CN115353369B - 一种微波法制备镍铝掺杂的ito靶材 - Google Patents

一种微波法制备镍铝掺杂的ito靶材 Download PDF

Info

Publication number
CN115353369B
CN115353369B CN202210986674.8A CN202210986674A CN115353369B CN 115353369 B CN115353369 B CN 115353369B CN 202210986674 A CN202210986674 A CN 202210986674A CN 115353369 B CN115353369 B CN 115353369B
Authority
CN
China
Prior art keywords
nickel
sulfate
ito target
aluminum
target material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210986674.8A
Other languages
English (en)
Other versions
CN115353369A (zh
Inventor
张莉兰
徐蒙
钟小华
高建成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Leading Film Materials Anhui Co ltd
Original Assignee
Pilot Film Materials Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pilot Film Materials Co ltd filed Critical Pilot Film Materials Co ltd
Priority to CN202210986674.8A priority Critical patent/CN115353369B/zh
Publication of CN115353369A publication Critical patent/CN115353369A/zh
Application granted granted Critical
Publication of CN115353369B publication Critical patent/CN115353369B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3293Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/448Sulphates or sulphites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Physical Vapour Deposition (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明涉及一种微波法制备镍铝掺杂的ITO靶材,属于太阳能电池技术领域,制备步骤如下:将硫酸铟、硫酸锡、硫酸铝和硫酸镍加入容器中并在容器中加入蒸馏水作为溶剂,将容器放入微波炉中,调整微波功率,用氢氧化钠溶液调节pH值为5‑9.5,得到沉淀悬浮物;将沉淀悬浮物使用混合液进行离心洗涤,得到氢氧化物沉淀;将氢氧化物沉淀煅烧,得到氧化物粉体;将氧化物粉体、添加剂和蒸馏水混合,砂磨,喷雾干燥,得到前驱体粉末;将前驱体粉末装入模具,冷等静压成型,烧结,得到镍,铝掺杂的I TO靶材,该靶材溅射成膜后电子迁移率70‑90cm2V‑1s‑1,粒度分布均匀,在太阳能电池制造中具有极大的应用价值。

Description

一种微波法制备镍铝掺杂的ITO靶材
技术领域
本发明属于太阳能电池技术领域,具体地,涉及一种微波法制备镍铝掺杂的ITO靶材。
背景技术
ITO靶材(Indium-Tin-Oxide,氧化铟锡)是一种新型半导体氧化物陶瓷材料,主要用于磁控溅射制备高性能光电薄膜,广泛应用于新型显示、电磁屏蔽、半导体光伏(太阳能电池)等领域,高端靶材的研制一直以来是国内的研究重点。
ITO靶材的制备方法有很多种,目前主流制备ITO靶材的烧结方法有常压烧结和热压烧结,两种烧结制备方法各有优势,无论是哪种烧结法制备ITO 靶材,获得超高活性纳米ITO粉体是获得高密度、低电阻的ITO靶材的关键。
现有ITO纳米粉体制备方法包括溶胶凝胶法、混合球磨法和化学沉淀法,溶胶凝胶法是通过在含有In、Sn的有机溶液中加入碱液,生产铟锡有机盐,经过热处理得到ITO纳米粉体,该方法存在原料价格高、有机溶剂有毒、粉体煅烧易团聚等不足;混合球磨法是通过将In2O3粉体、SnO2粉体进行机械混合,加入分散剂、粘结剂等助剂,混磨后喷雾干燥得到,该方法通过研磨球碰撞实现粉体的混合,研磨球溶液出现破损引入杂质元素,造成ITO纳米粉体纯度无法保证,而化学共沉淀法原料易得、工艺简单被广泛使用,但是现有技术中采用该方法制备ITO纳米粉体过程中共沉淀粉体容易团聚、粒径范围分布较宽,颗粒团聚和不均匀会影响靶材的相对密度,进而使电子迁移率降低,迁移率降低则会降低ITO靶材的电导率,影响后续光电薄膜的电导率,以至于制备的太阳能电池的电流承载能力差,因此提供一种高迁移率的ITO 靶材是目前需要解决的技术问题。
发明内容
本发明的目的在于提供一种微波法制备镍铝掺杂的ITO靶材,解决了现有技术中ITO靶材电子迁移率低的问题。
本发明的目的可以通过以下技术方案实现:
一种微波法制备镍铝掺杂的ITO靶材,具体步骤如下:
步骤a、利用金属铟和硫酸溶液制备硫酸铟;
步骤b、将硫酸铟、硫酸锡、硫酸铝和硫酸镍加入不锈钢容器中并在不锈钢容器中加入蒸馏水作为溶剂,将不锈钢容器放入具有800W可调节的微波炉中,调整微波功率,缓慢加入0.1mol/L氢氧化钠溶液调节溶液的pH值为5-9.5,得到沉淀悬浮物;
步骤c、将上述沉淀悬浮物使用无水乙醇和蒸馏水组成的混合液进行离心洗涤直至洗涤干净,得到氢氧化物沉淀;
步骤d、将上述氢氧化物沉淀使用马弗炉煅烧,得到氧化物粉体;
步骤e、将上述氧化物粉体、添加剂和蒸馏水混合0.5-3h,再进行砂磨,砂磨合格后得到混合浆料,喷雾干燥,得到前驱体粉末;
步骤f、将前驱体粉末装入模具中成型,再冷等静压成型,得到靶坯;
步骤g、将成型后靶胚进行烧结,得到镍,铝掺杂的ITO靶材。
作为本发明的进一步方案,步骤a的具体操作为:
将质量分数98%的浓硫酸加热至60-100℃,加热金属铟,进行搅拌溶解反应,搅拌至金属铟完全溶解后停止加热,静置冷却至室温,过滤分离,滤饼用蒸馏水多次洗涤后,干燥,得到硫酸铟,浓硫酸和金属铟的质量比为1-2.5:1。
作为本发明的进一步方案,步骤b中硫酸铟、硫酸锡、硫酸铝和硫酸镍质量比为98:1:0.5:0.5,蒸馏水用量为硫酸铟、硫酸锡、硫酸铝和硫酸镍质量和的10-12倍,微波功率为300-600W。
作为本发明的进一步方案,步骤c中混合液由无水乙醇和蒸馏水按照体积比1:3组成,清洗氢氧化物沉淀干净的标准为洗涤液电导率<100 μs/cm。
作为本发明的进一步方案,步骤d中煅烧温度为500-1000℃。
作为本发明的进一步方案,步骤e中添加剂为聚乙烯吡咯烷酮,分子量为40000,氧化物粉体、添加剂和蒸馏水质量比为1:0.2:0.8,砂磨合格浆料的粒径为D90为0.25-0.8μm,喷雾干燥时进风温度为 150-250℃,出风温度为50-100℃。
作为本发明的进一步方案,步骤f中冷等静压的压力为220-500MPa,保压的时间为1-120min。
作为本发明的进一步方案,步骤g中烧结的温度1400-1600℃,保温时间为5-18h。
本发明的有益效果:
本发明提供一种微波法制备镍铝掺杂的ITO靶材,溅射成膜后的电子迁移率为70-90cm2V-1s-1,且粒度分布均匀,与现有ITO靶材(电子迁移率在15-45cm2V-1s-1)相比,电子迁移率提升一倍,其主要原因在于两点,一是在ITO靶材制备原料上作出了调整,采用硫酸铟、硫酸锡、硫酸铝和硫酸镍为主要原料,在ITO靶材中引入氧化镍和氧化铝,不仅因为硫酸镍和硫酸铝价格便宜易得这一原因,还因为氧化镍具有稳定性和宽带隙等优点,氧化铝具有钝化氧化物的作用,防止电子和空穴过早复合,提高了 ITO靶材成膜后的电子迁移率;二是在制备氢氧化物沉淀过程中采用微波辅助手段,利用微波加热使反应物瞬间产生大量晶核,保证晶核的生成条件和生成速度一致,保证生成的氢氧化物沉淀纯度、粒度和粒形的均一性,得到分散性高且粒度均匀的氢氧化物沉淀,并且该方法快速、节能和环境友好;将该ITO靶材用于太阳能电池中,其通过磁控溅射形成光电薄膜中的氧化铝钝化层还充当反射太阳光的镜面,重新进入太阳能电池的活性部分以转化为电能,进一步提高太光能的转化效率;综上本发明制备的ITO 靶材具有较高的电子迁移率,在太阳能电池制造中具有极大的应用价值。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为实施例1中步骤d氧化物粉体的SEM图。
图2为实施例1中步骤e混合浆料的马尔文激光粒度仪检测图。
图3为实施例1中步骤e前驱体粉末的SEM图。
图4为实施例1制备的镍铝掺杂ITO靶材的外观图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
实施例1
请参阅图1-4所示,一种微波法制备镍铝掺杂的ITO靶材,具体步骤如下:
步骤a、利用金属铟和硫酸溶液制备硫酸铟;
步骤b、将硫酸铟、硫酸锡、硫酸铝和硫酸镍按照98g:1g:0.5g:0.5g加入3L不锈钢罐子中并在不锈钢罐子中加入1000mL蒸馏水作为溶剂,将不锈钢罐子放入具有800W可调节的微波炉中,控制功率300W,缓慢加入0.1mol/L氢氧化钠溶液调节溶液的pH值为5,得到沉淀悬浮物;
步骤c、将上述沉淀悬浮物使用无水乙醇和蒸馏水体积比1:3组成的混合液进行离心洗涤直至洗涤液电导率<100μs/cm,得到氢氧化物沉淀;
步骤d、将氢氧化物沉淀在马弗炉中500℃煅烧,得到氧化物粉体,利用扫描电子显微镜对氧化物粉体进行微观形貌表征,SEM图如图1所示;
步骤e、将上述1g氧化物粉体、0.2g分子量40000的聚乙烯吡咯烷酮添加剂和0.8g蒸馏水混合0.5h,再进行砂磨至浆料的粒径为D90为 0.25-0.8μm,得到混合浆料,将混合浆料采用马尔文激光粒度仪进行粒度检测,检测结果如图2所示,然后喷雾干燥,得到前驱体粉末,喷雾干燥时进风温度为150℃,出风温度为100℃,将得到的前驱体粉末利用扫描电子显微镜进行微观表征,SEM图如图3所示;
步骤f、将前驱体粉末装入模具中成型,压力220MPa冷等静压120min,得到靶坯;
步骤g、将靶胚在温度1400℃烧结18h,得到镍,铝掺杂的ITO靶材,外观如图4所示。
其中,步骤a的具体操作为:
将质量分数98%的浓硫酸加热至60℃,加热金属铟,搅拌至金属铟完全溶解后停止加热,静置冷却至室温,过滤分离,滤饼用蒸馏水多次洗涤后,干燥,得到硫酸铟,浓硫酸和金属铟的质量比为1:1。
由图1可以看出,利用微波辅助手段制备镍,铝掺杂氧化物粉体粒度主要分布在50-70nm,且分布范围比较窄,分布均匀。
由图2可以看出,混合浆料中颗粒90%分在0.336微米。
由图3可以看出,前驱体粉末颗粒是球状的,且空心,主要分布与20-100微米。
实施例2
一种微波法制备镍铝掺杂的ITO靶材,具体步骤如下:
步骤a、利用金属铟和硫酸溶液制备硫酸铟;
步骤b、将硫酸铟、硫酸锡、硫酸铝和硫酸镍按照98g:1g:0.5g: 0.5g加入3L不锈钢罐子中并在不锈钢罐子中加入1100mL蒸馏水作为溶剂,将不锈钢罐子放入具有800W可调节的微波炉中,控制功率400W,缓慢加入0.1mol/L氢氧化钠溶液调节溶液的pH值为6,得到沉淀悬浮物;
步骤c、将上述沉淀悬浮物使用无水乙醇和蒸馏水体积比1:3组成的混合液进行离心洗涤直至洗涤液电导率<100μs/cm,得到氢氧化物沉淀;
步骤d、将氢氧化物沉淀使用马弗炉在800℃煅烧,得到氧化物粉体;
步骤e、将上述1g氧化物粉体、0.2g分子量40000的聚乙烯吡咯烷酮添加剂和0.8g蒸馏水混合2h,再进行砂磨至浆料的粒径为D90为 0.25-0.8μm,得到混合浆料,喷雾干燥,得到前驱体粉末,喷雾干燥时进风温度为200℃,出风温度为80℃;
步骤f、将前驱体粉末装入模具中成型,压力300MPa冷等静压60min,得到靶坯;
步骤g、将靶胚在温度1500℃烧结10h,得到镍,铝掺杂的ITO靶材。
其中,步骤a的具体操作为:
将质量分数98%的浓硫酸加热至80℃,加热金属铟,搅拌至金属铟完全溶解后停止加热,静置冷却至室温,过滤分离,滤饼用蒸馏水多次洗涤后,干燥,得到硫酸铟,浓硫酸和金属铟的质量比为1.5:1。
实施例3
一种微波法制备镍铝掺杂的ITO靶材,具体步骤如下:
步骤a、利用金属铟和硫酸溶液制备硫酸铟;
步骤b、将硫酸铟、硫酸锡、硫酸铝和硫酸镍按照98g:1g:0.5g: 0.5g加入3L不锈钢罐子中并在不锈钢罐子中加入1200mL蒸馏水作为溶剂,将不锈钢罐子放入具有800W可调节的微波炉中,控制功率600W,缓慢加入0.1mol/L氢氧化钠溶液调节溶液的pH值为9.5,得到沉淀悬浮物;
步骤c、将上述沉淀悬浮物使用无水乙醇和蒸馏水体积比1:3组成的混合液进行离心洗涤直至洗涤液电导率<100μs/cm,得到氢氧化物沉淀;
步骤d、将氢氧化物沉淀在马弗炉中1000℃煅烧,得到氧化物粉体;
步骤e、将上述1g氧化物粉体、0.2g分子量40000的聚乙烯吡咯烷酮添加剂和0.8g蒸馏水混合3h,再进行砂磨至浆料的粒径为D90为 0.25-0.8μm,得到混合浆料,喷雾干燥,得到前驱体粉末,喷雾干燥时进风温度为250℃,出风温度为100℃;
步骤f、将前驱体粉末装入模具中成型,压力500MPa冷等静压10min,得到靶坯;
步骤g、将靶胚在温度1600℃烧结6h,得到镍,铝掺杂的ITO靶材。
其中,步骤a的具体操作为:
将质量分数98%的浓硫酸加热至100℃,加热金属铟,搅拌至金属铟完全溶解后停止加热,静置冷却至室温,过滤分离,滤饼用蒸馏水多次洗涤后,干燥,得到硫酸铟,浓硫酸和金属铟的质量比为2.5:1。
对比例1
与实施例2相比,将实施例2步骤b中硫酸铝和硫酸镍去除,其余原料及制备过程同实施例2。
对比例2
与实施例3相比,将实施例3步骤b中的微波处理去除,其余原料及制备过程同实施例3。
对比例3
与实施例3相比,将实施例3步骤b中硫酸铝和硫酸镍材料去除、微波处理去除,其余原料及制备过程同实施例3。
将实施例1-3和对比例1-3所制备的ITO靶材溅射成膜并采用霍尔效应法进行电子迁移率测试,测试结果如表1所示:
表1
Figure BDA0003802510420000081
由表1可以看出,相比于对比例1-3,实施例1-3所制备的ITO靶材的电子迁移率更高。
在说明书的描述中,参考术语“一个实施例”、“示例”、“具体示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上内容仅仅是对本发明的构思所作的举例和说明,所属本技术领域的技术人员对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,只要不偏离发明的构思或者超越本权利要求书所定义的范围,均应属于本发明的保护范围。

Claims (7)

1.一种微波法制备镍铝掺杂的ITO靶材,其特征在于,步骤如下:
步骤a、利用金属铟和硫酸溶液制备硫酸铟;
步骤b、将硫酸铟、硫酸锡、硫酸铝和硫酸镍加入容器中并在容器中加入蒸馏水作为溶剂,将容器放入微波炉中,调整微波功率,用氢氧化钠溶液调节pH值为5-9.5,得到沉淀悬浮物;
步骤c、将沉淀悬浮物使用混合液进行离心洗涤,得到氢氧化物沉淀;
步骤d、将氢氧化物沉淀煅烧,得到氧化物粉体;
步骤e、将氧化物粉体、添加剂和蒸馏水混合,砂磨,砂磨合格后得到混合浆料,喷雾干燥,得到前驱体粉末;
步骤f、将前驱体粉末装入模具,冷等静压成型,烧结,得到镍,铝掺杂的ITO靶材。
2.根据权利要求1所述的一种微波法制备镍铝掺杂的ITO靶材,其特征在于,步骤b中硫酸铟、硫酸锡、硫酸铝和硫酸镍质量比为98:1:0.5:0.5,微波功率为300-600W。
3.根据权利要求1所述的一种微波法制备镍铝掺杂的ITO靶材,其特征在于,步骤c中混合液由无水乙醇和蒸馏水按照体积比1:3组成,清洗氢氧化物沉淀干净的标准为洗涤液电导率<100μs/cm。
4.根据权利要求1所述的一种微波法制备镍铝掺杂的ITO靶材,其特征在于,步骤d中煅烧温度为500-1000℃。
5.根据权利要求1所述的一种微波法制备镍铝掺杂的ITO靶材,其特征在于,步骤e中添加剂为聚乙烯吡咯烷酮,氧化物粉体、添加剂和蒸馏水质量比为1:0.2:0.8,砂磨合格浆料的粒径为D90为0.25-0.8μm,喷雾干燥时进风温度为150-250℃,出风温度为50-100℃。
6.根据权利要求1所述的一种微波法制备镍铝掺杂的ITO靶材,其特征在于,步骤f中冷等静压的压力为220-500MPa,保压的时间为1-120min。
7.根据权利要求1所述的一种微波法制备镍铝掺杂的ITO靶材,其特征在于,步骤f 中烧结的温度1400-1600℃,保温时间为5-18h。
CN202210986674.8A 2022-08-17 2022-08-17 一种微波法制备镍铝掺杂的ito靶材 Active CN115353369B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210986674.8A CN115353369B (zh) 2022-08-17 2022-08-17 一种微波法制备镍铝掺杂的ito靶材

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210986674.8A CN115353369B (zh) 2022-08-17 2022-08-17 一种微波法制备镍铝掺杂的ito靶材

Publications (2)

Publication Number Publication Date
CN115353369A CN115353369A (zh) 2022-11-18
CN115353369B true CN115353369B (zh) 2023-02-17

Family

ID=84001791

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210986674.8A Active CN115353369B (zh) 2022-08-17 2022-08-17 一种微波法制备镍铝掺杂的ito靶材

Country Status (1)

Country Link
CN (1) CN115353369B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1326909A (zh) * 2000-12-28 2001-12-19 蒋政 高密度铟锡氧化物靶材及其制造方法
CN101746813A (zh) * 2009-12-17 2010-06-23 昆明理工大学 铟锡氧化物纳米粉体的制备方法
CN103232234A (zh) * 2013-04-28 2013-08-07 西南交通大学 一种高致密低电阻ito靶材的微波掺杂烧结方法
CN106082306A (zh) * 2016-06-06 2016-11-09 中国科学院深圳先进技术研究院 一种铝掺杂氧化锌纳米粉体及其微波辅助制备方法与应用
JP2021050411A (ja) * 2019-09-24 2021-04-01 光洋應用材料科技股▲分▼有限公司 ニッケルドープ酸化インジウムスズターゲットおよびその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1326909A (zh) * 2000-12-28 2001-12-19 蒋政 高密度铟锡氧化物靶材及其制造方法
CN101746813A (zh) * 2009-12-17 2010-06-23 昆明理工大学 铟锡氧化物纳米粉体的制备方法
CN103232234A (zh) * 2013-04-28 2013-08-07 西南交通大学 一种高致密低电阻ito靶材的微波掺杂烧结方法
CN106082306A (zh) * 2016-06-06 2016-11-09 中国科学院深圳先进技术研究院 一种铝掺杂氧化锌纳米粉体及其微波辅助制备方法与应用
JP2021050411A (ja) * 2019-09-24 2021-04-01 光洋應用材料科技股▲分▼有限公司 ニッケルドープ酸化インジウムスズターゲットおよびその製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Fabrication of nickel oxide and Ni-doped indium tin oxide thin films using pyrosol process;Akihiko Nakasa et al.;《Thin Solid Films》;20050824;第498卷;全文 *
High-luminous efficacy green light-emitting diodes with InGaN/GaN quasi-superlattice interlayer and Al-doped indium tin oxide film;Xiao-long Hu et al.;《Journal of Alloys and Compounds》;20190424;第794卷;全文 *

Also Published As

Publication number Publication date
CN115353369A (zh) 2022-11-18

Similar Documents

Publication Publication Date Title
CN108847477B (zh) 一种镍钴锰酸锂三元正极材料及其制备方法
WO2022062677A1 (zh) 一种三元单晶正极材料及其制备方法和应用
CN103571334B (zh) 氧化铈抛光粉及其制备方法
CN103408062B (zh) 铝镓共掺氧化锌纳米粉末及其高密度高电导溅射镀膜靶材的制备方法
WO2023098706A1 (zh) 一种锌掺杂氧化铟粉体、溅射靶材及其制备方法
CN106676487B (zh) 一种氧化锌基陶瓷溅射靶材及其制备方法和应用
CN113479918B (zh) 一种纳米球形α-氧化铝粉体制备方法
CN108993511A (zh) 一种超细纳米多孔镍铁氧化物电催化剂的制备方法
CN106449121A (zh) 一种CdS/TiO2复合纳米薄膜及其制备方法和应用
CN113735565A (zh) 低锡含量ito溅射靶材、制备方法及薄膜太阳能电池
CN114772572A (zh) 一种纳米金属离子包覆磷酸铁锂正极材料及其制备方法
CN108767219A (zh) 一种纳米复合材料及其制备方法和应用
CN115353369B (zh) 一种微波法制备镍铝掺杂的ito靶材
CN110350162B (zh) 一种倍率型镍钴铝正极材料及其制备方法和应用
CN107777718B (zh) 一种y2o3纳米粉体及其制备方法
CN116143191A (zh) 一种表面修饰改性的单晶富锂锰基正极材料的制备方法
CN113461064B (zh) 一种高容量正极材料纳米Li1.3Mn0.4Ti0.3O2的制备方法
CN104658766A (zh) 一种硅纳米片掺杂钴酸镍及其制备方法
CN109244445B (zh) 一种高性能、超细钛酸锂纳米颗粒制备工艺
CN102581289B (zh) 一种单分散高结晶度银粉的制备方法
CN110615477A (zh) 利用失效钒电池正极电解液快速制备vo2的方法
CN109776040B (zh) 水泥复合材料及其制备方法、花生壳石墨烯助磨剂
CN110526701A (zh) 一种铁氧体固废循环再利用制备电磁波吸收材料的方法
CN112652762B (zh) 一种单晶结构三元锂电正极前驱体材料及其制备方法和应用
CN114367301B (zh) 一种合成碱式硝酸铋/氧化铋复合材料的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20230627

Address after: In the workshop of Leading Film Materials Co., Ltd. at the intersection of Longzihu Road and Tongnenenebb Huainan Road, Xinzhan District, Hefei City, Anhui Province, 230000

Patentee after: Leading Film Materials (Anhui) Co.,Ltd.

Address before: 230000 northwest corner of the intersection of Longzihu road and tonghuai South Road, Xinzhan District, Hefei City, Anhui Province

Patentee before: Pilot film materials Co.,Ltd.