- 239000002184 metal Substances 0.000 description 9
- 230000005855 radiation Effects 0.000 description 9
- 239000002800 charge carrier Substances 0.000 description 7
- 230000004048 modification Effects 0.000 description 7
- 238000012986 modification Methods 0.000 description 7
- 230000008901 benefit Effects 0.000 description 5
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 5
- 229920005591 polysilicon Polymers 0.000 description 5
- 229910052582 BN Inorganic materials 0.000 description 4
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 4
- 239000012212 insulator Substances 0.000 description 4
- 150000004767 nitrides Chemical class 0.000 description 4
- 230000003071 parasitic effect Effects 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 229910010271 silicon carbide Inorganic materials 0.000 description 4
- 229910017083 AlN Inorganic materials 0.000 description 3
- PIGFYZPCRLYGLF-UHFFFAOYSA-N Aluminum nitride Chemical compound [Al]#N PIGFYZPCRLYGLF-UHFFFAOYSA-N 0.000 description 3
- 229910002601 GaN Inorganic materials 0.000 description 3
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 238000007667 floating Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 229910052814 silicon oxide Inorganic materials 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 238000005137 deposition process Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000005669 field effect Effects 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- 230000001788 irregular Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 210000002381 plasma Anatomy 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 230000001235 sensitizing effect Effects 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- NRTLIYOWLVMQBO-UHFFFAOYSA-N 5-chloro-1,3-dimethyl-N-(1,1,3-trimethyl-1,3-dihydro-2-benzofuran-4-yl)pyrazole-4-carboxamide Chemical compound C=12C(C)OC(C)(C)C2=CC=CC=1NC(=O)C=1C(C)=NN(C)C=1Cl NRTLIYOWLVMQBO-UHFFFAOYSA-N 0.000 description 1
- 229910002704 AlGaN Inorganic materials 0.000 description 1
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 1
- 239000004411 aluminium Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000003518 caustics Substances 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 230000005518 electrochemistry Effects 0.000 description 1
- 238000006056 electrooxidation reaction Methods 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000000415 inactivating effect Effects 0.000 description 1
- 239000012774 insulation material Substances 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000009738 saturating Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/7801—DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
- H01L29/7816—Lateral DMOS transistors, i.e. LDMOS transistors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/76—Making of isolation regions between components
- H01L21/764—Air gaps
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/0603—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
- H01L29/0607—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
- H01L29/0611—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
- H01L29/0615—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
- H01L29/063—Reduced surface field [RESURF] pn-junction structures
- H01L29/0634—Multiple reduced surface field (multi-RESURF) structures, e.g. double RESURF, charge compensation, cool, superjunction (SJ), 3D-RESURF, composite buffer (CB) structures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/0657—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/0657—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
- H01L29/0661—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body specially adapted for altering the breakdown voltage by removing semiconductor material at, or in the neighbourhood of, a reverse biased junction, e.g. by bevelling, moat etching, depletion etching
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/08—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
- H01L29/083—Anode or cathode regions of thyristors or gated bipolar-mode devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66234—Bipolar junction transistors [BJT]
- H01L29/66325—Bipolar junction transistors [BJT] controlled by field-effect, e.g. insulated gate bipolar transistors [IGBT]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66234—Bipolar junction transistors [BJT]
- H01L29/66325—Bipolar junction transistors [BJT] controlled by field-effect, e.g. insulated gate bipolar transistors [IGBT]
- H01L29/66333—Vertical insulated gate bipolar transistors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66234—Bipolar junction transistors [BJT]
- H01L29/66325—Bipolar junction transistors [BJT] controlled by field-effect, e.g. insulated gate bipolar transistors [IGBT]
- H01L29/66333—Vertical insulated gate bipolar transistors
- H01L29/66348—Vertical insulated gate bipolar transistors with a recessed gate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/70—Bipolar devices
- H01L29/72—Transistor-type devices, i.e. able to continuously respond to applied control signals
- H01L29/739—Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
- H01L29/7393—Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/70—Bipolar devices
- H01L29/72—Transistor-type devices, i.e. able to continuously respond to applied control signals
- H01L29/739—Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
- H01L29/7393—Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
- H01L29/7394—Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET on an insulating layer or substrate, e.g. thin film device or device isolated from the bulk substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/70—Bipolar devices
- H01L29/72—Transistor-type devices, i.e. able to continuously respond to applied control signals
- H01L29/739—Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
- H01L29/7393—Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
- H01L29/7395—Vertical transistors, e.g. vertical IGBT
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/70—Bipolar devices
- H01L29/72—Transistor-type devices, i.e. able to continuously respond to applied control signals
- H01L29/739—Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
- H01L29/7393—Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
- H01L29/7395—Vertical transistors, e.g. vertical IGBT
- H01L29/7396—Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions
- H01L29/7397—Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions and a gate structure lying on a slanted or vertical surface or formed in a groove, e.g. trench gate IGBT
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/7801—DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/7801—DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
- H01L29/7802—Vertical DMOS transistors, i.e. VDMOS transistors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/7801—DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
- H01L29/7802—Vertical DMOS transistors, i.e. VDMOS transistors
- H01L29/7812—Vertical DMOS transistors, i.e. VDMOS transistors with a substrate comprising an insulating layer, e.g. SOI-VDMOS transistors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/7801—DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
- H01L29/7802—Vertical DMOS transistors, i.e. VDMOS transistors
- H01L29/7813—Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/7801—DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
- H01L29/7816—Lateral DMOS transistors, i.e. LDMOS transistors
- H01L29/7824—Lateral DMOS transistors, i.e. LDMOS transistors with a substrate comprising an insulating layer, e.g. SOI-LDMOS transistors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/76—Making of isolation regions between components
- H01L21/762—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
- H01L21/7624—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
- H01L21/76264—SOI together with lateral isolation, e.g. using local oxidation of silicon, or dielectric or polycristalline material refilled trench or air gap isolation regions, e.g. completely isolated semiconductor islands
- H01L21/76289—Lateral isolation by air gap
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/0603—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
- H01L29/0607—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
- H01L29/0611—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
- H01L29/0615—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
- H01L29/0619—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/0684—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
- H01L29/0692—Surface layout
- H01L29/0696—Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/12—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/16—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
- H01L29/1608—Silicon carbide
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/12—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/20—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
- H01L29/2003—Nitride compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/41—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
- H01L29/423—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
- H01L29/42312—Gate electrodes for field effect devices
- H01L29/42316—Gate electrodes for field effect devices for field-effect transistors
- H01L29/4232—Gate electrodes for field effect devices for field-effect transistors with insulated gate
- H01L29/42364—Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
- H01L29/42368—Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity the thickness being non-uniform
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/7831—Field effect transistors with field effect produced by an insulated gate with multiple gate structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Computer Hardware Design (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Composite Materials (AREA)
- Chemical & Material Sciences (AREA)
- Thin Film Transistor (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
- Design And Manufacture Of Integrated Circuits (AREA)
- Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)
- Element Separation (AREA)
- Electrodes Of Semiconductors (AREA)
Abstract
Description
Claims (45)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US23421900P | 2000-09-21 | 2000-09-21 | |
US60/234,219 | 2000-09-21 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1470073A CN1470073A (zh) | 2004-01-21 |
CN1233041C true CN1233041C (zh) | 2005-12-21 |
Family
ID=22880440
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB018176437A Expired - Fee Related CN1233041C (zh) | 2000-09-21 | 2001-09-20 | 半导体器件及其制作方法 |
Country Status (12)
Country | Link |
---|---|
US (5) | US6703684B2 (zh) |
EP (1) | EP1319252B1 (zh) |
JP (1) | JP5392959B2 (zh) |
KR (1) | KR100841141B1 (zh) |
CN (1) | CN1233041C (zh) |
AT (1) | ATE545958T1 (zh) |
AU (2) | AU9006801A (zh) |
CA (1) | CA2423028A1 (zh) |
IL (2) | IL154945A0 (zh) |
RU (1) | RU2276429C2 (zh) |
WO (1) | WO2002025700A2 (zh) |
ZA (1) | ZA200302065B (zh) |
Families Citing this family (135)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19909105A1 (de) * | 1999-03-02 | 2000-09-14 | Siemens Ag | Symmetrischer Thyristor mit verringerter Dicke und Herstellungsverfahren dafür |
GB2371922B (en) * | 2000-09-21 | 2004-12-15 | Cambridge Semiconductor Ltd | Semiconductor device and method of forming a semiconductor device |
WO2002025700A2 (en) * | 2000-09-21 | 2002-03-28 | Cambridge Semiconductor Limited | Semiconductor device and method of forming a semiconductor device |
WO2003038906A2 (en) * | 2001-11-01 | 2003-05-08 | Koninklijke Philips Electronics N.V. | Lateral soi field-effect transistor and method of making the same |
US6900501B2 (en) | 2001-11-02 | 2005-05-31 | Cree Microwave, Inc. | Silicon on insulator device with improved heat removal |
FR2834575B1 (fr) * | 2002-01-09 | 2004-07-09 | St Microelectronics Sa | Procede de modelisation et de realisation d'un circuit integre comportant au moins un transistor a effet de champ a grille isolee, et circuit integre correspondant |
JP2005531153A (ja) * | 2002-06-26 | 2005-10-13 | ケンブリッジ セミコンダクター リミテッド | ラテラル半導体デバイス |
EP1576669A1 (en) * | 2002-12-10 | 2005-09-21 | Power Electronics Design Centre | Power integrated circuits |
JP4220229B2 (ja) * | 2002-12-16 | 2009-02-04 | 大日本印刷株式会社 | 荷電粒子線露光用マスクブランクスおよび荷電粒子線露光用マスクの製造方法 |
WO2004066391A1 (ja) * | 2003-01-20 | 2004-08-05 | Mitsubishi Denki Kabushiki Kaisha | 半導体装置 |
EP1634107A4 (en) * | 2003-04-23 | 2006-05-24 | Dewell Corp | METHOD AND SYSTEM FOR COUPLING WAVEGUIDES |
US6830963B1 (en) * | 2003-10-09 | 2004-12-14 | Micron Technology, Inc. | Fully depleted silicon-on-insulator CMOS logic |
US7550781B2 (en) * | 2004-02-12 | 2009-06-23 | International Rectifier Corporation | Integrated III-nitride power devices |
US7465997B2 (en) * | 2004-02-12 | 2008-12-16 | International Rectifier Corporation | III-nitride bidirectional switch |
US7075093B2 (en) | 2004-05-12 | 2006-07-11 | Gorski Richard M | Parallel multi-electron beam lithography for IC fabrication with precise X-Y translation |
US7105875B2 (en) * | 2004-06-03 | 2006-09-12 | Wide Bandgap, Llc | Lateral power diodes |
EP1617476A3 (en) * | 2004-07-16 | 2007-12-26 | Power Electronics Design Centre | Vertical integration in power integrated circuits |
DE102004037087A1 (de) * | 2004-07-30 | 2006-03-23 | Advanced Micro Devices, Inc., Sunnyvale | Selbstvorspannende Transistorstruktur und SRAM-Zellen mit weniger als sechs Transistoren |
US20060022263A1 (en) * | 2004-07-30 | 2006-02-02 | International Rectifier Corporation | Selective substrate thinning for power mosgated devices |
EP1794799B1 (en) | 2004-09-03 | 2011-05-25 | Cambridge Semiconductor Limited | Semiconductor device and method of forming a semiconductor device |
GB2418063A (en) * | 2004-09-08 | 2006-03-15 | Cambridge Semiconductor Ltd | SOI power device |
DE102004047358B3 (de) * | 2004-09-29 | 2005-11-03 | Infineon Technologies Ag | In zwei Halbleiterkörpern integrierte Schaltungsanordnung mit einem Leistungsbauelement und einer Ansteuerschaltung |
US20080291973A1 (en) * | 2004-11-16 | 2008-11-27 | Acco | Integrated Ultra-Wideband (Uwb) Pulse Generator |
JP5011681B2 (ja) | 2004-12-02 | 2012-08-29 | 日産自動車株式会社 | 半導体装置 |
US7045830B1 (en) * | 2004-12-07 | 2006-05-16 | Fairchild Semiconductor Corporation | High-voltage diodes formed in advanced power integrated circuit devices |
US7547964B2 (en) * | 2005-04-25 | 2009-06-16 | International Rectifier Corporation | Device packages having a III-nitride based power semiconductor device |
US7301220B2 (en) | 2005-05-20 | 2007-11-27 | Cambridge Semiconductor Limited | Semiconductor device and method of forming a semiconductor device |
DE102005027369A1 (de) * | 2005-06-14 | 2006-12-28 | Atmel Germany Gmbh | Integrierter Schaltkreis und Verfahren zur Herstellung eines integrierten Schaltkreises |
WO2007003967A2 (en) * | 2005-07-06 | 2007-01-11 | Cambridge Semiconductor Limited | Switch mode power supply control systems |
EP2544241A3 (en) | 2005-10-12 | 2013-03-20 | Acco | Insulated gate field-effect transistor having a dummy gate |
JP5003043B2 (ja) * | 2005-10-26 | 2012-08-15 | 株式会社デンソー | 半導体装置 |
KR100684199B1 (ko) * | 2005-11-15 | 2007-02-20 | 삼성전자주식회사 | 전력 반도체 장치 및 그 제조 방법 |
US7710098B2 (en) * | 2005-12-16 | 2010-05-04 | Cambridge Semiconductor Limited | Power supply driver circuit |
US7733098B2 (en) * | 2005-12-22 | 2010-06-08 | Cambridge Semiconductor Limited | Saturation detection circuits |
GB0615029D0 (en) * | 2005-12-22 | 2006-09-06 | Cambridge Semiconductor Ltd | Switch mode power supply controllers |
US7465964B2 (en) | 2005-12-30 | 2008-12-16 | Cambridge Semiconductor Limited | Semiconductor device in which an injector region is isolated from a substrate |
US7525151B2 (en) * | 2006-01-05 | 2009-04-28 | International Rectifier Corporation | Vertical DMOS device in integrated circuit |
JP2007243080A (ja) * | 2006-03-13 | 2007-09-20 | Fuji Electric Holdings Co Ltd | 半導体装置およびその製造方法 |
US7449762B1 (en) | 2006-04-07 | 2008-11-11 | Wide Bandgap Llc | Lateral epitaxial GaN metal insulator semiconductor field effect transistor |
WO2008003041A2 (en) * | 2006-06-28 | 2008-01-03 | Great Wall Semiconductor Corporation | Circuit and method of reducing body diode reverse recovery time of lateral power semiconduction devices |
US20080061309A1 (en) * | 2006-07-21 | 2008-03-13 | Young Sir Chung | Semiconductor device with under-filled heat extractor |
FR2905519B1 (fr) * | 2006-08-31 | 2008-12-19 | St Microelectronics Sa | Procede de fabrication de circuit integre a transistors completement depletes et partiellement depletes |
US7662698B2 (en) * | 2006-11-07 | 2010-02-16 | Raytheon Company | Transistor having field plate |
WO2008098374A1 (en) * | 2007-02-16 | 2008-08-21 | Affinium Pharmaceuticals, Inc. | Salts, prodrugs and polymorphs of fab i inhibitors |
JP4616856B2 (ja) * | 2007-03-27 | 2011-01-19 | 株式会社日立製作所 | 半導体装置、及び半導体装置の製造方法 |
US9024378B2 (en) * | 2013-02-09 | 2015-05-05 | Alpha And Omega Semiconductor Incorporated | Device structure and manufacturing method using HDP deposited source-body implant block |
WO2008152911A1 (ja) * | 2007-06-08 | 2008-12-18 | Panasonic Electric Works Co., Ltd. | 半導体装置とその製造方法 |
US8859396B2 (en) | 2007-08-07 | 2014-10-14 | Semiconductor Components Industries, Llc | Semiconductor die singulation method |
US7989319B2 (en) * | 2007-08-07 | 2011-08-02 | Semiconductor Components Industries, Llc | Semiconductor die singulation method |
US7714407B2 (en) | 2007-08-29 | 2010-05-11 | Cambridge Semiconductor Limited | Semiconductor device and method of forming a semiconductor device |
US7531993B2 (en) | 2007-08-29 | 2009-05-12 | Cambridge Semiconductor Limited | Half bridge circuit and method of operating a half bridge circuit |
US8304316B2 (en) * | 2007-12-20 | 2012-11-06 | Cambridge Semiconductor Limited | Semiconductor device and method of forming a semiconductor device |
US9620614B2 (en) * | 2007-12-31 | 2017-04-11 | Alpha And Omega Semiconductor Incorporated | Sawtooth electric field drift region structure for power semiconductor devices |
US7790524B2 (en) * | 2008-01-11 | 2010-09-07 | International Business Machines Corporation | Device and design structures for memory cells in a non-volatile random access memory and methods of fabricating such device structures |
US7772651B2 (en) * | 2008-01-11 | 2010-08-10 | International Business Machines Corporation | Semiconductor-on-insulator high-voltage device structures, methods of fabricating such device structures, and design structures for high-voltage circuits |
US7786535B2 (en) * | 2008-01-11 | 2010-08-31 | International Business Machines Corporation | Design structures for high-voltage integrated circuits |
US7790543B2 (en) * | 2008-01-11 | 2010-09-07 | International Business Machines Corporation | Device structures for a metal-oxide-semiconductor field effect transistor and methods of fabricating such device structures |
DE102008007029B4 (de) * | 2008-01-31 | 2014-07-03 | Globalfoundries Dresden Module One Limited Liability Company & Co. Kg | Betrieb einer elektronischen Schaltung mit körpergesteuertem Doppelkanaltransistor und SRAM-Zelle mit körpergesteuertem Doppelkanaltransistor |
US8928410B2 (en) | 2008-02-13 | 2015-01-06 | Acco Semiconductor, Inc. | Electronic circuits including a MOSFET and a dual-gate JFET |
US9240402B2 (en) | 2008-02-13 | 2016-01-19 | Acco Semiconductor, Inc. | Electronic circuits including a MOSFET and a dual-gate JFET |
KR101222758B1 (ko) * | 2008-02-13 | 2013-01-15 | 아코 세미컨덕터, 인크 | 높은 항복 전압 이중 게이트 반도체 디바이스 |
US7969243B2 (en) * | 2009-04-22 | 2011-06-28 | Acco Semiconductor, Inc. | Electronic circuits including a MOSFET and a dual-gate JFET |
US7863645B2 (en) * | 2008-02-13 | 2011-01-04 | ACCO Semiconductor Inc. | High breakdown voltage double-gate semiconductor device |
US7804119B2 (en) * | 2008-04-08 | 2010-09-28 | International Business Machines Corporation | Device structures with a hyper-abrupt P-N junction, methods of forming a hyper-abrupt P-N junction, and design structures for an integrated circuit |
US7804124B2 (en) * | 2008-05-09 | 2010-09-28 | International Business Machines Corporation | Device structures for a memory cell of a non-volatile random access memory and design structures for a non-volatile random access memory |
US7700428B2 (en) * | 2008-05-09 | 2010-04-20 | International Business Machines Corporation | Methods of fabricating a device structure for use as a memory cell in a non-volatile random access memory |
US7521280B1 (en) | 2008-07-31 | 2009-04-21 | International Business Machines Corporation | Method for forming an optical image sensor with an integrated metal-gate reflector |
US8174069B2 (en) | 2008-08-05 | 2012-05-08 | Cambridge Semiconductor Limited | Power semiconductor device and a method of forming a power semiconductor device |
US8080862B2 (en) * | 2008-09-09 | 2011-12-20 | Qualcomm Incorporate | Systems and methods for enabling ESD protection on 3-D stacked devices |
US20100117153A1 (en) * | 2008-11-07 | 2010-05-13 | Honeywell International Inc. | High voltage soi cmos device and method of manufacture |
US8106487B2 (en) | 2008-12-23 | 2012-01-31 | Pratt & Whitney Rocketdyne, Inc. | Semiconductor device having an inorganic coating layer applied over a junction termination extension |
US7808415B1 (en) * | 2009-03-25 | 2010-10-05 | Acco Semiconductor, Inc. | Sigma-delta modulator including truncation and applications thereof |
US9390974B2 (en) | 2012-12-21 | 2016-07-12 | Qualcomm Incorporated | Back-to-back stacked integrated circuit assembly and method of making |
US9034732B2 (en) | 2009-07-15 | 2015-05-19 | Silanna Semiconductor U.S.A., Inc. | Semiconductor-on-insulator with back side support layer |
EP2937898A1 (en) | 2009-07-15 | 2015-10-28 | Silanna Semiconductor U.S.A., Inc. | Semiconductor-on-insulator with backside heat dissipation |
US8912646B2 (en) | 2009-07-15 | 2014-12-16 | Silanna Semiconductor U.S.A., Inc. | Integrated circuit assembly and method of making |
KR101818556B1 (ko) | 2009-07-15 | 2018-01-15 | 퀄컴 인코포레이티드 | 이면측 바디 연결을 가진 반도체-온-절연체 |
US9466719B2 (en) | 2009-07-15 | 2016-10-11 | Qualcomm Incorporated | Semiconductor-on-insulator with back side strain topology |
US9496227B2 (en) | 2009-07-15 | 2016-11-15 | Qualcomm Incorporated | Semiconductor-on-insulator with back side support layer |
JP2011044667A (ja) * | 2009-08-24 | 2011-03-03 | Shin Etsu Handotai Co Ltd | 半導体装置の製造方法 |
US7952431B2 (en) * | 2009-08-28 | 2011-05-31 | Acco Semiconductor, Inc. | Linearization circuits and methods for power amplification |
US8482031B2 (en) | 2009-09-09 | 2013-07-09 | Cambridge Semiconductor Limited | Lateral insulated gate bipolar transistors (LIGBTS) |
US8115253B2 (en) * | 2009-09-10 | 2012-02-14 | United Microelectronics Corp. | Ultra high voltage MOS transistor device |
US8274129B2 (en) * | 2009-10-23 | 2012-09-25 | National Semiconductor Corporation | Power transistor with improved high-side operating characteristics and reduced resistance and related apparatus and method |
EP2504082A4 (en) * | 2009-11-25 | 2016-11-09 | Univ Sydney | MEMBRANE AND MEMBRANE SEPARATION SYSTEM |
US8532584B2 (en) | 2010-04-30 | 2013-09-10 | Acco Semiconductor, Inc. | RF switches |
US8610211B2 (en) | 2010-07-23 | 2013-12-17 | International Business Machines Corporation | Semiconductor-on-insulator (SOI) structure with selectively placed sub-insulator layer void(s) and method of forming the SOI structure |
JP2012028565A (ja) * | 2010-07-23 | 2012-02-09 | Kansai Electric Power Co Inc:The | バイポーラ半導体素子の製造方法およびバイポーラ半導体素子 |
US8389348B2 (en) * | 2010-09-14 | 2013-03-05 | Taiwan Semiconductor Manufacturing Company, Ltd. | Mechanism of forming SiC crystalline on Si substrates to allow integration of GaN and Si electronics |
US9159825B2 (en) | 2010-10-12 | 2015-10-13 | Silanna Semiconductor U.S.A., Inc. | Double-sided vertical semiconductor device with thinned substrate |
EP2628186A4 (en) * | 2010-10-12 | 2015-11-25 | Silanna Semiconductor Usa Inc | VERTICAL SEMICONDUCTOR DEVICE WITH IMPROVED SUBSTRATE |
US9184214B2 (en) | 2011-04-11 | 2015-11-10 | Globalfoundries Inc. | Semiconductor device exhibiting reduced parasitics and method for making same |
US8524548B2 (en) | 2011-04-26 | 2013-09-03 | National Semiconductor Corporation | DMOS Transistor with a cavity that lies below the drift region |
DE102011052605B4 (de) | 2011-08-11 | 2014-07-10 | Infineon Technologies Austria Ag | Verfahren zur Herstellung einer Halbleitervorrichtung |
US8709893B2 (en) * | 2011-08-23 | 2014-04-29 | Alpha & Omega Semiconductor, Inc. | Method of making a low-Rdson vertical power MOSFET device |
US8866252B2 (en) | 2011-09-15 | 2014-10-21 | Cambridge Semiconductor Limited | Power semiconductor devices and fabrication methods |
TWI478245B (zh) * | 2011-09-27 | 2015-03-21 | Alpha & Omega Semiconductor | 一種低導通電阻的功率mos電晶體裝置及其製備方法 |
CN103021858B (zh) * | 2011-09-27 | 2015-05-27 | 万国半导体股份有限公司 | 一种低导通电阻的功率mos晶体管器件及其制备方法 |
CN103222057A (zh) * | 2011-11-17 | 2013-07-24 | 富士电机株式会社 | 半导体器件以及半导体器件的制造方法 |
US9184138B2 (en) | 2011-12-29 | 2015-11-10 | Stmicroelectronics (Grenoble 2) Sas | Semiconductor integrated device with mechanically decoupled active area and related manufacturing process |
JP2013229449A (ja) * | 2012-04-25 | 2013-11-07 | Advanced Power Device Research Association | 窒化物系半導体素子 |
KR101928814B1 (ko) * | 2012-05-04 | 2018-12-14 | 한국전자통신연구원 | 질화물계 화합물 전력반도체 장치 및 그 제조 방법 |
JP5904276B2 (ja) * | 2012-05-18 | 2016-04-13 | 富士電機株式会社 | 半導体装置 |
ES2731474T3 (es) | 2012-06-19 | 2019-11-15 | Debiopharm Int Sa | Derivados de profármaco de (E)-N-metil-N-((3-metilbenzofuran-2-il)metil)-3-(7-oxo-5,6,7,8-tetrahidro-1,8-naftiridin-3-il)acrilamida |
US9136173B2 (en) | 2012-11-07 | 2015-09-15 | Semiconductor Components Industries, Llc | Singulation method for semiconductor die having a layer of material along one major surface |
US9484260B2 (en) | 2012-11-07 | 2016-11-01 | Semiconductor Components Industries, Llc | Heated carrier substrate semiconductor die singulation method |
US8779555B2 (en) * | 2012-12-06 | 2014-07-15 | Taiwan Semiconductor Manufacturing Co., Ltd. | Partial SOI on power device for breakdown voltage improvement |
US9698024B2 (en) | 2012-12-06 | 2017-07-04 | Taiwan Semiconductor Manufacturing Co., Ltd. | Partial SOI on power device for breakdown voltage improvement |
JPWO2014125565A1 (ja) * | 2013-02-12 | 2017-02-02 | トヨタ自動車株式会社 | 半導体装置とその製造方法 |
US8748245B1 (en) | 2013-03-27 | 2014-06-10 | Io Semiconductor, Inc. | Semiconductor-on-insulator integrated circuit with interconnect below the insulator |
US9478507B2 (en) | 2013-03-27 | 2016-10-25 | Qualcomm Incorporated | Integrated circuit assembly with faraday cage |
US9466536B2 (en) | 2013-03-27 | 2016-10-11 | Qualcomm Incorporated | Semiconductor-on-insulator integrated circuit with back side gate |
WO2015037166A1 (ja) * | 2013-09-11 | 2015-03-19 | パナソニックIpマネジメント株式会社 | 半導体装置 |
US9219185B2 (en) | 2013-12-19 | 2015-12-22 | Excelitas Technologies Singapore Pte. Ltd | CMOS integrated method for the fabrication of thermopile pixel with umbrella absorber on semiconductor substrate |
US9373772B2 (en) | 2014-01-15 | 2016-06-21 | Excelitas Technologies Singapore Pte. Ltd. | CMOS integrated method for the release of thermopile pixel on a substrate by using anisotropic and isotropic etching |
US9324760B2 (en) * | 2014-01-21 | 2016-04-26 | Excelitas Technologies Singapore Pte. Ltd | CMOS integrated method for fabrication of thermopile pixel on semiconductor substrate with buried insulation regions |
EP3422415B1 (en) * | 2014-02-28 | 2023-08-02 | LFoundry S.r.l. | Semiconductor device comprising a laterally diffused mos transistor |
US9515181B2 (en) | 2014-08-06 | 2016-12-06 | Qualcomm Incorporated | Semiconductor device with self-aligned back side features |
US9385041B2 (en) | 2014-08-26 | 2016-07-05 | Semiconductor Components Industries, Llc | Method for insulating singulated electronic die |
BR112017009843A2 (pt) * | 2014-11-13 | 2018-03-13 | Qualcomm Inc | semicondutor sobre isolante com topologia de tensão de lado posterior |
US11342189B2 (en) | 2015-09-17 | 2022-05-24 | Semiconductor Components Industries, Llc | Semiconductor packages with die including cavities and related methods |
US9893058B2 (en) * | 2015-09-17 | 2018-02-13 | Semiconductor Components Industries, Llc | Method of manufacturing a semiconductor device having reduced on-state resistance and structure |
US9899527B2 (en) * | 2015-12-31 | 2018-02-20 | Globalfoundries Singapore Pte. Ltd. | Integrated circuits with gaps |
EP3419628B1 (en) | 2016-02-26 | 2020-10-14 | Debiopharm International SA | Medicament for treatment of diabetic foot infections |
JP6658171B2 (ja) * | 2016-03-22 | 2020-03-04 | 富士電機株式会社 | 半導体装置の製造方法 |
DE102016119799B4 (de) | 2016-10-18 | 2020-08-06 | Infineon Technologies Ag | Integrierte schaltung, die einen vergrabenen hohlraum enthält, und herstellungsverfahren |
CN106952876A (zh) * | 2017-03-16 | 2017-07-14 | 浙江大学 | 一种金属叠层填沟槽阵列的碳化硅衬底结构 |
US11588024B2 (en) | 2017-03-17 | 2023-02-21 | Infineon Technologies Austria Ag | High voltage blocking III-V semiconductor device |
US10373869B2 (en) | 2017-05-24 | 2019-08-06 | Semiconductor Components Industries, Llc | Method of separating a back layer on a substrate using exposure to reduced temperature and related apparatus |
US10818551B2 (en) | 2019-01-09 | 2020-10-27 | Semiconductor Components Industries, Llc | Plasma die singulation systems and related methods |
CN109686332B (zh) * | 2019-01-24 | 2021-04-30 | 合肥鑫晟光电科技有限公司 | 补偿模块及逻辑门电路、栅极驱动电路和显示装置 |
US11251152B2 (en) * | 2020-03-12 | 2022-02-15 | Diodes Incorporated | Thinned semiconductor chip with edge support |
US11423204B1 (en) * | 2021-04-14 | 2022-08-23 | Taiwan Semiconductor Manufacturing Company Limited | System and method for back side signal routing |
DE102021204293A1 (de) | 2021-04-29 | 2022-11-03 | Robert Bosch Gesellschaft mit beschränkter Haftung | Vertikaler transistor und verfahren zum herstellen desselben |
RU207482U1 (ru) * | 2021-06-24 | 2021-10-29 | Акционерное общество "Микрон" (АО "Микрон") | Кремниевая коммутационная плата для многокристальных интегральных модулей |
Family Cites Families (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1439712A1 (de) | 1964-08-08 | 1968-11-28 | Telefunken Patent | Verfahren zur Herstellung isolierter einkristalliner Bereiche mit geringer Nebenschlusskapazitaet im Halbleiterkoerper einer mikrominiaturisierten Schaltungsanordnung auf Festkoerperbasis |
JPS5287988A (en) * | 1976-01-19 | 1977-07-22 | Hitachi Ltd | High dielectric strength semiconductor device |
JPS5289473A (en) * | 1976-01-21 | 1977-07-27 | Hitachi Ltd | Transistor |
US5241210A (en) | 1987-02-26 | 1993-08-31 | Kabushiki Kaisha Toshiba | High breakdown voltage semiconductor device |
US5343067A (en) | 1987-02-26 | 1994-08-30 | Kabushiki Kaisha Toshiba | High breakdown voltage semiconductor device |
US5354695A (en) | 1992-04-08 | 1994-10-11 | Leedy Glenn J | Membrane dielectric isolation IC fabrication |
US5164218A (en) | 1989-05-12 | 1992-11-17 | Nippon Soken, Inc. | Semiconductor device and a method for producing the same |
JPH05129423A (ja) * | 1991-10-30 | 1993-05-25 | Rohm Co Ltd | 半導体装置及びその製造方法 |
JPH0645340A (ja) * | 1991-11-12 | 1994-02-18 | Rohm Co Ltd | 半導体装置及びその製造方法 |
IT1254799B (it) | 1992-02-18 | 1995-10-11 | St Microelectronics Srl | Transistore vdmos con migliorate caratteristiche di tenuta di tensione. |
US6008126A (en) * | 1992-04-08 | 1999-12-28 | Elm Technology Corporation | Membrane dielectric isolation IC fabrication |
JPH06151573A (ja) | 1992-11-06 | 1994-05-31 | Hitachi Ltd | 半導体集積回路装置 |
US6040617A (en) | 1992-12-22 | 2000-03-21 | Stmicroelectronics, Inc. | Structure to provide junction breakdown stability for deep trench devices |
GB9305448D0 (en) * | 1993-03-17 | 1993-05-05 | British Tech Group | Semiconductor structure and method of manufacturing same |
US5373183A (en) | 1993-04-28 | 1994-12-13 | Harris Corporation | Integrated circuit with improved reverse bias breakdown |
US5468982A (en) | 1994-06-03 | 1995-11-21 | Siliconix Incorporated | Trenched DMOS transistor with channel block at cell trench corners |
US5631491A (en) | 1994-09-27 | 1997-05-20 | Fuji Electric Co., Ltd. | Lateral semiconductor device and method of fixing potential of the same |
US6124179A (en) * | 1996-09-05 | 2000-09-26 | Adamic, Jr.; Fred W. | Inverted dielectric isolation process |
JPH08167617A (ja) * | 1994-12-14 | 1996-06-25 | Sanyo Electric Co Ltd | 高耐圧半導体装置 |
US5567978A (en) * | 1995-02-03 | 1996-10-22 | Harris Corporation | High voltage, junction isolation semiconductor device having dual conductivity tape buried regions and its process of manufacture |
US6720615B2 (en) * | 1996-01-22 | 2004-04-13 | Fuji Electric Co., Ltd. | Vertical-type MIS semiconductor device |
JPH09293886A (ja) * | 1996-04-26 | 1997-11-11 | New Japan Radio Co Ltd | 半導体装置及びその製造方法 |
JPH1050718A (ja) * | 1996-08-07 | 1998-02-20 | Hitachi Ltd | 半導体装置の製造方法 |
US5895972A (en) | 1996-12-31 | 1999-04-20 | Intel Corporation | Method and apparatus for cooling the backside of a semiconductor device using an infrared transparent heat slug |
GB2321336B (en) | 1997-01-15 | 2001-07-25 | Univ Warwick | Gas-sensing semiconductor devices |
DE19811604B4 (de) | 1997-03-18 | 2007-07-12 | Kabushiki Kaisha Toshiba, Kawasaki | Halbleitervorrichtung |
US6074890A (en) * | 1998-01-08 | 2000-06-13 | Rockwell Science Center, Llc | Method of fabricating suspended single crystal silicon micro electro mechanical system (MEMS) devices |
US6104062A (en) * | 1998-06-30 | 2000-08-15 | Intersil Corporation | Semiconductor device having reduced effective substrate resistivity and associated methods |
US6444487B1 (en) * | 1998-07-28 | 2002-09-03 | Rosemount Aerospace Inc. | Flexible silicon strain gage |
US20020003274A1 (en) * | 1998-08-27 | 2002-01-10 | Janusz Bryzek | Piezoresistive sensor with epi-pocket isolation |
WO2000042662A1 (de) | 1999-01-12 | 2000-07-20 | eupec Europäische Gesellschaft für Leistungshalbleiter mbH & Co. KG | Leistungshalbleiterbauelement mit mesa-randabschluss |
WO2002025700A2 (en) * | 2000-09-21 | 2002-03-28 | Cambridge Semiconductor Limited | Semiconductor device and method of forming a semiconductor device |
-
2001
- 2001-09-20 WO PCT/GB2001/004211 patent/WO2002025700A2/en active Application Filing
- 2001-09-20 RU RU2003111170/28A patent/RU2276429C2/ru not_active IP Right Cessation
- 2001-09-20 CA CA002423028A patent/CA2423028A1/en not_active Abandoned
- 2001-09-20 JP JP2002529813A patent/JP5392959B2/ja not_active Expired - Fee Related
- 2001-09-20 IL IL15494501A patent/IL154945A0/xx active IP Right Grant
- 2001-09-20 AU AU9006801A patent/AU9006801A/xx active Pending
- 2001-09-20 AU AU2001290068A patent/AU2001290068B2/en not_active Ceased
- 2001-09-20 CN CNB018176437A patent/CN1233041C/zh not_active Expired - Fee Related
- 2001-09-20 AT AT01969945T patent/ATE545958T1/de active
- 2001-09-20 KR KR1020037004115A patent/KR100841141B1/ko not_active IP Right Cessation
- 2001-09-20 EP EP01969945A patent/EP1319252B1/en not_active Expired - Lifetime
- 2001-09-21 US US09/957,547 patent/US6703684B2/en not_active Expired - Lifetime
-
2003
- 2003-03-14 ZA ZA200302065A patent/ZA200302065B/en unknown
- 2003-03-17 IL IL154945A patent/IL154945A/en not_active IP Right Cessation
- 2003-10-29 US US10/694,735 patent/US6900518B2/en not_active Expired - Lifetime
- 2003-10-29 US US10/694,736 patent/US6927102B2/en not_active Expired - Lifetime
-
2005
- 2005-07-06 US US11/174,606 patent/US7235439B2/en not_active Expired - Lifetime
- 2005-07-06 US US11/174,605 patent/US7411272B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
US20020041003A1 (en) | 2002-04-11 |
US20040087065A1 (en) | 2004-05-06 |
WO2002025700A3 (en) | 2002-06-06 |
IL154945A (en) | 2007-09-20 |
JP5392959B2 (ja) | 2014-01-22 |
IL154945A0 (en) | 2003-10-31 |
KR100841141B1 (ko) | 2008-06-24 |
US7235439B2 (en) | 2007-06-26 |
EP1319252A2 (en) | 2003-06-18 |
US6927102B2 (en) | 2005-08-09 |
WO2002025700A2 (en) | 2002-03-28 |
US20050242369A1 (en) | 2005-11-03 |
US7411272B2 (en) | 2008-08-12 |
RU2276429C2 (ru) | 2006-05-10 |
US20050242368A1 (en) | 2005-11-03 |
CN1470073A (zh) | 2004-01-21 |
AU2001290068C1 (en) | 2002-04-02 |
ATE545958T1 (de) | 2012-03-15 |
US6703684B2 (en) | 2004-03-09 |
CA2423028A1 (en) | 2002-03-28 |
US6900518B2 (en) | 2005-05-31 |
AU9006801A (en) | 2002-04-02 |
EP1319252B1 (en) | 2012-02-15 |
KR20030064753A (ko) | 2003-08-02 |
ZA200302065B (en) | 2004-02-26 |
US20040084752A1 (en) | 2004-05-06 |
AU2001290068B2 (en) | 2006-03-02 |
JP2004510329A (ja) | 2004-04-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1233041C (zh) | 半导体器件及其制作方法 | |
US9601334B2 (en) | Semiconductor device and the method of manufacturing the same | |
US9761702B2 (en) | Power MOSFET having planar channel, vertical current path, and top drain electrode | |
US7714383B2 (en) | Semiconductor device | |
EP1145326B1 (en) | Cellular trench-gate field-effect transistors | |
CN103137494B (zh) | 半导体器件和场电极 | |
US6239463B1 (en) | Low resistance power MOSFET or other device containing silicon-germanium layer | |
US7560787B2 (en) | Trench field plate termination for power devices | |
KR101404906B1 (ko) | 자기-바이어스 전극을 포함하는 수평형 전력 디바이스 | |
CN1864270A (zh) | 绝缘栅型半导体器件及其制造方法 | |
US20220320295A1 (en) | Sic mosfet structures with asymmetric trench oxide | |
CN102420249B (zh) | 功率半导体装置 | |
US20060216896A1 (en) | Semiconductor device and method for manufacturing same | |
US20060006409A1 (en) | Power semiconductor device | |
US20100032790A1 (en) | Rectifier With PN Clamp Regions Under Trenches | |
US6787872B2 (en) | Lateral conduction superjunction semiconductor device | |
JP2003273355A (ja) | 半導体素子およびその製造方法 | |
JP2004511910A (ja) | トレンチショットキー整流器が組み込まれたトレンチ二重拡散金属酸化膜半導体トランジスタ | |
CN105103290B (zh) | 半导体装置的制造方法 | |
JP2011124464A (ja) | 半導体装置及びその製造方法 | |
US20040129973A1 (en) | Power semiconductor device | |
JP2004134597A (ja) | 半導体素子 | |
US20060220061A1 (en) | Semiconductor device and method of manufacturing the same | |
CN1539169A (zh) | 对称沟槽mosfet器件及其制造方法 | |
KR20000077429A (ko) | 선택적 에피택셜 성장에 의해 형성된 트렌치 벽을 갖는파워-게이트 디바이스 및 디바이스의 성형공정 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
ASS | Succession or assignment of patent right |
Owner name: CAMBRIDGE MICROELECTRONICS LTD. Free format text: FORMER OWNER: CAMBRIDGE SEMICONDUCTOR LIMITED Effective date: 20150729 |
|
C41 | Transfer of patent application or patent right or utility model | ||
TR01 | Transfer of patent right |
Effective date of registration: 20150729 Address after: cambridge Patentee after: CAMBRIDGE MICROELECTRONICS LTD. Address before: cambridge Patentee before: Cambridge Semiconductor Ltd. |
|
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20051221 Termination date: 20200920 |