CN1199078A - 长余辉荧光物质 - Google Patents

长余辉荧光物质 Download PDF

Info

Publication number
CN1199078A
CN1199078A CN98109570A CN98109570A CN1199078A CN 1199078 A CN1199078 A CN 1199078A CN 98109570 A CN98109570 A CN 98109570A CN 98109570 A CN98109570 A CN 98109570A CN 1199078 A CN1199078 A CN 1199078A
Authority
CN
China
Prior art keywords
long
fluorescent substance
ltoreq
lasting
equal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN98109570A
Other languages
English (en)
Other versions
CN1093869C (zh
Inventor
傅杰
越智康夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ohara Inc
Original Assignee
Ohara Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP27210197A external-priority patent/JP3193677B2/ja
Application filed by Ohara Inc filed Critical Ohara Inc
Publication of CN1199078A publication Critical patent/CN1199078A/zh
Application granted granted Critical
Publication of CN1093869C publication Critical patent/CN1093869C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7783Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals one of which being europium
    • C09K11/7797Borates
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0036Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and a divalent metal oxide as main constituents
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/095Glass compositions containing silica with 40% to 90% silica, by weight containing rare earths
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/12Compositions for glass with special properties for luminescent glass; for fluorescent glass
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/7735Germanates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7783Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals one of which being europium
    • C09K11/7792Aluminates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7783Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals one of which being europium
    • C09K11/77924Aluminosilicates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7783Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals one of which being europium
    • C09K11/7793Germanates

Abstract

提供了一种由二价铕激活并具有化学组成为RO·a(Al1-xGax)2O3·b(Y1yScy)2O3·cB2O3·dEu2+·eMn+的长余辉荧光物质(其中R如说明书中定义),其中a、b、c、d、e、x和y的范围如说明书中定义。还提供了一种由二价铕激活并具有化学组成为RO·a(Al1-xGax)2O3·b(Si1-yGey)O2·cEu2+·dMn+的长余辉荧光物质(其中R如说明书中定义),其中a、b、c、d、x和y的范围如说明书中定义。

