CN113461064B - 一种高容量正极材料纳米Li1.3Mn0.4Ti0.3O2的制备方法 - Google Patents

一种高容量正极材料纳米Li1.3Mn0.4Ti0.3O2的制备方法 Download PDF

Info

Publication number
CN113461064B
CN113461064B CN202110676627.9A CN202110676627A CN113461064B CN 113461064 B CN113461064 B CN 113461064B CN 202110676627 A CN202110676627 A CN 202110676627A CN 113461064 B CN113461064 B CN 113461064B
Authority
CN
China
Prior art keywords
preparation
positive electrode
material nano
electrode material
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110676627.9A
Other languages
English (en)
Other versions
CN113461064A (zh
Inventor
陈泽华
王秋芬
张传祥
陈林
李鑫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yibin Vocational and Technical College
Original Assignee
Yibin Vocational and Technical College
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yibin Vocational and Technical College filed Critical Yibin Vocational and Technical College
Priority to CN202110676627.9A priority Critical patent/CN113461064B/zh
Publication of CN113461064A publication Critical patent/CN113461064A/zh
Application granted granted Critical
Publication of CN113461064B publication Critical patent/CN113461064B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1221Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
    • C01G45/1228Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type [MnO2]n-, e.g. LiMnO2, Li[MxMn1-x]O2
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了一种高容量正极材料纳米Li1.3Mn0.4Ti0.3O2的制备方法,将钛酸四丁酯和乙酸锰超声溶解在去离子水和乙二醇混合溶剂中,将2‑乙基己烷磺基琥珀酸钠溶于去离子水和乙二醇中;水浴加热使上述两种溶液混合均匀;用氨水调节体系PH值为7~9;再将溶液转到聚四氟乙烯内衬的不锈钢反应釜中进行水热反应;产物进行离心抽滤洗涤干燥得到前驱体粉末;前驱体粉末预烧处理冷却得到Ti‑Mn氧化物;再与草酸锂混合,加入无水乙醇充分研磨,静置至乙醇挥发完全;所得样品放于马弗炉中通氧气煅烧,得到目标产物Li1.3Mn0.4Ti0.3O2正极材料。本发明制备工艺简单,用于制备锂离子电池,具有较高的充放电比容量。

Description

一种高容量正极材料纳米Li1.3Mn0.4Ti0.3O2的制备方法
技术领域
本发明属于锂离子电池正极材料制备技术领域,具体涉及一种高容量正极材料纳米Li1.3Mn0.4Ti0.3O2的制备方法。
背景技术
作为最具潜能的储能器件之一的锂离子电池,因其具有高比容量、环境友好、无记忆效应、高循环寿命等优点,被广泛地应用在人们的生活之中。随着新能源产业的兴起,人们对锂离子电池的储能性能提出了更高的要求。在一系列新型的正极材料中,富锂锰基正极材料(x Li2MnO3-(1-x)LiTMO2)放电比容量可以高达300mAh/g,同时这种材料以较便宜的锰元素为主,贵重金属含量少,与目前市场上使用的镍钴锰三元正极材料相比,不仅成本低,而且安全性好,被认为是下一代锂离子动力电池的首选。
虽然富锂锰材料在提高锂离子电池能量密度上具有天然的优势,但也存在一些问题,例如在循环过程中容量有所衰减、稳定性能较差。所以为了扩大材料的推广应用,需要提高材料的稳定性,克服材料本身存在的问题。目前,合成富锂锰基正极材料的方法有很多,主要有共沉淀法、溶胶凝胶法、固相法等。
本发明采用的制备方法,加入了表面活性剂,能够有效控制颗粒粒度大小,显著提高了材料的电化学性能,得到了高容量Li1.3Mn0.4Ti0.3O2正极材料,具有较好的循环稳定性和较高的容量。
发明内容
针对目前富锂锰材料本身所存在的问题,本发明提供了一种制备方法,目的在于得到结构稳定、性能好、容量高的富锂锰基正极材料。
为了达到此发明的目的,本发明采用以下技术方案:
一种高容量正极材料纳米Li1.3Mn0.4Ti0.3O2的制备方法,具体步骤如下:
(1)将钛酸四丁酯(C16H36O4Ti)和乙酸锰(Mn(CH3COO)2·4H2O)溶解在去离子水和乙二醇的混合溶剂中,并在超声的环境下,使用玻璃棒进行充分地搅拌,使原料溶解完全,最终形成均匀溶液;
(2)取一定量的2-乙基己烷磺基琥珀酸钠溶解在去离子水和乙二醇的混合溶剂中;
(3)将步骤(2)所得的溶液缓慢加入到步骤(1)的均匀溶液中,并在水浴加热条件下充分搅拌完全,得到稳定的混合体系;
(4)滴加氨水使得上述稳定混合体系的PH值为7~9;
(5)将调节过PH值之后的混合溶液放入到聚四氟乙烯内衬的不锈钢反应釜中,进行水热反应;
(6)待反应结束后,冷却至室温,对产物进行离心抽滤洗涤干燥,得到Li1.3Mn0.4Ti0.3O2前驱体粉末;
(7)对制得的前驱体粉末先进行预烧处理,冷却得到Ti-Mn氧化物;
(8)将Ti-Mn氧化物与一定量的草酸锂(Li2C2O4)混合置于研钵中,并加入一定量的无水乙醇,充分研磨混合后静置至乙醇挥发完全;
(9)对研磨混合后的样品放于马弗炉中进行煅烧处理,并通氧气进行保护,随炉冷却,得到目标产物Li1.3Mn0.4Ti0.3O2正极材料。
进一步,所述步骤(1)中,钛离子和锰离子的摩尔比为3:4。
进一步,所述步骤(2)中,2-乙基己烷磺基琥珀酸钠在混合溶剂中的浓度为1moL/L,2-乙基己烷磺基琥珀酸钠与乙酸锰(Mn(CH3COO)2•4H2O)的摩尔比为1.25:1。
进一步,所述步骤(3)中,水浴加热时间为20~30min,温度为75~100℃。
进一步,所述步骤(5)中,水热反应的温度为180℃~ 230℃,水热反应的时间为18h ~ 24h。
进一步,所述步骤(6)中,反复抽滤洗涤5次,干燥温度为80℃ ~ 120℃,干燥的时间为8 h ~ 12h。
进一步,所述步骤(7)中,预烧的条件为450℃ ~ 550℃下烧4 h ~ 6h。
进一步,所述步骤(8)中,Ti-Mn氧化物与草酸锂(Li2C2O4)的摩尔比为6:13。
进一步,所述步骤(9)中,煅烧温度为780℃ ~ 850℃,时间为12 h ~ 15h。
本发明的有益效果:本发明采用钛酸四丁酯(C16H36O4Ti)、乙酸锰(Mn(CH3COO)2·4H2O)和草酸锂(Li2C2O4)为原料,选用2-乙基己烷磺基琥珀酸钠作为表面活性剂,氨水作为络合剂和沉淀剂,同时通过添加氨水来调节溶液的酸碱度,还可以为表面活性剂提供良好的反应环境。本发明的合成工艺简单,可操作性强。通过XRD图可以看出,所制得的样品中没有其它的杂峰出现,说明了选用的表面活性剂不会对材料的合成产生影响,同时表面活性剂的加入可以作为分散剂,有效地调控了颗粒的形貌和粒径,减少团聚,提高材料的电化学性能。由SEM图可以看出,颗粒尺寸小于200nm,没有团聚现象出现,电极材料良好地保持了纳米颗粒晶体结构原貌,从而获得了更好的电化学性能。
附图说明
图1为本发明实施例1所制备的Li1.3Mn0.4Ti0.3O2的XRD图。
图2为本发明实施例1所制备的Li1.3Mn0.4Ti0.3O2的SEM(2μm)图。
图3为本发明实施例1所制备的Li1.3Mn0.4Ti0.3O2的SEM(200nm)图。
图4为本发明实施例1所制备的Li1.3Mn0.4Ti0.3O2在不同的电流密度下的放电曲线图。
具体实施方式
下面结合具体实施例,对本发明做进一步说明。应理解,以下实施例仅用于说明本发明而非用于限制本发明的范围,该领域的技术熟练人员可以根据上述发明的内容作出一些非本质的改进和调整。
实施例1
一种高容量正极材料纳米Li1.3Mn0.4Ti0.3O2的制备方法,具体步骤如下:
(1)称取钛酸四丁酯4.0838g(0.012mol)、乙酸锰3.9214g(0.016mol)溶解在去离子水和乙二醇的混合溶剂中,超声使原料溶解完全,最终形成均匀溶液40ml;
(2)配置1moL/L的2-乙基己烷磺基琥珀酸钠、去离子水和乙二醇的混合溶液40ml;
(3)将步骤(2)所得的溶液缓慢加入到步骤(1)的均匀溶液中,水浴加热时间为30min,温度为80℃;
(4)滴加氨水使得上述稳定混合体系的PH值为8.2;
(5)将调节过PH值之后的混合溶液放入到聚四氟乙烯内衬的不锈钢反应釜(100ml)中,进行水热反应,反应温度为200℃,时间为22h;
(6)反应结束,冷却至室温,对产物进行离心抽滤洗涤干燥,干燥温度为120℃,时间为10h,得到Li1.3Mn0.4Ti0.3O2前驱体粉末;
(7)对制得的前驱体粉末先进行预烧处理,预烧温度为450℃,时间为6h;
(8)将制得的Ti-Mn氧化物2.7334g与2.6494g草酸锂混合置于研钵中,并加入一定量的无水乙醇,充分研磨混合后静置至乙醇挥发完全;
(9)将研磨混合后的样品放于马弗炉中进行煅烧处理,并通氧气进行保护,煅烧温度为830℃,时间为12h,随炉冷却,得到目标产物。
图1为本发明所制备的Li1.3Mn0.4Ti0.3O2的XRD图,由图可以得出加入表面活性剂之后,材料的结构并没有发生改变,且材料的结晶度好,纯度高。
图2、图3为本发明所制备的Li1.3Mn0.4Ti0.3O2的SEM图,由图得出材料的直径﹤200nm,所制备的富锂锰正极材料为纳米结构,材料无团聚体出现,呈现良好的单晶形貌,颗粒形状规则、大小匀称,无细粉碎渣、表面光滑。
图4为本发明所制备的Li1.3Mn0.4Ti0.3O2在1.5V~4.8V范围内,不同充放电电流密度下的放电曲线图,由图中可以看出,在室温条件下,在10 mA/g的电流密度下,富锂锰基正极材料最大放电比容量为335 mAh/g。
实施例2
一种高容量正极材料纳米Li1.3Mn0.4Ti0.3O2的制备方法,具体步骤如下:
(1)称取钛酸四丁酯4.0838g(0.012mol)、乙酸锰3.9214g(0.016mol)溶解在去离子水和乙二醇的混合溶剂中,超声使原料溶解完全,最终形成均匀溶液40ml;
(2)配置1moL/L的2-乙基己烷磺基琥珀酸钠、去离子水和乙二醇的混合溶液40ml;
(3)将步骤(2)所得的溶液缓慢加入到步骤(1)的均匀溶液中,水浴加热时间为20min,温度为95℃;
(4)滴加氨水使得上述稳定混合体系的PH值为9;
(5)将调节过PH值之后的混合溶液放入到聚四氟乙烯内衬的不锈钢反应釜(100ml)中,进行水热反应,反应温度为220℃,时间为22h;
(6)反应结束,冷却至室温,对产物进行离心抽滤洗涤干燥,干燥温度为120℃,时间为8h,得到Li1.3Mn0.4Ti0.3O2前驱体粉末;
(7)对制得的前驱体粉末先进行预烧处理,预烧温度为500℃,时间为6h;
(8)将制得的Ti-Mn氧化物2.7334g(0.012mol)与2.6494g(0.0026mol)草酸锂混合置于研钵中,并加入一定量的无水乙醇,充分研磨混合后静置至乙醇挥发完全;
(9)将研磨混合后的样品放于马弗炉中进行煅烧处理,并通氧气进行保护,煅烧温度为800℃,时间为15h,随炉冷却,得到目标产物。
实施例3
一种高容量正极材料纳米Li1.3Mn0.4Ti0.3O2的制备方法,具体步骤如下:
(1)称取钛酸四丁酯1.3613g(0.004mol)、乙酸锰1.2744g(0.0052mol)溶解在去离子水和乙二醇的混合溶剂中,超声使原料溶解完全,最终形成均匀溶液40ml;
(2)配置1moL/L的2-乙基己烷磺基琥珀酸钠、去离子水和乙二醇的混合溶液40ml;
(3)将步骤(2)所得的溶液缓慢加入到步骤(1)的均匀溶液中,水浴加热时间为25min,温度为75℃;
(4)滴加氨水使得上述稳定混合体系的PH值为7.5;
(5)将调节过PH值之后的混合溶液放入到聚四氟乙烯内衬的不锈钢反应釜(100ml)中,进行水热反应,反应温度为180℃,时间为24h;
(6)反应结束,冷却至室温,对产物进行离心抽滤洗涤干燥,干燥温度为100℃,时间为12h,得到Li1.3Mn0.4Ti0.3O2前驱体粉末;
(7)对制得的前驱体粉末先进行预烧处理,预烧温度为550℃,时间为4h;
(8)将制得的Ti-Mn氧化物0.8932g(0.004mol)与0.8831g(0.00865mol)草酸锂混合置于研钵中,并加入一定量的无水乙醇,充分研磨混合后静置至乙醇挥发完全;
(9)将研磨混合后的样品放于马弗炉中进行煅烧处理,并通氧气进行保护,煅烧温度为780℃,时间为15h,随炉冷却,得到目标产物。
以上显示和描述了本发明的基本原理和主要特征以及本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。

Claims (8)

1.一种高容量正极材料纳米Li1.3Mn0.4Ti0.3O2的制备方法,其特征步骤在于:
(1)将钛酸四丁酯(C16H36O4Ti)和乙酸锰(Mn(CH3COO)2•4H2O)溶解在去离子水和乙二醇的混合溶剂中,并在超声的环境下,使用玻璃棒进行充分地搅拌,使原料溶解完全,最终形成均匀溶液;
(2)将2-乙基己烷磺基琥珀酸钠溶解在去离子水和乙二醇的混合溶剂中;
(3)将步骤(2)所得的溶液缓慢加入到步骤(1)的均匀溶液中,并在水浴加热条件下充分搅拌完全,得到稳定的混合体系;
(4)滴加氨水使得上述稳定混合体系的pH 值为7~9;
(5)将调节过pH 值之后的混合溶液放入到聚四氟乙烯内衬的不锈钢反应釜中,进行水热反应;
(6)待反应结束后,冷却至室温,对产物进行离心抽滤洗涤干燥,得到Li1.3Mn0.4Ti0.3O2前驱体粉末;
(7)对制得的前驱体粉末先进行预烧处理,冷却得到Ti-Mn氧化物;
(8)将得到的Ti-Mn氧化物与草酸锂(Li2C2O4)混合置于研钵中,并加入无水乙醇,充分研磨混合后静置至乙醇挥发完全;
(9)将步骤(8)所得样品放于马弗炉中进行煅烧处理,并通氧气进行保护,随炉冷却,得到目标产物正极材料纳米Li1.3Mn0.4Ti0.3O2
所述步骤(2)中,2-乙基己烷磺基琥珀酸钠在混合溶剂中的浓度为1moL/L,2-乙基己烷磺基琥珀酸钠与乙酸锰(Mn(CH3COO)2•4H2O)的摩尔比为1.25:1。
2.根据权利要求1所述的高容量正极材料纳米Li1.3Mn0.4Ti0.3O2的制备方法,其特征在于:所述步骤(1)中,钛离子和锰离子的摩尔比为3:4。
3.根据权利要求1所述的高容量正极材料纳米Li1.3Mn0.4Ti0.3O2的制备方法,其特征在于:所述步骤(3)中,水浴加热时间为20~30min,温度为75~100℃。
4.根据权利要求1所述的高容量正极材料纳米Li1.3Mn0.4Ti0.3O2的制备方法,其特征在于:所述步骤(5)中,水热反应的温度为180℃~ 230℃,水热反应的时间为18 h ~ 24h。
5.根据权利要求1所述的高容量正极材料纳米Li1.3Mn0.4Ti0.3O2的制备方法,其特征在于:所述步骤(6)中,反复抽滤洗涤5次,干燥温度为80℃ ~ 120℃,干燥的时间为8 h ~12h。
6.根据权利要求1所述的高容量正极材料纳米Li1.3Mn0.4Ti0.3O2的制备方法,其特征在于:所述步骤(7)中,预烧的条件为450℃ ~ 550℃下烧4 h ~ 6h。
7.根据权利要求1所述的高容量正极材料纳米Li1.3Mn0.4Ti0.3O2的制备方法,其特征在于:所述步骤(8)中,Ti-Mn氧化物与草酸锂(Li2C2O4)的摩尔比为6:13。
8.根据权利要求1所述的高容量正极材料纳米Li1.3Mn0.4Ti0.3O2的制备方法,其特征在于:所述步骤(9)中,煅烧温度为780℃ ~ 850℃,时间为12 h ~ 15h。
CN202110676627.9A 2021-06-18 2021-06-18 一种高容量正极材料纳米Li1.3Mn0.4Ti0.3O2的制备方法 Active CN113461064B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110676627.9A CN113461064B (zh) 2021-06-18 2021-06-18 一种高容量正极材料纳米Li1.3Mn0.4Ti0.3O2的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110676627.9A CN113461064B (zh) 2021-06-18 2021-06-18 一种高容量正极材料纳米Li1.3Mn0.4Ti0.3O2的制备方法

Publications (2)

Publication Number Publication Date
CN113461064A CN113461064A (zh) 2021-10-01
CN113461064B true CN113461064B (zh) 2023-01-06

Family

ID=77870418

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110676627.9A Active CN113461064B (zh) 2021-06-18 2021-06-18 一种高容量正极材料纳米Li1.3Mn0.4Ti0.3O2的制备方法

Country Status (1)

Country Link
CN (1) CN113461064B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2613896A (en) * 2021-12-20 2023-06-21 Dyson Technology Ltd A cathode composition

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6237758B2 (ja) * 2013-02-19 2017-11-29 日本ゼオン株式会社 リチウムイオン二次電池正極用スラリー組成物、リチウムイオン二次電池用正極の製造方法、リチウムイオン二次電池用正極およびリチウムイオン二次電池
CN105576199A (zh) * 2015-12-09 2016-05-11 山东精工电子科技有限公司 一种新型纳米钛酸锰锂LiMnxTiO4正极材料的制备方法
CN105609715B (zh) * 2015-12-18 2018-07-06 浙江天能能源科技股份有限公司 一种铝钛共掺杂的镍锰酸锂锂离子电池正极材料及其制备方法
CN106532029A (zh) * 2016-12-28 2017-03-22 四川富骅新能源科技有限公司 一种锂离子电池高电压三元正极材料及其制备方法
CN106784626A (zh) * 2017-02-28 2017-05-31 四川富骅新能源科技有限公司 一种锂离子电池正极材料及其制备方法
CN107069030B (zh) * 2017-04-18 2020-06-16 湘潭大学 一种形貌和尺寸双可控的富锂锰基正极材料的制备方法

Also Published As

Publication number Publication date
CN113461064A (zh) 2021-10-01

Similar Documents

Publication Publication Date Title
CN106505193A (zh) 单晶镍钴锰酸锂正极材料及其制备方法和锂离子电池
CN102683645A (zh) 一种锂离子电池正极材料层状富锂锰基氧化物的制备方法
CN108649205A (zh) 一种具有变斜率浓度梯度掺杂结构的锂离子电池正极材料及其制备
CN108767216A (zh) 具有变斜率全浓度梯度的锂离子电池正极材料及其合成方法
CN102386381A (zh) 一种锂离子电池纳米级正极材料的制备方法
CN114005978B (zh) 一种无钴正极材料及其制备方法和应用
CN108899480A (zh) 一种长循环寿命高比容量镍钴铝正极材料及其制备方法
CN106711434A (zh) 一种类海胆状含钠富锂层状正极材料及其制备方法
CN109437328A (zh) 一种纳米级短棒状多孔四氧化三钴电极材料的制备方法
CN103794777A (zh) 一种表面包覆的镍锰酸锂正极材料的制备方法
CN107123792A (zh) 双层复合结构三元正极材料及其制备方法
CN106252594B (zh) 一种具有纳米级两相共存结构的球形锂离子电池正极材料及其合成方法
CN108933247A (zh) 一种简易制备azo包覆523单晶镍钴锰三元正极材料的方法及产品
CN113845152A (zh) 镍锰酸锂正极材料、其制备方法和锂离子电池
CN105720242A (zh) 锂离子电池正极材料nca的改性方法
CN104409723A (zh) 一种三元正极材料的电化学制备方法
CN111342024A (zh) 一种长循环锰酸锂正极材料及其制备方法
CN110911652B (zh) 一种纳米球形α-MnO2/Bi2O3材料及其制备方法和应用
CN113461064B (zh) 一种高容量正极材料纳米Li1.3Mn0.4Ti0.3O2的制备方法
CN114655999A (zh) 一种对富锂层状氧化物正极材料进行原位表面结构调控的方法
CN103187564A (zh) 电池正极材料LiNi0.5Mn1.5O4的制备方法
CN107845807A (zh) 一种锂离子电池锰基正极材料的制备方法
CN109616663B (zh) 镍钴铝三元正极材料、制备方法及锂离子电池
CN108807971B (zh) 一种锂离子电池富锂锰基正极材料及其制备方法
CN111217395A (zh) 一种高能量密度锰酸锂正极材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20221216

Address after: No. 74, Xincun, Xijiao Street, Cuiping District, Yibin, Sichuan 644000

Applicant after: YIBIN VOCATIONAL AND TECHNICAL College

Address before: No. 2001, Century Avenue, high tech Zone, Jiaozuo City, Henan Province

Applicant before: HENAN POLYTECHNIC University

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant