CN1173389C - 一种金属氧化物半导体器件及其制造方法 - Google Patents

一种金属氧化物半导体器件及其制造方法 Download PDF

Info

Publication number
CN1173389C
CN1173389C CNB998081515A CN99808151A CN1173389C CN 1173389 C CN1173389 C CN 1173389C CN B998081515 A CNB998081515 A CN B998081515A CN 99808151 A CN99808151 A CN 99808151A CN 1173389 C CN1173389 C CN 1173389C
Authority
CN
China
Prior art keywords
dielectric constant
high dielectric
layer
less
scope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB998081515A
Other languages
English (en)
Other versions
CN1308772A (zh
Inventor
迈克尔・赛顿
迈克尔·赛顿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lam Research Corp
Original Assignee
Lam Research Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lam Research Corp filed Critical Lam Research Corp
Publication of CN1308772A publication Critical patent/CN1308772A/zh
Application granted granted Critical
Publication of CN1173389C publication Critical patent/CN1173389C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4983Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET with a lateral structure, e.g. a Polysilicon gate with a lateral doping variation or with a lateral composition variation or characterised by the sidewalls being composed of conductive, resistive or dielectric material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28185Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation with a treatment, e.g. annealing, after the formation of the gate insulator and before the formation of the definitive gate conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28194Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation by deposition, e.g. evaporation, ALD, CVD, sputtering, laser deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28202Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation in a nitrogen-containing ambient, e.g. nitride deposition, growth, oxynitridation, NH3 nitridation, N2O oxidation, thermal nitridation, RTN, plasma nitridation, RPN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/511Insulating materials associated therewith with a compositional variation, e.g. multilayer structures
    • H01L29/513Insulating materials associated therewith with a compositional variation, e.g. multilayer structures the variation being perpendicular to the channel plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/517Insulating materials associated therewith the insulating material comprising a metallic compound, e.g. metal oxide, metal silicate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/518Insulating materials associated therewith the insulating material containing nitrogen, e.g. nitride, oxynitride, nitrogen-doped material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/6656Unipolar field-effect transistors with an insulated gate, i.e. MISFET using multiple spacer layers, e.g. multiple sidewall spacers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66575Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate
    • H01L29/6659Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate with both lightly doped source and drain extensions and source and drain self-aligned to the sides of the gate, e.g. lightly doped drain [LDD] MOSFET, double diffused drain [DDD] MOSFET

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Semiconductor Memories (AREA)

Abstract

本发明提供了形成于第一导电类型的半导体基体上的MOS晶体管及其制造方法。该器件包括(a)形成于基体上的界面层;(b)覆盖界面层的高介电常数层,它包括选自Ta2O5,Ta2(O1-xNx)5(0<x≤0.6),(Ta2O5)r-(TiO2)1-r(r在0.9~1之间)的固溶体,(Ta2O5)s-(Al2O3)1-s(s在0.9~1之间)的固溶体,(Ta2O5)t-(ZrO2)1-t(t在0.9~1之间)的固溶体,(Ta2O5)u-(HfO2)1-u(u在0.9~1之间)的固溶体,以及它们的混合物的材料,(c)宽度小于0.3微米,覆盖高介电常数层的栅电极;(d)邻近栅电极的源极区和漏极区;及(e)在高介电常数层上的一对隔离物。

Description

一种金属氧化物半导体器件及其制造方法
技术领域
本发明涉及利用金属氧化物半导体(MOS)技术制造集成电路的方法。更具体地说,本发明涉及栅宽度小于0.3微米的MOS器件。
背景技术
金属氧化物半导体在本领域中众所周知。随着半导体器件中元件的快速集成,氧化硅栅介电层的厚度已接近2nm厚度水平了。在制造过程中,尤其是在栅刻蚀过程中,这样薄的栅氧化层要求严格的规程。另外,伴随栅氧化层厚度降低的是由直接隧道效应引起的器件的高漏泄电流。
Shinriki等的美国专利5292673描述了含五氧化二钽栅绝缘膜的MOSFET。虽然该专利声称该器件表现出改进的电学特性,但是,据认为,该器件尤其受到高的漏泄电流的损害,因为由在五氧化二钽栅绝缘膜与硅基体之间的再氧化形成的氧化硅层具有包括不均匀性在内的缺陷。
本发明基于高介电常数材料形成的栅介电层,该高介电常数材料的某些选择可以包括Ta2O5,本发明技术方案的特别的优点是,将通过降低或消除与现有器件相关的电流泄漏,显著改进MOS器件的性能。
发明内容
因此,本发明的一个目的是提供一种制造栅宽度小于0.3微米的MOS器件的方法,该方法包括下述顺序的步骤:(a)在硅半导体基体上形成界面层,该界面层包括氮化硅或氮氧化硅;(b)在界面层上形成高介电常数层,高介电常数层包括的材料选自下面的组中:Ta2O5,Ta2(O1-xNx)5,(Ta2O5)r-(TiO2)1-r的固溶体,(Ta2O5)s-(Al2O3)1-s的固溶体,(Ta2O5)t-(ZrO2)1-t的固溶体,(Ta2O5)u-(HfO2)1-u的固溶体,以及它们的混合物,其中,x的范围从大于0至0.6,r的范围从约0.9至小于1,s的范围从0.9至小于1,t的范围从约0.9至小于1,u的范围从约0.9至小于1,其中,界面层使高介电常数层和基体分开;(c)在高介电常数层上沉积一层导电材料;(d)选择性去除该层导电材料的多个部分以形成栅电极,并暴露高介电常数层的多个部分;(e)通过高介电常数层的多个暴露部分,把杂质离子注入基体中,形成第一导电类型的源极区和漏极区;(f)形成邻近栅电极并覆盖第一导电类型的各部分源极区和漏极区的第一隔离物;(g)除去高介电常数层的未被第一隔离物和栅电极覆盖的各个暴露部分;(h)向源极区和漏极区中注入第二剂量的杂质离子;(i)在器件表面上沉积一层绝缘材料;(j)除去绝缘材料的多个部分,在绝缘材料中形成与源极区和漏极区连通的接触孔;和(k)用电接触材料填充接触孔。
在优选实施例中,进一步包括在步骤(j)之前平整绝缘材料表面的步骤。
在优选实施例中,导电材料包括选自TiN、W、Ta、Mo及它们的混合物的金属。或者,导电材料包括掺杂多晶硅。
在另一实施例中,该方法包括形成邻近第一隔离物并覆盖各部分源极区和漏极区的第二隔离物的步骤,该步骤在步骤(g)之后,并在步骤(h)之前和/或包括在步骤(h)之后的在源极区和漏极区上形成硅化物层的步骤。
本发明的另一目的是提供一种在半导体基体上形成的MOS晶体管,它包括:(a)形成于基体上的氮化硅或氮氧化硅界面层;(b)置于界面层上的高介电常数层,高介电常数层包括的材料选自下面的组中:Ta2O5,Ta2(O1-xNx)5,(Ta2O5)r-(TiO2)1-r的固溶体,(Ta2O5)s-(Al2O3)1-s的固溶体,(Ta2O5)t-(ZrO2)1-t的固溶体,(Ta2O5)u-(HfO2)1-u的固溶体,以及它们的混合物,其中,x的范围从大于0至0.6,r的范围从约0.9至小于1,s的范围从0.9至小于1,t的范围从约0.9至小于1,u的范围从约0.9至小于1,其中,界面层使高介电常数层和基体分开;(c)宽度小于0.3微米,置于高介电常数层上的栅电极;(d)沉积在基体表面的相应区域上的第一导电类型的第一和第二轻微掺杂区;(e)第一导电类型的源极区和漏极区;及(f)在高介电常数层上,邻近栅电极形成的一对隔离物。
在一个优选实施例中,MOS晶体管还包括覆盖该半导体器件并确定用第一电接触材料填充的第一接触孔和用第二电接触材料填充的第二接触孔的绝缘层,其中该绝缘层具有基本平坦的表面。
此外,根据本发明,进一步提供下列一种制造栅宽度小于0.3微米的MOS器件的方法,该方法包括:(a)在半导体基体上形成界面层;(b)在界面层上形成高介电常数层,高介电常数层包括Ta2(O1-xNx)5,其中x的范围从大于0至0.6,其中界面层使高介电常数层和基体分开;(c)在高介电常数层上形成导电材料栅电极;(d)在基体中形成邻近栅电极的源极区和漏极区。
此外,根据本发明,进一步提供下列一种制造栅宽度小于0.3微米的MOS器件的方法,该方法包括:(a)在半导体基体上形成界面层;(b)在界面层上形成高介电常数层,高介电常数层包括(Ta2O5)t-(ZrO2)1-t的固溶体,其中t的范围从约0.9至小于1,其中界面层使高介电常数层和基体分开;(c)在高介电常数层上形成导电材料栅电极;和(d)在基体中形成邻近栅电极的源极区和漏极区。
此外,根据本发明,进一步提供下列一种制造栅宽度小于0.3微米的MOS器件的方法,该方法包括:(a)在半导体基体上形成界面层;(b)在界面层上形成高介电常数层,高介电常数层包括(Ta2O5)u-(HfO2)1-u的固溶体,其中u的范围从约0.9至小于1,其中界面层使高介电常数层和基体分开;(c)在高介电常数层上形成导电材料栅电极;和(d)在基体中形成邻近栅电极的源极区和漏极区。
此外,根据本发明,进一步提供下列一种制造栅宽度小于0.3微米的MOS器件的方法,该方法包括:(a)在半导体基体上形成氮化硅界面层;(b)在界面层上形成高介电常数层,高介电常数层包括的材料选自下面的组中:Ta2O5,(Ta2O5)r-(TiO2)1-r的固溶体,(Ta2O5)s-(Al2O3)1-s的固溶体,以及它们的混合物,其中r的范围从约0.9至小于1,s的范围从0.9至小于1,其中,界面层使高介电常数层和基体分开;(c)在高介电常数层上形成导电材料栅电极;和(d)在基体中形成邻近栅电极的源极区和漏极区。
此外,根据本发明,进一步提供下列一种形成在半导体基体上的MOS器件,包括:(a)形成在基体上的界面层;(b)置于界面层上的高介电常数层,高介电常数层包括Ta2(O1-xNx)5,其中x的范围从大于0至0.6,该界面层使高介电常数层和基体分开;(c)置于高介电常数层上的、宽度小于0.3微米的栅电极;(d)在基体中邻近栅电极的源极区和漏极区。
此外,根据本发明,进一步提供下列一种形成在半导体基体上的MOS器件,包括:(a)形成在基体上的界面层;(b)置于界面层上的高介电常数层,高介电常数层包括(Ta2O5)t-(ZrO2)1-t的固溶体,其中t的范围从约0.9至小于1,该界面层使高介电常数层和基体分开;(c)置于高介电常数层上的、宽度小于0.3微米的栅电极;(d)在基体中邻近栅电极的源极区和漏极区。
此外,根据本发明,进一步提供下列一种形成在半导体基体上的MOS器件,包括:(a)形成在基体上的氮化硅界面层;(b)置于界面层上的高介电常数层,高介电常数层包括(Ta2O5)u-(HfO2)1-u的固溶体,其中u的范围从约0.9至小于1,该界面层使高介电常数层和基体分开;(c)置于高介电常数层上的、宽度小于0.3微米的栅电极;(d)在基体中邻近栅电极的源极区和漏极区。
此外,根据本发明,进一步提供下列一种形成在半导体基体上的MOS器件,包括:(a)形成在基体上的界面层;(b)置于界面层上的高介电常数层,高介电常数层包括的材料选自下面的组中:Ta2O5,(Ta2O5)r-(TiO2)1-r的固溶体,(Ta2O5)s-(Al2O3)1-s的固溶体,以及它们的混合物,其中r的范围从约0.9至小于1,s的范围从0.9至小于1,其中,界面层使高介电常数层和基体分开;(c)置于高介电常数层上的、宽度小于0.3微米的栅电极;(d)在基体中邻近栅电极的源极区和漏极区。
附图说明
图1A~1H图解说明了根据本发明,制造MOS器件的步骤。
具体实施方式
要注意的是在本公开文献内,使用了“n+”和“n-。这两个速记符号说明金属氧化物半导体器件的不同区域的电子浓度。例如,“n-”表示电子浓度较低的区域(数量级为1×1018cm-3),而“n+”表示电子浓度较高的区域(数量级为1×1020cm-3)。
图1A~1H图解说明了利用本发明的工序制造集电电路器件的例证方法。出于举例说明的目的,将采用p型半导体基体。于是,在基体中形成n-源极区和n-漏极区,以及n+源极区和n+漏极区。参见图1A,硅基体100具有形成于基体上表面上的界面层105,界面层105最好包括SiO2,Si3N4,或氧氮化硅。利用常规方法,例如快速热处理(RTP),热退火,CVD,等离子体氮化或氧化,或者诸如浸入沸腾的硝酸中之类的湿化学处理,形成界面层。形成界面层的优选方法包括在含有臭氧,氧气,N2O,氮气,或者它们的混合物的气氛中,使硅基体暴露在RF或微波等离子体中。界面层用于阻止层110中的Ta2O5与硅基体的反应。界面层应具有足以防止高介电常数层与硅基体之间的反应的厚度,该厚度一般约为1nm~5nm,最好约为1nm~2nm。
随后,在界面层105上形成高介电常数层110和导电层120。高介电常数层110最好包括选自Ta2O5,Ta2(O1-xNx)5(这里0<x≤0.6),(Ta2O5)r-(TiO2)1-r(这里r在0.9~1之间变化)的固溶体,(Ta2O5)s-(Al2O3)1-s(这里s在0.9~1之间变化)的固溶体,(Ta2O5)t-(ZrO2)1-t(这里t在0.9~1之间变化)的固溶体,(Ta2O5)u-(HfO2)1-u(这里u在0.9~1之间变化)的固溶体,以及它们的混合物的材料。通常,高介电常数层的厚度约为4nm~12nm,最好约为5nm~10nm。高介电常数层将形成栅氧化层。本发明采用的特殊的高介电常数材料便于形成较厚的栅氧化层,从而在制造过程中,对栅刻蚀选择性的要求不是很苛刻。另外,在MOS晶体管的工作过程中,MOS晶体管将表现出更高的跨导参数。此外,由于在MOS制造中已使用了Ta,含有栅氧化物的Ta2O5应该与其它MOS材料中的物质相容。可借助例如包括LPCVD,PECVD,ECRCVD,UVVCD及反应溅射法在内的常规方法,形成高介电常数薄膜。
特别地,可利用如在Alers等的“Nitrogen Plasma Annealing forLow Temperature Ta2O5 Films”(Appl.Phys.Lett.,Vol.72,(11),1998年3月,p1308-1310)中描述的化学气相沉积(CVD)和物理气相沉积(PVD)制备Ta2O5,薄膜。可利用如美国专利5677015中描述的热CVD或等离子体辅助CVD制备Ta2(O1-xNx)5薄膜。可利用如Gan等在“Dielectric property of(TiO2)x-(Ta2O5)1-x Thin Films”(Appl.Phys.Lett.Vol.72,(3),1998年1月,p332-334)中描述的RF磁控溅射沉积,或者如美国专利4734340中描述的化学CVD制备(Ta2O5)r-(TiO2)1-r。可利用如Joshi等在“Structural and electricalproperties of crystalline  (1-x)Ta2O5-xAl2O3 thin film fabricated bymetalorganic solution deposition technique”(Appl.Phys.Lett.,Vol.71,(10),1997年9月)中描述的金属有机溶液沉积方法制备(Ta2O5)s-(Al2O3)1-s薄膜。这里,结合了上面引用的每篇参考文献。最后,可利用制备其它固溶体物质中使用的技术,制备(Ta2O5)t-(ZrO2)1-t和(Ta2O5)u-(HfO2)1-u薄膜。在形成导电层120之前,最好使高介电常数材料受到密实化处理,例如包括在含有臭氧,氧气,N2O,氮气,或者它们的混合物的气氛中,使硅基体受到RTP或者RF或微波等离子体的作用。在上面引用的Alers等的参考文献中进一步描述了密实化处理。就所制造的MOS器件的漏泄电流而论,密实化处理改进了高介电常数材料。
导电层120最好包括一层或多层可溅射沉积的高熔点金属,例如TiN、W、Ta、Mo。导电层120的厚度一般为100nm~300nm,最好约为150nm~250nm。如同这里将说明的一样,该导电层将构成本实施例中的栅电极。
可在导电层120上方,沉积并摹制可选的氧化物层。随后,在利用常规的光刻胶技术,掩蔽并摹制光敏抗蚀剂,形成栅图案之前,在导电层120上涂敷一层光敏抗蚀剂材料160。在蚀刻之后,栅121的行宽(L)通常小于0.3微米,并且最好等于或小于0.18微米。向下蚀刻到高介电常数层110的顶部,将除去如图1B中所示的暴露的导电材料。在去除剩余的光敏抗蚀剂材料160A,形成如图1C中所示的器件之前,借助自对准离子注入技术,形成源极区190和漏极区180。显然,图1C或后面的图中没有表示出图1A和1B中的界面层,不过在图解说明的结构中,是存在该界面层的。
参见图1D,通过在图1C的器件的整个表面上沉积磷硅酸盐玻璃(PSG)膜124,并且随后各向异性蚀刻该玻璃膜,形成隔离物122。隔离物也可由氧化物或氮化物制成。随后,通过利用含有浸蚀气体的氟或氯,借助等离子体蚀刻,除去暴露的高介电常数材料,得到图1E的结构。剩余的高介电常数材料层115用作栅氧化物。借助和隔离物122相同的程序,形成第二隔离物126。随后如图1F中所示,借助离子注入形成轻微掺杂的源极区(n-)129和漏极区(n-)128,同时伴随形成源极区(n+)290和漏极区(n+)280。
随后在源极区和漏极区上形成硅化物层133和132。一种方法包括下述步骤:(1)在图1F的器件的表面上,沉积一层适当的金属,最好是钛,钴,或者多层这些金属,(2)使金属与基体中的硅反应,(3)之后,除去未反应的金属。另一种方法包括利用常规的选择性沉积技术,例如CVD,直接在源极区和漏极区上沉积硅化物,例如金属xSiy
形成硅化物区域之后,在图1G的结构上沉积一层共形PSG膜40,之后,借助诸如化学机械抛光(CMP)之类的常规技术,使PSG膜的上表面平整。当要求较小的接触孔(小于0.3微米)时,CMP是特别有利的。随后,如图1H中所示,在PSG中蚀刻接触孔,随后用例如金属之类的导电材料42和43填充接触孔。
显然,上面的结构具有金属栅电极121。在一个备选实施例中,代替金属栅电极,可采用掺杂的多晶硅栅电极。这种情况下,应取代如图1A中所示的导电层120,沉积一层掺杂多晶硅。任选地,在层110和120之间,可沉积由诸如TiN,WN和TaN之类的适当材料制成的扩散阻挡层。厚度通常为5nm~15nm的该层阻挡层防止多晶硅栅材料与栅电介质中的五氧化二钽反应。在这种情况下,工艺过程的剩余部分与上面所述基本相同,但是,优选的硅化程序(silicidationprocedure)要求在结构上方沉积一层金属膜,从而也在掺杂多晶硅层的表面上形成一层多硅化层(polycide layer)。
要强调的是,虽然这里已详细说明了n沟道晶体管,不过本发明也可被实现为p沟道晶体管。在制造p沟道器件而言,p沟道器件的掺杂导电只不过与n沟道器件的相反。
虽然上面只具体公开和描述了本发明的优选实施例,但是应认识到,在不脱离本发明的精神和预期范围的情况下,根据上面的教导,本发明的多种修改和变化是可能的,并且这些修改和变化在附加权利要求的范围之内。

Claims (52)

1.一种制造栅宽度小于0.3微米的MOS器件的方法,该方法包括下述顺序的步骤:
(a)在硅半导体基体上形成界面层,该界面层包括氮化硅或氮氧化硅;
(b)在界面层上形成高介电常数层,高介电常数层包括的材料选自下面的组中:Ta2O5,Ta2(O1-xNx)5,(Ta2O5)r-(TiO2)1-r的固溶体,(Ta2O5)s-(Al2O3)1-s的固溶体,(Ta2O5)t-(ZrO2)1-t的固溶体,(Ta2O5)u-(HfO2)1-u的固溶体,以及它们的混合物,其中,x的范围从大于0至0.6,r的范围从约0.9至小于1,s的范围从0.9至小于1,t的范围从约0.9至小于1,u的范围从约0.9至小于1,其中,界面层使高介电常数层和基体分开;
(c)在高介电常数层上沉积一层导电材料;
(d)选择性去除该层导电材料的多个部分以形成栅电极,并暴露高介电常数层的多个部分;
(e)通过高介电常数层的多个暴露部分,把杂质离子注入基体中,形成第一导电类型的源极区和漏极区;
(f)形成邻近栅电极并覆盖第一导电类型的各部分源极区和漏极区的第一隔离物;
(g)除去高介电常数层的未被第一隔离物和栅电极覆盖的各个暴露部分;
(h)向源极区和漏极区中注入第二剂量的杂质离子;
(i)在器件表面上沉积一层绝缘材料;
(j)除去绝缘材料的多个部分,在绝缘材料中形成与源极区和漏极区连通的接触孔;和
(k)用电接触材料填充接触孔。
2.按照权利要求1所述的方法,包括使高介电常数层密实的步骤。
3.按照权利要求1所述的方法,其中导电材料包括选自TiN、W、Ta、Mo的金属及多层这些金属。
4.按照权利要求1所述的方法,其中导电材料包括掺杂多晶硅。
5.按照权利要求4所述的方法,还包括在导电材料和高介电常数层之间形成阻挡层的步骤。
6.按照权利要求1所述的方法,还包括在步骤(g)之后,步骤(h)之前,形成邻近第一隔离物并覆盖各部分源极区和漏极区的第二隔离物的步骤。
7.按照权利要求1所述的方法,还包括在步骤(h)之后,在源极区和漏极区上形成硅化物层的步骤。
8.按照权利要求7所述的方法,其中形成硅化物层的步骤包括下述步骤:
至少在源极区和漏极区上,沉积一层金属;
加热该层金属,使金属与源极区和漏极区表面上的硅反应,从而在源极区和漏极区中形成金属硅化物;和
从该层金属中除去未反应的金属。
9.按照权利要求7所述的方法,其中形成硅化物层的步骤包括在源极区和漏极区上使用选择性淀积来沉积硅化物。
10.按照权利要求1所述的方法,其中高介电常数材料层的厚度约为4nm~12nm。
11.按照权利要求1所述的方法,其中步骤(h)包括引入轻微剂量的杂质,以便形成轻微掺杂的源极区和漏极区。
12.按照权利要求1所述的方法,其中高介电常数材料是Ta2O5
13.按照权利要求1所述的方法,其中高介电常数材料是Ta2(O1-xNx)5,其中x的范围从大于0至0.6。
14.按照权利要求1所述的方法,其中高介电常数材料是(Ta2O5)r-(TiO2)1-r的固溶体,其中r优选为范围从大约0.9至小于1。
15.按照权利要求1所述的方法,其中高介电常数材料是(Ta2O5)s-(Al2O3)1-s的固溶体,其中s的范围从0.9至小于1。
16.按照权利要求1所述的方法,其中高介电常数材料是(Ta2O5)t-(ZrO2)1-t的固溶体,其中t的范围从大约0.9至小于1。
17.按照权利要求1所述的方法,其中高介电常数材料是(Ta2O5)u-(HfO2)1-u的固溶体,其中u的范围从大约0.9至小于1。
18.按照权利要求1所述的方法,其中第一隔离物包括氧化物或氮化物材料。
19.按照权利要求1所述的方法,其中步骤(i)包括沉积一层共形绝缘材料。
20.一种在半导体基体上形成的MOS晶体管,它包括:
(a)形成于基体上的氮化硅或氮氧化硅界面层;
(b)置于界面层上的高介电常数层,高介电常数层包括的材料选自下面的组中:Ta2O5,Ta2(O1-xNx)5,(Ta2O5)r-(TiO2)1-r的固溶体,(Ta2O5)s-(Al2O3)1-s的固溶体,(Ta2O5)t-(ZrO2)1-t的固溶体,(Ta2O5)u-(HfO2)1-u的固溶体,以及它们的混合物,其中,x的范围从大于0至0.6,r的范围从约0.9至小于1,s的范围从0.9至小于1,t的范围从约0.9至小于1,u的范围从约0.9至小于1,其中,界面层使高介电常数层和基体分开;
(c)宽度小于0.3微米,置于高介电常数层上的栅电极;
(d)沉积在基体表面的相应区域上的第一导电类型的第一和第二轻微掺杂区;
(e)第一导电类型的源极区和漏极区;及
(f)在高介电常数层上,邻近栅电极形成的一对隔离物。
21.按照权利要求20所述的MOS晶体管,包括:
(g)覆盖该半导体器件并且确定由第一电接触材料填充的第一接触孔和由第二电接触材料填充的第二接触孔的绝缘层,其中该绝缘层具有基本平整的表面。
22.按照权利要求20所述的MOS晶体管,其中栅电极是由选自TiN,W,Ta,MO的金属及多层这些金属形成的。
23.按照权利要求20所述的MOS晶体管,其中栅电极包括掺杂多晶硅。
24.按照权利要求23所述的MOS晶体管,包括位于栅电极和高介电常数层之间的阻挡层。
25.按照权利要求20所述的MOS晶体管,包括形成于轻微掺杂区上的,邻近第一隔离物的一对第二隔离物。
27.按照权利要求20所述的MOS晶体管,包括源极区和漏极区上的硅化物层。
27.按照权利要求20所述的MOS晶体管,其中高介电常数材料层的厚度约为4nm~12nm。
28.按照权利要求20所述的MOS晶体管,其中高介电常数材料是Ta2O5
29.按照权利要求20所述的MOS晶体管,其中高介电常数材料是Ta2(O1-xNx)5,其中x的范围从0至0.6。
30.按照权利要求20所述的MOS晶体管,其中高介电常数材料是(Ta2O5)r-(TiO2)1-r的固溶体,其中r最好是范围从大约0.9至小于1。
31.按照权利要求20所述的MOS晶体管,其中高介电常数材料是(Ta2O5)s-(Al2O3)1-s的固溶体,其中s的范围从0.9至小于1。
32.按照权利要求20所述的MOS晶体管,其中高介电常数材料是(Ta2O5)t-(ZrO2)1-t的固溶体,其中t的范围从大约0.9至小于1。
33.按照权利要求20所述的MOS晶体管,其中高介电常数材料是(Ta2O5)u-(HfO2)1-u的固溶体,其中u的范围从大约0.9至小于1。
34.按照权利要求20所述的MOS晶体管,其中基体包括硅。
35.按照权利要求20所述的MOS晶体管,其中第一隔离物包括氧化物或氮化物材料。
36.按照权利要求1所述的方法,进一步包括在步骤(j)之前平整绝缘材料表面的步骤。
37.按照权利要求36所述的方法,其中平整绝缘材料表面的步骤利用化学机械抛光。
38.按照权利要求1所述的方法,其中界面层具有从约1nm至5nm范围的厚度。
39.按照权利要求1所述的方法,其中界面层具有从约1nm至2nm范围的厚度。
40.一种制造栅宽度小于0.3微米的MOS器件的方法,该方法包括:
(a)在半导体基体上形成界面层;
(b)在界面层上形成高介电常数层,高介电常数层包括Ta2(O1-xNx)5,其中x的范围从大于0至0.6,其中界面层使高介电常数层和基体分开;
(c)在高介电常数层上形成导电材料栅电极;
(d)在基体中形成邻近栅电极的源极区和漏极区。
41.按照权利要求40所述的方法,其中界面层包括氧化硅,氮化硅,或氮氧化硅。
42.一种制造栅宽度小于0.3微米的MOS器件的方法,该方法包括:
(a)在半导体基体上形成界面层;
(b)在界面层上形成高介电常数层,高介电常数层包括(Ta2O5)t-(ZrO2)1-t的固溶体,其中t的范围从约0.9至小于1,其中界面层使高介电常数层和基体分开;
(c)在高介电常数层上形成导电材料栅电极;和
(d)在基体中形成邻近栅电极的源极区和漏极区。
43.按照权利要求42所述的方法,其中界面层包括氧化硅,氮化硅,或氮氧化硅。
44.一种制造栅宽度小于0.3微米的MOS器件的方法,该方法包括:
(a)在半导体基体上形成界面层;
(b)在界面层上形成高介电常数层,高介电常数层包括(Ta2O5)u-(HfO2)1-u的固溶体,其中u的范围从约0.9至小于1,其中界面层使高介电常数层和基体分开;
(c)在高介电常数层上形成导电材料栅电极;和
(d)在基体中形成邻近栅电极的源极区和漏极区。
45.按照权利要求44所述的方法,其中界面层包括氧化硅,氮化硅,或氮氧化硅。
46.一种制造栅宽度小于0.3微米的MOS器件的方法,该方法包括:
(a)在半导体基体上形成氮化硅界面层;
(b)在界面层上形成高介电常数层,高介电常数层包括的材料选自下面的组中:Ta2O5,(Ta2O5)r-(TiO2)1-r的固溶体,(Ta2O5)s-(Al2O3)1-s的固溶体,以及它们的混合物,其中r的范围从约0.9至小于1,s的范围从0.9至小于1,其中,界面层使高介电常数层和基体分开;
(c)在高介电常数层上形成导电材料栅电极;和
(d)在基体中形成邻近栅电极的源极区和漏极区。
47.一种形成在半导体基体上的MOS器件,包括:
(a)形成在基体上的界面层;
(b)置于界面层上的高介电常数层,高介电常数层包括Ta2(O1-xNx)5,其中x的范围从大于0至0.6,该界面层使高介电常数层和基体分开;
(c)置于高介电常数层上的、宽度小于0.3微米的栅电极;
(d)在基体中邻近栅电极的源极区和漏极区。
48.按照权利要求47的MOS器件,其中界面层包括氧化硅,氮化硅,或氮氧化硅。
49.一种形成在半导体基体上的MOS器件,包括:
(a)形成在基体上的界面层;
(b)置于界面层上的高介电常数层,高介电常数层包括(Ta2O5)t-(ZrO2)1-t的固溶体,其中t的范围从约0.9至小于1,该界面层使高介电常数层和基体分开;
(c)置于高介电常数层上的、宽度小于0.3微米的栅电极;
(d)在基体中邻近栅电极的源极区和漏极区。
50.按照权利要求49的MOS器件,其中界面层包括氧化硅,氮化硅,或氮氧化硅。
51.一种形成在半导体基体上的MOS器件,包括:
(a)形成在基体上的氮化硅界面层;
(b)置于界面层上的高介电常数层,高介电常数层包括(Ta2O5)u-(HfO2)1-u的固溶体,其中u的范围从约0.9至小于1,该界面层使高介电常数层和基体分开;
(c)置于高介电常数层上的、宽度小于0.3微米的栅电极;
(d)在基体中邻近栅电极的源极区和漏极区。
52.按照权利要求51的MOS器件,其中界面层包括氧化硅,氮化硅,或氮氧化硅。
53.一种形成在半导体基体上的MOS器件,包括:
(a)形成在基体上的界面层;
(b)置于界面层上的高介电常数层,高介电常数层包括的材料选自下面的组中:Ta2O5,(Ta2O5)r-(TiO2)1-r的固溶体,(Ta2O5)s-(Al2O3)1-s的固溶体,以及它们的混合物,其中r的范围从约0.9至小于1,s的范围从0.9至小于1,其中,界面层使高介电常数层和基体分开;
(c)置于高介电常数层上的、宽度小于0.3微米的栅电极;
(d)在基体中邻近栅电极的源极区和漏极区。
CNB998081515A 1998-06-30 1999-06-21 一种金属氧化物半导体器件及其制造方法 Expired - Fee Related CN1173389C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/109,992 US6727148B1 (en) 1998-06-30 1998-06-30 ULSI MOS with high dielectric constant gate insulator
US09/109,992 1998-06-30

Publications (2)

Publication Number Publication Date
CN1308772A CN1308772A (zh) 2001-08-15
CN1173389C true CN1173389C (zh) 2004-10-27

Family

ID=22330688

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB998081515A Expired - Fee Related CN1173389C (zh) 1998-06-30 1999-06-21 一种金属氧化物半导体器件及其制造方法

Country Status (9)

Country Link
US (3) US6727148B1 (zh)
EP (1) EP1092236A1 (zh)
JP (1) JP2002519865A (zh)
KR (1) KR100636856B1 (zh)
CN (1) CN1173389C (zh)
AU (1) AU4956299A (zh)
MY (1) MY135224A (zh)
TW (1) TW421821B (zh)
WO (1) WO2000001008A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107689329A (zh) * 2016-08-03 2018-02-13 中芯国际集成电路制造(上海)有限公司 鳍式场效应晶体管及其制造方法

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1265276B1 (en) * 2000-03-13 2011-06-22 Tadahiro Ohmi Method for forming dielectric film
WO2002001622A2 (en) * 2000-06-26 2002-01-03 North Carolina State University Novel non-crystalline oxides for use in microelectronic, optical, and other applications
EP1326271A4 (en) * 2000-09-18 2005-08-24 Tokyo Electron Ltd METHOD FOR FILMING A GATE INSULATOR, DEVICE FOR FILMING A GATE INSULATOR AND A CLUSTER TOOL
US6613695B2 (en) * 2000-11-24 2003-09-02 Asm America, Inc. Surface preparation prior to deposition
US7371633B2 (en) 2001-02-02 2008-05-13 Samsung Electronics Co., Ltd. Dielectric layer for semiconductor device and method of manufacturing the same
US6844604B2 (en) 2001-02-02 2005-01-18 Samsung Electronics Co., Ltd. Dielectric layer for semiconductor device and method of manufacturing the same
KR100379621B1 (ko) * 2001-07-10 2003-04-10 광주과학기술원 Mos 트랜지스터 게이트 절연막 및 그 제조방법
JP3746968B2 (ja) 2001-08-29 2006-02-22 東京エレクトロン株式会社 絶縁膜の形成方法および形成システム
JP4257055B2 (ja) * 2001-11-15 2009-04-22 株式会社ルネサステクノロジ 半導体集積回路装置の製造方法
KR100395507B1 (ko) * 2001-11-27 2003-08-25 주식회사 하이닉스반도체 반도체 소자 및 그 제조방법
KR100445407B1 (ko) * 2001-12-29 2004-08-25 주식회사 하이닉스반도체 Cmos 의 게이트절연막 제조 방법
CN100438070C (zh) * 2002-02-07 2008-11-26 台湾积体电路制造股份有限公司 栅极组件及其制造方法
US7081409B2 (en) * 2002-07-17 2006-07-25 Samsung Electronics Co., Ltd. Methods of producing integrated circuit devices utilizing tantalum amine derivatives
CN1320606C (zh) * 2003-03-04 2007-06-06 台湾积体电路制造股份有限公司 一种栅极介电层与改善其电性的方法
US7037849B2 (en) * 2003-06-27 2006-05-02 Taiwan Semiconductor Manufacturing Company, Ltd. Process for patterning high-k dielectric material
JP2005085822A (ja) * 2003-09-04 2005-03-31 Toshiba Corp 半導体装置
US7164095B2 (en) * 2004-07-07 2007-01-16 Noritsu Koki Co., Ltd. Microwave plasma nozzle with enhanced plume stability and heating efficiency
US7806077B2 (en) 2004-07-30 2010-10-05 Amarante Technologies, Inc. Plasma nozzle array for providing uniform scalable microwave plasma generation
US20060021980A1 (en) * 2004-07-30 2006-02-02 Lee Sang H System and method for controlling a power distribution within a microwave cavity
US7271363B2 (en) * 2004-09-01 2007-09-18 Noritsu Koki Co., Ltd. Portable microwave plasma systems including a supply line for gas and microwaves
US7189939B2 (en) * 2004-09-01 2007-03-13 Noritsu Koki Co., Ltd. Portable microwave plasma discharge unit
US20060052883A1 (en) * 2004-09-08 2006-03-09 Lee Sang H System and method for optimizing data acquisition of plasma using a feedback control module
CN101027758A (zh) * 2004-09-21 2007-08-29 飞思卡尔半导体公司 半导体器件及其形成方法
US7361608B2 (en) * 2004-09-30 2008-04-22 Tokyo Electron Limited Method and system for forming a feature in a high-k layer
US20060154425A1 (en) * 2005-01-10 2006-07-13 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor device and method for fabricating the same
US7538029B2 (en) * 2005-07-06 2009-05-26 International Business Machines Corporation Method of room temperature growth of SiOx on silicide as an etch stop layer for metal contact open of semiconductor devices
JP2007088122A (ja) * 2005-09-21 2007-04-05 Renesas Technology Corp 半導体装置
KR100868768B1 (ko) * 2007-02-28 2008-11-13 삼성전자주식회사 Cmos 반도체 소자 및 그 제조방법
US7736981B2 (en) * 2008-05-01 2010-06-15 International Business Machines Corporation Metal high dielectric constant transistor with reverse-T gate
US20090275182A1 (en) * 2008-05-01 2009-11-05 International Business Machines Corporation Method for fabricating a metal high dielectric constant transistor with reverse-t gate
US8193586B2 (en) 2008-08-25 2012-06-05 Taiwan Semiconductor Manufacturing Company, Ltd. Sealing structure for high-K metal gate
US20100044804A1 (en) * 2008-08-25 2010-02-25 Taiwan Semiconductor Manufacturing Company, Ltd. Novel high-k metal gate structure and method of making
US8035165B2 (en) * 2008-08-26 2011-10-11 Taiwan Semiconductor Manufacturing Company, Ltd. Integrating a first contact structure in a gate last process
EP2462611B1 (en) * 2009-08-05 2019-09-25 Faculdade De Ciências E Tecnologia/ Universidade Nova De Lisboa Amorphous multicomponent dielectric based on the mixture of high band gap and high k materials, respective devices and manufacture
US8258588B2 (en) * 2009-08-07 2012-09-04 Taiwan Semiconductor Manufacturing Company, Ltd. Sealing layer of a field effect transistor
KR101345390B1 (ko) * 2009-12-01 2013-12-24 도쿠리츠교세이호징 붓시쯔 자이료 겐큐키코 계면층 삭감 방법, 고유전율 게이트 절연막의 형성 방법, 고유전율 게이트 절연막, 고유전율 게이트 산화막,및 고유전율 게이트 산화막을 구비하는 트랜지스터
KR101282343B1 (ko) * 2010-07-30 2013-07-04 에스케이하이닉스 주식회사 금속게이트를 갖는 반도체장치 및 그 제조 방법

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3731163A (en) 1972-03-22 1973-05-01 United Aircraft Corp Low voltage charge storage memory element
JPS60107838A (ja) 1983-11-17 1985-06-13 Nec Corp 半導体装置の製造方法
JPS60182692A (ja) 1984-02-29 1985-09-18 ホ−ヤ株式会社 薄膜el素子とその製造方法
JPH0627328B2 (ja) 1985-07-16 1994-04-13 ソニー株式会社 高誘電率薄膜
JPS632363A (ja) * 1986-06-20 1988-01-07 Nec Corp 容量膜
JPH01220393A (ja) * 1988-02-26 1989-09-04 Hitachi Maxell Ltd 薄膜型エレクトロルミネセンス素子
US5189503A (en) 1988-03-04 1993-02-23 Kabushiki Kaisha Toshiba High dielectric capacitor having low current leakage
JP2816192B2 (ja) * 1989-08-16 1998-10-27 株式会社日立製作所 半導体装置の製造方法
US5292673A (en) 1989-08-16 1994-03-08 Hitachi, Ltd Method of manufacturing a semiconductor device
JP2963750B2 (ja) * 1990-09-28 1999-10-18 株式会社東芝 半導体装置
US5091763A (en) 1990-12-19 1992-02-25 Intel Corporation Self-aligned overlap MOSFET and method of fabrication
JP3285934B2 (ja) * 1991-07-16 2002-05-27 株式会社東芝 半導体装置の製造方法
US5200352A (en) * 1991-11-25 1993-04-06 Motorola Inc. Transistor having a lightly doped region and method of formation
JPH05275646A (ja) * 1992-03-26 1993-10-22 Matsushita Electric Ind Co Ltd 高誘電率体及びその製造方法
JPH0677402A (ja) 1992-07-02 1994-03-18 Natl Semiconductor Corp <Ns> 半導体デバイス用誘電体構造及びその製造方法
US5322809A (en) * 1993-05-11 1994-06-21 Texas Instruments Incorporated Self-aligned silicide process
US5677015A (en) 1994-03-17 1997-10-14 Sony Corporation High dielectric constant material containing tantalum, process for forming high dielectric constant film containing tantalum, and semiconductor device using the same
JP3334323B2 (ja) * 1994-03-17 2002-10-15 ソニー株式会社 高誘電体膜の形成方法
JP2643833B2 (ja) 1994-05-30 1997-08-20 日本電気株式会社 半導体記憶装置及びその製造方法
US5439839A (en) * 1994-07-13 1995-08-08 Winbond Electronics Corporation Self-aligned source/drain MOS process
AU3620995A (en) * 1994-09-21 1996-04-09 Chiron Corporation Method of treating hypertension in pregnant mammals
JPH09199720A (ja) * 1996-01-22 1997-07-31 Oki Electric Ind Co Ltd Mos型半導体装置とその製造方法
KR100282413B1 (ko) * 1996-10-24 2001-03-02 김영환 아산화질소 가스를 이용한 박막 형성 방법
US5969397A (en) 1996-11-26 1999-10-19 Texas Instruments Incorporated Low defect density composite dielectric
JPH10178170A (ja) * 1996-12-19 1998-06-30 Fujitsu Ltd 半導体装置及びその製造方法
US5702972A (en) 1997-01-27 1997-12-30 Taiwan Semiconductor Manufacturing Company Ltd. Method of fabricating MOSFET devices
JPH10341002A (ja) * 1997-06-06 1998-12-22 Oki Electric Ind Co Ltd 強誘電体トランジスタ、半導体記憶装置、強誘電体トランジスタの取扱い方法および強誘電体トランジスタの製造方法
US5834353A (en) * 1997-10-20 1998-11-10 Texas Instruments-Acer Incorporated Method of making deep sub-micron meter MOSFET with a high permitivity gate dielectric
US6087238A (en) * 1997-12-17 2000-07-11 Advanced Micro Devices, Inc. Semiconductor device having reduced-width polysilicon gate and non-oxidizing barrier layer and method of manufacture thereof
US6027976A (en) * 1997-12-18 2000-02-22 Advanced Micro Devices, Inc. Process for making semiconductor device having nitride at silicon and polysilicon interfaces
US6458645B2 (en) 1998-02-26 2002-10-01 Micron Technology, Inc. Capacitor having tantalum oxynitride film and method for making same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107689329A (zh) * 2016-08-03 2018-02-13 中芯国际集成电路制造(上海)有限公司 鳍式场效应晶体管及其制造方法

Also Published As

Publication number Publication date
MY135224A (en) 2008-02-29
US6727148B1 (en) 2004-04-27
US20040087091A1 (en) 2004-05-06
EP1092236A1 (en) 2001-04-18
TW421821B (en) 2001-02-11
AU4956299A (en) 2000-01-17
US20040070036A1 (en) 2004-04-15
JP2002519865A (ja) 2002-07-02
KR100636856B1 (ko) 2006-10-19
CN1308772A (zh) 2001-08-15
WO2000001008A9 (en) 2000-03-30
US7042033B2 (en) 2006-05-09
WO2000001008A1 (en) 2000-01-06
KR20010053230A (ko) 2001-06-25

Similar Documents

Publication Publication Date Title
CN1173389C (zh) 一种金属氧化物半导体器件及其制造方法
CN1264217C (zh) 多重栅极结构及其制造方法
US6514808B1 (en) Transistor having a high K dielectric and short gate length and method therefor
US6780708B1 (en) Method of forming core and periphery gates including two critical masking steps to form a hard mask in a core region that includes a critical dimension less than achievable at a resolution limit of lithography
CN1253943C (zh) 具有多重栅极及应变的沟道层的晶体管及其制造方法
KR20050054920A (ko) 금속 산화물 및 결과 디바이스를 사용하여 듀얼 게이트 산화물 디바이스를 형성하는 방법
JP2004214661A (ja) トランジスタゲートの製造及び高誘電率ゲート誘電体の粗さを減少する方法
TWI391993B (zh) 形成具矽化物層之半導體裝置之方法
CN1728386A (zh) 局部金属硅化的取代栅极
CN1252812C (zh) 半导体集成电路器件的制造方法
US6528362B1 (en) Metal gate with CVD amorphous silicon layer for CMOS devices and method of making with a replacement gate process
US20080135951A1 (en) Semiconductor Device and Method of Forming the Same
CN2692841Y (zh) 多重栅极结构
US9054210B2 (en) Method of fabricating semiconductor device
KR101062835B1 (ko) 이중 하드마스크를 이용한 반도체 소자의 게이트전극 제조방법
CN106033731A (zh) 半导体元件及其制作方法
CN1612307A (zh) 半导体装置的制造方法
US6905971B1 (en) Treatment of dielectric material to enhance etch rate
US12021137B2 (en) Ni(Al)O p-type semiconductor via selective oxidation of NiAl and methods of forming the same
KR100806136B1 (ko) 금속 게이트전극을 구비한 반도체소자의 제조 방법
TW201214575A (en) Metal gate transistor and method for fabricating the same
CN1612306A (zh) 处理包含含氧氮化硅介质层的半导体器件的方法
KR20050045752A (ko) 실리콘층과 유전막 사이에 확산방지막을 구비하는 반도체장치의 제조 방법
KR20010064118A (ko) 선택적 에피택셜 성장 기술을 적용한 대머신 게이트형모스 트랜지스터 제조방법
CN1213184A (zh) 金属氧化物半导体器件及其制造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20041027

Termination date: 20140621

EXPY Termination of patent right or utility model