Description

长余辉荧光物质
本发明涉及长余辉荧光物质,更具体地,涉及具有改进荧光亮度和寿命的长余辉荧光物质。
荧光是当材料由外面施加的激发源激发时发射可见光的现象。荧光灯、放电管和阴极射线管(CRT)发射荧光。发射荧光的材料称之为荧光物质。当在激发停止后由荧光物质发射的光持续的时间期间足以被肉眼觉察到,即约0.1秒或更长时,该光称之为磷光。在室温持续几个小时的长持续磷光的荧光材料称之为长余辉荧光物质或储光荧光物质。作为长余辉荧光物质,现有技术有2种类型,即由ZnS:Cu表示的硫化物和Eu2+激活的碱土金属铝酸盐RAl2O4(R是碱土金属)。ZnS:Cu硫化物长余辉荧光物质已经使用几十年了,但它们的缺点在于其余辉持续时间相对短,即最长约3小时。此外,这类荧光物质的致命缺点是:在日光中所含的紫外线和含于空气中的水分的共同存在下发生 的分解反应,使得荧光物质颜色变黑,结果在较短的时间内余辉特性显著地变坏。由于这个原因,这类荧光物质仅有有限的用途,例如夜光表和房子中位置的夜间显示。
另一方面,最近研制的Eu2+激活的碱土金属铝酸盐长余辉荧光物质(美国专利号5376303和5424006,日本专利申请公开特许号8-73845、8-127772、8-151573和8-151574)与ZnS:Cu荧光物质相比显示出更高的磷光亮度、更长的寿命以及更好的化学耐久性和耐光性,因此,预计这些铝酸盐荧光物质除了现有的用于夜光表和房子中位置的夜间显示用途外还具有广泛的用途,例如用于防止灾难的标志、用于指示保持位置远离危险的标志和用于装饰等。
虽然长余辉荧光物质的用途被扩展了,但是,发现现有技术的长余辉荧光物质的磷光亮度仍然还不够高。因此需要长余辉荧光物质具有进一步改进的磷光亮度和寿命特性。还需要长余辉荧光物质具有在较短的时间迅速被激发的特性。
因此,本发明的第1个目的是提供一种新型的具有比现有技术铝酸盐荧光物质更高荧光亮度和更短激发时间的长余辉荧光物质。
在将长余辉荧光物质用于装饰目的例如装饰标志板的情况下,需要使用包括尽可能多颜色的余辉。上述日本专利申请公开特许号8-151573公开了通过将铝酸盐荧光物质与具有主要和辅助激活剂组合可以赋予不同的颜色。然而,在该公开特许申请中,用于赋予不同颜色的合适的这类辅助激活剂是有限的,因此可得到的颜色也限于较窄的范围内。
因此,本发明的第2个目的是提供一种新型的长余辉荧光物质,其在获得更长磷光和更高亮度的同时还能够提供更多的发射磷光的颜色。
在将长余辉荧光物质用于制造装饰品的情况下,由于用现有技术的铝酸盐长余辉发光物质通过烧结极难将其形成例如低于1mm厚的管,所以需要提供克服这一问题的长余辉荧光物质。
因此,本发明的第3个目的是提供一种新型的长余辉荧光物质,该荧光物质能够生产出其形状是难以用通过烧结制备的长余辉荧光物质制造的制品。
为了实现上述本发明的第1个目的,本发明人已经对现有的用二价铕激活的铝酸盐长余辉荧光物质进行了实验研究并发现:通过将氧化钇和/或氧化钪引入这些长余辉荧光物质,可以显著地增强磷光亮度同时维持磷光寿命。
根据已经实现了本发明第1个目的本发明,提供了Eu2+激活的具有化学组成为RO·a(Al1-xGax)2O3·b(Y1-yScy)2O3·cB2O3·dEu2+·eMn+的长余辉荧光物质(其中R是选自碱土金属包括Ba、Sr、Ca和Mg和Zn的至少一种,M是选自Nb、Zr、Bi、Mn、Sn、La、Ce、Pr、Nd、Sm、Gd、Tb、Dy、Ho、Er、Tm、Yb和Lu的至少一种的辅助激活剂),其中a、b、c、d、e、x和y在下面范围内:0.3≤a≤8,0<b≤0.2,0.001≤c≤0.2,0.001≤d≤0.3,0.001≤e≤0.3,0≤x<1.0,和0≤y≤1.0。
在本发明的一个方面,该长余辉荧光物质还含有0.001-8%摩尔的Li。
在本发明的另一个方面,该长余辉荧光物质在440nm附近的波长处具有发射峰并含有CaAl2O4和Ca(Rm,Y)Al(Al2O7)晶体(其中Rm是选自Eu、Dy、Sc、La、Ce、Pr、Nd、Sm、Gd、Tb、Ho、Er、Tm、Yb和Lu的至少一种)。
在本发明的另一个方面,该长余辉荧光物质在440nm附近的波长处具有发射峰并含有CaAl2O4和Ca(Eu,Nd,Y)Al(Al2O7)晶体。
在本发明的另一个方面,该长余辉荧光物质在520nm附近的波长处具有发射峰并含有SrAl2O4和(Rm,Y)AlO3晶体(其中Rm是选自Eu、Dy、Sc、La、Ce、Pr、Nd、Sm、Gd、Tb、Ho、Er、Tm、Yb和Lu的至少一种)。
在本发明的另一个方面,该长余辉荧光物质在520nm附近的波长处具有发射峰并含有SrAl2O4和(Eu,Dy,Y)AlO3晶体。
在本发明的另一个方面,该长余辉荧光物质在490nm附近的波长处具有发射峰并含有Sr4Al14O25和Al5(Rm,Y)3O12晶体(其中Rm是选自Eu、Dy、Sc、La、Ce、Pr、Nd、Sm、Gd、Tb、Ho、Er、Tm、Yb和Lu的至少一种)。
在本发明的另一个方面,该长余辉荧光物质在490nm附近的波长处具有发射峰并含有Sr4Al14O25和Al5(Eu,Dy,Y)3O12晶体。
为了实现上述本发明的第2个目的,本发明人已经进行了实验研究并发现:通过将二价铕作为主要激活剂与其它辅助激活剂或激活剂引入到现有的碱土金属硅铝酸盐中并选择性地组合Al2O3+Ga2O3和SiO2+GeO2的组成比和二价铕和辅助激活剂或激活剂在特定范围内的浓度,提供了具有比现有技术铝酸盐更丰富的各种波长发射磷光即它们发射的磷光具有更丰富的各种颜色的长余辉荧光物质,同时维持了足够长的长余辉磷光寿命和足够高的亮度。
根据已经实现了本发明第2个目的的发明,提供了Eu2+激活的具有化学组成为RO·a(Al1-xGax)2O3·b(Si1-yGey)O2·cEu2+·dMn+的长余辉荧光物质(其中R是选自碱土金属包括Ba、Sr、Ca和Mg和Zn的至少一种,M是选自Nb、Zr、Bi、Mn、Sn、La、Ce、Pr、Nd、Sm、Gd、Tb、Dy、Ho、Er、Tm、Yb和Lu至少一种的辅助激活剂),其中a、b、c、d、x和y在下面范围内:0.3≤a≤8,0.001≤b≤2,0.001≤c≤0.3,0.001≤d≤0.3,0≤x<1.0,和0≤y≤1.0。
已经发现:通过玻璃一陶瓷方法可以得到实现本发明第2个目的的长余辉荧光物质,由此可以容易地生产通过烧结难以制备其形状的制品。
根据已经实现了本发明第3个目的的发明,提供了玻璃一陶瓷荧光物质,其具有与上述用于实现本发明第2个目的的长余辉荧光物质相同的组成。
I.具有化学组成为RO·a(Al1-xGax)2O3·b(Y1-yScy)2O3·cB2O3·dEu2+·eMn+的长余辉荧光物质。
在这些长余辉荧光物质中,a表示Al2O3+Ga2O3或Al2O3的组成比,b表示Y2O3和/或Sc2O3的组成比。通过在0.3≤a≤8的范围内增加b高达0.2,已经观察到磷光亮度的显著改进。如果b增加到上述范围之外,那么亮度降低。在这些长余辉荧光物质中,c表示B2O3的组成比。已经发现:在0.001≤c≤0.2范围内B2O3在增加亮度方面是有效的。表示主要激活剂的浓度系数d应该在0.001≤d≤0.3的范围。如果d小于0.001,那么激发光不能够被有效地吸收,结果就不能产生肉眼能够辨别出的磷光亮度。相反,如果d超过0.3,那么由于浓度淬灭所以亮度降低。表示辅助激活剂的浓度系数e应该在0.001≤e≤0.3的范围。如果e小于0.001,那么改进磷光亮度和寿命的作用均弱,如果e超过0.3,那么亮度降低。
系数x表示用Ga替代Al的比。可以用Ga替代部分Al,并且在这种情况下,还可以获得优于现有技术ZnS:Cu荧光物质的长余辉荧光物质。可以用Ga替代几乎所有的Al,但为了得到更好的性质,该替代应该在x≤0.5的范围,优选在x≤0.2的范围。
系数y表示用Sc替代Y的比。可以用Sc替代所有的Y,但由于增加了Sc2O3的量所以材料的成本会增加,因此,y应该优选在y≤0.2的范围。
通过将Li加入到长余辉荧光物质中,进一步增加磷光亮度。如果Li的量小于0.001%,该效果不显著,如果Li的量超过8%,那么磷光亮度不增加反而降低。因此,Li的量应该在0.001-8%的范围内。为了得到特别好的效果,优选的Li的量在0.005-5%的范围。
对于改进磷光亮度,Y2O3是必不可少的组份。从X-射线衍射分析已经证实:在上述组成范围内,将CaAl2O和Ca(Rm,Y)Al(Al2O7)晶体(其中Rm是选自Eu、Dy、Sc、La、Ce、Pr、Nd、Sm、Gd、Tb、Ho、Er、Tm、Yb和Lu的至少-种)制备成在440nm附近的波长处具有发射峰的长余辉荧光物质,将SrAl2O4和(Rm,Y)AlO3晶体(其中Rm是选自Eu、Dy、Sc、La、Ce、Pr、Nd、Sm、Gd、Tb、Ho、Er、Tm、Yb和Lu的至少一种)制备成在520nm附近的波长处具有发射峰的长余辉荧光物质,和将Sr4Al14O25和Al5(Rm,Y)3O12晶体(其中Rm是选自Eu、Dy、Sc、La、Ce、Pr、Nd、Sm、Gd、Tb、Ho、Er、Tm、Yb和Lu的至少一种)制备成在490nm附近的波长处具有发射峰的长余辉荧光物质。
从这些结果假设:部分加入的Y2O3被掺入到铝酸盐晶体中但该组份的剩余部分被掺入到第2个相中。在前者的情况下,认为钇有助于促进形成载体捕获物(traps)或稳定直接有助于增强磷光亮度的载体捕获物,而在后者情况下,认为该第2个相通过调节铝酸盐晶体起稳定该载体捕获物的作用。由于这些原因,如从下面所述实施例变得显而易见的,通过加入Y2O3组份显著地提高了磷光亮度,此外,激发时间缩短了一半或以上。在包括CaAl2O4和Ca(Eu,Nd,Y)Al(Al2O7)晶体的在波长440nm附近处具有发射峰的长余辉荧光物质、包括SrAl2O4和(Eu,Dy,Y)AlO3晶体的在波长520nm附近处具有发射峰的长余辉荧光物质和包括Sr4Al14O25、SrAl2O4和Al5(Eu,Dy,Y)3O12晶体的在波长490nm附近处具有发射峰的长余辉荧光物质中得到了特别好的长余辉磷光(亮度和寿命)特性。在生产本发明的长余辉荧光物质过程中,可以将诸如NH4H2PO4的磷化合物,诸如NH4F、NH4Cl的卤素化合物和NH4B作为助熔剂加入。其最佳加入量在0.05-8%(摩尔)的范围内。
可以通过烧结制备上述化学组成的长余辉荧光物质。作为本发明长余辉荧光物质的原料,可以使用下面材料:
(1)作为RO组份,可以使用氧化物、碳酸盐、硝酸盐、卤化物等。
(2)作为Al2O3组份,可以使用氧化物、硝酸盐、氢氧化物、卤化物等。
(3)作为Y2O3组份,可以使用氧化物、硝酸盐、卤化物等。
(4)作为Rm组份,可以使用氧化物、碳酸盐、硝酸盐、卤化物等。
(5)作为Li组份,可以使用Li2CO3、LiNO3、Li2SO4、Li3BO3、Li3SiO3、Li3PO4、Li3WO3、Li3MO3、卤化物等。
将这些材料以预定的比例称重并充分混合。将该混合的材料放入铝坩埚中并在还原气氛中在约1100-1600℃的范围烧结约1-10个小时。在某些情况下,根据荧光物质的组成,可以粉碎烧结的材料并在相同的烧结条件下再进行烧结。
II.具有化学组成为RO·a(Al1-xGax)2O3·b(Si1-yGey)O2·cEu2+·dMn+的长余辉荧光物质
过去已经研制了各种包括由二价铕激活的碱土金属硅铝酸盐荧光物质。例如,日本专利公开号47-41公开了由RO·aAl2O3·2SiO2:Eu(其中R是碱土金属)组成的荧光物质,日本专利公开号7-45656公开了由(BawCaxMgyEuz)O·aAl2O3·bSiO2组成的荧光物质。这些荧光物质显示出与不含硅荧光物质不同的发光特性。认为这一差异是由于基质中配位场的不同造成的。因为Eu2+发射是由于4f7-4f65d跃迁,所以受Eu2+周围的化学环境即接受Eu2+基质的配位场的强度影响很大。对于实用来说这些现有技术的碱土金属硅铝酸盐荧光物质具有足够的所需发光亮度,但由于它们都是为荧光灯和阴极射线管而研制的,所以它们仅有非常短的余辉时间。例如,在公开于上述日本专利公开号47-41中的荧光物质RO·Al2O3·2SiO2:Eu的情况下,余辉时间非常短,其时间常数小于1微秒。换言之,虽然用光激发时这些荧光物质发光,但停止辐射后该发光很快地消失并且基本上没有长余辉磷光特性。
已知的是,氧离子的电子密度越高,即基体的碱性越高,那么配位场越强。这会导致Eu2+的5d能级更大的分裂,因此5d的最低能级越低。由于这一原因,随着基质碱性的增加,由于Eu2+的5d-4f跃迁的发射键将向长波方向移动。因此,如果通过加入在延长磷光寿命方面有效的辅助激活剂在现有技术的碱土金属硅铝酸盐荧光物质中获得长余辉磷光特性,那么由于通过调节具有彼此不同碱性的Al2O3+Ga2O3与SiO2+GeO2的比,基质配位场的强度可以在很宽范围变化,预计可以提供比现有技术铝酸盐长余辉荧光物质更富有各种发射磷光颜色的长余辉荧光物质。
此外,通过将材料熔融和将其玻璃化并将该玻璃进行适当热处理可以使碱土金属硅铝酸盐形成玻璃一陶瓷。可以将上述本发明的碱土金属硅铝酸盐形成具有化学组成为RO·a(Al1-xGax)2O3·b(Si1-yGey)O2·cEu2+·dMn+(其中R选自碱土金属包括Ba、Sr、Ca和Mg和Zn的至少一种,M是选自Nb、Zr、Bi、Mn、Sn、La、Ce、Pr、Nd、Sm、Gd、Tb、Dy、Ho、Er、Tm、Yb和Lu的至少一种的辅助激活剂)的玻璃一陶瓷荧光物质。用这样的玻璃一陶瓷长余辉荧光物质,可以容易地制造用现有技术陶瓷长余辉荧光物质通过烧结难以生产的诸如壁厚低于1mm薄管的制品。
在本发明的这些长余辉荧光物质中,a表示Al2O3或Al5O3+Ga2O3的组成比,b表示SiO2和/或GeO2的组成比。系数a和b彼此相互制约,通过调节这些系数的值改变基质的配位场的强度,结果也改变发射光的波长、磷光亮度和寿命。如果a较小b较大,或a较大b较小,磷光强度增加。然而,a和b的范围有限制。如果在0.3≤a≤8的范围内b小于0.001,那么Si和/或Ge的作用是弱的,如果b超过2,那么不能够生产出具有高磷光亮度的长余辉荧光物质。同样,如果b在0.001≤b≤2的范围内a在0.3≤a≤8的范围之外,那么也不能生产出具有高磷光亮度的长余辉荧光物质。系数a和b优选应该在0.3≤a≤6和0.001≤b≤2的范围,更优选在0.5≤a≤3和0.002≤b≤2的范围。
表示主要激活剂浓度的系数c应该在0.001≤c≤0.3的范围。如果c小于0.001,那么激发光不能够被有效地吸收,结果就不能产生肉眼能够辨别出的长余辉磷光亮度。相反,如果c超过0.3,那么由于浓度淬灭所以磷光亮度降低。c优选应该在0.001≤c≤0.2的范围,c更优选在0.002≤c≤0.1的范围。表示辅助激活剂的浓度的系数d应该在0.001≤d≤0.3的范围。如果d小于0.001,那么改进长余辉磷光亮度和寿命的作用均弱,如果d超过0.3,那么磷光亮度降低。系数d优选应该在0.001≤d≤0.2的范围,更优选应该在0.002≤d≤0.15的范围。
系数x表示用Ga替代Al的比。可以用Ga替代部分Al,并且在这种情况下,还可以获得优于现有技术ZnS:Cu荧光物质的长余辉荧光物质。可以用Ga替代几乎所有的Al,但为了得到更好的性质,该替代应该在x≤0.5的范围,优选在x≤0.2的范围。
系数y表示用Ge替代Si的比。甚至在用Ge替代部分Si的情况下,仍然可以生产出在磷光强度和其寿命方面优于现有技术ZnS:Cu荧光物质的长余辉荧光物质。可以用Ge替代所有的Si,但为了得到更好的性质,该替代应该在y≤0.5的范围,优选在y≤0.2的范围。
在生产本发明的长余辉荧光物质过程中,可以将硼酸、Li2CO3、LiCl或磷化合物或其它化合物作为助熔剂加入。这样助熔剂的最佳加入量在0.05-8%(摩尔)的范围内。
可以通过烧结生产上述化学组成的长余辉荧光物质。更具体地,将构成该长余辉荧光物质的氧化物或诸如可以通过热分解转化成氧化物的碳酸盐或硝酸盐的化合物以预定的比例称重并充分混合。将该混合的材料放进铝坩埚中并在还原气氛中在1100-1600℃的温度范围烧结约1-10个小时。在某些情况下,根据荧光物质的组成,可以粉碎得到的荧光物质,并在相同的条件下再进行烧结。
本发明的这些长余辉荧光物质也可以用下面的方法通过玻璃一陶瓷方法生产:
将原料以预定的比例称重并充分混合。然后,将该混合的材料放进铝坩埚中并在还原气氛中在1300-1600℃的温度范围熔融约1-3个小时。将该熔融物浇铸在铁板上从而形成片状玻璃。将该玻璃在还原气氛中在950-1250℃的温度范围进一步加热处理约1-12个小时,由此生产出包括化学组成为RO·a(Al1-xGax)2O3·b(Si1-yGey)2O3·cEu2+·dMn+(其中R选自碱土金属包括Ba、Sr、Ca和Mg和Zn的至少一种,M是选自Nb、Zr、Bi、Mn、Sn、La、Ce、Pr、Nd、Sm、Gd、Tb、Dy、Ho、Er、Tm、Yb和Lu的至少一种的辅助激活剂)的结晶的玻璃一陶瓷长余辉荧光物质。用这样的玻璃一陶瓷方法,可以容易地形成用陶瓷长余辉荧光物质难以生产的诸如薄管的制品。另外,在通过烧结制备陶瓷过程中,存在着微孔,该微孔有时如此严重地降低强度致使不能满足所需要的强度。可是,根据本发明制备的玻璃一陶瓷长余辉荧光物质没有这样的微孔,因此,可以生产出强度比陶瓷荧光物质优异的长余辉荧光物质并且因此可以拓宽这样的长余辉荧光物质的用途。
附图的简述
在附图中,
图1是说明实施例4和比较例A在停止激发10分钟后的发射光谱图。
图2是说明停止激发后磷光亮度作为激发时间函数的变化图。
图3是说明实施例21和比较例B在停止激发1分钟后的发射光谱图。
图4是说明实施例26和比较例C在停止激发1分钟后的发射光谱图。
图5是比较例C的SEM照片。
图6是实施例25的SEM照片。
图7是实施例27的SEM照片。
图8说明了实施例29的X-射线衍射图。
图9是说明实施例29在停止激发10分钟后的发射光谱图。
图10说明了实施例30的X-射线衍射图。
图11是说明实施例30在停止激发10分钟后的发射光谱图。
图12是说明实施例34和其比较例在停止激发10分钟后的发射光谱图。
图13是说明实施例45在停止激发10分钟后的发射光谱图。
图14是说明实施例46在停止激发10分钟后的发射光谱图。
图15是说明在515nm处检测发射波长的激发光谱的图;和
图16是说明实施例48在停止激发10分钟后的发射光谱图。
实施例
下面叙述本发明的实施例。需要指出的是本发明并不受这些实施例的限制。
I.具有化学组成为RO·a(Al1-xGax)2O3·b(Y1-yScy)2O3·cB2O3·dEu2+·eMn+的长余辉荧光物质的实施例。实施例1
CaCO3              7.22g
Al2O3             7.37g
Y2O3              0.03g
H3BO3             0.18g
Eu2O3             0.10g
Nd2O3             0.10g
将上述组成的材料充分混合并在97N2+3H2的混合气流中在1350℃烧结2小时由此产生具有化学组成为CaO·Al2O3·0.002Y2O3·0.02B2O3·0.004Eu2O3·0.004Nd2O3的长余辉荧光物质。该长余辉荧光物质在约440nm处显示出发射峰。用肉眼观察到蓝色磷光并且在黑暗中过24小时仍能辨别出磷光。实施例2-10
通过使用与用于制备实施例1荧光物质相同的方法制备具有相同颜色磷光的实施例2-10和比较例A的长余辉荧光物质。其组成列于表1中。从X-射线衍射分析发现:这些实施例的长余辉荧光物质包括CaAl2O4和Ca(Eu,Nd,Y)Al(Al2O7)晶体。在用D65光源(由Toshiba Litec K.K.制造的FL20S.D-EDL-D65)在200勒照明度下辐射4分钟后用亮度计测定这些实施例和比较例的磷光亮度。下面表1说明了各荧光物质的组成和其停止激发后10分钟时相对于表示为100的比较例A的磷光亮度的相对亮度。在表1和后面的表格中,“比较实施例”缩写为“比较例”。图1说明了实施例4和比较例A在停止激发后10分钟时的发射光谱图。从表1和图1可以明显看出:将Y2O3加入到现有技术的蓝色磷光荧光物质中导致显著地增强磷光亮度或发光强度。此外,在黑暗中过24小时后仍可辨别出由实施例2-10发射出的磷光。
图2说明了在实施例4和比较例A中停止激发即后磷光亮度作为激发时间函数的变化图。使用上述光源并且所用的照明度是200勒。如可以看出的,现有技术的长余辉荧光物质达到饱和亮度用了约45分钟,而本发明的长余辉荧光物质达到饱和亮度仅用了约20分钟。对于达到饱和亮度的约80%,现有技术的长余辉荧光物质达到饱和亮度用了约25分钟,而本发明的长余辉荧光物质达到饱和亮度仅用了约10分钟。从这些结果可以明显地看出:包括Y2O3的本发明长余辉荧光物质不仅具有较高的磷光亮度,而且通过有效地吸收激发光还具有降低一半或一半以上的较短的激发时间。
表1
  实施例号  组成  相对强度
    1  CaO·Al2O3·0.002 Y2O3·0.02 B2O3·0.004 Eu2O3·0.004 Nd2O3   120
    2  CaO·Al2O3·0.004 Y2O3·0.02 B2O3·0.004 Eu2O3·0.004 Nd2O3   160
    3  CaO·Al2O3·0.006 Y2O3·0.02 B2O3·0.004 Eu2O3·0.004 Nd2O   220
    4  CaO·Al2O3·0.01 Y2O3·0.02 B2O3·0.004 Eu2O3·0.004 Nd2O3   240
5 CaO·Al2O3·0.02 Y2O3·0.02 B2O3·0.004 Eu2O3·0.004 Nd2O3 220
    6  CaO·Al2O3·0.04 Y2O3·0.02 B2O3·0.004 Eu2O3·0.004 Nd2O3   180
    7  CaO·Al2O3·0.08 Y2O3·0.02 B2O3·0.004 Eu2O3·0.004 Nd2O3   160
    8  CaO·0.98 Al2O3·0.02 Ga2O3·0.01 Y2O3·0.02 B2O3·0.004 Eu2O3·0.004 Nd2O3   210
    9  CaO·0.96 Al2O3·0.04 Ga2O3·0.01 Y2O3·002 B2O3·0.004 Eu2O3·0.004 Nd2O3   190
    10  CaO·0.92 Al2O3·0.08 Ga2O3·0.01 Y2O3·0.02 B2O3·0.004 Eu2O3·0.004 Nd2O3   150
  比较例A  CaO·Al2O3·0.02 B2O3·0.004 Eu2O3·0.004 Nd2O3   100
实施例11-17
通过使用与用于制备实施例1的长余辉荧光物质相同的方法制备其中除了辅助激活剂Nd外还分别将Pr、Sm、Gd、Ho、Er、Tm或Lu作为辅助激活剂加入的实施例11-17和相应的比较例11-17的长余辉荧光物质,并测定这些荧光物质停止激发后10分钟时的相对亮度。下面表2说明了各实施例和比较例的组成及相对磷光亮度的结果。从这些结果发现:本发明的长余辉荧光物质显示出比现有技术长余辉荧光物质更高的磷光亮度。在黑暗中24小时后仍然观察到由实施例11-17发射的磷光。
表2
  实施例号  组成  相对强度
    11  CaO·Al2O3·0.005 Y2O3·0.02 B2O3·0.004 Eu2O3·0.002 Nd2O3·0.0006 Pr5O11     150
  比较例11  CaO·Al2O3·0.02 B2O3·0.004 Eu2O3·0.002 Nd2O3·0.0006 Pr6O11     100
    12  CaO·Al2O3·0.01 Y2O3·0.02 B2O3·0.004 Eu2O3·0.002 Nd2O3·0.002 Sm2O3     160
  比较例12  CaO·Al2O3·0.02 B2O3·0.004 Eu2O3·0.002 Nd2O3·0.002 Sm2O3     100
    13  CaO·Al2O3·0.01 Y2O3·0.02 B2O3·0.004 Eu2O3·0.002 Nd2O3·0.002 Gd2O3     170
  比较例13  CaO·Al2O3·0.02 B2O3·0.004 Eu2O3·0.002 Nd2O3·0.002 Gd2O3     100
    14  CaO·Al2O3·0.01 Y2O3·0.02 B2O3·0.004 Eu2O3·0.002 Nd2O3·0.002 Ho2O3     120
  比较例14  CaO·Al2O3·0.02 B2O3·0.004 Eu2O3·0.002 Nd2O3·0.002 Ho2O3     100
    15  CaO·Al2O3·0.01 Y2O3·0.02 B2O3·0.004 Eu2O3·0.002 Nd2O3·0.002 Er2O3     150
  比较例15  CaO·Al2O3·0.02 B2O3·0.004 Eu2O3·0.002 Nd2O3·0.002 Er2O3     100
    16  CaO·Al2O3·00.1 Y2O3·0.02 B2O3·0.004 Eu2O3·0.002 Nd2O3·0.002 Tm2O3     270
  比较例16  CaO·Al2O3·0.02 B2O3·0.004 Eu2O3·0.002 Nd2O3·0.002 Tm2O3     100
    17  CaO·Al2O3·0.01 Y2O3·0.02 B2O3·000.4 Eu2O3·0.002 Nd2O3·0.002 Lu2O3     115
  比较例17  CaO·Al2O3·0.02 B2O3·0.004 Eu2O3·0.002 Nd2O3·0.002 Lu2O3     100
实施例18
SrCO3                             8.64g
Al2O3                            5.97g
Y2O3                             0.03g
H3BO3                            0.14g
Eu2O3                            0.10g
Dy2O3                            0.11g
将上述组成的材料充分混合并在97N2+3H2的混合气流中在1350℃烧结2小时,由此产生具有化学组成为SrO·Al2O3·0.002Y2O3·0.02B2O3·0.005Eu2O3·0.005Dy2O3的长余辉荧光物质。该荧光物质在约520nm处显示出发射峰。用肉眼观察到淡黄绿色磷光,并且在黑暗中过24小时仍能辨别出磷光。实施例19-23
通过使用与用于制备实施例18荧光物质相同的方法制备具有相同颜色磷光的实施例19-23和比较例B的长余辉荧光物质。下面表3说明了这些实施例和比较例的组成和其停止激发后1分钟时的相对亮度。从X-射线衍射分析发现:所得到的长余辉荧光物质含有SrAl2O4和(Eu,Dy,Y)AlO3晶体。图3说明了实施例21和比较例B在停止激发后1分钟时的发射光谱图。从表3和图3可以看出:包括Y2O3的本发明荧光物质显示出更高的磷光亮度和更强的发射。从表3还可以明显地看出:通过加入Li进一步改进了磷光亮度。在黑暗中过24小时后仍可观察到实施例19-23荧光物质的磷光。
表3
 实施例号  组成  相对强度
    18  SrO·Al2O3·0.002 Y2O3·0.02 B2O3·0.005 Eu2O3·0.005 Dy2O3     110
    19  SrO·Al2O3·0.006 Y2O3·0.02 B2O3·0.005 Eu2O3·0.005 Dy2O3     105
    20  SrO·Al2O3·0.004 Y2O3·0.02 B2O3·0.004 Li2O·0.005 Eu2O3·0.005 Dy2O3     115
    21  SrO·Al2O3·0.008 Y2O3·0.02 B2O3·0.004 Li2O·0.005 Eu2O3·0.005 Dy2O3     120
    22  SrO·Al2O3·0.020 Sc2O3·0.02 B2O3·0.005 Eu2O3·0.005 Dy2O3     130
    23  SrO·Al2O3·0.032 Sc2O3·0.02 B2O3·0.005 Eu2O3·0.005 Dy2O3     122
  比较例B  SrO·Al2O3·0.02 B2O3·0.005 Eu2O3·0.005 Dy2O3     100
实施例24
SrCO3                           6.58g
Al2O3                          7.95g
Y2O3                           0.03g
H3BO3                          0.30g
Eu2O3                          0.07g
Dy2O3                          0.07g
将上述组成的材料充分混合并在97N2+3H2的混合气流中在1450℃烧结2小时由此产生具有化学组成为SrO·1.75Al2O3·0.003Y2O3·0.06B2O3·0.004Eu2O3·0.004Dy2O3的长余辉荧光物质。该荧光物质在约490nm处显示出发射峰。用肉眼观察到浅蓝绿色磷光,并且在黑暗中过24小时仍能辨别出磷光。实施例25-28
通过使用与用于制备实施例24荧光物质相同的方法制备具有相同颜色磷光的实施例25-28和比较例C的长余辉荧光物质。下面表4说明了这些实施例和比较例的组成和其停止激发后1分钟时的相对亮度。从X—射线衍射分析发现:得到的长余辉荧光物质包括Sr4Al14O25、SrAl2O4和Al5(Eu,Dy,Y)3O12晶体。图4说明了实施例26和比较例C在停止激发后1分钟时的发射光谱图。从表4和图4可以看出:其中加入Y2O3的本发明荧光物质显示出比现有技术荧光物质更高的磷光亮度和更强的发射强度。在黑暗中过24小时后仍可观察到实施例25-28荧光物质的磷光。
比较例C、实施例25和实施例27的SEM照片分别示于图5、6和7中。显然,本发明的荧光物质具有比现有技术荧光物质大得多的粒径。
表4
实施例号  组成  相对强度
    24  SrO·1.75 Al2O3·0.003 Y2O3·0.06 B2O3·0.004 Eu2O3·0.004 Dy2O3     110
    25  SrO·1.75 Al2O3·0.007 Y2O3·0.06 B2O3·0.004 Eu2O3·0.004 Dy2O3     130
    26  SrO·1.75 Al2O3·0.011 Y2O3·0.06 B2O3·0.004 Eu2O3·0.004 Dy2O3     158
    27  SrO·1.75 Al2O3·0.014 Y2O3·0.06 B2O3·0.004 Eu2O3·0.004 Dy2O3     160
    28  SrO·1.75 Al2O3·0.022 Y2O3·0.06 B2O3·0.004 Eu2O3·0.004 Dy2O3     140
  比较例C  SrO·1.75 Al2O3·0.06 B2O3·0.004 Eu2O3·0.004 Dy2O3     100
耐光试验
长余辉荧光物质常常以暴露于阳光中的状态使用,因此,需要长余辉荧光物质对阳光,特别是对在其中所含有的紫外光具有高的耐光性。根据可用于发光涂料的耐光性试验方法(JIS标准),使用300W的汞弧光灯对根据本发明制备的长余辉荧光物质进行耐光试验。结果,在任一个试验的样品中都没有观察到磷光亮度的降低。
II.具有化学组成为RO·a(Al1-xGax)O2·b(Si1-yGey)O2·cEu2+·dMn+的长余辉荧光物质的实施例实施例29
SrCO3                             5.69g
Al2O3                            3.93g
SiO2                              4.63g
H3BO3                            0.19g
Eu2O3                            0.27g
Dy2O3                            0.29g
将上述组成的材料充分混合并在97N2+3H2的混合气流中在1350℃烧结2小时,由此产生具有化学组成为SrO·Al2O3·2.00SiO2·0.04B2O3·0.020Eu2O3·0.020Dy2O3的长余辉荧光物质。从示于图8中的X-射线衍射图分析发现:该长余辉荧光物质是由SrAl2Si2O8相组成的。图9说明了在停止激发后10分钟时的发射光谱图。该长余辉荧光物质在约420nm和485nm处具有发射峰。在现有技术长余辉荧光物质中没有观察到这样的发射特性。用肉眼观察到白色磷光,并且在黑暗中过24小时仍能辨别出磷光。实施例30
CaCO3                             4.42g
Al(OH)3                           6.90g
SiO2                              5.30g
H3BO3                            0.22g
Eu2O3                            0.19g
Nd2O3                            0.36g
将上述组成的材料充分混合并在97N2+3H2的混合气流中在1350℃烧结2小时由此产生具有化学组成为CaO·Al2O3·2.00SiO2·0.04B2O3·0.012Eu2O3·0.024Nd2O3的长余辉荧光物质。从示于图10中的X-射线衍射图分析发现:该长余辉荧光物质是由CaAl2Si2O8相组成的。图11说明了在停止激发后10分钟时的发射光谱图。该长余辉荧光物质在约425nm和540nm处具有发射峰。该发射特性与现有技术荧光物质的不同。用肉眼观察到浅蓝紫色磷光,并且在黑暗中过24小时仍能辨别出磷光。实施例31
CaCO3                              4.39g
Al2O3                             4.27g
Ga2O3                             0.20g
SiO2                               4.45g
NH4H2PO4                        1.76g
Eu2O3                             0.18g
Nd2O3                             0.34g
将上述组成的材料充分混合并在97N2+3H2的混合气流中在1350℃烧结2小时由此产生具有化学组成为CaO·0.95Al2O3·1.69SiO2·0.02Ga2O3·0.17P2O5·0.012Eu2O3·0.023Nd2O3的长余辉荧光物质。该长余辉荧光物质是由CaAl2Si208相组成的。该荧光物质给出了如在图11中所示的类似发射特性。用肉眼观察到浅蓝紫色磷光,并且在黑暗中过24小时仍能辨别出磷光。实施例32
CaCO3                           7.11g
Al2O3                          7.25g
SiO2                            0.02g
H3BO3                          0.18g
Eu2O3                          0.15g
Nd2O3                          0.29g
将上述组成的材料充分混合并在97N2+3H2的混合气流中在1350℃烧结2小时,由此产生具有化学组成为CaO·Al2O3·0.005SiO2·0.02B2O3·0.006Eu2O3·0.012Nd2O3的长余辉荧光物质。该长余辉荧光物质在约440nm处具有发射峰。用肉眼观察到浅蓝紫色磷光,并且在黑暗中过24小时仍能辨别出磷光。
通过使用与用于制备实施例32相同的方法制备实施例33-38和不包括SiO2的比较例的长余辉荧光物质。表5说明了实施例32-38的化学组成。图12说明了实施例34和比较例停止激发后10分钟时的发射谱图。从该图可知:本发明的长余辉荧光物质具有比比较例更强的发射强度。在黑暗中过24小时后仍可观察到这些长余辉荧光物质的磷光。
表5
 实施例号  组成
    32  CaO·Al2O3·0.005 SiO2·0.02 B2O3·0.006 Eu2O3·0.012 Nd2O3
    33  CaO·Al2O3·0.009 SiO2·0.02 B2O3·0.006 Eu2O3·0.012 Nd2O3
    34  CaO·Al2O3·0.014 SiO2·0.02 B2O3·0.006 Eu2O3·0.012 Nd2O3
    35  CaO·Al2O3·0.028 SiO2·0.02 B2O3·0.006 Eu2O3·0.012 Nd2O3
    36  CaO·Al2O3·0.036 SiO2·0.02 B2O3·0.006 Eu2O3·0.012 Nd2O3
    37  CaO·Al2O3·0.040 SiO2·0.02 B2O3·0.006 Eu2O3·0.012 Nd2O3
    38  CaO·Al2O3·0.048 SiO2·0.02 B2O3·0.006 Eu2O3·0.012 Nd2O3
 比较例  CaO·Al2O3·0.02 B2O3·0.006 Eu2O3·0.012 Nd2O3
通过使用与用于制备实施例32相同的方法制备其中除了辅助激活剂Nd外还将Ce、Pr、Gd、Er、Tm或Lu作为辅助激活剂加入的实施例39-44和相应比较例的长余辉荧光物质。表6说明了这些实施例和比较例的组成。
表6
  实施例号  组成
    39  CaO·Al2O3·0.012 SiO2·0.02 B2O3·0.004 Eu2O3·0.002 Nd2O3·0.002 CeO2
  比较例39  CaO·Al2O3·0.02 B2O3·0.004 Eu2O3·0.002 Nd2O3·0.002 CeO2
    40  CaO·Al2O3·0.008 SiO2·0.02 B2O3·0.004Eu2O3·0.002 Nd2O3·0.0006 Pr6O11
  比较例40  CaO·Al2O3·0.02 B2O3·0.004 Eu2O3·0.002 Nd2O3·0.0006 Pr6O11
41 CaO·Al2O3·0.012 SiO2·0.02 B2O3·0.004 Eu2O3·0.002 Nd2O3·0.002 Gd2O3
  比较例41  CaO·Al2O3·0.02 B2O3·0.004 Eu2O3·0.002 Nd2O3·0.002 Gd2O3
    42  CaO·Al2O3·0.012 SiO2·0.02 B2O3·0.004 Eu2O3·0.002 Nd2O3·0.002 Er2O3
  比较例42  CaO·Al2O3·0.02 B2O3·0.004 Eu2O3·0.002 Nd2O3·0.002 Er2O3
    43  CaO·Al2O3·0.012 SiO2·0.02 B2O3·0.004 Eu2O3·0.002 Nd2O3·0.002 Tm2O3
  比较例43  CaO·Al2O3·0.02 B2O3·0.004 Eu2O3·0.002 Nd2O3·0.002 Tm2O3
    44  CaO·Al2O3·0.012 SiO2·0.02 B2O3·0.004 Eu2O3·0.002 Nd2O3·0.002 Lu2O3
  比较例44  CaO·Al2O3·0.02 B2O3·0.004 Eu2O3·0.002 Nd2O3·0.002 Lu2O3
实施例45
SrCO3                            14.39g
Al2O3                           14.95g
SiO2                             0.02g
GeO2                             0.02g
Li2CO3                          0.02g
H3BO3                           0.30g
Eu2O3                           0.12g
Dy2O3                           0.14g
将上述组成的材料充分混合并在97N2+3H2混合气流中在1400℃烧结2小时,由此产生具有化学组成为SrO·1.50Al2O3·0.003SiO2·0.002GeO2·0.003Li2O·0.025B2O3·0.004Eu2O30.004DY2O3的长余辉荧光物质。图13说明了在停止激发后10分钟时的发射光谱图。该长余辉荧光物质在约490nm处显示出具有峰值的发射特性。用肉眼观察到浅蓝绿色磷光,并且在黑暗中过24小时仍能辨别出磷光。实施例46
SrCO3                           8.39g
Al2O3                          5.80g
GeO2                            0.24g
H3BO3                          0.14g
Eu2O3                          0.20g
Dy2O3                          0.22g
将上述组成的材料充分混合并在97N2+3H2的混合气流中在1350℃烧结2小时由此产生具有化学组成为SrO·Al2O3·0.04GeO2·0.020B2O3·0.010Eu2O3·0.010Dy2O3的长余辉荧光物质。图14表示在停止激发后10分钟时的发射光谱图。该长余辉荧光物质在约515nm处显示出具有峰值的发射特性。用肉眼观察到浅黄绿色磷光,并且在黑暗中过24小时仍能辨别出磷光。
图15说明了用于发射波长515nm的激发光谱图。可以观察到在370nm和405nm处具有2个峰值的宽激发带。在405nm处激发带的出现表明本发明的荧光物质对可见光更敏感。实施例47
MgO                                 1.86g
CaCO3                              1.92g
Sr(NO3)2                          12.99g
Al(OH)3                            8.99g
SiO2                               11.52g
Eu2O3                             0.81g
Dy2O3                             0.22g
Si(还原剂)                          0.22g
将上述组成的材料充分混合并在1500℃熔融3小时,并浇铸在一个铁板上,由此产生具有化学组成为0.36MgO·0.15CaO·0.49SrO·0.45Al2O3·1.58SiO2·0.018Eu2O3·0.030Dy2O3的玻璃。该玻璃在97N2+3H2的混合气流中在1150℃经受热处理5小时由此生产包括SrAl2Si2O8晶体的玻璃一陶瓷长余辉荧光物质。该长余辉荧光物质具有如在图9中所示的类似发射特性。用肉眼观察到白色磷光,并且在黑暗中过24小时仍能辨别出磷光。实施例48
MgO                                 1.17g
CaCO3                              10.20g
Al(OH)3                            6.82g
SiO2                               11.36g
Eu2O3                             1.28g
Nd2O3                             1.23g
Si(还原剂)                          0.31g
将上述组成的材料充分混合并在1500℃熔融3小时,并浇铸在一个铁板上,由此产生具有化学组成为0.22MgO·0.78CaO·0.33Al2O3·1.53SiO2·0.028Eu2O3·0.028Nd2O3的玻璃。该玻璃在97N2+3H2的混合气流中在1100℃经受热处理5小时,由此生产包括CaAl2Si2O8晶体的玻璃一陶瓷长余辉荧光物质。图16说明了该长余辉荧光物质在停止激发后10分钟时的发射光谱图。从该图可以看出:该长余辉荧光物质在约450nm、485nm和545nm处具有3个发射峰。用肉眼观察到紫蓝色磷光,并且在黑暗中过24小时仍能辨别出磷光。
用与上述相同的方法测定实施例32-44和比较例的磷光亮度。下面表7说明了实施例32-38在停止激发后10分钟时相对于表示为100的比较例的相对磷光亮度。下面表8分别说明了实施例39-44在停止激发后5分钟时相对于表示为100的比较例39-44的磷光亮度。从表7和8可知:与现有技术铝酸盐长余辉荧光物质相比,含SiO2的本发明长余辉荧光物质的长余辉磷光亮度被显著地改进了。
表7实施例                                                    相对强度32                                                        15033                                                        22534                                                        25035                                                        22036                                                        20537                                                        20038                                                        175比较例                                                    100
表8实施例                                                    相对强度39                                                        115比较例39                                                  10040                                                        200比较例40                                                  10041                                                        130比较例41                                                  10042                                                        110比较例42                                                  10043                                                        225比较例43                                                  10044                                                        140比较例44                                                  100耐光试验
根据可用于发光涂料的耐光性能的试验方法(JIS标准),使用300W的汞弧光灯对实施例29-44的长余辉荧光物质进行耐光试验。结果,在任一个试验的样品中都没有观察到长余辉磷光亮度的降低。

Claims (38)

1.一种由二价铕激活并具有化学组成为RO·a(Al1-xGax)2O3·b(Y1-yScy)2O3·cB2O3·dEu2+·eMn+的长余辉荧光物质(其中R选自碱土金属包括Ba、Sr、Ca和Mg和Zn的至少一种,M是选自Nb、Zr、Bi、Mn、Sn、La、Ce、Pr、Nd、Sm、Gd、Tb、Dy、Ho、Er、Tm、Yb和Lu的至少一种的辅助激活剂),其中a、b、c、d、e、x和y在下面范围内:0.3≤a≤8,0<b≤0.2,0.001≤c≤0.2,0.001≤d≤0.3,0.001≤e≤0.3,0≤x<1.0,和0≤y≤1.0。
2.如权利要求1中所定义的长余辉荧光物质,该长余辉荧光物质还含有0.001-8%摩尔的Li。
3.如权利要求1中所定义的长余辉荧光物质,其中所说的长余辉荧光物质在440nm附近的波长处具有发射峰并含有CaAl2O4和Ca(Rm,Y)Al(Al2O7)晶体(其中Rm是选自Eu、Dy、Sc、La、Ce、Pr、Nd、Sm、Gd、Tb、Ho、Er、Tm、Yb和Lu的至少一种)。
4.如权利要求3中所定义的长余辉荧光物质,其中所说的长余辉荧光物质在440nm附近的波长处具有发射峰并含有CaAl2O4和Ca(Eu,Nd,Y)Al(Al2O7)晶体。
5.如权利要求1中所定义的长余辉荧光物质,其中所说的长余辉荧光物质在520nm附近的波长处具有发射峰并含有SrAl2O4和(Rm,Y)AlO3晶体(其中Rm是选自Eu、Dy、Sc、La、Ce、Pr、Nd、Sm、Gd、Tb、Ho、Er、Tm、Yb和Lu的至少一种元素)。
6.如权利要求5中所定义的长余辉荧光物质,其中所说的长余辉荧光物质在520nm附近的波长处具有发射峰并含有SrAl2O4和(Eu,Dy,Y)AlO3晶体。
7.如权利要求1中所定义的长余辉荧光物质,其中所说的长余辉荧光物质在490nm附近的波长处具有发射峰并含有Sr4Al14O25和Al5(Rm,Y)3O12晶体(其中Rm是选自Eu、Dy、Sc、La、Ce、Pr、Nd、Sm、Gd、Tb、Ho、Er、Tm、Yb和Lu的至少一种元素)。
8.如权利要求7中所定义的长余辉荧光物质,其中所说的长余辉荧光物质在490nm附近的波长处具有发射峰并含有Sr4Al14O25和Al5(Eu,Dy,Y)3O12晶体。
9.如权利要求2中所定义的长余辉荧光物质,其中所说的长余辉荧光物质在440nm附近的波长处具有发射峰并含有CaAl2O4和Ca(Rm,Y)Al(Al2O7)晶体(其中Rm是选自Eu、Dy、Sc、La、Ce、Pr、Nd、Sm、Gd、Tb、Ho、Er、Tm、Yb和Lu的至少一种元素)。
10.如权利要求9中所定义的长余辉荧光物质,其中所说的长余辉荧光物质在440nm附近的波长处具有发射峰并含有CaAl2O4和Ca(Eu,Nd,Y)Al(Al2O7)晶体。
11.如权利要求2中所定义的长余辉荧光物质,其中所说的长余辉荧光物质在520nm附近的波长处具有发射峰并含有SrAl2O4和(Rm,Y)AlO3晶体(其中Rm是选自Eu、Dy、Sc、La、Ce、Pr、Nd、Sm、Gd、Tb、Ho、Er、Tm、Yb和Lu的至少一种元素)。
12.如权利要求11中所定义的长余辉荧光物质,其中所说的长余辉荧光物质在520nm附近的波长处具有发射峰并含有SrAl2O4和(Eu,Dy,Y)AlO3晶体。
13.如权利要求2中所定义的长余辉荧光物质,其中所说的长余辉荧光物质在490nm附近的波长处具有发射峰并含有Sr4Al14O25和Al5(Rm,Y)3O12晶体(其中Rm是选自Eu、Dy、Sc、La、Ce、Pr、Nd、Sm、Gd、Tb、Ho、Er、Tm、Yb和Lu的至少一种元素)。
14.如权利要求13中所定义的长余辉荧光物质,其中所说的长余辉荧光物质在490nm附近的波长处具有发射峰并含有Sr4Al14O25和Al5(Eu,Dy,Y)3O12晶体。
15.如权利要求1中所定义的长余辉荧光物质,其中R是Ca。
16.如权利要求1中所定义的长余辉荧光物质,其中R是Sr。
17.如权利要求1中所定义的长余辉荧光物质,其中M是Nd。
18.如权利要求1中所定义的长余辉荧光物质,其中M是Dy。
19.如权利要求1中所定义的长余辉荧光物质,其中x是0≤x≤0.5。
20.如权利要求1中所定义的长余辉荧光物质,其中x是0≤x≤0.02。
21.如权利要求1中所定义的长余辉荧光物质,其中y是0≤y≤0.5。
22.如权利要求1中所定义的长余辉荧光物质,其中y是0≤y≤0.2。
23.一种由二价铕激活并具有化学组成为RO·a(Al1-xGax)2O3·b(Si1-yGey)O2·cEu2+·dMn+的长余辉荧光物质(其中R选自碱土金属包括Ba、Sr、Ca和Mg和Zn的至少一种,M是选自Nb、Zr、Bi、Mn、Sn、La、Ce、Pr、Nd、Sm、Gd、Tb、Dy、Ho、Er、Tm、Yb和Lu至少一种的辅助激活剂),其中a、b、c、d、x和y在下面范围内:0.3≤a≤8,0.001≤b≤2,0.001≤c≤0.3,0.001≤d≤0.3,0≤x<1.0,和0≤y≤1.0。
24.如权利要求23中所定义的长余辉荧光物质,其中R是Sr。
25.如权利要求23中所定义的长余辉荧光物质,其中R是Ca。
26.如权利要求23中所定义的长余辉荧光物质,其中M是Dy。
27.如权利要求23中所定义的长余辉荧光物质,其中M是Nd。
28.如权利要求23中所定义的长余辉荧光物质,其中a在0.3≤a≤6的范围,并且b在0.001≤b≤2的范围。
29.如权利要求23中所定义的长余辉荧光物质,其中a在0.5≤a≤3的范围,并且b在0.002≤b≤2的范围。
30.如权利要求23中所定义的长余辉荧光物质,其中c在0.001≤c≤0.2的范围。
31.如权利要求23中所定义的长余辉荧光物质,其中c在0.002≤c≤0.1的范围。
32.如权利要求23中所定义的长余辉荧光物质,其中d在0.001≤d≤0.2的范围。
33.如权利要求23中所定义的长余辉荧光物质,其中d在0.002≤d≤0.15的范围。
34.如权利要求23中所定义的长余辉荧光物质,其中x是0≤x≤0.5。
35.如权利要求23中所定义的长余辉荧光物质,其中x是0≤x≤0.2。
36.如权利要求23中所定义的长余辉荧光物质,其中y是0≤y≤0.5。
37.如权利要求23中所定义的长余辉荧光物质,其中y是0≤y≤0.2。
38.一种包括如权利要求23中所定义长余辉荧光物质的玻璃一陶瓷长余辉荧光物质。
CN98109570A 1997-05-09 1998-03-20 长余辉荧光物质 Expired - Fee Related CN1093869C (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP13608697 1997-05-09
JP136086/97 1997-05-09
JP269319/97 1997-09-16
JP26931997 1997-09-16
JP27210197A JP3193677B2 (ja) 1997-05-09 1997-09-18 蓄光性蛍光体
JP272101/97 1997-09-18

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CNB021069999A Division CN1236013C (zh) 1997-05-09 1998-03-20 长余辉荧光物质

Publications (2)

Publication Number Publication Date
CN1199078A true CN1199078A (zh) 1998-11-18
CN1093869C CN1093869C (zh) 2002-11-06

Family

ID=27317205

Family Applications (2)

Application Number Title Priority Date Filing Date
CN98109570A Expired - Fee Related CN1093869C (zh) 1997-05-09 1998-03-20 长余辉荧光物质
CNB021069999A Expired - Fee Related CN1236013C (zh) 1997-05-09 1998-03-20 长余辉荧光物质

Family Applications After (1)

Application Number Title Priority Date Filing Date
CNB021069999A Expired - Fee Related CN1236013C (zh) 1997-05-09 1998-03-20 长余辉荧光物质

Country Status (4)

Country Link
US (1) US6010644A (zh)
EP (1) EP0877071B1 (zh)
CN (2) CN1093869C (zh)
DE (1) DE69800477T2 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007033576A1 (fr) 2005-09-23 2007-03-29 Dalian Luminglight Science And Technology Co., Ltd. Matériau luminescent à longue rémanence et son procédé de préparation
WO2008061403A1 (fr) * 2006-11-20 2008-05-29 Sichuan Sunfor Light Co., Ltd. Matière photoluminescente à longue émission rémanente coactivée contenant plusieurs métaux du groupe des terres rares
CN101550339B (zh) * 2009-05-13 2012-04-11 中国科学院长春光学精密机械与物理研究所 阴极射线或x射线激发长余辉发光材料及其制备方法
CN103710027A (zh) * 2013-11-27 2014-04-09 华南理工大学 具有光激励荧光的近红外长余辉发光材料及其制备方法和应用
CN101752493B (zh) * 2002-12-20 2014-11-26 丰田合成株式会社 发光体以及使用其的光学器件
CN105924682A (zh) * 2016-05-16 2016-09-07 天津纽威特橡胶制品股份有限公司 一种具备发光功能的新型棒球

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3488602B2 (ja) * 1997-08-20 2004-01-19 株式会社リード 青色ないし青緑色発光性アルミニウムケイ酸塩蓄光体及びその製造方法
JP4298822B2 (ja) * 1997-12-22 2009-07-22 株式会社オハラ 発光性ガラスセラミックス
JP2000034480A (ja) * 1998-05-13 2000-02-02 Ohara Inc 蓄光性蛍光体
US6284156B1 (en) * 1998-11-19 2001-09-04 Kabushiki Kaisha Ohara Long-lasting phosphor, powdered long-lasting phosphor and method for manufacturing the powdered long-lasting phosphor
CN1149274C (zh) * 1999-01-28 2004-05-12 北京宏业亚阳荧光材料厂 发光材料及其制备方法
DE10043530A1 (de) * 2000-09-05 2002-03-14 Philips Corp Intellectual Pty Farbbildschirm mit blauer Leuchtstoffschicht
DE10057881A1 (de) * 2000-11-21 2002-05-23 Philips Corp Intellectual Pty Gasentladungslampe mit Leuchtstoffschicht
GB2374602B (en) * 2001-04-18 2003-04-23 Shandong Lunbo Ind & Comm Grou Alkali earth aluminate-silicate photoluminescent pigment which is activated by rare-earth elements
DE10130330A1 (de) * 2001-06-22 2003-01-02 Philips Corp Intellectual Pty Gasentladungslampe für dielektrisch behinderte Entladungen mit blauen Leuchtstoff
CN1156553C (zh) * 2001-09-27 2004-07-07 中国科学院长春应用化学研究所 稀土发光材料的制备方法
JP3658355B2 (ja) * 2001-10-03 2005-06-08 Hoya株式会社 塗布膜の乾燥方法、塗布膜の形成方法、及び塗布膜形成装置
DE60305958T2 (de) * 2002-10-14 2007-01-25 Philips Intellectual Property & Standards Gmbh Lichtemittierendes bauelement mit einem eu(ii)-aktivierten leuchtstoff
US6783699B2 (en) 2002-10-17 2004-08-31 Medgene, Inc. Europium-containing fluorescent nanoparticles and methods of manufacture thereof
US6969475B2 (en) * 2002-11-22 2005-11-29 Kb Alloys Photoluminescent alkaline earth aluminate and method for making the same
US6867536B2 (en) * 2002-12-12 2005-03-15 General Electric Company Blue-green phosphor for fluorescent lighting applications
DE10259945A1 (de) * 2002-12-20 2004-07-01 Tews, Walter, Dipl.-Chem. Dr.rer.nat.habil. Leuchtstoffe mit verlängerter Fluoreszenzlebensdauer
US6953536B2 (en) * 2003-02-25 2005-10-11 University Of Georgia Research Foundation, Inc. Long persistent phosphors and persistent energy transfer technique
US7479732B2 (en) 2003-03-13 2009-01-20 Osram Opto Semiconductors Gmbh Luminescence conversion of LED with phosphorescence effect, and use thereof and operational method associated therewith
US8580148B2 (en) * 2003-03-14 2013-11-12 Sakai Chemical Industry Co., Ltd. Phosphor and method for producing same
US20050035331A1 (en) * 2003-06-24 2005-02-17 Xiao-Dong Sun Phosphorescent blends
US7088038B2 (en) * 2003-07-02 2006-08-08 Gelcore Llc Green phosphor for general illumination applications
WO2006008935A1 (ja) * 2004-06-30 2006-01-26 Mitsubishi Chemical Corporation 蛍光体、及び、それを用いた発光素子、並びに、画像表示装置、照明装置
US7648649B2 (en) * 2005-02-02 2010-01-19 Lumination Llc Red line emitting phosphors for use in led applications
US7358542B2 (en) * 2005-02-02 2008-04-15 Lumination Llc Red emitting phosphor materials for use in LED and LCD applications
US20070114562A1 (en) * 2005-11-22 2007-05-24 Gelcore, Llc Red and yellow phosphor-converted LEDs for signal applications
US7497973B2 (en) * 2005-02-02 2009-03-03 Lumination Llc Red line emitting phosphor materials for use in LED applications
US20060185720A1 (en) * 2005-02-22 2006-08-24 Pentam, Inc. Method of recycling a nuclear-cored battery
US7491881B2 (en) * 2005-02-22 2009-02-17 Medusa Special Projects, Llc Method of manufacturing a nuclear-cored battery
US20060185975A1 (en) * 2005-02-22 2006-08-24 Pentam, Inc. Decomposition unit
US7488889B2 (en) * 2005-02-22 2009-02-10 Medusa Special Projects, Llc Layered nuclear-cored battery
US20060185722A1 (en) * 2005-02-22 2006-08-24 Pentam, Inc. Method of pre-selecting the life of a nuclear-cored product
US7438789B2 (en) * 2005-02-22 2008-10-21 Medusa Special Projects, Llc Decomposition cell
US7491882B2 (en) * 2005-02-22 2009-02-17 Medusa Special Projects, Llc Super electromagnet
US20060185153A1 (en) * 2005-02-22 2006-08-24 Pentam, Inc. Method of making crystalline to surround a nuclear-core of a nuclear-cored battery
US7482533B2 (en) * 2005-02-22 2009-01-27 Medusa Special Projects, Llc Nuclear-cored battery
US20060186378A1 (en) * 2005-02-22 2006-08-24 Pentam, Inc. Crystalline of a nuclear-cored battery
US7274045B2 (en) * 2005-03-17 2007-09-25 Lumination Llc Borate phosphor materials for use in lighting applications
US20070033777A1 (en) * 2005-08-15 2007-02-15 Blessing Ronald L Luminous urn
US7959827B2 (en) * 2007-12-12 2011-06-14 General Electric Company Persistent phosphor
US8333907B2 (en) 2007-01-17 2012-12-18 Utc Fire & Security Corporation Articles using persistent phosphors
WO2009012301A2 (en) * 2007-07-16 2009-01-22 Lumination Llc Red line emitting complex fluoride phosphors activated with mn4+
US8545723B2 (en) * 2007-12-12 2013-10-01 General Electric Company Persistent phosphor
WO2012166103A1 (en) * 2011-05-27 2012-12-06 Empire Technology Development Llc Lighting using natural light
RU2516657C2 (ru) * 2012-07-27 2014-05-20 Общество с ограниченной ответственностью научно-производственная фирма "ЛЮМ" Фотостимулируемый люминофор сине-зеленого цвета свечения на основе алюмината стронция
US9284485B2 (en) * 2012-11-07 2016-03-15 Rolex Sa Persistent phosphorescent composite material
CN104529165B (zh) * 2014-12-07 2021-12-14 中国科学院福建物质结构研究所 一种用于ac-led的黄色余辉微晶玻璃及其制备技术
KR101689989B1 (ko) * 2016-01-27 2016-12-26 티오켐 주식회사 잔광성이 우수한 축광안료의 제조방법
CN108531071A (zh) * 2017-11-02 2018-09-14 王小琴 一种涂料
EP3696150A1 (de) 2019-02-14 2020-08-19 Ivoclar Vivadent AG Fluoreszierende glaskeramiken und gläser mit gehalt an europium

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3816328A (en) * 1971-12-15 1974-06-11 Owens Illinois Inc Method of preparing luminescent and photoconductive materials
JPS5414073B2 (zh) * 1972-06-14 1979-06-04
JPS564597B2 (zh) * 1972-06-15 1981-01-30
JPS4924888A (zh) * 1972-07-01 1974-03-05
NL7903102A (nl) * 1979-04-20 1980-10-22 Philips Nv Luminescerende stof met aardalkalimetaalsilikaat- aluminaatgrondrooster.
JPS59102979A (ja) * 1982-12-02 1984-06-14 Matsushita Electronics Corp 螢光体
EP0241848B1 (en) * 1986-04-16 1990-03-14 Kabushiki Kaisha Toshiba Phosphor and fluorescent lamp using the same
CN1053807A (zh) * 1991-03-09 1991-08-14 复旦大学 长余辉磷光材料及其制备
EP0529956A1 (en) * 1991-08-23 1993-03-03 Kabushiki Kaisha Toshiba Blue phosphor and fluorescent lamp using the same
JP3405049B2 (ja) * 1995-05-29 2003-05-12 日亜化学工業株式会社 残光性ランプ
JP3605645B2 (ja) * 1996-12-17 2004-12-22 北京市豊台区宏業塗装輔料廠 長残光性発光材料及びその製造方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101752493B (zh) * 2002-12-20 2014-11-26 丰田合成株式会社 发光体以及使用其的光学器件
WO2007033576A1 (fr) 2005-09-23 2007-03-29 Dalian Luminglight Science And Technology Co., Ltd. Matériau luminescent à longue rémanence et son procédé de préparation
WO2008061403A1 (fr) * 2006-11-20 2008-05-29 Sichuan Sunfor Light Co., Ltd. Matière photoluminescente à longue émission rémanente coactivée contenant plusieurs métaux du groupe des terres rares
WO2008061436A1 (fr) * 2006-11-20 2008-05-29 Sichuan Sunfor Light Co., Ltd. Phosphores d'accumulation de lumière à longue émission rémanente coactivés à multiples éléments résistants à l'eau
CN100473710C (zh) * 2006-11-20 2009-04-01 四川新力光源有限公司 稀土多元共激活长余辉发光材料及其制备方法
US8329062B2 (en) 2006-11-20 2012-12-11 Sichuan Sunfor Light Co., Ltd. Waterproof multiple rare-earth co-activated long-afterglow luminescent material
CN101550339B (zh) * 2009-05-13 2012-04-11 中国科学院长春光学精密机械与物理研究所 阴极射线或x射线激发长余辉发光材料及其制备方法
CN103710027A (zh) * 2013-11-27 2014-04-09 华南理工大学 具有光激励荧光的近红外长余辉发光材料及其制备方法和应用
CN103710027B (zh) * 2013-11-27 2015-09-02 华南理工大学 具有光激励荧光的近红外长余辉发光材料及其制备方法和应用
CN105924682A (zh) * 2016-05-16 2016-09-07 天津纽威特橡胶制品股份有限公司 一种具备发光功能的新型棒球

Also Published As

Publication number Publication date
CN1236013C (zh) 2006-01-11
DE69800477D1 (de) 2001-02-15
CN1438292A (zh) 2003-08-27
EP0877071B1 (en) 2001-01-10
DE69800477T2 (de) 2001-08-23
US6010644A (en) 2000-01-04
EP0877071A1 (en) 1998-11-11
CN1093869C (zh) 2002-11-06

Similar Documents

Publication Publication Date Title
CN1199078A (zh) 长余辉荧光物质
CN1151229C (zh) 夜光性荧光体
CN1211454C (zh) 发红色光余辉性光致发光荧光体和该荧光体的余辉性灯泡
CN1154710C (zh) 夜光性荧光体
USRE45640E1 (en) Phosphor for electron beam excitation and color display device using the same
EP2036968B1 (en) Phosphor, light source and LED
CN1313872C (zh) 白色光源和使用白色光源的图像显示装置
EP2022836A1 (en) Phosphor and manufacturing method for the same, and light source using the same
CN1706910A (zh) 发光物质
CN1225382A (zh) 二价铕活化荧光体的制造方法
CN1154710A (zh) 具有余辉特性的荧光体
JPH08170076A (ja) 長残光蛍光体
JP2010043242A (ja) β−サイアロン蛍光体の製造方法。
JP2010534755A (ja) 熱安定性の酸窒化物蛍光体及びこの種の蛍光体を有する光源
CN1590503A (zh) 冷阴极荧光灯用碱土类铝酸盐荧光体和冷阴极荧光灯
JP2021172670A (ja) 蛍光体およびそれを使用した発光装置
CN1091459C (zh) 蓝色或者深绿色发光性铝硅酸盐蓄光体及其制造方法
CN1875081A (zh) 蓄光性荧光体及其制造方法
CN1768123A (zh) 蓄光性荧光体及其制造方法
CN1154621C (zh) 发光釉料
CN1531007A (zh) 荧光发光装置、荧光灯及玻璃组合物
JPH1036835A (ja) フォトルミネセンス蛍光体
US6261477B1 (en) Long-lasting phosphor
JP4702565B2 (ja) マンガン付活希土類アルミン酸塩蛍光体及びそれを用いた蛍光ランプ
CN102399554A (zh) 氮化物红色发光材料、包括其的发光件以及发光器件

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee